JP2022535903A - 映像符号化のための動き候補リストの構成 - Google Patents
映像符号化のための動き候補リストの構成 Download PDFInfo
- Publication number
- JP2022535903A JP2022535903A JP2021572490A JP2021572490A JP2022535903A JP 2022535903 A JP2022535903 A JP 2022535903A JP 2021572490 A JP2021572490 A JP 2021572490A JP 2021572490 A JP2021572490 A JP 2021572490A JP 2022535903 A JP2022535903 A JP 2022535903A
- Authority
- JP
- Japan
- Prior art keywords
- block
- current
- sub
- candidates
- motion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000033001 locomotion Effects 0.000 title claims abstract description 534
- 238000010276 construction Methods 0.000 title description 34
- 238000000034 method Methods 0.000 claims abstract description 562
- 238000012545 processing Methods 0.000 claims abstract description 93
- 238000006243 chemical reaction Methods 0.000 claims abstract description 19
- 230000009471 action Effects 0.000 claims abstract description 15
- 239000013598 vector Substances 0.000 claims description 399
- 230000002123 temporal effect Effects 0.000 claims description 73
- 238000013138 pruning Methods 0.000 claims description 21
- 230000009466 transformation Effects 0.000 claims description 12
- 239000011449 brick Substances 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 2
- 230000008569 process Effects 0.000 description 192
- 241000023320 Luma <angiosperm> Species 0.000 description 115
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 114
- 238000009795 derivation Methods 0.000 description 96
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 40
- 238000005516 engineering process Methods 0.000 description 15
- 230000002457 bidirectional effect Effects 0.000 description 14
- 238000005192 partition Methods 0.000 description 11
- 238000004590 computer program Methods 0.000 description 9
- 238000000638 solvent extraction Methods 0.000 description 9
- 230000001131 transforming effect Effects 0.000 description 8
- 230000011664 signaling Effects 0.000 description 7
- 238000003491 array Methods 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 230000015654 memory Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000003672 processing method Methods 0.000 description 6
- 239000000872 buffer Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000003044 adaptive effect Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000013515 script Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/513—Processing of motion vectors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/136—Incoming video signal characteristics or properties
- H04N19/137—Motion inside a coding unit, e.g. average field, frame or block difference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/105—Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/132—Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/513—Processing of motion vectors
- H04N19/517—Processing of motion vectors by encoding
- H04N19/52—Processing of motion vectors by encoding by predictive encoding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/70—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
Description
パリ条約に基づく適用可能な特許法および/または規則に基づいて、本願は、2019年6月6日出願の国際特許出願PCT/CN2019/090409号、2019年6月22日出願の国際特許出願PCT/CN2019/092438号、2019年9月10日出願の国際特許出願PCT/CN2019/105180号の優先権および利益を適時に主張することを目的とする。米国法に基づくすべての目的のために、上記出願の開示全体は、本明細書の開示の一部として参照により援用される。
この処理への入力は以下の通りである。
-現在の予測ブロックを規定する変数currPb、
-ColPicにて規定された同一位置のピクチャ内の同一位置の予測ブロックを規定する変数colPb、
-ColPicにて規定された同一位置のピクチャの左上の輝度サンプルに対するcolPbにて規定された同一位置の輝度予測ブロックの左上のサンプルを規定する輝度位置(xColPb,yColPb)
-Xが0または1に等しい、参照インデックスrefIdxLX。
-動きベクトル予測mvLXCol、
-可用性フラグavailableFlagLXCol。
配列predFlagL0Col[x]、mlvL0Col[x]、refIdxL0Col[x][y]は、それぞれ、ColPicで規定された同一位置のピクチャのPredFlagL0[x]、MlvL0[x]、RefIdxL0[x][y]に等しく設定され、配列predFlagL1Col[x][y]、mvL1Col[x][y]、およびrefIdxL1Col[x][y]は、それぞれ、ColPicで規定された同一位置のPredFlagL1[x]、MvL1[x]、RefIdxL1[x][y]に等しく設定される。
-colPbがイントラ予測モードで符号化される場合、mvLXColの両成分は0に等しく設定され、availableFlagLXColは0に等しく設定される。
-そうでない場合、動きベクトルmvCol、参照インデックスrefIdxCol、および参照リスト識別子listColは、以下のように導出される。
-predFlagL0Col[xColPb][yColPb]が0に等しい場合、mvCol、refIdxCol、listColは、それぞれ、mvL1Col[xColPb][yColPb]、refIdxL1Col[xColPb][yColPb]、L1に等しく設定される。
-そうでない場合、predFlagL0Col[xColPb][yColPb]が1に等しく、かつ、predFlagL1Col[xColPb][yColPb][yColPb]が0に等しい場合、mvCol、refIdxCol、listColは、それぞれ、mvL0Col[xColPb][yColPb],refIdxL0Col[xColPb][yColPb]、およびL0に等しく設定される。
-そうでない場合(predFlagL0Col[xColPb][yColPb]が1に等しく、かつ、predFlagL1Col[xColPb][yColPb]が1に等しい場合)、以下の割り当てを行う。
-NoBackwardPredFlagが1に等しい場合、mvCol、refIdxCol、およびlistColは、それぞれ、mvLXCol[xColPb][yColPb]、refIdxLXCol[xColPb][yColPb]、およびLXに等しく設定される。
-そうでない場合、mvCol、refIdxCol、listColは、それぞれ、mvLNCol[xColPb][yColPb]、refIdxLNCol[xColPb][yColPb]、LNに等しく設定され、Nはcollocated_from_l0_flagの値である。
-LongTermRefPic(currPic,currPb,refIdxLX,LX)がLongTermRefPic(ColPic,colPb,refIdxCol,listCol)に等しくない場合、mvLXColの両成分は0に等しく設定され、availableFlagLXColは0に等しく設定される。
-そうでない場合、変数availableFlagLXColは1に等しく設定され、refPicListCol[refIdxCol]は、ColPicによって規定された同一位置のピクチャにおける予測ブロックcolPbを含むスライスの参照ピクチャリストlistColにおける参照インデックスrefIdxColを有するピクチャとなるように設定され、以下を適用する。
colPocDiff=DiffPicOrderCnt(ColPic,refPicListCol[refIdxCol]) (2-1)
currPocDiff=DiffPicOrderCnt(currPic,RefPicListX[refIdxLX]) (2-2)
-RefPicListX[refIdxLX]が長期参照ピクチャである場合、またはcolPocDiffがcurrPocDiffに等しい場合、mvLXColは、以下のように導出される。
mvLXCol=mvCol (2-3)
-そうでない場合、mvLXColは、動きベクトルmvColのスケーリングされたバージョンとして、以下のように導出される。
tx=(16384+(Abs(td)>>1))/td (2-4)
distScaleFactor=Clip3(-4096,4095,(tb*tx+32)>>6) (2-5)
mvLXCol=Clip3(-32768,32767,Sign(distScaleFactor*mvCol)*((Abs(distScaleFactor*mvCol)+127)>>8)) (2-6)
ここで、tdおよびtbは、以下のように導出される。
td=Clip3(-128,127,colPocDiff) (2-7)
tb=Clip3(-128,127,currPocDiff) (2-8)
変数NoBackwardPredFlagは、以下のように導出される。
-現在のスライスのRefPicList0またはRefPicList1における各ピクチャaPicについて、DiffPicOrderCnt(aPic,CurrPic)が0以下である場合、NoBackwardPredFlagは1に等しく設定される。
-そうでない場合、NoBackwardPredFlagは、0に等しく設定される。
six_minus_max_num_merge_candは、6から減算した、スライスでサポートされるマージMVP(Motion Vector Prediction)候補の最大数を規定する。マージMVP候補の最大数MaxNumMergeCandは、以下のように導出される。
MaxNumMergeCand=6-six_minus_max_num_merge_cand (7-57)
MaxNumMergeCandの値は、1~6の範囲内である。
MaxNumSubblockMergeCand=5-five_minus_max_num_subblock_merge_cand (7-58)
MaxNumSubblockMergeCandの値は、1~5の範囲内である。
0に等しいpred_mode_flagは、現在の符号化ユニットがインター予測モードで符号化されることを規定する。pred_mode_flagが1に等しい場合、現在の符号化ユニットがイントラ予測モードで符号化されることを規定する。
pred_mode_flagが存在しない場合、次のように推測される。
-cbWidthが4に等しく、かつ、cbHeightが4に等しい場合、pred_mode_flagは1と等しいと推測される。
-そうでない場合、Iスライスを復号化する場合、pred_mode_flagは1に等しいと推測され、PまたはBスライスを復号化する場合、それぞれ0に等しいと推測される。
-pred_mode_flagが0に等しい場合、CuPredMode[x][y]は、MODE_INTERに等しく設定される。
-そうでない場合(pred_mode_flagが1に等しい場合)、CuPredMode[x][y]はMODE_INTRAに等しく設定される。
1に等しいpred_mode_ibc_flagは、現在の符号化ユニットがIBC予測モードで符号化されることを規定する。pred_mode_ibc_flagが0に等しい場合、現在の符号化ユニットがIBC予測モードで符号化されないことを規定する。
-cu_skip_flag[x0][y0]が1に等しく、かつ、cbWidthが4に等しく、かつ、cbHeightが4に等しい場合、pred_mode_ibc_flagは1と等しいと推測される。
-そうでない場合、cbWidthおよびcbHeightの両方が128に等しい場合、pred_mode_ibc_flagは0に等しいと推測される。
-そうでない場合、Iスライスを復号化する場合、pred_mode_ibc_flagはsps_ibc_enabled_flagの値に等しいと推測され、PまたはBスライスを復号化する場合、それぞれ0と推測される。
pred_mode_ibc_flagが1に等しい場合、変数CuPredMode[x][y]は、x=x0..x0+cbWidth-1およびy=y0..y0+cbHeight-1に対してMODE_IBCと等しくなるように設定される。
general_merge_flag[x0][y0]が存在しない場合、次のように推測される。
-cu_skip_flag[x0][y0]が1に等しい場合、general_merge_flag[x0][y0]は1に等しいと推測される。
-そうでない場合、general_merge_flag[x0][y0]は0に等しいと推測される。
mvp_l0_flag[x0][y0]が存在しない場合、0に等しいと推測される。
inter_pred_idc[x0][y0]は、表7-10に従って、list0、list1、または双方向予測を現在の符号化ユニットに使用するかどうかを規定する。配列インデックスx0、y0は、ピクチャの左上の輝度サンプルに対する、考慮される符号化ブロックの左上の輝度サンプルの位置(x0,y0)を規定する。
regular_merge_flag[x0][y0]が1に等しい場合、現在の符号化ユニットのインター予測パラメータを生成するために、通常のマージモードが使用されることを規定する。配列インデックスx0、y0は、ピクチャの左上の輝度サンプルに対する、考慮される符号化ブロックの左上の輝度サンプルの位置(x0,y0)を規定する。
regular_merge_flag[x0][y0]が存在しない場合、次のように推測される。
-以下のすべての条件が真である場合、regular_merge_flag[x0][y0]は1に等しいと推測される。
-sps_mmvd_enabled_flagは0に等しい。
-general_merge_flag[x0][y0]は1に等しい。
-cbWidth*cbHeightは32に等しい。
-そうでない場合、egular_merge_flag[x0][y0]は0に等しいと推測される。
-以下のすべての条件が真である場合、mmvd_merge_flag[x0][y0]は1に等しいと推測される。
-sps_mmvd_enabled_flagは1に等しい。
-general_merge_flag[x0][y0]は1に等しい。
-cbWidth*cbHeightは32に等しい。
-egular_merge_flag[x0][y0]は0に等しい。
-そうでない場合、mmvd_merge_flag[x0][y0]は0に等しいと推測される。
mmvd_cand_flag[x0][y0]が存在しない場合、0に等しいと推測される。
MmvdOffset[x0][y0][0]=(MmvdDistance[x0][y0]<<2)*MmvdSign[x0][y0][0] (7-124)
MmvdOffset[x0][y0][1]=(MmvdDistance[x0][y0]<<2)*MmvdSign[x0][y0][1] (7-125)
merge_subblock_idx[x0][y0]が存在しない場合、0に等しいと推測される。
ciip_flag[x0][y0]が存在しない場合、0に等しいと推測される。
ciip_flag[x0][y0]が1に等しい場合、変数IntraPredModeY[x][y]は、x=xCb..xCb+cbWidth-1、およびy=yCb..yCb+cbHeight-1にて、INTRA_PLANARと等しく設定される。
-以下のすべての条件が真である場合、MergeTriangleFlag[x0][y0]は1に等しく設定される。
-sps_triangle_enabled_flagは1に等しい。
-slice_typeはBに等しい。
-general_merge_flag[x0][y0]は1に等しい。
-MaxNumTriangleMergeCandは2以上である。
-cbWidth*cbHeightは64以上である。
-egular_merge_flag[x0][y0]は0に等しい。
-mmvd_merge_flag[x0][y0]は0に等しい。
-merge_subblock_flag[x0][y0]は0に等しい。
-ciip_flag[x0][y0]は0に等しい。
-そうでない場合、MergeTriangleFlag[x0][y0]は0に等しい。
merge_triangle_split_dir[x0][y0]が存在しない場合、0に等しいと推測される。
merge_triangle_idx0[x0][y0]が存在しない場合、0に等しいと推測される。
merge_triangle_idx1[x0][y0]が存在しない場合、0に等しいと推測される。
merge_idx[x0][y0]が存在しない場合、次のように推測される。
-mmvd_merge_flag[x0][y0]が1に等しい場合、merge_idx[x0][y0]はmmvdmmvd_cand_flag[x0][y0]に等しいと推測される。
-そうでない場合(mmvd_merge_flag[x0][y0]が0に等しい)、merge_idx[x0][y0]は0に等しいと推測される。
この処理は、general_merge_flag[xCb][yCb]が1に等しい場合にのみ呼び出され、ここで、(xCb,yCb)は、現在のピクチャの左上の輝度サンプルに対する現在の輝度符号化ブロックの左上のサンプルを規定する。
-現在のピクチャの左上の輝度サンプルに対する現在の輝度符号化ブロックの左上のサンプルの輝度位置(xCb,yCb)、
-輝度サンプルにおける現在の符号化ブロックの幅を規定する変数cbWidth、
-輝度サンプルにおける現在の符号化ブロックの高さを規定する変数cbHeight。
-1/16小数サンプル精度mvL0[0][0]およびmvL1[0][0]における輝度動きベクトル、
-参照インデックスrefIdxL0およびrefIdxL1、
-予測リスト利用フラグpredFlagL0[0][0]およびpredFlagL1[0][0]、
-双方向予測重みインデックスbcwIdx。
-マージ候補リストmergeCandList。
双方向予測重みインデックスbcwIdxは、0に等しく設定される。
動きベクトルmvL0[0][0]、mvL1[0]、参照インデックスrefIdxL0、refIdxL1、および予測利用フラグpredFlagLagL0[0][0]、predFlagL1[0][0]は、以下の順序ステップで導出される。
availableFlagCol=availableFlagL0Col (8-263)
predFlagL0Col=availableFlagL0Col (8-264)
predFlagL1Col=0 (8-265)
availableFlagCol=availableFlagL0Col||availableFlagL1Col (8-266)
predFlagL1Col=availableFlagL1Col (8-267)
i=0
if(availableFlagA1)
mergeCandList[i++]=A1
if(availableFlagB1)
mergeCandList[i++]=B1
if(availableFlagB0)
mergeCandList[i++]=B0
if(availableFlagA0)
mergeCandList[i++]=A0
if(availableFlagB2)
mergeCandList[i++]=B2
if(availableFlagCol)
mergeCandList[i++]=Col (8-268)
-8.5.2.6節で規定されている履歴ベースのマージ候補の導出処理は、mergeCandListおよびnumCurrMergeCandを入力とし、修正されたmorgeCandListおよびnumCurrMergeCandを出力として呼び出される。
-numOrigMergeCandは、numCurrMergeCandに等しく設定される。
-8.5.2.4節で規定されているペアワイズ平均マージ候補の導出処理は、mergeCandList、参照インデックスrefIdxL0NおよびrefIdxL1N、予測リスト利用フラグpredFlagL0NおよびpreDFlagL1N、mergeCandListにおけるすべての候補Nの動きベクトルmvL0NおよびmlvL1N、および、numCurrMergeCandを入力として呼び出され、出力は、mergeCandList、numCurrMergeCand、参照インデックスrefIdxL0avgCandおよびrefIdxL1avgCand、予測リスト利用フラグpredFlagL0avgCandおよびpredFlagL1avgCand、および、mergeCandListに追加される候補avgCandの動きベクトルmvL0avgCandおよびmvL1avgCandに割り当てられる。mergeCandListに追加される候補avgCandの双方向予測重みインデックスbcwIdxは、0に等しく設定される。
-numOrigMergeCandは、numCurrMergeCandに等しく設定される。
refIdxLX=refIdxLXN (8-269)
predFlagLX[0][0]=predFlagLXN (8-270)
mvLX[0][0][0]=mvLXN[0] (8-271)
mvLX[0][0][1]=mvLXN[1] (8-272)
bcwIdx=bcwIdxN (8-273)
-8.5.2.7で規定されるようなマージ動きベクトル差分の導出処理は、輝度位置(xCb,yCb)、参照インデックスrefIdxL0、refIdxL1、および予測リスト利用フラグpredFlagL0[0][0]およびpredFlagL1[0][0]を入力とし、動きベクトル差分mMvdL0およびmMvdL1を出力として呼び出される。
-動きベクトル差分mMvdLXは、Xが0および1である場合、マージ動きベクトルmvLXに以下のように加算される。
mvLX[0][0][0]+=mMvdLX[0] (8-274)
mvLX[0][0][1]+=mMvdLX[1] (8-275)
mvLX[0][0][0]=Clip3(-217,217-1,mvLX[0][0][0]) (8-276)
mvLX[0][0][1]=Clip3(-217,217-1,mvLX[0][0][1]) (8-277)
-現在の符号化ブロックを規定する変数currCb、
-ColPicにて規定された同一位置のピクチャ内の同一位置の符号化ブロックを規定する変数colCb、
-ColPicによって規定された同一位置のピクチャの左上の輝度サンプルに対して、colCbによって規定された同一位置の輝度符号化ブロックの左上のサンプルを規定する輝度位置(xColCb,yColCb)、
-参照インデックスrefIdxLX、ここで、Xは0または1、
-サブブロック時間的マージ候補sbFlagを示すフラグ。
-1/16小数サンプル精度での動きベクトル予測mvLXCol、
-可用性フラグavailableFlagLXCol。
変数currPicは、現在のピクチャを規定する。
-colCbがイントラまたはIBC予測モードで符号化される場合、mvLXColの両成分は0に等しく設定され、availableFlagLXColは0に等しく設定される。
-そうでない場合、動きベクトルmvCol、参照インデックスrefIdxCol、および参照リスト識別子listColは、以下のように導出される。
-sbFlagが0に等しい場合、availableFlagLXColは1に等しく設定され、以下が適用される。
-predFlagL0Col[xColCb][yColCb]が0に等しい場合、mvCol、refIdxCol、およびlistColは、それぞれ、mvL1Col[xColCb][yColCb]、refIdxL1Col[xColCb][yColCb]、およびL1に等しく設定される。
-そうでない場合、predFlagL0Col[xColCb][yColCb]が1に等しく、かつ、predFlagL1Col[xColCb][yColCb][yColCb]が0に等しい場合、mvCol、refxIdCol、listColは、それぞれ、mvL0Col[xColCb][yColCb]、refIdxL0Col[xColCb][yColCb]、およびL0に等しく設定される。
-そうでない場合(predFlagL0Col[xColCb][yColCb]が1に等しく、かつ、predFlagL1Col[xColCb][yColCb]が1に等しい)、以下の割り当てを行う。
-NoBackwardPredFlagが1に等しい場合、mvCol、refIdxCol、およびlistColは、それぞれ、mvLXCol[xColCb][yColCb]、refIdxLXCol[xColCb][yColCb]、およびLXに等しく設定される。
-そうでない場合、mvCol、refIdxCol、listColは、それぞれ、mvLNCol[xColCb][yColCb]、refIdxLNCol[xColCb][yColCb]、LNに等しく設定され、Nは、collocated_from_l0_flagの値である。
-PredFlagLXCol[xColCb][yColCb]が1に等しい場合、mvCol、refxIdCol、およびlistColは、それぞれ、mvLXCol[xColCb][yColCb]、refIdxLXCol[xColCb][yColCb]、およびLXに等しく設定され、availableFlagLXColは1に等しく設定される。
-そうでない場合(PredFlagLXCol[xColCb][yColCb]が0に等しい)、以下が適用される。
-DiffPicOrderCnt(aPic,currPic)が、現在のスライスのすべての参照ピクチャリストaPicにおいて0以下であり、かつ、PredFlagLYCol[xColCb][yColCb]が1に等しい場合、mvCol、refxIdCol、およびlistColは、それぞれ、mvLYCol[xColCb][yColCb]、refIdxLYCol[xColCb][yColCb]、およびLYに等しく設定され、Yは!Xであり、Xは、この処理が呼び出されるXの値であり、availableFlagLXColは1に等しく設定される。
-mvLXColの両成分0に等しく設定され、availableFlagLXColは0に等しく設定される。
-LongTermRefPic(currPic,currCb,refIdxLX,LX)がLongTermRefPic(ColPic,colCb,refIdxCol,listCol)に等しくない場合、mvLXColの両成分は0に等しく設定され、availableFlagLXColは0に等しく設定される。
-そうでない場合、変数availableFlagLXColに1等しく設定され、refPicList[listCol][refIdxCol]は、ColPicにて規定された同一位置のピクチャにおける符号化ブロックcolbを含むスライスの参照ピクチャリストlistColにおける参照インデックスrefIdxColを有するピクチャに設定され、以下を適用する。
colPocDiff=DiffPicOrderCnt(ColPic,refPicList[listCol][refIdxCol]) (8-402)
currPocDiff=DiffPicOrderCnt(currPic,RefPicList[X][refIdxLX]) (8-403)
-8.5.2.15節で規定されるような同一位置の動きベクトルの時間的動きバッファ圧縮処理は、mvColを入力とし、修正されたmvColを出力として、呼び出される。
-RefPicList[X][refIdxLX]が長期参照ピクチャである場合、またはcolPocDiffがcurrPocDiffである場合、mvLXColは、以下のように導出される。
mvLXCol=mvCol (8-404)
-そうでない場合、mvLXColは、動きベクトルmvColのスケーリングされたバージョンとして、以下のように導出される。
tx=(16384+(Abs(td)>>1))/td (8-405)
distScaleFactor=Clip3(-4096,4095,(tb*tx+32)>>6) (8-406)
mvLXCol=Clip3(-131072,131071,(distScaleFactor*mvCol+128-(distScaleFactor*mvCol>=0))>>8)) (8-407)
ここで、tdおよびtbは、以下のように導出される。
td=Clip3(-128,127,colPocDiff) (8-408)
tb=Clip3(-128,127,currPocDiff) (8-409)
MvdX=-1;
MvdY=-1;
If(Sad(1,0)<Sad(-1,0))
MvdX=1;
If(Sad(0,1)<Sad(0,-1))
MvdY=1;
E(x,y)=A(x-x0)2+B(y-y0)2+C
x0=(E(-1,0)-E(1,0))/(2(E(-1,0)+E(1,0)-2E(0,0)))
y0=(E(0,-1)-E(0,1))/(2((E(0,-1)+E(0,1)-2E(0,0)))
a.一例において、サブブロックのサイズは、L×K、例えば、L=K=4に固定される。
b.一例において、サブブロックのサイズは、最小符号化ユニット/予測ユニット/変換ユニット/動き情報記憶域に対するユニットに固定される。
c.一例において、1つのブロックは、異なるサイズまたは等しいサイズの複数のサブブロックに分割されてもよい。
d.一例において、サブブロックサイズの指示が信号通知されてもよい。
e.一例において、サブブロックのサイズの指示は、例えば、ブロック寸法に従って、ブロックごとに変更されてもよい。
f.一例において、サブブロックのサイズは、(N1×minW)×(N2×minH)の形式でなければならず、ここで、minW×minHは、最小符号化ユニット/予測ユニット/変換ユニット/動き情報記憶域に対するユニットを表し、N1およびN2は、正の整数である。
g.一例において、サブブロック寸法は、カラーフォーマットおよび/または色成分に依存してもよい。
i.例えば、異なる色成分のサブブロックサイズは異なってもよい。
1)代替的に、異なる色成分のサブブロックサイズは同じであってもよい。
ii.例えば、カラーフォーマットが4:2:0である場合、輝度成分の2L×2Kのサブブロックは、彩度成分のL×Kのサブブロックに対応してよい。
1)代替的に、カラーフォーマットが4:2:0である場合、輝度成分の4つの2L×2Kのサブブロックは、彩度成分の2L×2Kのサブブロックに対応してよい。
iii.例えば、カラーフォーマットが4:2:2である場合、輝度成分の2L×2Kのサブブロックは、彩度成分の2L×Kのサブブロックに対応してよい。
1)代替的に、カラーフォーマットが4:2:2である場合、輝度成分の2つの2L×2Kのサブブロックは、彩度成分の2L×2Kのサブブロックに対応してよい。
iv.例えば、カラーフォーマットが4:4:4である場合、輝度成分の2L×2Kのサブブロックは、彩度成分の2L×2Kのサブブロックに対応してよい。
h.一例において、第1の色成分のサブブロックのMVは、第2の色成分の1つの対応するサブブロックまたは複数の対応するサブブロックから導出されてもよい。
i.例えば、第1の色成分のサブブロックのMVは、第2の色成分の複数の対応するサブブロックの平均MVとして導出されてもよい。
ii.さらに、代替的に、単一のツリーを利用する場合、上記方法を適用してもよい。
iii.さらに、代替的に、上記方法は、特定のブロックサイズ、例えば4×4の彩度ブロック対しても適用されてよい。
i.一例において、サブブロックのサイズは、IBCマージ/AMVPモードなどの符号化モードに依存してもよい。
j.一例において、サブブロックは、三角形/くさび形などの非長方形であってもよい。
a.一例において、参照ブロックは、現在のピクチャ内にあってもよい。
b.一例において、参照ブロックは、参照ピクチャ内にあってもよい。
i.例えば、同一位置の参照ピクチャ内にあってもよい。
ii.例えば、同一位置のブロックまたは同一位置のブロックの近傍のブロックの動き情報を使用して識別される参照ピクチャ内にあってよい。
c.一例において、initMVは、現在のブロックまたは現在のサブブロックの1つまたは複数の近傍のブロック(隣接または非隣接)から導出されてもよい。
i.近傍のブロックは、同じピクチャ内の1つであってもよい。
1)代替的に、近傍のブロックは、参照ピクチャ内の1つであってもよい。
a.例えば、近傍のブロックは、同一位置の参照ピクチャ内にあってもよい。
b.例えば、近傍のブロックは、同一位置のブロックまたは同一位置のブロックの近傍のブロックの動き情報を使用して識別されてもよい。
ii.一例において、initMVは、近傍のブロックZから導出されてもよい。
1)例えば、initMVは、近傍のブロックZに格納されたMVに等しく設定されてもよく、例えば、近傍のブロックZは、ブロックA1であってもよい。
iii.一例において、initMVは、順にチェックされた複数のブロックから導出されてもよい。
1)一例において、チェックされたブロックからの参照ピクチャとしての現在のピクチャに関連付けられている第1の識別された動きベクトルを、initMVに設定してもよい。
i.一例において、initMVは、IBC候補リストにおけるk番目(例えば、1番目)の候補から導出されてもよい。
1)一例において、IBC候補リストは、マージ/AMVP候補リストである。
2)一例において、異なる空間的に近傍のブロックを使用する等、既存のIBCマージ候補リスト構成処理とは異なるIBC候補リストを使用してもよい。
ii.一例において、initMVは、IBC HMVPテーブルにおけるk番目(例えば1番目の候補)から導出されてもよい。
e.一例において、現在のブロックの位置に基づいて導出されてもよい。
f.一例において、現在のブロックの寸法に基づいて導出されてもよい。
g.一例において、デフォルト値に設定されてもよい。
h.一例において、initMVの指示は、タイル/スライス/ピクチャ/ブリック/CTU行/CTU/CTB/CU/PU/TU等のような映像ユニットレベルで信号通知されてもよい。
i.初期のMVは、現在のブロック内の2つの異なるサブブロックで異なってもよい。
j.初期のMVをどのように導出するかは、ブロックごとに、タイルごとに、スライスごとに、などにて変化させてよい。
k.一例において、initMVは、まず1画素の整数精度に変換され、変換されたMVは、サブブロックの対応するブロックを識別するために使用されてもよい。変換されたMVを(vx’,vy’)にて示す。
i.一例において、(vx,vy)がF画素間精度である場合、(vx’,vy’)にて示される変換されたMVは、(vx*F,vy*F)に設定されてもよい(例えば、F=2または4)。
ii.代替的に、(vx’,vy’)は、直接(vx,vy)に等しく設定される。
l.1つのサブブロックの左上の位置を(x,y)とし、サブブロックのサイズをK×Lとする。サブブロックの対応するブロックは、座標(x+offsetX+vx’,y+offsetY+vy’)をカバーするCU/CB/PU/PBに等しく設定され、offsetXおよびoffsetYを使用して、現在のサブブロックに対する選択された座標を示す。
i.一例において、offsetXおよび/またはoffsetYは、0に等しく設定される。
ii.一例において、offsetXは、(L/2)または(L/2+1)または(L/2-1)に等しく設定されてもよく、ここで、Lは、サブブロックの幅であってもよい。
iii.一例において、offsetYは、(K/2)または(K/2+1)または(K/2-1)に等しく設定されてもよく、ここで、Kはサブブロックの高さであってもよい。
iv.代替的に、水平および/または垂直オフセットは、ピクチャ/スライス/タイル/ブリック境界/IBC参照領域等の範囲にさらにクリップされてもよい。
m.サブブロックのサブMVは、対応するブロックの動き情報から導出される。
i.一例において、対応するブロックが現在のピクチャを指す動きベクトルを有する場合、subMVはMVに等しく設定される。
ii.一例において、対応するブロックが現在のピクチャを指す動きベクトルを有する場合、subMVは、MVにinitMVを加えたものに等しく設定される。
n.導出されたsubMVは、所与の範囲にさらにクリップされてもよいし、IBC参照領域を指していることを確認するためにクリップされてもよい。
o.適合ビットストリームにおいて、導出されたsubMVは、サブブロックのためのIBCの有効なMVでなければならない。
a.一例において、サブブロックIBC候補は、他のすべてのサブブロックマージ候補の前に追加されてもよい。
b.一例において、サブブロックIBC候補は、ATMVP候補の後に追加されてもよい。
c.一例において、サブブロックIBC候補は、継承されたアフィン候補または構成されたアフィン候補の後に追加されてもよい。
d.一例において、サブブロックIBC候補は、IBCマージ/AMVP候補リストに追加されてもよい。
i.代替的に、追加するかどうかは、現在のブロックのモード情報に基づいてよい。例えば、IBC AMVPモードである場合、追加されなくてもよい。
e.どの候補リストを追加するかは、例えば、デュアルツリーまたはシングルツリーなど、パーティション構造に基づいてよい。
f.代替的に、複数のサブブロックIBC候補は、サブブロックマージ候補に挿入されてもよい。
a.代替的に、例えば、異なる初期化されたMVを使用して、1つまたは複数のサブブロックIBC候補は、IBCサブブロックマージ候補に挿入されてもよい。
b.さらに、代替的に、IBCサブブロック動き候補リストを構成するか、または既存のIBC AMVP/マージ候補リストを構成するかは、インジケータによって信号通知されてもよく、またはオンザフライで導出されてもよい。
c.さらに、代替的に、現在のブロックがIBCマージモードで符号化されている場合、IBCサブブロックマージ候補リストへのインデックスが信号通知されてもよい。
d.さらに、代替的に、現在のブロックがIBC AMVPモードで符号化されている場合、IBCサブブロックAMVP候補リストへのインデックスが信号通知されてもよい。
i.さらに、代替的に、IBC AMVPモードのための信号通知/導出されたMVDは、1つまたは複数のサブブロックに適用されてもよい。
a.一例において、サブブロックの場合、動きベクトルは導出されなくてもよい。代わりに、サブブロックのために、1つまたは複数のイントラ予測モードを導出してもよい。
b.代替的に、パレットモードまたは/およびパレットテーブルが導出されてもよい。
c.一例において、ブロック全体のために1つのイントラ予測モードが導出されてもよい。
a.代替的に、IBC符号化されたサブ領域のための動きベクトルのうちの1つまたは複数を使用して、IBC HMVPテーブルを更新してもよい。
b.代替的に、インター符号化されたサブ領域のための動きベクトルのうちの1つまたは複数を使用して、非IBC HMVPテーブルを更新してもよい。
a.一例において、上記方法のうちの1つまたは複数が適用される場合、サブブロック境界がフィルタリングされてもよい。
a.代替的に、上記方法のうちの1つまたは複数が適用される場合、サブブロック境界がフィルタリングされてもよい。
b.一例において、上記方法で符号化されたブロックは、従来のIBC符号化されたブロックと同様に扱われてもよい。
a.一例において、上記方法の1つまたは複数は、特殊IBCモードとして扱われてもよい。
i.さらに、代替的に、1つのブロックがIBCモードとして符号化される場合、従来の全ブロックに基づくIBC方法またはsbIBCを使用することのさらなる指示が信号通知または導出されてもよい。
ii.一例において、後続のIBC符号化されたブロックは、現在のsbIBC符号化されたブロックの動き情報をMV予測子として使用してもよい。
1.代替的に、後続のIBC符号化されたブロックは、現在のsbIBC符号化ブロックの動き情報をMV予測子として利用することが許可されなくてもよい。
b.一例において、sbIBCは、動き候補リストへの候補インデックスによって示されてもよい。
i.一例において、特定の候補インデックスは、sbIBC符号化されたブロックに割り当てられる。
c.一例において、IBC候補は、2つのカテゴリに分類されてもよい、すなわち、1つは全体ブロック符号化用であり、もう1つはサブブロック符号化用である。1つのブロックがsbIBCモードで符号化されるかどうかは、IBC候補のカテゴリに依存してもよい。
a.DPS/SPS/VPS/PPS/APS/ピクチャヘッダ/スライスヘッダ/タイルグループヘッダ/LCU(Largest Coding Unit)/CU(Coding Unit)/LCU行/LCUグループ/TU/PUブロック/映像符号化ユニットにて信号通知されたメッセージ
b.CU/PU/TU/ブロック/映像符号化ユニットの位置
c.現在のブロックおよび/またはその近傍のブロックのブロック寸法
d.現在のブロックおよび/またはその近傍のブロックのブロック形状
e.現在のブロックおよび/またはその近傍のブロックのイントラモード
f.近傍のブロックの動き/ブロックベクトル
g.カラーフォーマットの指示(例えば、4:2:0、4:4:4)
h.符号化ツリー構造
i.スライス/タイルグループのタイプおよび/またはピクチャのタイプ
j.色成分(例えば、彩度成分または輝度成分にのみ適用されてもよい)
k.時間層ID
l.規格のプロファイル/レベル/層
a.一例において、IBC AMVPモードの場合、現在のピクチャと現在のピクチャと同一でない参照ピクチャ(時間的参照ピクチャとして示される)との両方から現在のブロックが予測されたかどうかを示すように、構文要素が信号通知されてよい。
i.さらに、代替的に、現在のブロックが時間的参照ピクチャからも予測される場合、どの時間的参照ピクチャが使用されているか、およびその関連するMVPインデックス、MVD、MV精度等を示すように、構文要素が信号通知されてもよい。
ii.一例において、IBC AMVPモードの場合、1つの参照ピクチャリストは、現在のピクチャのみを含んでもよく、他の参照ピクチャリストは、時間的参照ピクチャのみを含んでもよい。
b.一例において、IBCマージモードの場合、動きベクトルおよび参照ピクチャは、近傍のブロックから導出されてもよい。
i.例えば、近傍のブロックが現在のピクチャのみから予測される場合、近傍のブロックから導出された動き情報は、現在のピクチャのみを参照してもよい。
ii.例えば、現在のピクチャおよび時間的参照ピクチャの両方から近傍のブロックが予測される場合、導出された動き情報は、現在のピクチャおよび時間的参照ピクチャの両方を参照してもよい。
1)代替的に、導出された動き情報は、現在のピクチャのみを参照するものであってもよい。
iii.例えば、近傍のブロックが時間的参照ピクチャのみから予測される場合、IBCマージ候補を構成する際に、「無効」または「利用不可」と見なしてよい。
c.一例において、固定重み係数は、双方向予測のために、現在のピクチャからの参照ブロックと、時間的参照ピクチャからの参照ブロックとに割り当てられてもよい。
i.さらに、代替的に、重み係数が信号通知されてもよい。
a.動き候補リスト構成処理(例えば、通常のマージリスト、IBCマージ/AMVPリスト、サブブロックマージリスト、IBCサブブロック候補リスト)および/またはHMVPテーブルをどのように更新するかは、条件Cに依存してもよい。
b.一例において、条件Cは、現在のブロックおよび/またはその近傍(隣接または非隣接)のブロックの符号化された情報に依存してもよい。
c.一例において、条件Cは、マージ共有条件に依存してもよい。
d.一例において、条件Cは、現在のブロックのブロック寸法、および/または、近傍の(隣接または非隣接の)ブロックのブロック寸法、および/または、現在のブロックおよび/または近傍のブロックの符号化モードに依存してもよい。
e.一例において、条件Cが満たされる場合、空間的マージ候補の導出はスキップされる。
f.一例において、条件Cが満たされる場合、空間的に近傍の(隣接または非隣接)ブロックからの候補の導出はスキップされる。
h.一例において、条件Cが満たされる場合、HMVP候補の導出はスキップされる。
i.一例において、条件Cが満たされる場合、ペアワイズマージ候補の導出はスキップされる。
j.一例において、条件Cが満たされる場合、最大プルーニング動作の数は低減されるか、または0に設定される。
i.さらに、代替的に、空間的マージ候補間のプルーニング動作は削減されてもよいし、削除されてもよい。
ii.さらに、代替的に、HMVP候補と他のマージ候補との間のプルーニング動作は削減されてもよいし、削除されてもよい。
k.一例において、条件Cが満たされる場合、HMVP候補の更新はスキップされる。
i.一例において、HMVP候補は、プルーニングされることなく、動きリストに直接追加されてもよい。
l.一例において、条件Cが満たされる場合、デフォルト動き候補(例えば、IBCマージ/AVMPリストにおけるゼロ動き候補)は追加されない。
m.一例において、条件Cが満たされる場合、異なるチェック順(例えば、最後から最初への代わりに、最初から最後へ)および/またはチェック対象の/追加される異なる数HMVP候補。
o.一例において、条件Cは、Wおよび/またはHが閾値(例えば、32)以上の場合に満たされてもよい。
p.一例において、条件Cは、Wが閾値(例えば、32)以上の場合に満たされてもよい。
q.一例において、条件Cは、Hが閾値(例えば、32)以上の場合に満たされてもよい。
r.一例において、条件Cは、W*Hが閾値(例えば、1024)以上であり、かつ、現在のブロックが、IBC AMVPおよび/またはマージモードで符号化される場合に満たされてもよい。
i.さらに、代替的に、条件Cが満たされる場合、IBC動きリスト構成処理は、空間的に近傍のブロック(例えば、A1、B1)からの候補およびデフォルトの候補を含んでもよい。すなわち、HMVP候補の挿入はスキップされる。
ii.さらに、代替的に、条件Cが満たされる場合、IBC動きリスト構成処理は、IBC HMVPテーブルのHMVP候補からの候補およびデフォルトの候補を含んでもよい。すなわち、空間的に近傍のブロックからの候補の挿入はスキップされる。
iii.さらに、代替的に、条件Cが満たされたブロックを復号化した後、IBC HMVPテーブルの更新がスキップされる。
iv.代替的に、以下の場合のうちの1つ/一部/全部が真である場合、条件Cは満たされてもよい。
1)W*HがT1(例えば、16)以下であり、かつ、現在のブロックがIBC AMVPおよび/またはマージモードで符号化されている場合。
2)WがT2に等しく、かつ、HがT3に等しい(例えば、T2=4,T3=8)場合、その上側のブロックは利用可能であり、サイズはA×Bに等しく、現在のブロックとその上側のブロックの両方は、特定のモードで符号化される。
a.代替的に、WがT2に等しく、かつ、HがT3に等しい(例えば、T2=4,T3=8)場合、その上側のブロックは利用可能であり、同じCTUにあり、サイズはA×Bに等しく、現在のブロックとその上側のブロックの両方は、同じモードで符号化される。
b.代替的に、WがT2に等しく、かつ、HがT3に等しい(例えば、T2=4,T3=8)場合、その上側のブロックは利用可能であり、サイズはA×Bに等しく、現在のブロックとその上側のブロックの両方は、同じモードで符号化される。
c.代替的に、WがT2に等しく、かつ、HがT3に等しい(例えば、T2=4,T3=8)場合、その上側のブロックは利用不可である。
d.代替的に、WがT2に等しく、かつ、HがT3に等しい(例えば、T2=4,T3=8)場合、その上側のブロックは利用不可であるか、または上側のブロックが現在のCTUの外側にある。
3)WがT4に等しく、かつ、HがT5に等しい(例えば、T4=8,T5=4)場合、その左側のブロックは利用可能であり、サイズはA×Bに等しく、現在のブロックおよびその左側のブロックの両方は、特定のモードで符号化される。
a.代替的に、WがT4に等しく、かつ、HがT5に等しい(例えば、T4=8,T5=4)場合、その左側のブロックは利用不可である。
4)W*HがT1(例えば、32)より大きくない場合、現在のブロックは、IBC AMVPおよび/またはマージモードで符号化され、その上側および左側の近傍のブロックの両方が利用可能であり、サイズはA×Bに等しく、特定のモードで符号化される。
a.W*HがT1(例えば、32)より大きくない場合、現在のブロックは、特定のモードで符号化され、その左側の近傍のブロックは利用可能であり、サイズはA×Bであり、IBC符号化され、その上側の近傍のブロックは利用可能であり、同じCTU内であり、サイズはA×Bに等しく、同じモードで符号化される。
b.W*HがT1より大きくない(例えば、32)場合、現在のブロックは、特定のモードで符号化され、その左側の近傍のブロックは利用不可であり、その上側の近傍のブロックは利用可能であり、同じCTU内であり、サイズはA×Bに等しく、同じモードで符号化される。
c.W*HがT1より大きくない(例えば、32)場合、現在のブロックは、特定のモードで符号化され、その左側の近傍のブロックは利用不可であり、その上側の近傍のブロックは利用不可である。
d.W*HがT1(例えば、32)より大きくない場合、現在のブロックは特定のモードで符号化され、その左側の近傍のブロックは利用可能であり、サイズはA×Bに等しく、同じモードで符号化され、その上側の近傍のブロックは利用不可である。
e.W*HがT1(例えば、32)より大きくない場合、現在のブロックは特定のモードで符号化され、その左側の近傍のブロックは利用不可であり、その上側の近傍のブロックは利用不可であるか、または現在のCTUの外側にある。
f.W*HがT1(例えば、32)より大きくない場合、現在のブロックは特定のモードで符号化され、その左側の近傍のブロックは利用可能であり、サイズはA×Bに等しく、同じモードで符号化され、その上側の近傍のブロックは利用不可であるか、または現在のCTUの外側にある。
5)上記例において、「特定のモード」とは、IBCモードである。
6)上記例において、「特定のモード」とは、インターモードである。
7)上記例において、「A×B」は、4×4に設定されてもよい。
8)上記例において、「A×Bである近傍のブロックサイズ」は、「近傍のブロックサイズがA×B以下である、またはA×B以上である」に置き換えられてもよい。
9)上記例において、上側および左側の近傍のブロックは、空間的マージ候補の導出のためにアクセスされる2つのブロックである。
a.一例において、現在のブロックにおける左上のサンプルの座標が(x,y)であり、左のブロックが(x-1,y+H-1)をカバーするものであると仮定する。
b.一例において、現在のブロックにおける左上のサンプルの座標が(x,y)であり、左のブロックが(x+W-1,y-1)をカバーするものであると仮定する。
i.さらに、代替的に、閾値は、ブロックの符号化情報、例えば符号化モードに依存してもよい。
u.一例において、条件Cは、現在のブロックが共有ノード下にあり、現在のブロックがIBC AMVPおよび/またはマージモードで符号化されている場合に満たされる。
i.さらに、代替的に、条件Cが満たされる場合、IBC動きリスト構成処理は、空間的に近傍のブロック(例えば、A1,B1)からの候補およびデフォルトの候補を含んでもよい。すなわち、HMVP候補の挿入はスキップされる。
ii.さらに、代替的に、条件Cが満たされる場合、IBC動きリスト構成処理は、IBC HMVPテーブルのHMVP候補からの候補およびデフォルトの候補を含んでもよい。すなわち、空間的に近傍のブロックからの候補の挿入はスキップされる。
iii.さらに、代替的に、条件Cが満たされたブロックを復号化した後、IBC HMVPテーブルの更新がスキップされる。
i.一例において、条件Cは、符号化モード(IBCモードまたは非IBCモード)、ブロック寸法に基づいて定義されてもよい。
w.上記方法を適用するかどうかは、ブロックの符号化情報、例えば、IBC符号化ブロックであるかどうかに依存してもよい。
i.一例において、ブロックがIBC符号化される場合、上記方法が適用されてもよい。
a.一例において、すべての動き候補は、1画素精度で記憶される。
b.一例において、空間的に近傍の(隣接または非隣接)ブロックおよび/またはIBC HMVPテーブルからの動き情報を使用する場合、MVの丸め処理はスキップされる。
a.さらに、代替的に、IBC動きリストにおける候補の信号通知は、HMVPテーブルにおける利用可能なHMVP候補の数に依存してもよい。
b.さらに、代替的に、IBC動きリストにおける候補の信号通知は、HMVPテーブルにおけるHMVP候補の最大数に依存してもよい。
c.代替的に、HMVPテーブルにおけるHMVP候補は、プルーニングせずに順にリストに追加される。
i.一例において、順序は、テーブルへのエントリインデックスの昇順に基づく。
ii.一例において、順序は、テーブルへのエントリインデックスの降順に基づく。
iii.一例において、テーブルにおける最初のN個のエントリはスキップされてもよい。
iv.一例において、テーブルにおける最後のN個のエントリはスキップされてもよい。
v.一例において、無効なBV(s)を有するエントリはスキップされてもよい。
vi.
d.代替的に、1または複数のHMVPテーブルのHMVP候補から導出された動き候補は、水平ベクトルにオフセットを加える、および/または垂直ベクトルにオフセットを加える等により、さらに修正されてもよい。
i.有効なBVを提供するように、無効なBVを有するHMVP候補を修正してもよい。
e.さらに、代替的に、1または複数のHMVP候補の後または前に、デフォルトの動き候補が追加されてもよい。
f.どのようにHMVP候補をIBC動きリストに追加するか/HMVP候補をIBC動きリストに追加否かは、ブロック寸法に依存してもよい。
i.例えば、IBC動きリストは、ブロック寸法(幅および高さを表すWおよびH)が条件Cを満たす場合、1または複数のHMVPテーブルからの動き候補のみを含んでもよい。
1)一例において、条件Cは、W<=T1、かつ、H<=T2であり、例えば、T1=T2=4である。
2)一例において、条件Cは、W<=T1、または、H<=T2であり、例えば、T1=T2=4である。
3)一例において、条件Cは、W*H<=Tであり、例えば、T=16である。
[[以下のすべての条件が真である場合、NumHmvpSmrIbcCandをNumHmvpIbcCandに等しく設定し、HmvpSmrIbcCandList[i]をHmvpIbcCandList[i]に等しく設定し、i=0..NumHmvpIbcCand-1とすることにより、共有したマージ候補リスト領域に対する履歴ベースの動きベクトル予測子は更新される。
-IsInSmr[x0][y0]はTRUEに等しい。
-SmrX[x0][y0]はx0に等しい。
-SmrY[x0][y0]は、y0に等しい。]]
8.6.2.1 一般
-現在のピクチャの左上の輝度サンプルに対する現在の輝度符号化ブロックの左上のサンプルの輝度位置(xCb,yCb)、
-輝度サンプルにおける現在の符号化ブロックの幅を規定する変数cbWidth、
-輝度サンプルにおける現在の符号化ブロックの高さを規定する変数cbHeight。
この処理の出力は以下の通りである。
-1/16小数サンプル精度mvLにおける輝度動きベクトル。
-8.6.2.2節で規定されたIBC輝度動きベクトル予測の導出処理は、輝度位置(xCb,yCb)、変数cbWidthおよびcbHeightを入力として呼び出され、出力は輝度動きベクトルmvLである。
-general_merge_flag[xCb][yCb]が0に等しい場合、以下が適用される。
1.変数mvdは、以下のように導出される。
mvd[0]=MvdL0[xCb][yCb][0] (8-883)
mvd[1]=MvdL0[xCb][yCb][1] (8-884)
2.8.5.2.14節で規定されるような動きベクトルの丸め処理は、mvLに等しく設定されたmvX、MvShift+2に等しく設定されたrightShift、MvShift+2に等しく設定されたleftShiftを入力とし、丸められたmvLを出力として呼び出される。
3.輝度動きベクトルmvLは、以下のように修正される。
u[0]=(mvL[0]+mvd[0]+218)%218 (8-885)
mvL[0]=(u[0]>=217)?(u[0]-218):u[0] (8-886)
u[1]=(mvL[1]+mvd[1]+218)%218 (8-887)
mvL[1]=(u[1]>=217)?(u[1]-218):u[1] (8-888)
注1-上記で規定したmvL[0]およびmvL[1]の結果値は、常に-217~217-1の範囲に含まれる。
参照ブロックの内部の左上の位置(xRefTL,yRefTL)と、参照ブロックの内部の右下の位置(xRefBR,yRefBR)とは、以下のように導出される。
(xRefTL,yRefTL)=(xCb+(mvL[0]>>4),yCb+(mvL[1]>>4)) (8-889)
(xRefBR,yRefBR)=(xRefTL+cbWidth-1,yRefTL+cbHeight-1) (8-890)
輝度動きベクトルmvLが以下の制約に従うべきであることは、ビットストリーム適合性の要件である。
-...
-動きベクトル候補リストmvCandList、
-リストnumCurrCandにおける利用可能な動きベクトル候補の数。
この処理への入力は以下の通りである。
-修正された動きベクトル候補リストmvCandList、
-[[現在の符号化ユニットが共有マージ候補領域内にあるかどうかを規定する変数isInSmr]]
-リストnumCurrCandにおける動きベクトル候補の修正数
変数isPrunedA1およびisPrunedB1は共にFALSEに等しく設定される。
[[smr]]HmvpIbcCandList=[[isInSmr?HmvpSmrIbcCandList:]]HmvpIbcCandList (8-906)
[[smr]]NumHmvpIbcCand=[[isInSmr?NumHmvpSmrIbcCand:]]NumHmvpIbcCand (8-907)
smrHmvpIbcCandList[hMvpIdx]におけるインデックスhMvpIdx=1..[[smr]]]NumHmvpIbcCandの各候補について、numCurrCandがMaxNumMergeCandと等しくなるまで、以下の順序付けられたステップが繰り返される。
1.変数sameMotionは以下のように導出される:
-NがA1またはB1である任意の動きベクトル候補Nに対して、以下のすべての条件がTRUEである場合、sameMotionおよびisPrunedNは共にTRUEに等しく設定される。
-hMvpIdxは1以下である。
-候補[[smr]]HmvpIbcCandList[[[smr]]NumHmvpIbcCand-hMvpIdx]は、動きベクトル候補Nに等しい。
-isPrunedNがFALSEに等しい。
-そうでない場合、sameMotionはFALSEに等しく設定される。
2.sameMotionがFALSEに等しい場合、候補[[smr]]HmvpIbcCandList[[[smr]]NumHmvpIbcCand-hMvpIdx]は動きベクトル候補リストに以下のように加えられる。
mvCandList[numCurrCand++]=[[smr]]HmvpIbcCandList[[[smr]]NumHmvpIbcCand-hMvpIdx] (8-908)
CTUは、符号化ツリー構造のルートノードである。
[[(x,y)におけるサンプルが共有マージ候補リスト領域内に位置するかどうかを規定する配列IsInSmr[x][y]は、x=0..CtbSizeY-1およびy=0..CtbSizeY-1に対して以下のように初期化される:
IsInSmr[x][y]=FALSE (7-96)]]
[[以下の条件のすべてが真である場合、IsInSmr[x][y]は、x=x0..x0+cbWidth-1およびy=y0..y0+cbHeight-1に対して、TRUEに等しく設定される。
-isInSmr[x0][y0]はFALSEに等しい
-cbWidth*cbHeight/4が32より小さい
-treeTypeがDUAL_TREE_CHROMAに等しくない
IsInSmr[x0][y0]がTRUEに等しい場合、配列SmrX[x][y]、SmrY[x][y]、SmrW[x][y]、およびSmrH[x][y]は、x=x0..x0+cbWidth-1、およびy=y0..y0+cbHeight-1に対して以下のように導出される。
SmrX[x][y]=x0 (7-98)
SmrY[x][y]=y0 (7-99)
SmrW[x][y]=cbWidth (7-100)
SmrH[x][y]=cbHeight (7-101)
以下のすべての条件が真である場合、IsInSmr[x][y]は、x=x0..x0+cbWidth-1およびy=y0..y0+cbHeight-1に対して、TRUEに等しく設定される。
-isInSmr[x0][y0]はFALSEに等しい。
-以下の条件の1つが真である。
-mtt_split_cu_binary_flagが1に等しく、かつ、cbWidth*cbHeight/2が32より小さい
-mtt_split_cu_binary_flagが0に等しく、かつ、cbWidth*cbHeight/4が32より小さい
-treeTypeがDUAL_TREE_CHROMAと等しくない
IsInSmr[x0][y0]がTRUEに等しい場合、配列SmrX[x][y]、SmrY[x][y]、SmrW[x][y]、およびSmrH[x][y]は、x=x0..x0+cbWidth-1およびy=y0..y0+cbHeight-1に対して、以下のように導出される。
SmrX[x][y]=x0 (7-102)
SmrY[x][y]=y0 (7-103)
SmrW[x][y]=cbWidth (7-104)
SmrH[x][y]=cbHeight (7-105)]]
[[以下のすべての条件が真である場合、NumHmvpSmrIbcCandをNumHmvpIbcCandに等しく設定し、HmvpSmrIbcCandList[i]をHmvpIbcCandList[i]に等しく設定し、i=0..NumHmvpIbcCand-1とすることにより、共有したマージ候補リスト領域に対する履歴ベースの動きベクトル予測子は更新される。
-IsInSmr[x0][y0]はTRUEに等しい。
-SmrX[x0][y0]はx0に等しい。
-SmrY[x0][y0]は、y0に等しい。]]
x=x0..x0+cbWidth-1およびy=y0..y0+cbHeight-1に対して、以下の通り割り当てが行われる。
CbPosX[x][y]=x0 (7-106)
CbPosY[x][y]=y0 (7-107)
CbWidth[x][y]=cbWidth (7-108)
CbHeight[x][y]=cbHeight (7-109)
8.6.2.1 一般
-現在のピクチャの左上の輝度サンプルに対する現在の輝度符号化ブロックの左上のサンプルの輝度位置(xCb,yCb)、
-輝度サンプルにおける現在の符号化ブロックの幅を規定する変数cbWidth、
-輝度サンプルにおける現在の符号化ブロックの高さを規定する変数cbHeight。
-1/16小数サンプル精度mvLにおける輝度動きベクトル。
-8.6.2.2節で規定されたIBC輝度動きベクトル予測の導出処理は、輝度位置(xCb,yCb)、変数cbWidthおよびcbHeightを入力として呼び出され、出力は輝度動きベクトルmvLである。
-general_merge_flag[xCb][yCb]が0と等しい場合、以下が適用される。
4.変数mvdは、以下のように導出される。
mvd[0]=MvdL0[xCb][yCb][0] (8-883)
mvd[1]=MvdL0[xCb][yCb][1] (8-884)
5.8.5.2.14節で規定されるような動きベクトルの丸め処理は、mvLに等しく設定されたmvX、MvShift+2に等しく設定されたrightShift、MvShift+2に等しく設定されたleftShiftを入力とし、丸められたmvLを出力として呼び出される。
6.輝度動きベクトルmvLは、以下のように修正される。
u[0]=(mvL[0]+mvd[0]+218)%218 (8-885)
mvL[0]=(u[0]>=217)?(u[0]-218):u[0] (8-886)
u[1]=(mvL[1]+mvd[1]+218)%218 (8-887)
mvL[1]=(u[1]>=217)?(u[1]-218):u[1] (8-888)
注1-上記で規定されたようなmvL[0]およびmvL[1]の結果値は、常に-217~217-1の範囲に含まれる。
参照ブロック(xRefTL,yRefTL)の内部の左上の位置と、参照ブロック(xRefBR,yRefBR)の内部の右下の位置とは、以下のように導出される。
(xRefTL,yRefTL)=(xCb+(mvL[0]>>4),yCb+(mvL[1]>>4)) (8-889)
(xRefBR,yRefBR)=(xRefTL+cbWidth-1,yRefTL+cbHeight-1) (8-890)
輝度動きベクトルmvLが以下の制約に従うべきであることは、ビットストリーム適合性の要件である。
-...
この処理は、CuPredMode[xCb][yCb]がMODE_IBCに等しい場合にのみ呼び出され、ここで、(xCb,yCb)は、現在のピクチャの左上の輝度サンプルに対する現在の輝度符号化ブロックの左上のサンプルを規定する。
-現在のピクチャの左上の輝度サンプルに対する現在の輝度符号化ブロックの左上のサンプルの輝度位置(xCb,yCb)、
-輝度サンプルにおける現在の符号化ブロックの幅を規定する変数cbWidth、
-輝度サンプルにおける現在の符号化ブロックの高さを規定する変数cbHeight。
-1/16小数サンプル精度mvLにおける輝度動きベクトル。
変数xSmr、ySmr、smrWidth、smrHeight、およびsmrNumHmvpIbcCandは、以下のように導出される。
xSmr=[[IsInSmr[xCb][yCb]?SmrX[xCb][yCb]:]]xCb (8-895)
ySmr=[[IsInSmr[xCb][yCb]?SmrY[xCb][yCb]:]]yCb (8-896)
smrWidth=[[IsInSmr[xCb][yCb]?SmrW[xCb][yCb]:]]cbWidth (8-897)
smrHeight=[[IsInSmr[xCb][yCb]?SmrH[xCb][yCb]:]]cbHeight (8-898)
smrNumHmvpIbcCand=[[IsInSmr[xCb][yCb]?NumHmvpSmrIbcCand:]]NumHmvpIbcCand (8-899)
1.smrWidth*smrHeightがKより大きい場合、8.6.2.3節で規定される近傍の符号化ユニットからの空間的動きベクトル候補の導出処理は、(xSmr,ySmr)に等しく設定された輝度符号化ブロックの位置(xCb,yCb)、smrWidthおよびsmrHeightに等しく設定された輝度符号化ブロックの幅cbWidthおよび輝度符号化ブロックの高さcbHeightを入力として呼び出され、出力は、可用性フラグavailableFlagA1、availableFlagB1、および動きベクトルmvA1およびmvB1である。
i=0
if(availableFlagA1)
mvCandList[i++]=mvA1
if(availableFlagB1)
mvCandList[i++]=mvB1 (8-900)
1.mvCandList[numCurrCand][0]は、0に等しく設定される。
2.mvCandList[numCurrCand][1]は、0に等しく設定される。
3.numCurrCandは1増加される。
mvIdx=general_merge_flag[xCb][yCb]?merge_idx[xCb][yCb]:mvp_l0_flag[xCb][yCb] (8-901)
mvL[0]=mergeCandList[mvIdx][0] (8-902)
mvL[1]=mergeCandList[mvIdx][1] (8-903)
この処理への入力は以下の通りである。
-動きベクトル候補リストmvCandList、
-リストnumCurrCandにおける利用可能な動きベクトル候補の数。
-修正された動きベクトル候補リストmvCandList、
-[[現在の符号化ユニットが共有マージ候補領域内にあるかどうかを規定する変数isInSmr、]]
-リストnumCurrCandにおける動きベクトル候補の修正数。
配列smrHmvpIbcCandListおよび変数smrNumHmvpIbcCandは、以下のように導出される。
[[smr]]HmvpIbcCandList=[[isInSmr?HmvpSmrIbcCandList:]]HmvpIbcCandList (8-906)
smrNumHmvpIbcCand=[[isInSmr?NumHmvpSmrIbcCand:]]NumHmvpIbcCand (8-907)
1.変数sameMotionは以下のように導出される:
-smrWidth*smrHeightが、Kより大きく、かつ、NはA1またはB1である、任意の動きベクトル候補Nについて、すべての以下の条件がTRUEである場合、sameMotionおよびisPrunedNは両方ともTRUEに等しく設定される。
-hMvpIdxは1以下である。
-候補[[smr]]HmvpIbcCandList[[[smr]]NumHmvpIbcCand-hMvpIdx]は、動きベクトル候補Nに等しい。
-PrisPrunedNはFALSEに等しい。
-そうでない場合、sameMotionはFALSEに等しく設定される。
2.sameMotionがFALSEに等しい場合、候補[[smr]]HmvpIbcCandList[smrNumHmvpIbcCand-hMvpIdx]は動きベクトル候補リストに以下のように加えられる。
mvCandList[numCurrCand++]=[[smr]]HmvpIbcCandList[[[smr]]NumHmvpIbcCand-hMvpIdx] (8-908)
この処理は、CuPredMode[xCb][yCb]がMODE_IBCに等しい場合にのみ呼び出され、ここで、(xCb,yCb)は、現在のピクチャの左上の輝度サンプルに対して、現在の輝度符号化ブロックの左上のサンプルを規定する。
-現在のピクチャの左上の輝度サンプルに対する現在の輝度符号化ブロックの左上のサンプルの輝度位置(xCb,yCb)、
-輝度サンプルにおける現在の符号化ブロックの幅を規定する変数cbWidth、
-輝度サンプルにおける現在の符号化ブロックの高さを規定する変数cbHeight。
-1/16小数サンプル精度mvLにおける輝度動きベクトル。
変数xSmr、ySmr、smrWidth、smrHeight、およびsmrNumHmvpIbcCandは、以下のように導出される。
xSmr=[[IsInSmr[xCb][yCb]?SmrX[xCb][yCb]:]]xCb (8-895)
ySmr=[[IsInSmr[xCb][yCb]?SmrY[xCb][yCb]:]]yCb (8-896)
smrWidth=[[IsInSmr[xCb][yCb]?SmrW[xCb][yCb]:]]cbWidth (8-897)
smrHeight=[[IsInSmr[xCb][yCb]?SmrH[xCb][yCb]:]]cbHeight (8-898)
smrNumHmvpIbcCand=[[IsInSmr[xCb][yCb]?NumHmvpSmrIbcCand:]]NumHmvpIbcCand (8-899)
1.IsInSmr[xCb][yCb]が偽の場合、8.6.2.3節で規定される近傍の符号化ユニットからの空間的動きベクトル候補の導出処理は、(xSmr,ySmr)に等しく設定された輝度符号化ブロックの位置(xCb,yCb)、smrWidthおよびsmrHeightに等しく設定された輝度符号化ブロックの幅cbWidthおよび輝度符号化ブロックの高さcbHeightを入力として呼び出され、出力は、可用性フラグavailableFlagA1、availableFlagB1、並びに動きベクトルmvA1およびmvB1である。
i=0
if(availableFlagA1)
mvCandList[i++]=mvA1
if(availableFlagB1)
mvCandList[i++]=mvB1 (8-900)
1.mvCandList[numCurrCand][0]は、0に等しく設定される。
2.mvCandList[numCurrCand][1]は、0に等しく設定される。
3.numCurrCandは1増加される。
mvIdx=general_merge_flag[xCb][yCb]?merge_idx[xCb][yCb]:mvp_l0_flag[xCb][yCb] (8-901)
mvL[0]=mergeCandList[mvIdx][0] (8-902)
mvL[1]=mergeCandList[mvIdx][1] (8-903)
この処理への入力は以下の通りである。
-動きベクトル候補リストmvCandList、
-リストnumCurrCandにおける利用可能な動きベクトル候補の数。
-修正された動きベクトル候補リストmvCandList、
-[[現在の符号化ユニットが共有マージ候補領域内にあるかどうかを規定する変数isInSmr]]
-リストnumCurrCandにおける動きベクトル候補の修正数
配列smrHmvpIbcCandListおよび変数smrNumHmvpIbcCandは、以下のように導出される。
[[smr]]HmvpIbcCandList=[[isInSmr?HmvpSmrIbcCandList:]]HmvpIbcCandList (8-906)
[[smr]]NumHmvpIbcCand=[[isInSmr?NumHmvpSmrIbcCand:]]NumHmvpIbcCand (8-907)
インデックスhMvpIdx=1..[[smr]]NumHmvpIbcCandである[[smr]]HmvpIbcCandList[hMvpIdx]における各候補に対し、numCurrCandがMaxNumMergeCandに等しくなるまで、以下の順序付けられたステップを繰り返す。
-isInSmrが偽であり、かつ、NがA1またはB1である任意の動きベクトル候補Nに対して、以下のすべての条件が真である場合、sameMotionおよびisPrunedNは共にTRUEに等しく設定される。
-hMvpIdxは1以下である。
-候補[[smr]]HmvpIbcCandList[[[smr]]NumHmvpIbcCand-hMvpIdx]は、動きベクトル候補Nに等しい。
-isPrunedNはFALSEに等しい。
-そうでない場合、sameMotionはFALSEに等しく設定される。
mvCandList[numCurrCand++]=[[smr]]HmvpIbcCandList[[[smr]]NumHmvpIbcCand-hMvpIdx] (8-908)
8.6.2.1 一般
-現在のピクチャの左上の輝度サンプルに対する現在の輝度符号化ブロックの左上のサンプルの輝度位置(xCb,yCb)、
-輝度サンプルにおける現在の符号化ブロックの幅を規定する変数cbWidth、
-輝度サンプルにおける現在の符号化ブロックの高さを規定する変数cbHeight。
-1/16小数サンプル精度mvLにおける輝度動きベクトル。
-8.6.2.2節で規定されたIBC輝度動きベクトル予測の導出処理は、輝度位置(xCb,yCb)、変数cbWidthおよびcbHeightを入力として呼び出され、出力は輝度動きベクトルmvLである。
-general_merge_flag[xCb][yCb]が0と等しい場合、以下が適用される。
mvd[0]=MvdL0[xCb][yCb][0] (8-883)
mvd[1]=MvdL0[xCb][yCb][1] (8-884)
u[0]=(mvL[0]+mvd[0]+218)%218 (8-885)
mvL[0]=(u[0]>=217)?(u[0]-218):u[0] (8-886)
u[1]=(mvL[1]+mvd[1]+218)% 218 (8-887)
mvL[1]=(u[1]>=217)?(u[1]-218):u[1] (8-888)
注1-上記で規定されたmvL[0]およびmvL[1]の結果値は、常に-217~217-1の範囲に含まれる。
参照ブロック内の左上の位置(xRefTL,yRefTL)と、参照ブロック内の右下の位置(xRefBR,yRefBR)とは、以下のように導出される。
(xRefTL,yRefTL)=(xCb+(mvL[0]>>4),yCb+(mvL[1]>>4)) (8-889)
(xRefBR,yRefBR)=(xRefTL+cbWidth-1,yRefTL+cbHeight-1) (8-890)
輝度動きベクトルmvLが以下の制約に従うべきであることは、ビットストリーム適合性の要件である。
-...
CTUは、符号化ツリー構造のルートノードである。
6.4.4節で規定されている近傍のブロック可用性の導出処理において、(x,y)のサンプルが利用可能かどうかを規定する配列IsAvailable[cIdx][x][y]は、cIdx=0...2、x=0...CtbSizeY-1、およびy=0...CtbSizeY-1に対して、以下のように初期化される。
IsAvailable[cIdx][x][y]=FALSE (7-123)
[[(x,y)におけるサンプルが共有マージ候補リスト領域内に位置するかどうかを規定する配列IsInSmr[x][y]は、x=0..CtbSizeY-1およびy=0..CtbSizeY-1に対して以下のように初期化される。
IsInSmr[x][y]=FALSE (7-124)]]
[[以下の条件のすべてが真である場合、IsInSmr[x][y]は、x=x0..x0+cbWidth-1およびy=y0..y0+cbHeight-1に対して、TRUEに等しく設定される。
-isInSmr[x0][y0]はFALSEと等しい
-cbWidth*cbHeight/4は32より小さい
-treeTypeがDUAL_TREE_CHROMAと等しくない
IsInSmr[x0][y0]がTRUEに等しい、配列SmrX[x][y]、SmrY[x][y]、SmrW[x][y]およびSmrH[x][y]は、x=x0..x0+cbWidth-1およびy=y0..y0+cbHeight-1に対して以下のように導出される。
SmrX[x][y]=x0 (7-126)
SmrY[x][y]=y0 (7-127)
SmrW[x][y]=cbWidth (7-128)
SmrH[x][y]=cbHeight (7-129)]]
8.6.2.1 一般
-現在のピクチャの左上の輝度サンプルに対する現在の輝度符号化ブロックの左上のサンプルの輝度位置(xCb,yCb)、
-輝度サンプルにおける現在の符号化ブロックの幅を規定する変数cbWidth、
-輝度サンプルにおける現在の符号化ブロックの高さを規定する変数cbHeight。
-1/16小数サンプル精度bvLにおける輝度ブロックベクトル。
-8.6.2.2節で規定されたIBC輝度ブロックベクトル予測の導出処理は、輝度位置(xCb,yCb)、変数cbWidthおよびcbHeightを入力として呼び出され、出力は輝度ブロックベクトルbvLである。
-general_merge_flag[xCb][yCb]が0と等しい場合、以下が適用される。
bvd[0]=MvdL0[xCb][yCb][0] (8-900)
bvd[1]=MvdL0[xCb][yCb][1] (8-901)
u[0]=(bvL[0]+bvd[0]+218)%218 (8-902)
bvL[0]=(u[0]>=217)?(u[0]-218):u[0] (8-903)
u[1]=(bvL[1]+bvd[1]+218)%218 (8-904)
bvL[1]=(u[1]>=217)?(u[1]-218):u[1] (8-905)
注1-上記で規定されたbvL[0]およびbvL[1]の結果値は、常に-217~217-1の範囲に含まれる。
IsLgrBlkが真である場合、CbWidthがNに等しく、CbHeightが4に等しく、左側の近傍のブロックが4×4であり、IBCモードで符号化される場合、IsLgrBlkは偽に設定される。
IsLgrBlkが真である場合、CbWidthが4に等しく、CbHeightがNに等しく、上側の近傍のブロックが4×4であり、IBCモードで符号化される場合、IsLgrBlkは偽に設定される。
(または代替的に、
変数IslgrBlkは(cbWidth×cbHeightはKよりも大きい?真:偽)に設定される。
IsLgrBlkが真である場合、CbWidthがNに等しく、CbHeightが4に等しく、左側の近傍のブロックが4×4であり、IBCモードで符号化される場合、IsLgrBlkは偽に設定される。
IsLgrBlkが真である場合、CbWidthが4に等しく、CbHeightがNに等しく、上側の近傍のブロックが利用可能であり、4×4であり、IBCモードで符号化される場合、IsLgrBlkは偽に等しく設定される。)
IsLgrBlkが真[[IsInSmr[xCb][yCb]が偽である]]である場合、輝度ブロックベクトルbvLを使用して、8.6.2.6節で規定されるような履歴ベースのブロックベクトル予測子リストの更新処理が呼び出される。
-CtbSizeYは、((yCb+(bvL[1]>4))&(CtbSizeY-1)+cbHeight以上である。
-IbcVirBuf[0][(x+(bvL[0]>>4))&(IbcVirBufWidth-1)][(y+(bvL[1]>>4))&(CtbSizeY-1)]は、x=xCb..xCb+cbWidth-1およびy=yCb..yCb+cbHeight-1に対して、-1と等しくなってはならない。
この処理は、CuPredMode[0][xCb][yCb]がMODE_IBCに等しい場合にのみ呼び出され、ここで、(xCb,yCb)は、現在のピクチャの左上の輝度サンプルに対して、現在の輝度符号化ブロックの左上のサンプルを規定する。
-現在のピクチャの左上の輝度サンプルに対する現在の輝度符号化ブロックの左上のサンプルの輝度位置(xCb,yCb)、
-輝度サンプルにおける現在の符号化ブロックの幅を規定する変数cbWidth、
-輝度サンプルにおける現在の符号化ブロックの高さを規定する変数cbHeight。
-1/16小数サンプル精度bvLにおける輝度ブロックベクトル。
[[変数xSmr、ySmr、smrWidth、およびsmrHeightは、以下のように導出される。
xSmr=IsInSmr[xCb][yCb]?SmrX[xCb][yCb]:xCb (8-906)
ySmr=IsInSmr[xCb][yCb]?SmrY[xCb][yCb]:yCb (8-907)
smrWidth=IsInSmr[xCb][yCb]?SmrW[xCb][yCb]:cbWidth (8-908)
smrHeight=IsInSmr[xCb][yCb]?SmrH[xCb][yCb]:cbHeight (8-909)]]
IsLgrBlkが真である場合、CbWidthがNに等しく、CbHeightが4に等しく、左側の近傍のブロックが4×4であり、IBCモードで符号化される場合、IsLgrBlkは偽に設定される。
IsLgrBlkが真である場合、CbWidthが4に等しく、CbHeightがNに等しく、上側の近傍のブロックが4×4であり、IBCモードで符号化される場合、IsLgrBlkは偽に設定される。
(または代替的に、
変数IslgrBlkは、(cbWidth×cbHeightがKよりも大きい?真:偽)に設定される。
IsLgrBlkが真である場合、CbWidthがNに等しく、CbHeightが4に等しく、左側の近傍のブロックが4×4であり、IBCモードで符号化される場合、IsLgrBlkは偽に設定される。
IsLgrBlkが真である場合、CbWidthが4に等しく、CbHeightがNに等しく、上側の近傍のブロックが利用可能であり、4×4であり、IBCモードで符号化される場合、IsLgrBlkは偽に設定される。)
1.IslgrBlkが真の場合、8.6.2.3節で規定される近傍の符号化ユニットからの空間的ブロックベクトル候補の導出処理は、(xCb,yCb[[xSmr,ySmr]])に等しく設定された輝度符号化ブロックの位置(xCb,yCb)、[[smr]]CbWidthおよび[[smr]]CbHeightに等しく設定された輝度符号化ブロックの幅cbWidthおよび輝度符号化ブロックの高さcbHeightを入力として呼び出され、出力は、可用性フラグavailableFlagA1、availableFlagB1、並びにブロックベクトルbvA1およびbvB1である。
if(availableFlagA1)
bvCandList[i++]=bvA1
if(availableFlagB1)
bvCandList[i++]=bvB1 (8-910)
1.bvCandList[numCurrCand][0]は、0に等しく設定される。
2.bvCandList[numCurrCand][1]は、0に等しく設定される。
3.numCurrCandは1増加される。
bvIdx=general_merge_flag[xCb][yCb]?merge_idx[xCb][yCb]:mvp_l0_flag[xCb][yCb] (8-911)
bvL[0]=bvCandList[mvIdx][0] (8-912)
bvL[1]=bvCandList[mvIdx][1] (8-913)
この処理への入力は以下の通りである。
-現在のピクチャの左上の輝度サンプルに対する現在の輝度符号化ブロックの左上のサンプルの輝度位置(xCb,yCb)、
-輝度サンプルにおける現在の符号化ブロックの幅を規定する変数cbWidth、
-輝度サンプルにおける現在の符号化ブロックの高さを規定する変数cbHeight。
-近傍の符号化ユニットの可用性フラグavailableFlagA1およびavailableFlagB1。
-近傍の符号化ユニットの1/16小数サンプル精度bvA1およびbvB1。
-近傍の輝度符号化ブロック内の輝度位置(xNbA1,yNbA1)は、(xCb-1,yCb+cbHeight-1)に等しく設定される。
-6.4.4項で規定される近傍のブロックの可用性のための導出処理は、(xCb,yCb)に等しく設定された現在の輝度位置(xCurr,yCurr)、近傍の輝度位置(xNbA1,yNbA1)、TRUEに等しく設定されたcheckPredModeY、0に等しく設定されたcIdxを入力として呼び出され、出力は、ブロック可用性フラグavailableA1に割り当てられる。
-変数availableFlagA1およびbvA1は、以下のように導出される。
-availableA1がFALSEに等しい場合、availableFlagA1は0に等しく設定され、bvA1の両成分は0に等しく設定される。
-そうでない場合、availableFlagA1は1に等しく設定され、以下の割り当てが行われる。
bvA1=MvL0[xNbA1][yNbA1] (8-914)
-近傍の輝度符号化ブロック内の輝度位置(xNbB1,yNbB1)は、(xCb+cbWidth-1,yCb-1)に等しく設定される。
-6.4.4節で規定される近傍のブロックの可用性のための導出処理は、(xCb,yCb)に等しく設定された現在の輝度位置(xCurr,yCurr)、近傍の輝度位置(xNbB1,yNbB1)、TRUEに等しく設定されたcheckPredModeY、0に等しく設定されたcIdxを入力として呼び出され、出力は、ブロック可用性フラグavailableB1に割り当てられる。
-変数availableFlagB1およびbvB1は、以下のように導出される。
-以下の条件の1または複数が真である場合、availableFlagB1は0に等しく設定され、bvB1の両成分は0に設定される。
-availableB1はFALSEに等しい。
-availableA1はTRUEに等しく、輝度位置(xNbA1,yNbA1)および(xNbB1,yNbB1)は同じブロックベクトルを有する。
-そうでない場合、availableFlagB1を1に等しく設定され、以下の割り当てが行われる。
bvB1=MvL0[xNbB1][yNbB1] (8-915)
この処理への入力は以下の通りである。
-ブロックベクトル候補リストbvCandList、
-[[現在の符号化ユニットが共有マージ候補領域内にあるかどうかを規定する変数isInSmr]]
-非小ブロックIslgrBlkを示す変数、
-リストnumCurrCandにおける利用可能なブロックベクトル候補の数。
この処理への入力は以下の通りである。
-修正されたブロックベクトル候補リストbvCandList、
-リストnumCurrCandにおける動きベクトル候補の修正数。
変数isPrunedA1およびisPrunedB1は共にFALSEに等しく設定される。
1.変数sameMotionは以下のように導出される:
-IsLgrBlkが真であり、NがA1またはB1である任意のブロックベクトル候補Nに対して、以下のすべての条件が真ある場合、sameMotionおよびisPrunedNは共にTRUEに等しく設定される。
-hMvpIdxは1以下である。
-候補HmvpIbcCandList[NumHmvpIbcCand-hMvpIdx]は、ブロックベクトル候補Nに等しい。
-PrisPrunedNはFALSEに等しい。
-そうでない場合、sameMotionをFALSEに等しく設定される。
2.sameMotionがFALSEに等しい場合、候補HmvpIbcCandList[NumHmvpIbcCand-hMvpIdx]は、ブロックベクトル候補リストに以下のように加えられる。
bvCandList[numCurrCand++]=HmvpIbcCandList[NumHmvpIbcCand-hMvpIdx] (8-916)
CTUは、符号化ツリー構造のルートノードである。
6.4.4節で規定されている近傍のブロック可用性の導出処理において、(x,y)のサンプルが利用可能かどうかを規定する配列IsAvailable[cIdx][x][y]は、cIdx=0...2、x=0...CtbSizeY-1、およびy=0...CtbSizeY-1に対して、以下のように初期化される。
IsAvailable[cIdx][x][y]=FALSE (7-123)
[[(x,y)におけるサンプルが共有マージ候補リスト領域内に位置するかどうかを規定する配列IsInSmr[x][y]は、x=0..CtbSizeY-1およびy=0..CtbSizeY-1に対して、以下のように初期化される。
IsInSmr[x][y]=FALSE (7-124)]]
[[以下の条件のすべてが真である場合、IsInSmr[x][y]は、x=x0..x0+cbWidth-1およびy=y0..y0+cbHeight-1に対して、TRUEに等しく設定される。
-isInSmr[x0][y0]はFALSEに等しい
-cbWidth *cbHeight/4が32より小さい
-treeTypeがDUAL_TREE_CHROMAに等しくない
IsInSmr[x0][y0]がTRUEに等しい場合、配列SmrX[x][y]、SmrY[x][y]、SmrW[x][y]、およびSmrH[x][y]は、x=x0..x0+cbWidth-1およびy=y0..y0+cbHeight-1に対して以下のように導出される。
SmrX[x][y]=x0 (7-126)
SmrY[x][y]=y0 (7-127)
SmrW[x][y]=cbWidth (7-128)
SmrH[x][y]=cbHeight (7-129)]]
8.6.2.1 一般
-現在のピクチャの左上の輝度サンプルに対する現在の輝度符号化ブロックの左上のサンプルの輝度位置(xCb,yCb)、
-輝度サンプルにおける現在の符号化ブロックの幅を規定する変数cbWidth、
-輝度サンプルにおける現在の符号化ブロックの高さを規定する変数cbHeight。
-1/16小数サンプル精度bvLにおける輝度ブロックベクトル。
-8.6.2.2節で規定されたIBC輝度ブロックベクトル予測の導出処理は、輝度位置(xCb,yCb)、変数cbWidthおよびcbHeightを入力として呼び出され、出力は輝度ブロックベクトルbvLである。
-general_merge_flag[xCb][yCb]が0と等しい場合、以下が適用される。
bvd[0]=MvdL0[xCb][yCb][0] (8-900)
bvd[1]=MvdL0[xCb][yCb][1] (8-901)
u[0]=(bvL[0]+bvd[0]+218)%218 (8-902)
bvL[0]=(u[0]>=217)?(u[0]-218):u[0] (8-903)
u[1]=(bvL[1]+bvd[1]+218)%218 (8-904)
bvL[1]=(u[1]>=217)?(u[1]-218):u[1] (8-905)
注1-上記で規定したbvL[0]およびbvL[1]の結果値は、常に-217~217-1の範囲に含まれる。
-CbWidthがNに等しく、CbHeightが4に等しく、左側の近傍のブロックが4×4であり、IBCモードで符号化される場合。
-CbWidthが4に等しく、CbHeightがNに等しく、上側の近傍のブロックが4×4であり、IBCモードで符号化される場合。
そうでない場合、IsLgrBlkは偽に等しく設定される。
(または代替的に、
変数IslgrBlkは、(CbWidth*CbHeight>16?真:偽)に設定され、以下をさらにチェックする。
IsLgrBlkが真である場合、CbWidthがNに等しく、CbHeightが4に等しく、左側の近傍のブロックが4×4であり、IBCモードで符号化される場合、IsLgrBlkは偽に設定される。
IsLgrBlkが真である場合、CbWidthが4に等しく、CbHeightがNに等しく、上側の近傍のブロックが4×4であり、IBCモードで符号化される場合、IsLgrBlkは偽に設定される。)
輝度ブロックベクトルbvLが以下の制約に従うべきであることは、ビットストリーム適合性の要件である。
-CtbSizeYは、((yCb+(bvL[1]>4))&(CtbSizeY-1))+cbHeight以上である。
-IbcVirBuf[0][(x+(bvL[0]>>4))&(IbcVirBufWidth-1)][(y+(bvL[1]>>4))&(CtbSizeY-1)]は、x=xCb..xCb+cbWidth-1およびy=yCb..yCb+cbHeight-1に対し、-1と等しくなってはならない。
この処理は、CuPredMode[0][xCb][yCb]がMODE_IBCに等しい場合にのみ呼び出され、ここで、(xCb,yCb)は、現在のピクチャの左上の輝度サンプルに対して、現在の輝度符号化ブロックの左上のサンプルを規定する。
-現在のピクチャの左上の輝度サンプルに対する現在の輝度符号化ブロックの左上のサンプルの輝度位置(xCb,yCb)、
-輝度サンプルにおける現在の符号化ブロックの幅を規定する変数cbWidth、
-輝度サンプルにおける現在の符号化ブロックの高さを規定する変数cbHeight。
-1/16小数サンプル精度bvLにおける輝度ブロックベクトル。
[[変数xSmr、ySmr、smrWidth、およびsmrHeightは、以下のように導出される。
xSmr=IsInSmr[xCb][yCb]?SmrX[xCb][yCb]:xCb (8-906)
ySmr=IsInSmr[xCb][yCb]?SmrY[xCb][yCb]:yCb (8-907)
smrWidth=IsInSmr[xCb][yCb]?SmrW[xCb][yCb]:cbWidth (8-908)
smrHeight=IsInSmr[xCb][yCb]?SmrH[xCb][yCb]:cbHeight (8-909)]]
-CbWidthがNに等しく、CbHeightが4に等しく、左側の近傍のブロックが4×4であり、IBCモードで符号化される場合。
-CbWidthが4に等しく、CbHeightがNに等しく、上側の近傍のブロックが4×4であり、IBCモードで符号化される場合。
そうでない場合、IsLgrBlkは偽に設定される。
(または代替的に、
変数IslgrBlkは、(CbWidth*CbHeight>16?真:偽)に設定され、以下をさらにチェックする。
IsLgrBlkが真である場合、CbWidthがNに等しく、CbHeightが4に等しく、左側の近傍のブロックが4×4であり、IBCモードで符号化される場合、IsLgrBlkは偽に設定される。
IsLgrBlkが真である場合、CbWidthが4に等しく、CbHeightがNに等しく、上側の近傍のブロックが4×4であり、IBCモードで符号化される場合、IsLgrBlkは偽に設定される。)
1.IslgrBlkが真の場合、8.6.2.3節で規定される近傍の符号化ユニットからの空間的ブロックベクトル候補の導出処理は、(xCb,yCb[[xSmr,ySmr]])に等しく設定された輝度符号化ブロックの位置(xCb,yCb)、[[smr]]CbWidthおよび[[smr]]CbHeightに等しく設定された輝度符号化ブロックの幅cbWidthおよび輝度符号化ブロックの高さcbHeightを入力として呼び出され、出力は、可用性フラグavailableFlagA1、availableFlagB1、並びにブロックベクトルbvA1およびbvB1である。
i=0
if(availableFlagA1)
bvCandList[i++]=bvA1
if(availableFlagB1)
bvCandList[i++]=bvB1 (8-910)
1.bvCandList[numCurrCand][0]は、0に等しく設定される。
2.bvCandList[numCurrCand][1]は、0に等しく設定される。
3.numCurrCandは1増加される。
bvIdx=general_merge_flag[xCb][yCb]?merge_idx[xCb][yCb]:mvp_l0_flag[xCb][yCb] (8-911)
bvL[0]=bvCandList[mvIdx][0] (8-912)
bvL[1]=bvCandList[mvIdx][1] (8-913)
この処理への入力は以下の通りである。
-現在のピクチャの左上の輝度サンプルに対する現在の輝度符号化ブロックの左上のサンプルの輝度位置(xCb,yCb)、
-輝度サンプルにおける現在の符号化ブロックの幅を規定する変数cbWidth、
-輝度サンプルにおける現在の符号化ブロックの高さを規定する変数cbHeight。
-近傍の符号化ユニットの可用性フラグavailableFlagA1およびavailableFlagB1、
-近傍の符号化ユニットの1/16小数サンプル精度bvA1およびbvB1。
availableFlagA1およびmvA1の導出のために、以下が適用される。
-近傍の輝度符号化ブロック内の輝度位置(xNbA1,yNbA1)は、(xCb-1,yCb+cbHeight-1)に等しく設定される。
-6.4.4節で規定される近傍のブロックの可用性のための導出処理は、(xCb,yCb)に等しく設定された現在の輝度位置(xCurr,yCurr)、近傍の輝度位置(xNbA1,yNbA1)、TRUEに等しく設定されたcheckPredModeY、0に等しく設定されたcIdxを入力として呼び出され、出力は、ブロック可用性フラグavailableA1に割り当てられる。
-変数availableFlagA1およびbvA1は、以下のように導出される。
-availableA1がFALSEに等しい場合、availableFlagA1は0に等しく設定され、bvA1の両成分は0に等しく設定される。
-そうでない場合、availableFlagA1は1に等しく設定され、以下の割り当てが行われる。
bvA1=MvL0[xNbA1][yNbA1] (8-914)
-近傍の輝度符号化ブロック内の輝度位置(xNbB1,yNbB1)は、(xCb+cbWidth-1,yCb-1)に等しく設定される。
-6.4.4節で規定される近傍のブロックの可用性のための導出処理は、(xCb,yCb)に等しく設定された現在の輝度位置(xCurr,yCurr)、近傍の輝度位置(xNbB1,yNbB1)、TRUEに等しく設定されたcheckPredModeY、0に等しく設定されたcIdxを入力として呼び出され、出力は、ブロック可用性フラグavailableB1に割り当てられる。
-変数availableFlagB1およびbvB1は、以下のように導出される。
-以下の条件の1または複数が真である場合、availableFlagB1は0に設定され、bvB1の両成分は0に等しく設定される。
-availableB1はFALSEに等しい。
-availableA1はTRUEに等しく、輝度位置(xNbA1,yNbA1)および(xNbB1,yNbB1)は同じブロックベクトルを有する。
-そうでない場合、availableFlagB1は1に設定され、以下の割り当てが行われる。
bvB1=MvL0[xNbB1][yNbB1] (8-915)
この処理への入力は以下の通りである。
-ブロックベクトル候補リストbvCandList、
-[[現在の符号化ユニットが共有マージ候補領域内にあるかどうかを規定する変数isInSmr]]
-非小ブロックIslgrBlkを示す変数、
-リストnumCurrCandにおける利用可能なブロックベクトル候補の数。
-修正されたブロックベクトル候補リストbvCandList、
-リストnumCurrCandにおける動きベクトル候補の修正数
インデックスhMvpIdx=1..[[smr]]NumHmvpIbcCandである[[smr]]HmvpIbcCandList[hMvpIdx]における各候補に対し、numCurrCandがMaxNumMergeCandに等しくなるまで、以下の順序付けられたステップを繰り返す。
-IsLgrBlkは真であり、かつ、NがA1またはB1である任意のブロックベクトル候補Nに対して、以下のすべての条件が真ある場合、sameMotionおよびisPrunedNは共にTRUEに等しく設定される。
-hMvpIdxは1以下である。
-候補HmvpIbcCandList[NumHmvpIbcCand-hMvpIdx]は、ブロックベクトル候補Nである。
-isPrunedNはFALSEに等しい。
-そうでない場合、sameMotionはFALSEに等しく設定される。
bvCandList[numCurrCand++]=HmvpIbcCandList[NumHmvpIbcCand-hMvpIdx] (8-916)
CTUは、符号化ツリー構造のルートノードである。
6.4.4節で規定されている近傍のブロック可用性の導出処理において、(x,y)のサンプルが利用可能かどうかを規定する配列IsAvailable[cIdx][x][y]は、cIdx=0...2、x=0...CtbSizeY-1、およびy=0...CtbSizeY-1に対して、以下のように初期化される。
IsAvailable[cIdx][x][y]=FALSE (7-123)
[[x,yにおけるサンプルが共有マージ候補リスト領域内に位置するかどうかを規定する配列IsInSmr[x][y]は、x=0..CtbSizeY-1およびy=0..CtbSizeY-1に対して以下のように初期化される。
IsInSmr[x][y]=FALSE (7-124)]]
[[以下の条件のすべてが真である場合、IsInSmr[x][y]は、x=x0..x0+cbWidth-1およびy=y0..y0+cbHeight-1に対して、TRUEに等しく設定される。
-isInSmr[x0][y0]はFALSEに等しい
-cbWidth*cbHeight/4が32より小さい
-treeTypeがDUAL_TREE_CHROMAと等しくない
IsInSmr[x0][y0]がTRUEに等しい場合、配列SmrX[x][y]、SmrY[x][y]、SmrW[x][y]、およびSmrH[x][y]は、x=x0..x0+cbWidth-1、およびy=y0..y0+cbHeight-1に対して以下のように導出される。
SmrX[x][y]=x0 (7-126)
SmrY[x][y]=y0 (7-127)
SmrW[x][y]=cbWidth (7-128)
SmrH[x][y]=cbHeight (7-129)]]
8.6.2.1 一般
-現在のピクチャの左上の輝度サンプルに対する現在の輝度符号化ブロックの左上のサンプルの輝度位置(xCb,yCb)、
-輝度サンプルにおける現在の符号化ブロックの幅を規定する変数cbWidth、
-輝度サンプルにおける現在の符号化ブロックの高さを規定する変数cbHeight。
-1/16小数サンプル精度bvLにおける輝度ブロックベクトル。
-8.6.2.2節で規定されたIBC輝度ブロックベクトル予測の導出処理は、輝度位置(xCb,yCb)、変数cbWidthおよびcbHeightを入力として呼び出され、出力は輝度ブロックベクトルbvLである。
-general_merge_flag[xCb][yCb]が0と等しい場合、以下が適用される。
1.変数bvdは、以下のように導出される。
bvd[0]=MvdL0[xCb][yCb][0] (8-900)
bvd[1]=MvdL0[xCb][yCb][1] (8-901)
2.8.5.2.14節で規定されるような動きベクトルの丸め処理は、bvLに等しく設定されたmvX、AMvrShiftに等しく設定されたrightShift、AMvrShiftに等しく設定されたleftShiftを入力とし、丸められたbvLを出力として呼び出される。
3.輝度ブロックベクトルbvLは、以下のように修正される。
u[0]=(bvL[0]+bvd[0]+218)%218 (8-902)
bvL[0]=(u[0]>=217)?(u[0]-218):u[0] (8-903)
u[1]=(bvL[1]+bvd[1]+218)%218 (8-904)
bvL[1]=(u[1]>=217)?(u[1]-218):u[1] (8-905)
注1-上記で規定されたbvL[0]およびbvL[1]の結果値は、常に-217~217-1の範囲に含まれる。
IsLgrBlkが真である場合、左側の近傍のブロックが4×4であり、IBCモードで符号化されている場合、IsLgrBlkは偽に等しく設定される。
IsLgrBlkが真である場合、上側の近傍のブロックが4×4であり、IBCモードで符号化されている場合、IsLgrBlkは偽に等しく設定される。
(または代替的に、
変数IslgrBlkは、(cbWidth×cbHeightがKよりも大きい?真:偽)に設定されする。
IsLgrBlkが真である場合、左側の近傍のブロックが4×4であり、IBCモードで符号化されている場合、IsLgrBlkは偽に等しく設定される。
IsLgrBlkが真である場合、上側の近傍のブロックが現在のブロックと同じCTUにあり、4×4であり、IBCモードで符号化されている場合、IsLgrBlkは偽に等しく設定される。)
輝度ブロックベクトルbvLが以下の制約に従うべきであることは、ビットストリーム適合性の要件である。
-CtbSizeYは、((yCb+(bvL[1]>4))&(CtbSizeY-1))+cbHeight以上である。
-IbcVirBuf[0][(x+(bvL[0]>>4))&(IbcVirBufWidth-1)][(y+(bvL[1]>>4))&(CtbSizeY-1)]は、x=xCb..xCb+cbWidth-1およびy=yCb..yCb+cbHeight-1に対し、-1と等しくなってはならない。
この処理は、CuPredMode[0][xCb][yCb]がMODE_IBCに等しい場合にのみ呼び出され、ここで、(xCb,yCb)は、現在のピクチャの左上の輝度サンプルに対して、現在の輝度符号化ブロックの左上のサンプルを規定する。
-現在のピクチャの左上の輝度サンプルに対する現在の輝度符号化ブロックの左上のサンプルの輝度位置(xCb,yCb)、
-輝度サンプルにおける現在の符号化ブロックの幅を規定する変数cbWidth、
-輝度サンプルにおける現在の符号化ブロックの高さを規定する変数cbHeight。
-1/16小数サンプル精度bvLにおける輝度ブロックベクトル。
[[変数xSmr、ySmr、smrWidth、およびsmrHeightは、以下のように導出される。
xSmr=IsInSmr[xCb][yCb]?SmrX[xCb][yCb]:xCb (8-906)
ySmr=IsInSmr[xCb][yCb]?SmrY[xCb][yCb]:yCb (8-907)
smrWidth=IsInSmr[xCb][yCb]?SmrW[xCb][yCb]:cbWidth (8-908)
smrHeight=IsInSmr[xCb][yCb]?SmrH[xCb][yCb]:cbHeight (8-909)]]
IsLgrBlkが真である場合、左側の近傍のブロックが4×4であり、IBCモードで符号化されている場合、IsLgrBlkは偽に等しく設定される。
IsLgrBlkが真である場合、上側の近傍のブロックが4×4であり、IBCモードで符号化されている場合、IsLgrBlkは偽に等しく設定される。
(または代替的に、
変数IslgrBlkは、(cbWidth×cbHeightがKより大きい?真:偽)に設定される。
IsLgrBlkが真である場合、左側の近傍のブロックが4×4であり、IBCモードで符号化されている場合、IsLgrBlkは偽に等しく設定される。
IsLgrBlkが真である場合、上側の近傍のブロックが現在のブロックと同じCTUにあり、4×4であり、IBCモードで符号化されている場合、IsLgrBlkは偽に等しく設定される。)
1.IslgrBlkが真の場合、8.6.2.3項で規定される近傍の符号化ユニットからの空間的ブロックベクトル候補の導出処理は、(xCb,yCb[[xSmr,ySmr]])に等しく設定された輝度符号化ブロックの位置(xCb,yCb)、[[smr]]CbWidthおよび[[smr]]CbHeightに等しく設定された輝度符号化ブロックの幅cbWidthおよび輝度符号化ブロックの高さcbHeightを入力として呼び出され、出力は、可用性フラグavailableFlagA1、availableFlagB1、並びにブロックベクトルbvA1およびbvB1である。
i=0
if(availableFlagA1)
bvCandList[i++]=bvA1
if(availableFlagB1)
bvCandList[i++]=bvB1 (8-910)
1.bvCandList[numCurrCand][0]は、0に等しく設定される。
2.bvCandList[numCurrCand][1]は、0に等しく設定される。
3.numCurrCandは1増加される。
bvIdx=general_merge_flag[xCb][yCb]?merge_idx[xCb][yCb]:mvp_l0_flag[xCb][yCb] (8-911)
bvL[0]=bvCandList[mvIdx][0] (8-912)
bvL[1]=bvCandList[mvIdx][1] (8-913)
この処理への入力は以下の通りである。
-現在のピクチャの左上の輝度サンプルに対する現在の輝度符号化ブロックの左上のサンプルの輝度位置(xCb,yCb)、
-輝度サンプルにおける現在の符号化ブロックの幅を規定する変数cbWidth、
-輝度サンプルにおける現在の符号化ブロックの高さを規定する変数cbHeight。
-近傍の符号化ユニットの可用性フラグavailableFlagA1およびavailableFlagB1、
-近傍の符号化ユニットの1/16小数サンプルにおける精度bvA1およびbvB1。
-近傍の輝度符号化ブロック内の輝度位置(xNbA1,yNbA1)は、(xCb-1,yCb+cbHeight-1)に等しく設定される。
-6.4.4節で規定される近傍のブロックの可用性のための導出処理は、(xCb,yCb)に等しく設定された現在の輝度位置(xCurr,yCurr)、近傍の輝度位置(xNbA1,yNbA1)、TRUEに等しく設定されたcheckPredModeY、0に等しく設定されたcIdxを入力として呼び出され、出力はブロック可用性フラグavailableA1に割り当てられる。
-変数availableFlagA1およびbvA1は、以下のように導出される。
-availableA1がFALSEに等しい場合、availableFlagA1は0に等しく設定され、bvA1の両成分は0に等しく設定される。
-そうでない場合、availableFlagA1は1に等しく設定され、以下の割り当てが行われる。
bvA1=MvL0[xNbA1][yNbA1] (8-914)
-近傍の輝度符号化ブロック内の輝度位置(xNbB1,yNbB1)は、(xCb+cbWidth-1,yCb-1)に等しく設定される。
-6.4.4節で規定される近傍のブロックの可用性のための導出処理は、(xCb,yCb)に等しく設定された現在の輝度位置(xCurr,yCurr)、近傍の輝度位置(xNbB1,yNbB1)、TRUEに等しく設定されたcheckPredModeY、0に等しく設定されたcIdxを入力として呼び出され、出力は、ブロック可用性フラグavailableB1に割り当てられる。
-変数availableFlagB1およびbvB1は、以下のように導出される。
-以下の条件のうちの1または複数が真である場合、availableFlagB1は0に等しく設定され、bvB1の両成分は0に等しく設定される。
-availableB1はFALSEに等しい。
-availableA1はTRUEに等しく、輝度位置(xNbA1,yNbA1)および(xNbB1,yNbB1)は同じブロックベクトルを有する。
-そうでない場合、availableFlagB1は1に等しく設定され、以下の割り当てが行われる。
bvB1=MvL0[xNbB1][yNbB1] (8-915)
この処理への入力は以下の通りである。
-ブロックベクトル候補リストbvCandList、
-[[現在の符号化ユニットが共有マージ候補領域内にあるかどうかを規定する変数isInSmr、]]
-非小ブロックIslgrBlkを示す変数、
-リストnumCurrCandにおける利用可能なブロックベクトル候補の数。
-修正されたブロックベクトル候補リストbvCandList、
-リストnumCurrCandにおける動きベクトル候補の修正数
変数isPrunedA1およびisPrunedB1は共にFALSEに等しく設定される。
1.変数sameMotionは以下のように導出される:
-IsLgrBlkは真であり、かつ、NはA1またはB1である任意のブロックベクトル候補Nに対して、以下のすべての条件が真ある場合、sameMotionおよびisPrunedNは共にTRUEに等しく設定される。
-hMvpIdxは1以下である。
-候補HmvpIbcCandList[NumHmvpIbcCand-hMvpIdx]は、ブロックベクトル候補Nに等しい。
-isPrunedNはFALSEに等しく設定される。
-そうでない場合、sameMotionをFALSEに等しく設定される。
2.sameMotionがFALSEに等しい場合、候補HmvpIbcCandList[NumHmvpIbcCand-hMvpIdx]はブロックベクトル候補リストに以下のように加えられる。
bvCandList[numCurrCand++]=HmvpIbcCandList[NumHmvpIbcCand-hMvpIdx] (8-916)
本願は、2019年6月6日出願の国際特許出願PCT/CN2019/090409号、2019年6月22日出願の国際特許出願PCT/CN2019/092438号、2019年9月10日出願の国際特許出願PCT/CN2019/105180号の優先権および利益を主張する2020年6月8日出願の国際特許出願PCT/CN2020/094865号に基づく。上記特許出願の全ては、それらの全体における参照によりここで援用される。
Claims (74)
- 映像処理の方法であって、
映像の現在のブロックと、前記映像のビットストリーム表現との間の変換のために、前記現在のブロックの特徴に関連する条件に基づいて、動き候補のリストに関連付けられた動作を判定することであって、動き候補の前記リストは、符号化技術に対して構成される、または、前記映像の前に処理された情報からの情報に基づく、ことと、
前記判定に基づいて、前記変換を実行することと、
と有する方法。 - 前記符号化技術は、マージ符号化技術、IBC(Intra Block Copy)サブブロック時間的動きベクトル予測符号化技術、サブブロックマージ符号化技術、IBC符号化技術、または、前記現在のブロックの少なくとも1つのサブブロックを符号化するため前記現在のブロックの映像領域からの参照サンプルを使用する修正IBC符号化技術、を含む、請求項1に記載の方法。
- 前記現在のブロックは、W×Hの寸法を有し、
WおよびHは、正の整数であり、
前記条件は、前記現在のブロックの前記寸法に関連付けられる、
請求項1または2に記載の方法。 - 前記条件は、前記現在のブロックの符号化情報、または、前記現在のブロックの近傍のブロックの符号化情報に関連付けられる、請求項1または2に記載の方法。
- 前記条件は、前記現在のブロックと、他のブロックとの間で、動き候補の前記リストを共有するためのマージ共有条件に関連する、請求項1または2に記載の方法。
- 前記動作は、マージ符号化技術を用いて、動き候補の前記リストに対する空間的マージ候補を導出することを有する、請求項1~5のいずれか一項に記載の方法。
- 前記動作は、前記現在のブロックの空間的近傍のブロックに基づいて、動き候補の前記リストに対する動き候補を導出する、請求項1~6のいずれか一項に記載の方法。
- 前記空間的近傍のブロックは、前記現在のブロックの隣接ブロック、または、非隣接ブロックを含む、請求項7に記載の方法。
- 前記動作は、前記映像の前に処理されたブロックからの前記情報に基づいて構成された動き候補の前記リストに対する動き候補を導出することを有する、請求項1~8のいずれか一項に記載の方法。
- 前記動作は、動き候補の前記リストに対するペアワイズマージ候補を導出することを有する、請求項1~9のいずれか一項に記載の方法。
- 前記動作は、動き候補の前記リストにおいて冗長なエントリを除去する1または複数のプルーニング動作を有する、請求項1~10のいずれか一項に記載の方法。
- 前記1または複数のプルーニング動作は、動き候補の前記リストにおける空間的マージ候補に対するものである、請求項11に記載の方法。
- 前記動作は、前記変換の後に、前記映像の前に処理されたブロックからの情報に基づいて構成された動き候補の前記リストを更新することを有する、請求項1~12のいずれか一項に記載の方法。
- 前記更新は、動き候補の前記リストにおける冗長性を除去するプルーニング動作を行うことなく、導出された候補を動き候補の前記リストに追加することを有する、請求項13に記載の方法。
- 前記動作は、動き候補の前記リストにデフォルトの動き候補を追加することを有する、請求項1~14のいずれか一項に記載の方法。
- 前記デフォルトの動き候補は、IBCサブブロック時間的動きベクトル予測符号化技術を用いたゼロ動き候補を含む、請求項15に記載の方法。
- 前記動作は、前記条件を満たす場合、スキップされる、請求項6~16のいずれか一項に記載の方法。
- 前記動作は、予め定義された順にて、動き候補の前記リストにおける動き候補をチェックすることを有する、請求項1~5のいずれか一項に記載の方法。
- 前記動作は、動き候補の前記リストにおける予め定義された数の動き候補をチェックすることを有する、請求項1~5のいずれか一項に記載の方法。
- W×Hが閾値以上である場合に、前記条件は満たされる、請求項1~19のいずれか一項に記載の方法。
- W×Hが前記閾値以上であり、かつ、前記現在のブロックが前記IBCサブブロック時間的動きベクトル予測符号化技術または前記マージ符号化技術を用いて符号化されている場合に、前記条件は満たされる、請求項20に記載の方法。
- 前記閾値は、1024である、請求項20または21に記載の方法。
- Wおよび/またはHが閾値以上である場合に、前記条件は満たされる、請求項1~19のいずれか一項に記載の方法。
- 前記閾値は、32である、請求項23に記載の方法。
- W×Hが閾値以下であり、かつ、前記現在のブロックが前記IBCサブブロック時間的動きベクトル予測符号化技術または前記マージ符号化技術を用いて符号化されている場合に、前記条件は満たされる、請求項1~19のいずれか一項に記載の方法。
- 前記閾値は、16である、請求項25に記載の方法。
- 前記閾値は、32または64である、請求項25に記載の方法。
- 前記条件が満たされる場合、空間的近傍のブロックに基づいて判定された候補を動き候補の前記リストに挿入することを有する前記動作はスキップされる、請求項25~27のいずれか一項に記載の方法。
- WがT2に等しく、HがT3に等しく、前記現在のブロックの上側の近傍のブロックが利用可能であって、前記現在のブロックと同じ符号化技術を用いて符号化されている場合、前記条件は満たされ、
T2およびT3は、正の整数である、請求項1~19のいずれか一項に記載の方法。 - 前記近傍のブロックと前記現在のブロックが同じ符号化ツリーユニットにある場合、前記条件は満たされる、請求項29に記載の方法。
- WがT2に等しく、HがT3に等しく、前記現在のブロックの上側の近傍のブロックが利用可能でない、または、前記現在のブロックが位置する現在の符号化ツリーユニットの外側にある場合、前記条件は満たされる、請求項1~19のいずれか一項に記載の方法。
- T2は4であり、T3は8である、請求項29~31のいずれか一項に記載の方法。
- WがT4に等しく、HがT5に等しく、前記現在のブロックの左側の近傍のブロックが利用可能であり、かつ、前記現在のブロックと同じ符号化技術を用いて符号化されている場合、前記条件は満たされ、
前記T4およびT5は、正の整数である、請求項1~19のいずれか一項に記載の方法。 - WがT4に等しく、HがT5に等しく、前記現在のブロックの左側の近傍のブロックが利用可能でない場合、前記条件は満たされ、
T4およびT5は、正の整数である、請求項1~19のいずれか一項に記載の方法。 - T4は8であり、T5は4である、請求項33または34に記載の方法。
- W×Hが閾値以下であり、前記現在のブロックが前記IBCサブブロック時間的動きベクトル予測符号化技術または前記マージ符号化技術を用いて符号化され、前記現在のブロックの上側の第1の近傍のブロックと前記現在のブロックの左側の第2の近傍のブロックとの両方が同じ符号化技術を用いて符号化されている場合に、前記条件は満たされる、請求項1~19のいずれか一項に記載の方法。
- 前記第1および第2の近傍のブロックは、利用可能であり、かつ、前記IBC符号化技術にて符号化され、
前記第2の近傍のブロックは、前記現在のブロックと同じ符号化ツリーユニットにある、請求項36に記載の方法。 - 前記第1の近傍のブロックは、利用可能でなく、
前記第2の近傍のブロックは、利用可能であり、かつ、前記現在のブロックと同じ符号化ツリーユニットにある、請求項36に記載の方法。 - 前記第1および第2の近傍のブロックは、利用可能でない、請求項36に記載の方法。
- 前記第1の近傍のブロックは、利用可能であり、
前記第2の近傍のブロックは、利用可能でない、請求項36に記載の方法。 - 前記第1の近傍のブロックは、利用可能でなく、
前記第2の近傍のブロックは、前記現在のブロックが位置する符号化ツリーユニットの外側にある、請求項36に記載の方法。 - 前記第1の近傍のブロックは、利用可能であり、
前記第2の近傍のブロックは、前記現在のブロックが位置する符号化ツリーユニットの外側にある、請求項36に記載の方法。 - 前記閾値は32である、請求項34~42のいずれか一項に記載の方法。
- 前記第1および第2の近傍のブロックは、空間的マージ候補を導出するために用いられる、請求項34~43のいずれか一項に記載の方法。
- 前記現在のブロックの左上のサンプルは、(x,y)に位置し、
前記第2の近傍のブロックは、(x-1,y+H-1)に位置するサンプルをカバーする、請求項44に記載の方法。 - 前記現在のブロックの左上のサンプルは、(x,y)に位置し、
前記第2の近傍のブロックは、(x+W-1,y-1)に位置するサンプルをカバーする、請求項44に記載の方法。 - 前記同じ符号化技術は、IBC符号化技術である、請求項29~46のいずれか一項に記載の方法。
- 前記同じ符号化技術は、インター符号化技術である、請求項29~46のいずれか一項に記載の方法。
- 前記現在のブロックの前記近傍のブロックは、A×Bに等しい寸法を有する、請求項29~47のいずれか一項に記載の方法。
- 前記現在のブロックの前記近傍のブロックは、A×Bよりも大きい寸法を有する、請求項29~47のいずれか一項に記載の方法。
- 前記現在のブロックの前記近傍のブロックは、A×Bよりも小さい寸法を有する、請求項29~47のいずれか一項に記載の方法。
- A×Bは、4×4に等しい、請求項49~51のいずれか一項に記載の方法。
- 前記閾値は、予め定義されている、請求項20~52のいずれか一項に記載の方法。
- 前記閾値は、前記ビットストリーム表現にて信号通知される、請求項20~52のいずれか一項に記載の方法。
- 前記閾値は、前記現在のブロックの符号化特性に基づき、
前記符号化特性は、前記現在のブロックが符号化される符号化モードを含む、請求項20~52のいずれか一項に記載の方法。 - 前記現在のブロックが動き候補の前記リストを共有する親ノードを有し、かつ、前記現在のブロックが前記IBCサブブロック時間的動きベクトル予測符号化技術または前記マージ符号化技術を用いて符号化されている場合に、前記条件は満たされる、請求項1~55のいずれか一項に記載の方法。
- 前記条件は、前記現在のブロックの符号化特性に従って、適応的に変化する、請求項1~56のいずれか一項に記載の方法。
- 映像処理の方法であって、
映像の現在のブロックと、前記映像のビットストリーム表現との間の変換のために、前記時間的情報に基づくインター符号化技術を用いて符号化された前記現在のブロックが複数のサブブロックに分割することを判定することであって、前記複数のブロックの少なくとも1つは、前記現在のブロックを含む現在のピクチャからの1または複数の映像領域からの参照サンプルを用いる修正IBC(Intra Block Copy)符号化技術を用いて符号化される、ことと、
前記判定に基づいて、前記変換を実行することと、
を有する方法。 - 映像領域は、前記現在のピクチャ、スライス、タイル、ブリック、またはタイルグループを有する、請求項58に記載の方法。
- 前記インター符号化技術は、サブブロック時間的動きベクトル符号化技術を含み、
前記現在のブロックが、前記現在のピクチャと、前記現在のピクチャとは異なる参照ピクチャの両方に基づいて符号化されるか否かを示す1または複数の構文要素が、前記ビットストリーム表現に含まれる、請求項58または59に記載の方法。 - 前記1または複数の構文要素は、前記現在のブロックが前記現在のピクチャと前記参照ピクチャの両方に基づいて符号化される場合に、前記現在のブロックを符号化するために用いられる前記参照ピクチャを示す、請求項60に記載の方法。
- 前記1または複数の構文要素は更に、前記参照ピクチャに関連付けられた動き情報を示し、
前記動き情報は、少なくとも、動きベクトル予測インデックス、動きベクトル差分、または動きベクトル精度を有する、請求項61に記載の方法。 - 前記第1の参照ピクチャリストは、前記現在のピクチャのみを含み、
前記第2の参照ピクチャリストは、前記参照ピクチャのみを含む、請求項59~62のいずれか一項に記載の方法。 - 前記インター符号化技術は、時間的マージ符号化技術を含み、
動き情報は、前記現在のブロックの近傍のブロックに基づいて判定され、
前記動き情報は、少なくとも、動きベクトル、または参照ピクチャを有する、請求項58または59に記載の方法。 - 前記近傍のブロックが、前記現在のピクチャのみに基づいて判定される場合、前記動き情報は、前記現在のピクチャのみに適用できる、請求項64に記載の方法。
- 前記近傍のブロックが、前記現在のピクチャと前記参照ピクチャの両方に基づいて判定される場合、前記動き情報は、前記現在のピクチャと前記参照ピクチャの両方に適用できる、請求項64に記載の方法。
- 前記近傍のブロックが、前記現在のピクチャと前記参照ピクチャの両方に基づいて判定される場合、前記動き情報は、前記現在のピクチャのみに適用できる、請求項64に記載の方法。
- 前記近傍のブロックが、前記参照ピクチャのみに基づいて判定される場合、前記近傍のブロックがマージ候補を判定するために破棄される、請求項64に記載の方法。
- 固定重み付け係数は、前記現在のピクチャからの参照ブロック、および、前記参照ピクチャからの参照ブロックに割り当てられる、請求項58~68のいずれか一項に記載の方法。
- 前記固定重み付け係数は、前記ビットストリーム表現にて信号通知される、請求項69のいずれか一項に記載の方法。
- 前記変換を実行することは、前記映像の前記ブロックから前記ビットストリーム表現を生成することを含む、請求項1~70のいずれか一項に記載の方法。
- 前記変換を実行することは、前記ビットストリーム表現から前記映像の前記ブロックを生成することを含む、請求項1~70のいずれか一項に記載の方法。
- 請求項1~72のいずれか一項に記載の方法を実装するように構成されたプロセッサを有する映像処理装置。
- コードが格納されたコンピュータ可読媒体であって、前記コードが実行された際に、プロセッサに請求項1~72のいずれか一項に記載の方法を実装させるためのコンピュータ可読媒体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023204671A JP2024023522A (ja) | 2019-06-06 | 2023-12-04 | 映像符号化のための動き候補リストの構成 |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2019090409 | 2019-06-06 | ||
CNPCT/CN2019/090409 | 2019-06-06 | ||
CNPCT/CN2019/092438 | 2019-06-22 | ||
CN2019092438 | 2019-06-22 | ||
CNPCT/CN2019/105180 | 2019-09-10 | ||
CN2019105180 | 2019-09-10 | ||
PCT/CN2020/094865 WO2020244660A1 (en) | 2019-06-06 | 2020-06-08 | Motion candidate list construction for video coding |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023204671A Division JP2024023522A (ja) | 2019-06-06 | 2023-12-04 | 映像符号化のための動き候補リストの構成 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022535903A true JP2022535903A (ja) | 2022-08-10 |
JP7460661B2 JP7460661B2 (ja) | 2024-04-02 |
Family
ID=73652980
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021572490A Active JP7460661B2 (ja) | 2019-06-06 | 2020-06-08 | 映像符号化のための動き候補リストの構成 |
JP2023204671A Pending JP2024023522A (ja) | 2019-06-06 | 2023-12-04 | 映像符号化のための動き候補リストの構成 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023204671A Pending JP2024023522A (ja) | 2019-06-06 | 2023-12-04 | 映像符号化のための動き候補リストの構成 |
Country Status (6)
Country | Link |
---|---|
US (2) | US11653002B2 (ja) |
EP (1) | EP3967040A4 (ja) |
JP (2) | JP7460661B2 (ja) |
KR (1) | KR102662603B1 (ja) |
CN (2) | CN113994699B (ja) |
WO (1) | WO2020244660A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023509592A (ja) * | 2020-10-16 | 2023-03-09 | テンセント・アメリカ・エルエルシー | ビデオコーディングのための方法、装置およびコンピュータプログラム |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11838514B2 (en) * | 2018-08-06 | 2023-12-05 | Electronics And Telecommunications Research Institute | Image encoding/decoding method and device, and recording medium storing bitstream |
US11122260B2 (en) * | 2019-02-22 | 2021-09-14 | Mediatek Inc. | Method and apparatus of Merge list generation for Intra Block Copy mode |
EP3967040A4 (en) * | 2019-06-06 | 2022-11-30 | Beijing Bytedance Network Technology Co., Ltd. | CONSTRUCTION OF MOTION CANDIDATE LISTS FOR VIDEO ENCODING |
WO2020244659A1 (en) | 2019-06-06 | 2020-12-10 | Beijing Bytedance Network Technology Co., Ltd. | Interactions between sub-block based intra block copy and different coding tools |
WO2020259426A1 (en) | 2019-06-22 | 2020-12-30 | Beijing Bytedance Network Technology Co., Ltd. | Motion candidate list construction for intra block copy mode |
MX2022002279A (es) * | 2019-09-03 | 2022-04-20 | Panasonic Ip Corp America | Codificador, decodificador, metodo de codificacion y metodo de decodificacion. |
US12088793B2 (en) * | 2022-08-30 | 2024-09-10 | Tencent America LLC | Temporal motion vector predictor candidates search |
Family Cites Families (112)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6014181A (en) * | 1997-10-13 | 2000-01-11 | Sharp Laboratories Of America, Inc. | Adaptive step-size motion estimation based on statistical sum of absolute differences |
US10554985B2 (en) | 2003-07-18 | 2020-02-04 | Microsoft Technology Licensing, Llc | DC coefficient signaling at small quantization step sizes |
KR20050119422A (ko) * | 2004-06-16 | 2005-12-21 | 삼성전자주식회사 | 움직임 보상에 기반한 입력 영상의 노이즈 예측 및 그장치와, 이를 사용한 노이즈 제거 및 동영상 부호화 방법,이를 수행하기 위한 프로그램이 기록된 기록 매체 |
WO2013077659A1 (ko) * | 2011-11-24 | 2013-05-30 | 에스케이텔레콤 주식회사 | 모션 벡터의 예측 부호화/복호화 방법 및 장치 |
US9549180B2 (en) | 2012-04-20 | 2017-01-17 | Qualcomm Incorporated | Disparity vector generation for inter-view prediction for video coding |
US20130294513A1 (en) * | 2012-05-07 | 2013-11-07 | Qualcomm Incorporated | Inter layer merge list construction for video coding |
US20130329007A1 (en) | 2012-06-06 | 2013-12-12 | Qualcomm Incorporated | Redundancy removal for advanced motion vector prediction (amvp) in three-dimensional (3d) video coding |
US20130336406A1 (en) | 2012-06-14 | 2013-12-19 | Qualcomm Incorporated | Redundancy removal for merge/skip mode motion information candidate list construction |
US20140071235A1 (en) | 2012-09-13 | 2014-03-13 | Qualcomm Incorporated | Inter-view motion prediction for 3d video |
US9491461B2 (en) | 2012-09-27 | 2016-11-08 | Qualcomm Incorporated | Scalable extensions to HEVC and temporal motion vector prediction |
US9699450B2 (en) | 2012-10-04 | 2017-07-04 | Qualcomm Incorporated | Inter-view predicted motion vector for 3D video |
EP2904800A4 (en) | 2012-10-05 | 2016-05-04 | Mediatek Singapore Pte Ltd | METHOD AND DEVICE FOR MOTION VECTOR REMOVAL FOR 3D VIDEO CODING |
US9357214B2 (en) | 2012-12-07 | 2016-05-31 | Qualcomm Incorporated | Advanced merge/skip mode and advanced motion vector prediction (AMVP) mode for 3D video |
US9538180B2 (en) | 2012-12-17 | 2017-01-03 | Qualcomm Incorporated | Motion vector prediction in video coding |
US9253503B2 (en) * | 2012-12-18 | 2016-02-02 | Xerox Corporation | Computationally efficient motion estimation with learning capabilities for video compression in transportation and regularized environments |
US10057594B2 (en) | 2013-04-02 | 2018-08-21 | Vid Scale, Inc. | Enhanced temporal motion vector prediction for scalable video coding |
US9609347B2 (en) | 2013-04-04 | 2017-03-28 | Qualcomm Incorporated | Advanced merge mode for three-dimensional (3D) video coding |
US10015515B2 (en) | 2013-06-21 | 2018-07-03 | Qualcomm Incorporated | Intra prediction from a predictive block |
US9716899B2 (en) | 2013-06-27 | 2017-07-25 | Qualcomm Incorporated | Depth oriented inter-view motion vector prediction |
WO2015003383A1 (en) | 2013-07-12 | 2015-01-15 | Mediatek Singapore Pte. Ltd. | Methods for inter-view motion prediction |
US10045014B2 (en) | 2013-07-15 | 2018-08-07 | Mediatek Singapore Pte. Ltd. | Method of disparity derived depth coding in 3D video coding |
US9432685B2 (en) | 2013-12-06 | 2016-08-30 | Qualcomm Incorporated | Scalable implementation for parallel motion estimation regions |
US20150189333A1 (en) | 2013-12-27 | 2015-07-02 | Industrial Technology Research Institute | Method and system for image processing, decoding method, encoder, and decoder |
US10469863B2 (en) | 2014-01-03 | 2019-11-05 | Microsoft Technology Licensing, Llc | Block vector prediction in video and image coding/decoding |
US20150271515A1 (en) * | 2014-01-10 | 2015-09-24 | Qualcomm Incorporated | Block vector coding for intra block copy in video coding |
EP3114839A4 (en) | 2014-03-07 | 2018-02-14 | Qualcomm Incorporated | Simplified sub-prediction unit (sub-pu) motion parameter inheritence (mpi) |
CN106576152A (zh) | 2014-03-13 | 2017-04-19 | 华为技术有限公司 | 改进的屏幕内容编码方法 |
US20170195677A1 (en) | 2014-05-22 | 2017-07-06 | Mediatek Inc. | Method of Intra Block Copy with Flipping for Image and Video Coding |
WO2015192286A1 (en) | 2014-06-16 | 2015-12-23 | Qualcomm Incorporated | Simplified shifting merge candidate and merge list derivation in 3d-hevc |
WO2016034058A1 (en) * | 2014-09-01 | 2016-03-10 | Mediatek Inc. | Method of intra picture block copy for screen content and video coding |
KR20170066457A (ko) | 2014-09-26 | 2017-06-14 | 브이아이디 스케일, 인크. | 시간적 블록 벡터 예측을 갖는 인트라 블록 카피 코딩 |
US9918105B2 (en) | 2014-10-07 | 2018-03-13 | Qualcomm Incorporated | Intra BC and inter unification |
US9854237B2 (en) | 2014-10-14 | 2017-12-26 | Qualcomm Incorporated | AMVP and merge candidate list derivation for intra BC and inter prediction unification |
US10306229B2 (en) * | 2015-01-26 | 2019-05-28 | Qualcomm Incorporated | Enhanced multiple transforms for prediction residual |
US11477477B2 (en) | 2015-01-26 | 2022-10-18 | Qualcomm Incorporated | Sub-prediction unit based advanced temporal motion vector prediction |
US10057574B2 (en) | 2015-02-11 | 2018-08-21 | Qualcomm Incorporated | Coding tree unit (CTU) level adaptive loop filter (ALF) |
WO2016138513A1 (en) * | 2015-02-27 | 2016-09-01 | Arris Enterprises, Inc. | Modification of unification of intra block copy and inter signaling related syntax and semantics |
WO2016165623A1 (en) | 2015-04-13 | 2016-10-20 | Mediatek Inc. | Methods of constrained intra block copy for reducing worst case bandwidth in video coding |
CN106664405B (zh) | 2015-06-09 | 2020-06-09 | 微软技术许可有限责任公司 | 用调色板模式对经逸出编码的像素的稳健编码/解码 |
US10148977B2 (en) | 2015-06-16 | 2018-12-04 | Futurewei Technologies, Inc. | Advanced coding techniques for high efficiency video coding (HEVC) screen content coding (SCC) extensions |
EP3357227A1 (en) | 2015-10-02 | 2018-08-08 | VID SCALE, Inc. | Color correction with a lookup table |
CN108141621B (zh) | 2015-10-05 | 2020-06-19 | 联发科技股份有限公司 | 编解码视频数据的方法及装置 |
US20190158870A1 (en) * | 2016-01-07 | 2019-05-23 | Mediatek Inc. | Method and apparatus for affine merge mode prediction for video coding system |
ES2710807B1 (es) | 2016-03-28 | 2020-03-27 | Kt Corp | Metodo y aparato para procesar senales de video |
KR20190015216A (ko) | 2016-05-05 | 2019-02-13 | 브이아이디 스케일, 인크. | 인트라 코딩을 위한 제어 포인트 기반의 인트라 방향 표현 |
US10560718B2 (en) | 2016-05-13 | 2020-02-11 | Qualcomm Incorporated | Merge candidates for motion vector prediction for video coding |
US10326986B2 (en) | 2016-08-15 | 2019-06-18 | Qualcomm Incorporated | Intra video coding using a decoupled tree structure |
US10721489B2 (en) | 2016-09-06 | 2020-07-21 | Qualcomm Incorporated | Geometry-based priority for the construction of candidate lists |
US10448010B2 (en) * | 2016-10-05 | 2019-10-15 | Qualcomm Incorporated | Motion vector prediction for affine motion models in video coding |
US11025903B2 (en) | 2017-01-13 | 2021-06-01 | Qualcomm Incorporated | Coding video data using derived chroma mode |
CN116828179A (zh) | 2017-03-31 | 2023-09-29 | 松下电器(美国)知识产权公司 | 图像编码装置及存储介质 |
CN110574377B (zh) * | 2017-05-10 | 2021-12-28 | 联发科技股份有限公司 | 用于视频编解码的重新排序运动向量预测候选集的方法及装置 |
US20190014325A1 (en) | 2017-07-05 | 2019-01-10 | Industrial Technology Research Institute | Video encoding method, video decoding method, video encoder and video decoder |
US10785494B2 (en) | 2017-10-11 | 2020-09-22 | Qualcomm Incorporated | Low-complexity design for FRUC |
US20190116374A1 (en) | 2017-10-17 | 2019-04-18 | Qualcomm Incorporated | Coding motion information of video data using coding structure-based candidate list construction |
CN111316647B (zh) | 2017-11-14 | 2023-12-19 | 高通股份有限公司 | 统一合并候选列表使用 |
US10931963B2 (en) | 2017-12-07 | 2021-02-23 | Tencent America LLC | Method and apparatus for video coding |
US11388398B2 (en) | 2018-01-11 | 2022-07-12 | Qualcomm Incorporated | Video coding using local illumination compensation |
EP3780608A4 (en) | 2018-04-02 | 2021-12-01 | SZ DJI Technology Co., Ltd. | IMAGE PROCESSING PROCESS AND IMAGE PROCESSING DEVICE |
TWI700922B (zh) | 2018-04-02 | 2020-08-01 | 聯發科技股份有限公司 | 用於視訊編解碼系統中的子塊運動補償的視訊處理方法和裝置 |
EP3791588A1 (en) * | 2018-06-29 | 2021-03-17 | Beijing Bytedance Network Technology Co. Ltd. | Checking order of motion candidates in lut |
TWI723444B (zh) | 2018-06-29 | 2021-04-01 | 大陸商北京字節跳動網絡技術有限公司 | 使用一個或多個查找表來按順序存儲先前編碼的運動信息並使用它們來編碼後面的塊的概念 |
KR20210024502A (ko) | 2018-06-29 | 2021-03-05 | 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 | Hmvp 후보를 병합/amvp에 추가할 때의 부분/풀 프루닝 |
TWI750486B (zh) | 2018-06-29 | 2021-12-21 | 大陸商北京字節跳動網絡技術有限公司 | 運動資訊共用的限制 |
TWI728389B (zh) | 2018-07-01 | 2021-05-21 | 大陸商北京字節跳動網絡技術有限公司 | 基於優先級的非相鄰merge設計 |
EP4307679A3 (en) | 2018-07-02 | 2024-06-19 | Beijing Bytedance Network Technology Co., Ltd. | Luts with intra prediction modes and intra mode prediction from non-adjacent blocks |
CN112369030B (zh) * | 2018-07-06 | 2023-11-10 | 寰发股份有限公司 | 解码器的视频解码方法及装置 |
US10440378B1 (en) * | 2018-07-17 | 2019-10-08 | Tencent America LLC | Method and apparatus for history-based motion vector prediction with parallel processing |
US10958934B2 (en) * | 2018-07-27 | 2021-03-23 | Tencent America LLC | History-based affine merge and motion vector prediction |
US10362330B1 (en) * | 2018-07-30 | 2019-07-23 | Tencent America LLC | Combining history-based motion vector prediction and non-adjacent merge prediction |
BR122021008228A2 (pt) * | 2018-08-13 | 2021-05-04 | Lg Electronics Inc. | método de decodificação de imagem realizado por um aparelho de decodificação, método de codificação de imagem realizado por um aparelho de codificação e mídia de armazenamento legível por computador não transitória |
US11245922B2 (en) | 2018-08-17 | 2022-02-08 | Mediatek Inc. | Shared candidate list |
WO2020044196A1 (en) | 2018-08-26 | 2020-03-05 | Beijing Bytedance Network Technology Co., Ltd. | Combined history-based motion vector predictor and multi-motion model decoding |
TW202025760A (zh) | 2018-09-12 | 2020-07-01 | 大陸商北京字節跳動網絡技術有限公司 | 要檢查多少個hmvp候選 |
US10848782B2 (en) | 2018-09-21 | 2020-11-24 | Tencent America LLC | Method and apparatus for video coding |
CN110944203A (zh) | 2018-09-23 | 2020-03-31 | 北京字节跳动网络技术有限公司 | 块级别的运动矢量平面模式 |
TWI822863B (zh) | 2018-09-27 | 2023-11-21 | 美商Vid衡器股份有限公司 | 360度視訊寫碼樣本導出 |
US11012687B2 (en) | 2018-10-01 | 2021-05-18 | Tencent America LLC | Method and apparatus for video coding |
CN118175301A (zh) | 2018-10-08 | 2024-06-11 | Lg电子株式会社 | 图像解码方法、图像编码方法、存储介质和发送方法 |
US11051034B2 (en) * | 2018-10-08 | 2021-06-29 | Qualcomm Incorporated | History-based motion vector predictor |
WO2020084552A1 (en) | 2018-10-24 | 2020-04-30 | Beijing Bytedance Network Technology Co., Ltd. | Motion candidate derivation based on spatial neighboring block in sub-block motion vector prediction |
CN115514958A (zh) | 2018-11-02 | 2022-12-23 | 抖音视界有限公司 | 用于基于历史的运动矢量预测的表维护 |
CN113056917B (zh) | 2018-11-06 | 2024-02-06 | 北京字节跳动网络技术有限公司 | 为视频处理使用具有几何分割的帧间预测 |
CN111418207B (zh) | 2018-11-06 | 2024-04-19 | 北京字节跳动网络技术有限公司 | 依赖块尺寸的对运动信息的存储 |
EP4221226A1 (en) | 2018-11-07 | 2023-08-02 | HFI Innovation Inc. | Method and apparatus of encoding or decoding video blocks by current picture referencing coding |
CN112956194A (zh) | 2018-11-08 | 2021-06-11 | Oppo广东移动通信有限公司 | 图像信号编码/解码方法及其设备 |
WO2020094150A1 (en) | 2018-11-10 | 2020-05-14 | Beijing Bytedance Network Technology Co., Ltd. | Rounding in current picture referencing |
WO2020098644A1 (en) * | 2018-11-12 | 2020-05-22 | Beijing Bytedance Network Technology Co., Ltd. | Bandwidth control methods for inter prediction |
CN112997493B (zh) | 2018-11-13 | 2024-01-05 | 北京字节跳动网络技术有限公司 | 用于单一类型运动候选列表的构建方法 |
WO2020098713A1 (en) | 2018-11-13 | 2020-05-22 | Beijing Bytedance Network Technology Co., Ltd. | Motion candidate list construction for prediction |
CN113039780B (zh) | 2018-11-17 | 2023-07-28 | 北京字节跳动网络技术有限公司 | 视频处理中用运动矢量差的Merge |
WO2020103935A1 (en) | 2018-11-22 | 2020-05-28 | Beijing Bytedance Network Technology Co., Ltd. | Blending method for inter prediction with geometry partition |
WO2020108574A1 (en) | 2018-11-28 | 2020-06-04 | Beijing Bytedance Network Technology Co., Ltd. | Improving method for transform or quantization bypass mode |
WO2020114406A1 (en) | 2018-12-03 | 2020-06-11 | Beijing Bytedance Network Technology Co., Ltd. | Partial pruning method for inter prediction |
WO2020122640A1 (ko) | 2018-12-12 | 2020-06-18 | 엘지전자 주식회사 | 히스토리 기반 모션 벡터 예측을 기반으로 비디오 신호를 처리하기 위한 방법 및 장치 |
CN113228638B (zh) | 2018-12-18 | 2023-12-26 | 寰发股份有限公司 | 在区块分割中条件式编码或解码视频区块的方法和装置 |
CN113261290B (zh) | 2018-12-28 | 2024-03-12 | 北京字节跳动网络技术有限公司 | 基于修改历史的运动预测 |
CN109618157A (zh) * | 2018-12-29 | 2019-04-12 | 东南大学 | 一种视频显示流压缩编码的硬件实现系统及方法 |
WO2020133518A1 (zh) | 2018-12-29 | 2020-07-02 | 深圳市大疆创新科技有限公司 | 视频处理方法和设备 |
CN116866605A (zh) | 2019-01-03 | 2023-10-10 | 北京大学 | 视频处理方法和装置 |
CN113273186A (zh) | 2019-01-10 | 2021-08-17 | 北京字节跳动网络技术有限公司 | Lut更新的调用 |
US11032560B2 (en) | 2019-01-17 | 2021-06-08 | Tencent America LLC | Method and apparatus for video coding without updating the HMVP table |
WO2020147804A1 (en) | 2019-01-17 | 2020-07-23 | Beijing Bytedance Network Technology Co., Ltd. | Use of virtual candidate prediction and weighted prediction in video processing |
CN113302920B (zh) | 2019-02-01 | 2024-09-10 | 北京字节跳动网络技术有限公司 | 组合帧间帧内预测的扩展应用 |
US11190800B2 (en) | 2019-02-07 | 2021-11-30 | Qualcomm Incorporated | Motion vector predictor list generation for intra block copy mode in video coding |
CN117714694A (zh) | 2019-02-17 | 2024-03-15 | 北京字节跳动网络技术有限公司 | 处理视频数据的方法、装置和计算机可读记录介质 |
US11909960B2 (en) | 2019-03-07 | 2024-02-20 | Lg Electronics Inc. | Method and apparatus for processing video signal |
CN113557744A (zh) | 2019-03-11 | 2021-10-26 | 华为技术有限公司 | 视频译码中的分块级滤波 |
CN116389769A (zh) | 2019-03-13 | 2023-07-04 | 北京大学 | 视频处理方法和设备 |
EP3967040A4 (en) * | 2019-06-06 | 2022-11-30 | Beijing Bytedance Network Technology Co., Ltd. | CONSTRUCTION OF MOTION CANDIDATE LISTS FOR VIDEO ENCODING |
WO2020244659A1 (en) | 2019-06-06 | 2020-12-10 | Beijing Bytedance Network Technology Co., Ltd. | Interactions between sub-block based intra block copy and different coding tools |
WO2020259426A1 (en) | 2019-06-22 | 2020-12-30 | Beijing Bytedance Network Technology Co., Ltd. | Motion candidate list construction for intra block copy mode |
-
2020
- 2020-06-08 EP EP20818889.6A patent/EP3967040A4/en active Pending
- 2020-06-08 CN CN202080041808.8A patent/CN113994699B/zh active Active
- 2020-06-08 WO PCT/CN2020/094865 patent/WO2020244660A1/en unknown
- 2020-06-08 KR KR1020217038897A patent/KR102662603B1/ko active IP Right Grant
- 2020-06-08 CN CN202311508163.6A patent/CN117354507A/zh active Pending
- 2020-06-08 JP JP2021572490A patent/JP7460661B2/ja active Active
-
2021
- 2021-12-02 US US17/541,092 patent/US11653002B2/en active Active
-
2022
- 2022-10-10 US US17/962,894 patent/US12081766B2/en active Active
-
2023
- 2023-12-04 JP JP2023204671A patent/JP2024023522A/ja active Pending
Non-Patent Citations (2)
Title |
---|
JIANLE CHEN, ET AL.: "Algorithm description for Versatile Video Coding and Test Model 5 (VTM 5)", JOINT VIDEO EXPERTS TEAM (JVET) OF ITU-T SG 16 WP 3 AND ISO/IEC JTC 1/SC 29/WG 11, vol. JVET-N1002-v1, JPN6023006864, 21 May 2019 (2019-05-21), pages 28 - 29, ISSN: 0005145089 * |
LI ZHANG, ET AL.: "CE4-related: Restrictions on History-based Motion Vector Prediction", JOINT VIDEO EXPERTS TEAM (JVET) OF ITU-T SG 16 WP 3 AND ISO/IEC JTC 1/SC 29/WG 11, vol. JVET-M0272, JPN6023006863, 17 January 2019 (2019-01-17), ISSN: 0005145090 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023509592A (ja) * | 2020-10-16 | 2023-03-09 | テンセント・アメリカ・エルエルシー | ビデオコーディングのための方法、装置およびコンピュータプログラム |
JP7342275B2 (ja) | 2020-10-16 | 2023-09-11 | テンセント・アメリカ・エルエルシー | ビデオコーディングのための方法、装置およびコンピュータプログラム |
Also Published As
Publication number | Publication date |
---|---|
CN113994699B (zh) | 2024-01-12 |
EP3967040A1 (en) | 2022-03-16 |
JP7460661B2 (ja) | 2024-04-02 |
US20230059008A1 (en) | 2023-02-23 |
US12081766B2 (en) | 2024-09-03 |
US20220103828A1 (en) | 2022-03-31 |
US11653002B2 (en) | 2023-05-16 |
KR102662603B1 (ko) | 2024-04-30 |
CN117354507A (zh) | 2024-01-05 |
EP3967040A4 (en) | 2022-11-30 |
CN113994699A (zh) | 2022-01-28 |
WO2020244660A1 (en) | 2020-12-10 |
KR20220016840A (ko) | 2022-02-10 |
JP2024023522A (ja) | 2024-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102662449B1 (ko) | 디코더 측 정제 툴들의 크기 선택 적용 | |
JP7425808B2 (ja) | 動き候補リスト構築プロセスの条件付き実行 | |
JP7460661B2 (ja) | 映像符号化のための動き候補リストの構成 | |
JP7568352B2 (ja) | ビデオコーディングにおける変換ブロック・サイズ制約 | |
WO2020259426A1 (en) | Motion candidate list construction for intra block copy mode | |
US12075031B2 (en) | Interactions between sub-block based intra block copy and different coding tools | |
CN113966616B (zh) | 使用临近块信息的运动候选列表构建 | |
JP7323709B2 (ja) | イントラブロックコピーの符号化および復号化 | |
CN113557720B (zh) | 视频处理方法、装置以及非暂态计算机可读介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211210 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230519 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230905 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240112 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20240130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240321 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7460661 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |