JP2022532625A - Cold-rolled martensitic steel and its method of martensitic steel - Google Patents

Cold-rolled martensitic steel and its method of martensitic steel Download PDF

Info

Publication number
JP2022532625A
JP2022532625A JP2021568028A JP2021568028A JP2022532625A JP 2022532625 A JP2022532625 A JP 2022532625A JP 2021568028 A JP2021568028 A JP 2021568028A JP 2021568028 A JP2021568028 A JP 2021568028A JP 2022532625 A JP2022532625 A JP 2022532625A
Authority
JP
Japan
Prior art keywords
steel sheet
rolled
cold
martensite
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021568028A
Other languages
Japanese (ja)
Inventor
ジーベントリット,マチュー
ロイスト,バンサン
Original Assignee
アルセロールミタル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルセロールミタル filed Critical アルセロールミタル
Publication of JP2022532625A publication Critical patent/JP2022532625A/en
Priority to JP2024009308A priority Critical patent/JP2024045307A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/041Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Abstract

冷間圧延マルテンサイト鋼板であって、重量パーセントで表される以下の元素、すなわち、0.1%≦C≦0.2%、1.5%≦Mn≦2.5%、0.1%≦Si≦0.25%、0.1%≦Cr≦1%、0.01%≦Al≦0.1%、0.001%≦Ti≦0.1%、0%≦S≦0.09%、0%≦P≦0.09%、0%≦N≦0.09%を含み、以下の任意元素の1種以上、すなわち、0%≦Ni≦1%、0%≦Cu≦1%、0%≦Mo≦0.4%、0%≦Nb≦0.1%、0%≦V≦0.1%、0%≦B≦0.05%、0%≦Sn≦0.1%、0%≦Pb≦0.1%、0%≦Sb≦0.1%、0.001%≦Ca≦0.01%を含むことができ、残余の組成は鉄及び加工により生ずる不可避の不純物から構成され、該鋼の微細組織は、面積百分率で、マルテンサイトを少なくとも95%を含み、フェライト及びベイナイトの累積量が1~5%の間であり、任意の残留オーステナイト量が0~2%の間である、冷間圧延マルテンサイト鋼板。A cold rolled martensitic steel sheet containing the following elements expressed in weight percent: 0.1%≤C≤0.2%, 1.5%≤Mn≤2.5%, 0.1% ≤ Si ≤ 0.25%, 0.1% ≤ Cr ≤ 1%, 0.01% ≤ Al ≤ 0.1%, 0.001% ≤ Ti ≤ 0.1%, 0% ≤ S ≤ 0.09 %, 0%≦P≦0.09%, 0%≦N≦0.09%, and one or more of the following optional elements: 0%≦Ni≦1%, 0%≦Cu≦1% , 0%≤Mo≤0.4%, 0%≤Nb≤0.1%, 0%≤V≤0.1%, 0%≤B≤0.05%, 0%≤Sn≤0.1% , 0%≤Pb≤0.1%, 0%≤Sb≤0.1%, 0.001%≤Ca≤0.01%, and the rest of the composition is iron and inevitable impurities caused by processing wherein the microstructure of the steel comprises, by area percentage, at least 95% martensite, with a cumulative amount of ferrite and bainite between 1% and 5%, and an optional amount of retained austenite between 0% and 2% A cold rolled martensitic steel sheet that is between

Description

本発明は、自動車産業に適した冷間圧延マルテンサイト鋼の製造方法、特に引張強さが1280MPa以上のマルテンサイト鋼に関する。 The present invention relates to a method for producing cold-rolled martensitic steel suitable for the automobile industry, particularly martensitic steel having a tensile strength of 1280 MPa or more.

自動車部品は、2つの矛盾する必要性、すなわち、成形の容易さ及び強度を満足することが要求されているが、近年では地球環境への配慮の面から自動車には燃費向上という3つ目の要求も与えられている。このように、今や自動車部品は、複雑な自動車組立への適合の容易さの基準に適合させるために、高い成形性を有する材料で作られなければならず、同時に燃費を改善するために自動車の重量を減少させながら、自動車の耐衝突性及び耐久性のための強度を改善しなければならない。 Automobile parts are required to satisfy two contradictory needs, that is, ease of molding and strength, but in recent years, from the viewpoint of consideration for the global environment, the third is to improve fuel efficiency of automobiles. Requests have also been given. Thus, auto parts must now be made of highly formable materials to meet the standards of ease of fit for complex car assemblies, while at the same time improving fuel economy of the car. Strength for collision resistance and durability of the vehicle must be improved while reducing the weight.

そのため、材料の強度を増すことにより自動車に使われる材料の量を減らすために、精力的な研究開発努力がなされている。逆に、鋼板の強度の増加は成形性を低下させるので、高強度及び高成形性を併せ持つ材料の開発が必要である。 Therefore, vigorous research and development efforts are being made to reduce the amount of materials used in automobiles by increasing the strength of the materials. On the contrary, since the increase in the strength of the steel sheet lowers the formability, it is necessary to develop a material having both high strength and high formability.

高強度及び高成形性鋼板の分野における以前の研究開発は、高強度及び高成形性鋼板を製造するためのいくつかの方法をもたらし、そのいくつかは、本発明を徹底的に理解するために本明細書に列挙される。 Previous research and development in the field of high-strength and high-formability steel sheets has provided several methods for producing high-strength and high-formability steel sheets, some of which are for a thorough understanding of the present invention. Listed herein.

WO2017/065371号の鋼板は、材料の鋼板を3~60秒間、Ac3変態点以上に急速加熱し、材料の鋼板を維持する工程であって、該材料の鋼板は、0.08~0.30重量%のC、0.01~2.0重量%のSi、0.30~3.0重量%のMn、0.05重量%以下のP及び0.05重量%以下のSを含み、残余がFe及び他の不可避の不純物である工程、加熱した鋼板を水又は油で急速に100℃/秒以上に冷却する工程、加熱及び維持時間を含む3~60秒間、500℃からA1変態点まで急速に焼き戻しする工程により製造される。しかし、WO2017/065371号の鋼は1300MPaの引張強度を上回ることができず、焼き戻しマルテンサイト単相構造を持っていても穴広げ率について言及していない。 The steel sheet of WO2017 / 065371 is a step of rapidly heating the steel sheet of the material to the Ac3 transformation point or higher for 3 to 60 seconds to maintain the steel sheet of the material, and the steel sheet of the material is 0.08 to 0.30. Contains C by weight%, Si from 0.01 to 2.0% by weight, Mn from 0.30 to 3.0% by weight, P of 0.05% by weight or less and S of 0.05% by weight or less, and the remainder. Is Fe and other unavoidable impurities, the step of rapidly cooling the heated steel sheet with water or oil to 100 ° C./sec or higher, 3-60 seconds including heating and maintenance time, from 500 ° C. to the A1 transformation point. Manufactured by the process of rapid tempering. However, the steel of WO2017 / 065371 cannot exceed the tensile strength of 1300 MPa, and even if it has a tempered martensite single-phase structure, it does not mention the hole expansion ratio.

WO2010/036028号は、溶融亜鉛めっき鋼板及びその製造方法に関する。溶融亜鉛めっき鋼板は、マトリックスとしてのマルテンサイト組織を有する鋼板及び鋼板上に形成された溶融亜鉛めっき層を含む。鋼板には、0.05重量%~0.30重量%のC、0.5重量%~3.5重量%のMn、0.1重量%~0.8重量%のSi、0.01重量%~1.5重量%のAl、0.01重量%~1.5重量%のCr、0.01重量%~1.5重量%のMo、0.001重量%~0.10重量%のTi、5ppm~120ppmのN、3ppm~80ppmのB、不純物、及び残余のFeが含まれるが、WO2010/036028号の鋼は、穴広げ率については言及していない。 WO2010 / 036028 relates to a hot-dip galvanized steel sheet and a method for manufacturing the same. The hot-dip galvanized steel sheet includes a steel sheet having a martensite structure as a matrix and a hot-dip galvanized layer formed on the steel sheet. For the steel plate, 0.05% by weight to 0.30% by weight of C, 0.5% by weight to 3.5% by weight of Mn, 0.1% by weight to 0.8% by weight of Si, 0.01% by weight. % To 1.5% by weight Al, 0.01% by weight to 1.5% by weight Cr, 0.01% by weight to 1.5% by weight Mo, 0.001% by weight to 0.10% by weight Ti contains 5 ppm to 120 ppm N, 3 ppm to 80 ppm B, impurities, and residual Fe, but WO2010 / 036028 steel does not mention the drilling ratio.

国際公開第2017/065371号International Publication No. 2017/065371 国際公開第2010/036028号International Publication No. 2010/036028

本発明の目的は、以下、
- 1280MPa以上、好ましくは1300MPaを超える最大引張強さ、
- 1100MPa以上、好ましくは1150MPaを超える降伏強さ、
- 40%超、望ましくは50%超の穴広げ率、
を同時に有する冷間圧延マルテンサイト鋼板を利用可能にすることにより、これらの問題を解決することにある。
The object of the present invention is as follows.
-Maximum tensile strength of 1280 MPa or more, preferably 1300 MPa or more,
Yield strength of -1100 MPa or more, preferably 1150 MPa or more,
-40% or more, preferably more than 50% hole expansion rate,
The purpose is to solve these problems by making cold-rolled martensite steel sheets available at the same time.

好ましくは、このような鋼は、良好な溶接性及び被覆性を有しながら、成形、圧延に良好な適合性を有することができる。 Preferably, such steels can have good compatibility with forming and rolling while having good weldability and covering properties.

本発明の別の目的は、製造パラメータの変化に対し安定している一方で、従来の産業用途に適合するこれらの板の製造方法を利用可能にすることでもある。 Another object of the present invention is to make available a method of manufacturing these plates that are compatible with conventional industrial applications while being stable to changes in manufacturing parameters.

本発明の上記の目的及び他の利点は、本発明の好ましい実施形態を詳細に説明することにより、より明らかになるであろう。 The above-mentioned object and other advantages of the present invention will be further clarified by describing the preferred embodiments of the present invention in detail.

冷間圧延マルテンサイト鋼の化学組成は次の元素から構成される。 The chemical composition of cold-rolled martensitic steel is composed of the following elements.

本発明の鋼中には炭素が0.1%~0.2%の間で存在する。炭素は、マルテンサイトなどの低温変態相を生成させて本発明の鋼の強度を高めるために必要な元素である。このため、炭素は二つの重要な役割を果たし、その一つは強度を高めることである。しかし、炭素含有量が0.1%未満では、本発明の鋼に引張強さを付与することができない。一方、炭素含有量が0.2%を超えると、鋼は不十分なスポット溶接性を示し、その自動車部品への用途が制限される。本発明に対し好ましい含有量は、0.11%~0.19%の間、より好ましくは0.12%~0.18%の間に保つことができる。 Carbon is present in the steel of the present invention between 0.1% and 0.2%. Carbon is an element necessary for forming a low temperature transformation phase such as martensite and increasing the strength of the steel of the present invention. For this reason, carbon plays two important roles, one of which is to increase strength. However, if the carbon content is less than 0.1%, the steel of the present invention cannot be imparted with tensile strength. On the other hand, if the carbon content exceeds 0.2%, the steel exhibits inadequate spot weldability, limiting its use in automotive parts. The preferred content for the present invention can be maintained between 0.11% and 0.19%, more preferably between 0.12% and 0.18%.

本発明の鋼のマンガン含有量は1.5%~2.5%の間である。この元素はガンマジニアス(gammagenous)である。マンガンは固溶強化を提供し、フェライト変態温度を抑制し、フェライト変態速度を低下させ、したがってマルテンサイトの生成を助ける。少なくとも1.5%の量が、マルテンサイトの生成を補助するとともに、強度を付与するために必要である。しかし、マンガン含有量が2.5%を超えると、焼鈍後の冷却中にマルテンサイトへのオーステナイトの変態を遅らせるなどの悪影響を生じる。2.5%を超えるマンガン含有量は凝固時に鋼中に過度に偏析して、材料内部の均質性が損なわれ、これは高温加工処理中に表面割れを引き起こすことがある。マンガンの存在の好ましい限度は1.6~2.4%の間、より好ましくは1.6~2.2%の間である。 The manganese content of the steel of the present invention is between 1.5% and 2.5%. This element is gammagenous. Manganese provides solid solution fortification, suppresses the ferrite transformation temperature, slows the ferrite transformation rate and thus aids in the formation of martensite. An amount of at least 1.5% is needed to aid in the formation of martensite and to impart strength. However, if the manganese content exceeds 2.5%, adverse effects such as delaying the transformation of austenite into martensite during cooling after annealing will occur. Manganese content greater than 2.5% will excessively segregate into the steel during solidification, impairing the homogeneity inside the material, which can cause surface cracking during high temperature processing. The preferred limit for the presence of manganese is between 1.6 and 2.4%, more preferably between 1.6 and 2.2%.

本発明の鋼のケイ素含有量は0.1%~0.25%の間である。ケイ素は固溶強化により強度を増すことに寄与する元素である。ケイ素は、焼鈍後の冷却中に炭化物の析出を遅らせることができる成分であり、したがって、ケイ素はマルテンサイトの生成を促進する。しかし、ケイ素はフェライト形成剤でもあり、Ac3変態点を上昇させ、これは焼鈍温度をより高い温度範囲に押し上げ、これがケイ素の含有量が最大0.25%に保たれる理由である。0.25%を超えるケイ素の含有量は脆化を調節することもあり、さらにケイ素は被覆性も損なう。ケイ素の存在の好ましい限度は0.16~0.24%の間、より好ましくは0.18~0.23%の間である。 The silicon content of the steel of the present invention is between 0.1% and 0.25%. Silicon is an element that contributes to increasing the strength by strengthening the solid solution. Silicon is a component that can delay the precipitation of carbides during cooling after annealing, thus silicon promotes the formation of martensite. However, silicon is also a ferrite forming agent and raises the Ac3 transformation point, which pushes the annealing temperature to a higher temperature range, which is why the silicon content is kept up to 0.25%. A silicon content greater than 0.25% may control embrittlement, and silicon also impairs coverage. The preferred limit for the presence of silicon is between 0.16 and 0.24%, more preferably between 0.18 and 0.23%.

本発明の鋼の複合コイルのクロム含有量は0.1%~1%の間である。クロムは、固溶強化により鋼に強度を与える必須元素であり、強度を付与するためには最低0.1%が必要であるが、1%を超えて使用すると鋼の表面仕上げを損なう。クロムの存在の好ましい限度は0.1~0.5%の間である。 The chromium content of the composite coil of the steel of the present invention is between 0.1% and 1%. Chromium is an essential element that gives strength to steel by solid solution strengthening, and at least 0.1% is required to give strength, but if it is used in excess of 1%, the surface finish of steel will be impaired. The preferred limit for the presence of chromium is between 0.1 and 0.5%.

本発明において、アルミニウムの含有量は0.01%~1%の間である。アルミニウムは、溶鋼中に存在する酸素を除去して、酸素が凝固処理中に気相を形成するのを防止する。アルミニウムはまた、窒素を鋼中に固定して窒化アルミニウムを形成し、結晶粒のサイズを減少させる。1%を超えるより高いアルミニウム含有量は、Ac3点を高温に上昇させ、生産性を低下させる。アルミニウムの存在の好ましい限度は0.01%~0.05%の間である In the present invention, the aluminum content is between 0.01% and 1%. Aluminum removes oxygen present in the molten steel and prevents oxygen from forming a gas phase during the solidification process. Aluminum also anchors nitrogen in the steel to form aluminum nitride, reducing grain size. Higher aluminum content above 1% raises the Ac3 point to high temperatures and reduces productivity. The preferred limit for the presence of aluminum is between 0.01% and 0.05%.

本発明の鋼にチタンを0.001%~0.1%の間で添加する。チタンは鋳造製品の凝固中に現れるチタン窒化物を形成する。成形性に悪影響を及ぼす粗大な窒化チタンの生成を避けるために、チタンの量は0.1%に制限される。この場合、0.001%未満のチタン含有量は、本発明の鋼に何らの影響も及ぼさない。 Titanium is added to the steel of the present invention between 0.001% and 0.1%. Titanium forms the titanium nitride that appears during the solidification of the cast product. The amount of titanium is limited to 0.1% in order to avoid the formation of coarse titanium nitride, which adversely affects formability. In this case, a titanium content of less than 0.001% has no effect on the steel of the present invention.

硫黄は必須元素ではないが、鋼の中に不純物として含まれている可能性があり、また、本発明の観点から、硫黄含有量は可能な限り低いことが好ましいが、製造コストの観点からは0.09%以下である。さらに、より高い硫黄が鋼中に存在する場合には、それは硫化物を形成するために、特にマンガンと結合し、本発明に対するその有益な影響を低下させる。 Sulfur is not an essential element, but it may be contained as an impurity in steel, and from the viewpoint of the present invention, the sulfur content is preferably as low as possible, but from the viewpoint of manufacturing cost. It is 0.09% or less. Moreover, when higher sulfur is present in the steel, it binds specifically to manganese to form sulfides, reducing its beneficial effect on the present invention.

本発明の鋼のリン成分は0%から0.09%の間である。リンは、特に粒界に偏析したり、マンガンと共偏析したりする傾向があるため、スポット溶接性及び高温延性を低下させる。これらの理由により、その含有量は0.09%に制限され、好ましくは0.06%未満である。 The phosphorus content of the steel of the present invention is between 0% and 0.09%. Phosphorus tends to segregate at grain boundaries and co-segregate with manganese, thus reducing spot weldability and high temperature ductility. For these reasons, its content is limited to 0.09%, preferably less than 0.06%.

材料の経年劣化を回避し、鋼の機械的性質に悪影響を及ぼす凝固中の窒化アルミニウムの析出を最小限に抑えるために、窒素は0.09%に制限される。 Nitrogen is limited to 0.09% in order to avoid aging of the material and to minimize the precipitation of aluminum nitride during solidification, which adversely affects the mechanical properties of the steel.

モリブデンは、本発明の鋼の0%~0.4%を構成する任意元素である。モリブデンは、焼入性及び硬度を改善するのに有効な役割を果たし、特に少なくとも0.001%の量、又はさらには少なくとも0.002%の量で添加された場合、ベイナイトの出現を遅らせ、それゆえマルテンサイトの形成を促進する。しかし、モリブデンの添加は、金属元素の添加コストを過度に上昇させるため、経済的理由からその含有量は0.4%に制限される。 Molybdenum is an optional element that constitutes 0% to 0.4% of the steel of the present invention. Molybdenum plays an effective role in improving hardenability and hardness, delaying the appearance of bainite, especially when added in an amount of at least 0.001%, or even at least 0.002%. Therefore, it promotes the formation of martensite. However, the addition of molybdenum excessively increases the cost of adding the metal element, and for economic reasons its content is limited to 0.4%.

ニオブは、本発明の鋼中に0%~0.1%の間で存在し、析出硬化により本発明の鋼の強度を付与するための炭窒化物を形成するのに適している。ニオブはまた、炭窒化物としてのその析出を通じて、及び加熱処理中の再結晶を遅らせることによって、微細組織の成分のサイズに影響を及ぼす。したがって、保持温度の終了時に、またその結果として、完全な焼鈍後に形成されるより微細な微細組織は、製品の硬化につながる。しかし、その影響の飽和効果が観察される(これは、ニオブの追加量が製品のいかなる強度向上をももたらさないことを意味する)ので、0.1%を超えるニオブ含有量は経済的に興味を引かない。 Niobium is present in the steel of the present invention between 0% and 0.1% and is suitable for forming a carbonitride for imparting the strength of the steel of the present invention by precipitation hardening. Niobium also affects the size of microstructure components through its precipitation as a carbonitride and by delaying recrystallization during heat treatment. Therefore, the finer microstructure formed at the end of the holding temperature and, as a result, after complete annealing, leads to hardening of the product. However, the niobium content above 0.1% is economically interesting, as the saturation effect of its effect is observed (which means that the additional amount of niobium does not result in any strength enhancement of the product). Do not draw.

バナジウムは炭化物又は炭窒化物を形成して鋼の強度を高めるのに有効であり、経済的観点からその上限は0.1%である。 Vanadium is effective in forming carbides or carbonitrides to increase the strength of steel, the upper limit of which is 0.1% from an economic point of view.

ニッケルは、本発明の鋼の強度を高め、その靭性を改善するために、0%~1%の量で任意元素として添加することができる。このような効果を得るためには、最低0.01%が好ましい。しかし、その含有量が1%を超えると、ニッケルは延性劣化を引き起こす。 Nickel can be added as an optional element in an amount of 0% to 1% in order to increase the strength of the steel of the present invention and improve its toughness. In order to obtain such an effect, a minimum of 0.01% is preferable. However, if its content exceeds 1%, nickel causes ductile deterioration.

銅は、本発明の鋼の強度を高め、その耐食性を改善するために、0%~1%の量で任意元素として添加することができる。このような効果を得るためには、最低0.01%が好ましい。しかし、その含有量が1%を超えると、表面形態を劣化させる可能性がある。 Copper can be added as an optional element in an amount of 0% to 1% in order to increase the strength of the steel of the present invention and improve its corrosion resistance. In order to obtain such an effect, a minimum of 0.01% is preferable. However, if the content exceeds 1%, the surface morphology may be deteriorated.

ホウ素は、本発明の鋼の任意元素であり、0%~0.05%の間で存在することができる。ホウ素は、ホウ窒化物を形成し、少なくとも0.0001%の量で添加すると、本発明の鋼にさらなる強度を付与する。 Boron is an optional element of the steel of the present invention and can be present between 0% and 0.05%. Boron forms a boronitride and, when added in an amount of at least 0.0001%, imparts additional strength to the steel of the invention.

本発明の鋼にはカルシウムを0.001%~0.01%の間の量で添加することができる。カルシウムは、特に介在物処理の間、任意元素として本発明の鋼に添加される。カルシウムは、悪影響を及ぼす球状型の硫黄内容物と結合して、硫黄の悪影響を妨害することにより、鋼の微細化に寄与する。 Calcium can be added to the steel of the present invention in an amount between 0.001% and 0.01%. Calcium is added to the steels of the invention as an optional element, especially during inclusion treatment. Calcium contributes to the miniaturization of steel by binding to the harmful spherical sulfur contents and interfering with the adverse effects of sulfur.

Sn、Pb又はSbのような他の元素は、Sn≦0.1%、Pb≦0.1%及びSb≦0.1%の割合で個別に又は組み合わせて添加することができる。指示された最大含有量レベルまで、これらの元素は凝固中に結晶粒を微細化することを可能にする。鋼の組成の残余は、鋼及び加工に起因する不可避の不純物からなる。 Other elements such as Sn, Pb or Sb can be added individually or in combination at the ratios of Sn ≦ 0.1%, Pb ≦ 0.1% and Sb ≦ 0.1%. Up to the indicated maximum content level, these elements allow grain refinement during solidification. The residue of the steel composition consists of the steel and the unavoidable impurities resulting from the processing.

以下に、マルテンサイト鋼板の微細組織を詳細に説明する。全てのパーセントは面積分率である。 The microstructure of the martensite steel sheet will be described in detail below. All percentages are area fractions.

マルテンサイトは面積分率で微細組織の少なくとも95%を構成する。本発明のマルテンサイトは、フレッシュマルテンサイト及び焼き戻しマルテンサイトの両方を含むことができる。しかし、フレッシュマルテンサイトは任意の微視的成分であり、0%と4%の間、好ましくは0~2%の間、さらにより良好には0%と等しい量で鋼中に制限される。焼き戻し後の冷却中にフレッシュマルテンサイトが生成することがある。焼鈍後、特にMs温度未満、より具体的にはMs-10℃~20℃の間の後の冷却の、第2段階中に生成するマルテンサイトから焼き戻しマルテンサイトが形成される。このようなマルテンサイトは150℃~300℃の間の焼き戻し温度Ttemperで保持中に焼き戻される。本発明のマルテンサイトはこのような鋼に延性及び強度を付与する。好ましくは、マルテンサイトの含有量は96%~99%の間、より好ましくは97%~99%の間である。 Martensite constitutes at least 95% of the microstructure by surface integral. The martensite of the present invention can include both fresh martensite and tempered martensite. However, fresh martensite is any microscopic component and is restricted in steel in an amount between 0% and 4%, preferably between 0 and 2%, and even better equal to 0%. Fresh martensite may form during cooling after tempering. Tempering martensite is formed from the martensite produced during the second stage of cooling after annealing, especially below Ms temperature, more specifically between Ms-10 ° C and 20 ° C. Such martensite is tempered during holding at a tempering temperature Temper between 150 ° C and 300 ° C. The martensite of the present invention imparts ductility and strength to such steels. Preferably, the martensite content is between 96% and 99%, more preferably between 97% and 99%.

フェライト及びベイナイトの累積量は微細組織の1%~5%の間に相当する。ベイナイト及びフェライトの累積的存在は、5%までは本発明に悪影響を及ぼさないが、5%を超えると機械的特性に悪影響を及ぼす可能性がある。したがって、フェライト及びベイナイトの累積的存在の好ましい限度は1%~4%の間、より好ましくは1%~3%の間に保たれる。 Cumulative amounts of ferrite and bainite correspond between 1% and 5% of the microstructure. The cumulative presence of bainite and ferrite does not adversely affect the invention up to 5%, but above 5% can adversely affect mechanical properties. Therefore, the preferred limit for the cumulative presence of ferrite and bainite is kept between 1% and 4%, more preferably between 1% and 3%.

焼き戻し前の再加熱中にベイナイトが生成する。好ましい実施形態において、本発明の鋼は1~3%のベイナイトを含む。ベイナイトは鋼に成形性を付与できるが、多すぎる量で存在すると、鋼の引張強さに悪影響を及ぼすことがある。 Bainite is formed during reheating before tempering. In a preferred embodiment, the steels of the invention contain 1-3% bainite. Bainite can impart formability to steel, but its presence in too large an amount can adversely affect the tensile strength of the steel.

フェライトは、焼鈍後の冷却の第1段階中に生成することがあるが、微細組織成分としては必要ではない。フェライト生成はできるだけ少なく、好ましくは2%未満に保たなければならず、又は1%未満にすら保たなければならない。 Ferrites may form during the first stage of cooling after annealing, but are not required as microstructure components. Ferrite formation should be as low as possible, preferably less than 2%, or even less than 1%.

残留オーステナイトは、鋼中に0%~2%の間で存在することができる任意の微細組織である。 Retained austenite is any microstructure that can be present in steel between 0% and 2%.

上記の微細組織に加えて、冷間圧延マルテンサイト鋼板の微細組織はパーライト又はセメンタイトのような微細組織成分を含まない。 In addition to the microstructure described above, the microstructure of cold-rolled martensite steel sheets does not contain microstructure components such as pearlite or cementite.

本発明の鋼は、任意の適切な方法により製造することができる。しかし、非限定的な例として、以下に詳述する本発明に従った方法を用いることが好ましい。 The steel of the present invention can be produced by any suitable method. However, as a non-limiting example, it is preferable to use the method according to the present invention described in detail below.

このような好ましい方法は、本発明によるプライム鋼の化学組成を有する鋼の半完成鋳造物を提供することからなる。鋳造は、インゴット又は薄いスラブ若しくは薄いストリップの形態(すなわち、厚さは、スラブの場合の約220mmから薄いストリップの場合の数十ミリメートルの範囲である)で連続的に行うことができる。 Such a preferred method comprises providing a semi-finished casting of steel having the chemical composition of prime steel according to the present invention. Casting can be carried out continuously in the form of ingots or thin slabs or thin strips (ie, the thickness ranges from about 220 mm for slabs to tens of millimeters for thin strips).

例えば、本発明の化学組成を有するスラブは、連続的鋳造によって製造され、ここで、スラブは、中心部偏析を回避し、局所炭素対公称炭素の比率を1.10未満に保つことを保証するために、任意に、連続的鋳造処理の間に任意に直接軽圧下を受けた。連続鋳造処理によって提供されるスラブは、連続鋳造の後、高温で直接使用することができ、あるいはまず室温まで冷却され、次いで熱間圧延のために再加熱することができる。 For example, slabs having the chemical composition of the present invention are manufactured by continuous casting, where the slab ensures that central segregation is avoided and the ratio of local carbon to nominal carbon is kept below 1.10. Therefore, optionally, it was optionally subjected to direct light reduction during the continuous casting process. The slabs provided by the continuous casting process can be used directly at high temperatures after continuous casting, or can be first cooled to room temperature and then reheated for hot rolling.

熱間圧延を受けるスラブの温度は、少なくとも1000℃でなければならず、1280℃未満でなければならない。スラブの温度が1280℃より低い場合、圧延機に過大な荷重が加わり、さらに仕上げ圧延中に鋼の温度がフェライト変態温度まで低下することがあり、これにより鋼は組織中に変態フェライトが含まれる状態で圧延される。したがって、Ac3~Ac3+100℃の温度範囲で熱間圧延が完了するようにスラブの温度を十分高くする必要がある。1280℃を超える温度での再加熱は、工業的に費用がかかるため避けなければならない。 The temperature of the slab undergoing hot rolling must be at least 1000 ° C and less than 1280 ° C. If the temperature of the slab is lower than 1280 ° C, an excessive load is applied to the rolling mill and the temperature of the steel may drop to the ferrite transformation temperature during finish rolling, which causes the steel to contain transformation ferrite in the structure. Rolled in the state. Therefore, it is necessary to raise the temperature of the slab sufficiently so that the hot rolling is completed in the temperature range of Ac3 to Ac3 + 100 ° C. Reheating at temperatures above 1280 ° C. is industrially expensive and should be avoided.

次いで、このように得られた板を、650℃未満でなければならない巻取温度まで少なくとも20℃/秒の冷却速度で冷却する。好ましくは、冷却速度は200℃/秒以下である。 The plate thus obtained is then cooled at a cooling rate of at least 20 ° C./sec to a take-up temperature that should be less than 650 ° C. Preferably, the cooling rate is 200 ° C./sec or less.

次いで、熱間圧延鋼板を、楕円化を回避するために650℃未満の、好ましくはスケール形成を回避するために475℃~625℃の間の巻取温度で巻取って、このような巻取温度については、500℃~625℃の間がさらに好ましい範囲である。次いで、巻取られた熱間圧延鋼板を室温まで冷却してから任意のホットバンド焼鈍に供する。 The hot-rolled steel sheet is then wound at a winding temperature of less than 650 ° C. to avoid ellipticization, preferably between 475 ° C. and 625 ° C. to avoid scale formation, and such winding. The temperature is further preferably in the range of 500 ° C. to 625 ° C. The rolled hot rolled steel sheet is then cooled to room temperature and then subjected to any hot band annealing.

熱間圧延鋼板は、任意のホットバンド焼鈍の前の熱間圧延中に形成されたスケールを除去するために、任意の、スケール除去工程に供することができる。次いで、熱間圧延板は、任意の、ホットバンド焼鈍を受けてもよい。好ましい実施形態では、このようなホットバンド焼鈍は、400℃~750℃の間の温度で好ましくは少なくとも12時間かつ96時間以内で実施され、温度は好ましくは750℃未満とされ、熱間圧延した微細組織の部分的変換を回避し、したがって場合によっては微細組織の均一性を失うことを回避する。その後、この熱間圧延鋼板の、任意の、スケール除去工程を、例えば、このような板の酸洗により行うことができる。 The hot-rolled steel sheet can be subjected to any optional descaling step to remove the scale formed during hot rolling prior to any hot band annealing. The hot rolled plate may then undergo any optional hot band annealing. In a preferred embodiment, such hot band annealing was performed at a temperature between 400 ° C. and 750 ° C., preferably at least 12 hours and within 96 hours, with a temperature preferably less than 750 ° C. and hot rolled. Avoids partial transformation of the microstructure and thus, in some cases, loss of microstructure uniformity. After that, any optional scale removal step of the hot rolled steel sheet can be performed, for example, by pickling such a sheet.

次にこの熱間圧延鋼板を冷間圧延に供し、圧下率35~90%の間の冷間圧延鋼板を得る。 Next, this hot-rolled steel sheet is subjected to cold rolling to obtain a cold-rolled steel sheet having a reduction ratio of 35 to 90%.

その後、冷間圧延鋼板は加熱処理されて、必要な機械的性質及び微細組織を本発明の鋼に付与する。 The cold-rolled steel sheet is then heat-treated to impart the required mechanical properties and microstructure to the steel of the present invention.

冷間圧延鋼板は、Ac3~Ac3+100℃の間、好ましくはAc3+10℃~Ac3+100℃の間の均熱温度Tsoakまで、少なくとも2℃/秒、好ましくは3℃を超える加熱速度で加熱され、ここで以下の式を用いて鋼板のAc3を算出する。
Ac3=910-203[C]^(1/2)-15.2[Ni]+44.7[Si]+104[V]+31.5[Mo]+13.1[W]-30[Mn]-11[Cr]-20[Cu]+700[P]+400[Al]+120[As]+400[Ti]
式中、元素含有量は冷間圧延鋼板の重量百分率で表される。
The cold-rolled steel sheet is heated to a soaking temperature of Tsoak between Ac3 and Ac3 + 100 ° C., preferably between Ac3 + 10 ° C. and Ac3 + 100 ° C., at a heating rate of at least 2 ° C./sec, preferably above 3 ° C. Ac3 of the steel sheet is calculated using the formula of.
Ac3 = 910-203 [C] ^ (1/2) -15.2 [Ni] +44.7 [Si] +104 [V] +31.5 [Mo] +13.1 [W] -30 [Mn] -11 [Cr] -20 [Cu] +700 [P] +400 [Al] +120 [As] +400 [Ti]
In the formula, the element content is expressed as a weight percentage of the cold-rolled steel sheet.

冷間圧延鋼板をTsoakで10秒~500秒間保持し、強加工硬化初期組織の完全再結晶及びオーステナイトへの完全変態を確実にする。 The cold-rolled steel sheet is held in Tsoak for 10 to 500 seconds to ensure complete recrystallization of the initial work-hardened structure and complete transformation to austenite.

次いで、冷間圧延鋼板は、冷却の第1段階がTsoakから始まり、冷間圧延鋼板が15℃/秒~150℃/秒の間の冷却速度CR1で、650℃~750℃の間の範囲の温度T1まで冷却される、2段階冷却処理で冷却される。好ましい実施形態では、このような冷却の第1段階の冷却速度CR1は、20℃/秒~120℃/秒の間である。このような第1段階の好ましいT1温度は660℃~725℃の間である。 The cold-rolled steel sheet is then cooled in the range of 650 ° C. to 750 ° C. with a cooling rate CR1 of 15 ° C./sec to 150 ° C./sec, with the first step of cooling starting from Tsoak. It is cooled by a two-step cooling process in which it is cooled to the temperature T1. In a preferred embodiment, the cooling rate CR1 of the first stage of such cooling is between 20 ° C./sec and 120 ° C./sec. The preferred T1 temperature for such a first step is between 660 ° C and 725 ° C.

冷却の第2段階では、冷間圧延鋼板は、少なくとも50℃/秒の冷却速度CR2で、T1からMs-10℃~20℃の間の温度T2まで冷却される。好ましい実施形態では、冷却の第2段階の冷却速度CR2は、少なくとも100℃/秒、より好ましくは少なくとも150℃/秒である。このような第2段階に好ましいT2温度はMs-50℃~20℃の間である。 In the second stage of cooling, the cold rolled steel sheet is cooled from T1 to a temperature T2 between T1 and Ms-10 ° C. to 20 ° C. at a cooling rate CR2 of at least 50 ° C./sec. In a preferred embodiment, the cooling rate CR2 in the second stage of cooling is at least 100 ° C./sec, more preferably at least 150 ° C./sec. The preferred T2 temperature for such a second step is between Ms-50 ° C and 20 ° C.

以下の式を用いて、鋼板のMsを算出する。
Ms=545-601.2*(1-EXP(-0.868[C]))-34.4[Mn]-13.7[Si]-9.2[Cr]-17.3[Ni]-15.4[Mo]+10.8[V]+4.7[Co]-1.4[Al]-16.3[Cu]-361[Nb]-2.44[Ti]-3448[B]
The Ms of the steel sheet is calculated using the following formula.
Ms = 545-601.2 * (1-EXP (-0.868 [C])) -34.4 [Mn] -13.7 [Si] -9.2 [Cr] -17.3 [Ni] -15.4 [Mo] + 10.8 [V] + 4.7 [Co] -1.4 [Al] -16.3 [Cu] -361 [Nb] -2.44 [Ti] -3448 [B]

その後、100秒間及び600秒間の加熱速度が少なくとも1℃/秒、好ましくは少なくとも2℃/秒、より好ましくは10℃/秒で、冷間圧延鋼板を150~300℃の間の焼き戻し温度Ttemperまで再加熱する。焼き戻しのための好ましい温度範囲は200℃~300℃の間であり、Ttemperで保持するための好ましい持続時間は200秒~500秒の間である。 Then, the heating rate for 100 seconds and 600 seconds is at least 1 ° C./sec, preferably at least 2 ° C./sec, more preferably 10 ° C./sec, and the tempered steel sheet is tempered at a tempering temperature between 150 and 300 ° C. Ttemper. Reheat until. The preferred temperature range for tempering is between 200 ° C. and 300 ° C., and the preferred duration for holding in Ttemper is between 200 and 500 seconds.

次いで、この冷間圧延鋼板を室温まで冷却し、冷間圧延マルテンサイト鋼を得る。 The cold-rolled steel sheet is then cooled to room temperature to obtain cold-rolled martensitic steel.

本発明の冷間圧延マルテンサイト鋼板は、任意に、その耐食性を改善するために、亜鉛若しくは亜鉛合金、又はアルミニウム若しくはアルミニウム合金で被覆することができる。 The cold-rolled martensite steel sheet of the present invention can optionally be coated with zinc or a zinc alloy, or aluminum or an aluminum alloy in order to improve its corrosion resistance.

本明細書に示される以下の試験、実施例、比喩的例示及び表は、本質的に非制限的であり、例示のみの目的で考慮されなければならず、本発明の有利な特徴を示す。 The following tests, examples, figurative illustrations and tables presented herein are non-limiting in nature and must be considered for illustration purposes only and show the advantageous features of the invention.

組成の異なる鋼でできた鋼板を表1にまとめ、ここでは、それぞれ表2に規定されているプロセスパラメータに従って鋼板を製造する。その後、表3に試験中に得られた鋼板の微細組織をまとめ、表4に得られた特性の評価結果をまとめた。 Steel sheets made of steel with different compositions are summarized in Table 1, and here, the steel sheets are manufactured according to the process parameters specified in Table 2. Then, Table 3 summarizes the fine structure of the steel sheet obtained during the test, and Table 4 summarizes the evaluation results of the obtained characteristics.

Figure 2022532625000001
Figure 2022532625000001

表2
表2は、冷間圧延マルテンサイト鋼となるために必要な機械的性質を表1の鋼に付与するために、冷間圧延鋼板に実施された熱間圧延及び焼鈍処理パラメータをまとめた。
Table 2
Table 2 summarizes the hot rolling and annealing parameters performed on the cold rolled steel sheets in order to impart the mechanical properties required to be cold rolled martensitic steel to the steels of Table 1.

表2は次のとおりである。 Table 2 is as follows.

Figure 2022532625000002
Figure 2022532625000002

表3は、本発明の鋼及び参考の鋼の両方の微細組織を面積分率に関して決定するための、走査型電子顕微鏡のような異なる顕微鏡に関する標準に従って行われた試験の結果を例示したものである。結果は本明細書に明記される。 Table 3 illustrates the results of tests performed according to standards for different microscopes, such as scanning electron microscopes, to determine the microstructure of both the steel of the invention and the reference steel in terms of area fraction. be. The results are specified herein.

Figure 2022532625000003
Figure 2022532625000003

表4
標準に従って実施された種々の機械的試験の結果をまとめた。試験は、JIS-Z2241に基づき、最大引張強さ及び降伏強さを試験する。穴広げを評価するために、穴広げと呼ばれる試験を適用する。この試験では、試料に10mmの穴を開け、変形させ、変形後に穴の直径を測定し、HER%=100*(Df-Di)/Diを算出する。
Table 4
The results of various mechanical tests performed according to the standard are summarized. The test tests the maximum tensile strength and yield strength based on JIS-Z2241. To evaluate drilling, a test called drilling is applied. In this test, a 10 mm hole is made in the sample, deformed, the diameter of the hole is measured after the deformation, and HER% = 100 * (Df-Di) / Di is calculated.

Figure 2022532625000004
Figure 2022532625000004

Claims (18)

冷間圧延マルテンサイト鋼板であって、重量パーセントで表される以下の元素、すなわち、
0.1%≦C≦0.2%、
1.5%≦Mn≦2.5%、
0.1%≦Si≦0.25%、
0.1%≦Cr≦1%、
0.01%≦Al≦0.1%、
0.001%≦Ti≦0.1%、
0%≦S≦0.09%、
0%≦P≦0.09%、
0%≦N≦0.09%、
を含み、以下の任意元素の1種以上、すなわち、
0%≦Ni≦1%、
0%≦Cu≦1%、
0%≦Mo≦0.4%、
0%≦Nb≦0.1%、
0%≦V≦0.1%、
0%≦B≦0.05%、
0%≦Sn≦0.1%、
0%≦Pb≦0.1%、
0%≦Sb≦0.1%、
0.001%≦Ca≦0.01%、
を含むことができ、残余の組成は鉄及び加工により生ずる不可避の不純物から構成され、該鋼の微細組織は、面積百分率で、マルテンサイトを少なくとも95%含み、フェライト及びベイナイトの累積量が1~5%の間であり、任意の残留オーステナイト量が0~2%の間である、冷間圧延マルテンサイト鋼板。
Cold-rolled martensite steel sheet, the following elements expressed in weight percent, ie
0.1% ≤ C ≤ 0.2%,
1.5% ≤ Mn ≤ 2.5%,
0.1% ≤ Si ≤ 0.25%,
0.1% ≤ Cr ≤ 1%,
0.01% ≤ Al ≤ 0.1%,
0.001% ≤ Ti ≤ 0.1%,
0% ≤ S ≤ 0.09%,
0% ≤ P ≤ 0.09%,
0% ≤ N ≤ 0.09%,
One or more of the following arbitrary elements, that is,
0% ≤ Ni ≤ 1%,
0% ≤ Cu ≤ 1%,
0% ≤ Mo ≤ 0.4%,
0% ≤ Nb ≤ 0.1%,
0% ≤ V ≤ 0.1%,
0% ≤ B ≤ 0.05%,
0% ≤ Sn ≤ 0.1%,
0% ≤ Pb ≤ 0.1%,
0% ≤ Sb ≤ 0.1%,
0.001% ≤ Ca ≤ 0.01%,
The residual composition is composed of iron and unavoidable impurities produced by processing, the microstructure of the steel is an area percentage, contains at least 95% martensite, and the cumulative amount of ferrite and bainite is 1 to 1. Cold-rolled martensite steel sheet between 5% and any residual austenite amount between 0 and 2%.
前記組成が、0.16%~0.24%のケイ素を含む、請求項1に記載の冷間圧延マルテンサイト鋼板。 The cold-rolled martensite steel sheet according to claim 1, wherein the composition contains 0.16% to 0.24% silicon. 前記組成が、0.11%~0.19%の炭素を含む、請求項1又は2に記載の冷間圧延マルテンサイト鋼板。 The cold-rolled martensite steel sheet according to claim 1 or 2, wherein the composition contains 0.11% to 0.19% carbon. 前記組成が、0.01%~0.05%のアルミニウムを含む、請求項1~請求項3のいずれか一項に記載の冷間圧延マルテンサイト鋼板。 The cold-rolled martensite steel sheet according to any one of claims 1 to 3, wherein the composition contains 0.01% to 0.05% of aluminum. 前記組成が、1.6%~2.4%のマンガンを含む、請求項1~4のいずれか一項に記載の冷間圧延マルテンサイト鋼板。 The cold-rolled martensite steel sheet according to any one of claims 1 to 4, wherein the composition contains 1.6% to 2.4% manganese. 前記組成が、0.1%~0.5%のクロムを含む、請求項1~5のいずれか一項に記載の冷間圧延マルテンサイト鋼板。 The cold-rolled martensite steel sheet according to any one of claims 1 to 5, wherein the composition contains 0.1% to 0.5% chromium. マルテンサイトの量が96%~99%の間である、請求項1~6のいずれか一項に記載の冷間圧延マルテンサイト鋼板。 The cold-rolled martensite steel sheet according to any one of claims 1 to 6, wherein the amount of martensite is between 96% and 99%. フェライト及びベイナイトの累積量が、1%~4%の間である、請求項1~7のいずれか一項に記載の冷間圧延マルテンサイト鋼板。 The cold-rolled martensite steel sheet according to any one of claims 1 to 7, wherein the cumulative amount of ferrite and bainite is between 1% and 4%. 1280MPa以上の最大引張強さ、及び1100MPa以上の降伏強さを有する、請求項1~8のいずれか一項に記載の冷間圧延マルテンサイト鋼板。 The cold-rolled martensite steel sheet according to any one of claims 1 to 8, which has a maximum tensile strength of 1280 MPa or more and a yield strength of 1100 MPa or more. 冷間圧延マルテンサイト鋼板の製造方法であって、次の連続工程、すなわち、
- 請求項1~6のいずれか一項に記載の鋼組成を提供する工程、
- 該半完成品を1000℃~1280℃の間の温度まで再加熱する工程、
- 該半完成品をオーステナイト範囲で圧延して、熱間圧延鋼板を得る工程であって、熱間圧延仕上げ温度がAc3~Ac3+100℃の間である工程、
- 少なくとも20℃/秒の冷却速度で650℃未満の巻取温度まで該板を冷却し、及び該熱間圧延板を巻き取る工程、
- 該熱間圧延板を室温まで冷却する工程、
- 該熱間圧延鋼板にスケール除去処理を実施する任意の工程、
- 該熱間圧延鋼板を焼鈍することができる任意の工程、
- 該熱間圧延鋼板にスケール除去処理を実施する任意の工程、
- 35~90%の間の圧下率で該熱間圧延鋼板を冷間圧延して、冷間圧延鋼板を得る工程、
- 次に、少なくとも2℃/秒の速度でAc3~Ac3+100℃の間の均熱温度Tsoakまで該冷間圧延鋼板を加熱する工程であって、それを10~500秒間保持する工程、
- 次いで、該冷間圧延鋼板を2段階冷却で冷却する工程であって、
○ 該冷間圧延鋼板を冷却する第1段階はTsoakから開始し、650℃~750℃の間の温度T1まで行い、冷却速度CR1は15℃/秒~150℃/秒の間であり、
○ 冷却の第2段階はT1から開始し、Ms-10℃~20℃の間の温度T2まで行い、冷却速度CR2は少なくとも50℃/秒である工程、
- 次いで、少なくとも1℃/秒の速度で150~300℃の間の焼き戻し温度Ttermまで該冷間圧延鋼板を再加熱する工程であって、それを100~600秒間保持する工程、
- 次いで、少なくとも1℃/秒の冷却速度で室温まで冷却し、冷間圧延マルテンサイト鋼板を得る工程
を含む、製造方法。
A method for manufacturing cold-rolled martensite steel sheets, which is the next continuous process, that is,
-A step of providing the steel composition according to any one of claims 1 to 6.
-A step of reheating the semi-finished product to a temperature between 1000 ° C and 1280 ° C.
-A step of rolling the semi-finished product in the austenite range to obtain a hot-rolled steel sheet, wherein the hot-rolled finish temperature is between Ac3 and Ac3 + 100 ° C.
-The step of cooling the plate to a winding temperature of less than 650 ° C at a cooling rate of at least 20 ° C / sec and winding the hot rolled plate.
-The process of cooling the hot rolled plate to room temperature,
-Any step of performing scale removal treatment on the hot rolled steel sheet,
-Any process capable of annealing the hot rolled steel sheet,
-Any step of performing scale removal treatment on the hot rolled steel sheet,
-A step of cold-rolling the hot-rolled steel sheet at a rolling reduction ratio of 35 to 90% to obtain a cold-rolled steel sheet.
-Next, a step of heating the cold-rolled steel sheet to a soaking temperature Tsoak between Ac3 and Ac3 + 100 ° C. at a rate of at least 2 ° C./sec, in which the cold-rolled steel sheet is held for 10 to 500 seconds.
-Next, in the step of cooling the cold-rolled steel sheet by two-step cooling,
○ The first step of cooling the cold-rolled steel sheet starts from Tsoak and is performed up to a temperature T1 between 650 ° C. and 750 ° C., and the cooling rate CR1 is between 15 ° C./sec and 150 ° C./sec.
○ The second stage of cooling starts from T1 and continues to a temperature T2 between Ms-10 ° C and 20 ° C, and the cooling rate CR2 is at least 50 ° C / sec.
-The next step is to reheat the cold rolled steel sheet to a tempering temperature of Tterm between 150 and 300 ° C. at a rate of at least 1 ° C./sec, and hold it for 100 to 600 seconds.
-The production method comprising a step of cooling to room temperature at a cooling rate of at least 1 ° C./sec to obtain a cold-rolled martensite steel sheet.
前記巻取温度が475℃~625℃の間である、請求項10に記載の方法。 10. The method of claim 10, wherein the take-up temperature is between 475 ° C and 625 ° C. TsoakがAc3+10℃~Ac3+100℃の間である、請求項10又は11に記載の方法。 10. The method of claim 10 or 11, wherein Tsoak is between Ac3 + 10 ° C. and Ac3 + 100 ° C. CR1が20℃/秒~120℃/秒の間である、請求項10~12のいずれか一項に記載の方法。 The method according to any one of claims 10 to 12, wherein CR1 is between 20 ° C./sec and 120 ° C./sec. T1が660℃~725℃の間である、請求項10~13のいずれか一項に記載の方法。 The method according to any one of claims 10 to 13, wherein T1 is between 660 ° C and 725 ° C. CR2が100℃/秒を超える、請求項10~14のいずれか一項に記載の方法。 The method according to any one of claims 10 to 14, wherein CR2 exceeds 100 ° C./sec. T2がMs-50℃~20℃の間である、請求項10~15のいずれか一項に記載の方法。 The method according to any one of claims 10 to 15, wherein T2 is between Ms-50 ° C and 20 ° C. Ttemperが200℃~300℃の間である、請求項10~16のいずれか一項に記載の方法。 The method according to any one of claims 10 to 16, wherein the Temper is between 200 ° C and 300 ° C. 車両の構造部品を製造するための、請求項1~9のいずれか一項に従って得られた鋼板又は請求項10~17のいずれか一項に記載の方法に従って製造された鋼板の使用。 Use of a steel sheet obtained according to any one of claims 1 to 9 or a steel sheet manufactured according to the method according to any one of claims 10 to 17 for manufacturing structural parts of a vehicle.
JP2021568028A 2019-05-15 2020-03-30 Cold-rolled martensitic steel and its method of martensitic steel Pending JP2022532625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024009308A JP2024045307A (en) 2019-05-15 2024-01-25 Cold-rolled martensitic steel and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/IB2019/054022 WO2020229877A1 (en) 2019-05-15 2019-05-15 A cold rolled martensitic steel and a method for it's manufacture
IBPCT/IB2019/054022 2019-05-15
PCT/IB2020/052999 WO2020229898A1 (en) 2019-05-15 2020-03-30 A cold rolled martensitic steel and a method of martensitic steel thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024009308A Division JP2024045307A (en) 2019-05-15 2024-01-25 Cold-rolled martensitic steel and method for producing the same

Publications (1)

Publication Number Publication Date
JP2022532625A true JP2022532625A (en) 2022-07-15

Family

ID=66630335

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021568028A Pending JP2022532625A (en) 2019-05-15 2020-03-30 Cold-rolled martensitic steel and its method of martensitic steel
JP2024009308A Pending JP2024045307A (en) 2019-05-15 2024-01-25 Cold-rolled martensitic steel and method for producing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024009308A Pending JP2024045307A (en) 2019-05-15 2024-01-25 Cold-rolled martensitic steel and method for producing the same

Country Status (9)

Country Link
US (1) US20220213573A1 (en)
EP (1) EP3969628A1 (en)
JP (2) JP2022532625A (en)
KR (1) KR20210149145A (en)
CN (1) CN113748219B (en)
CA (1) CA3140117C (en)
MA (1) MA55949A (en)
WO (2) WO2020229877A1 (en)
ZA (1) ZA202107698B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113403535B (en) * 2021-05-31 2022-05-20 北京首钢股份有限公司 Hot-rolled strip steel for carriage plate and preparation method thereof
CN117441033A (en) * 2021-06-16 2024-01-23 安赛乐米塔尔公司 Method for producing a steel component and steel component
CN114086071B (en) * 2021-11-19 2022-10-18 本钢板材股份有限公司 Low-cost 1200 Mpa-grade cold-rolled high-strength martensitic steel and manufacturing method thereof
JP7311067B1 (en) * 2022-03-30 2023-07-19 Jfeスチール株式会社 Steel plate and member, and manufacturing method thereof
WO2023188505A1 (en) * 2022-03-30 2023-10-05 Jfeスチール株式会社 Steel sheet and member, and methods for producing same
WO2023188504A1 (en) * 2022-03-30 2023-10-05 Jfeスチール株式会社 Steel sheet, member, method for producing said steel sheet and method for producing said member
JP7311070B1 (en) * 2022-03-30 2023-07-19 Jfeスチール株式会社 Steel plate and member, and manufacturing method thereof
WO2023223078A1 (en) * 2022-05-19 2023-11-23 Arcelormittal A martensitic steel sheet and a method of manunfacturing thereof
CN115181908A (en) * 2022-07-07 2022-10-14 莱芜钢铁集团银山型钢有限公司 Ultra-thick 460 MPa-grade steel plate in service in extremely cold region and preparation method thereof
WO2024033688A1 (en) * 2022-08-12 2024-02-15 Arcelormittal A cold rolled martensitic steel and method of producing thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031462A (en) * 2010-07-29 2012-02-16 Jfe Steel Corp High strength hot dip zinc-coated steel sheet excellent in formability and impact resistance, and manufacturing method therefor
WO2015151428A1 (en) * 2014-03-31 2015-10-08 Jfeスチール株式会社 High-strength cold rolled steel sheet exhibiting excellent material-quality uniformity, and production method therefor
JP2017510703A (en) * 2014-02-05 2017-04-13 アルセロールミタル・エス・ア Hot forming air hardenability weldable steel plate
WO2018043453A1 (en) * 2016-08-30 2018-03-08 Jfeスチール株式会社 Thin steel sheet and process for producing same
JP2019505668A (en) * 2015-12-23 2019-02-28 ポスコPosco High yield ratio type high strength cold-rolled steel sheet and manufacturing method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100034118A (en) 2008-09-23 2010-04-01 포항공과대학교 산학협력단 Hot-dip galvanized steel sheet having a martensitic structure with ultimate high strength and method for manufacturing the same
WO2013065346A1 (en) * 2011-11-01 2013-05-10 Jfeスチール株式会社 High-strength hot-rolled steel sheet having excellent bending characteristics and low-temperature toughness and method for producing same
JP5821912B2 (en) * 2013-08-09 2015-11-24 Jfeスチール株式会社 High-strength cold-rolled steel sheet and manufacturing method thereof
WO2015088523A1 (en) * 2013-12-11 2015-06-18 ArcelorMittal Investigación y Desarrollo, S.L. Cold rolled and annealed steel sheet
KR101568549B1 (en) * 2013-12-25 2015-11-11 주식회사 포스코 Steel sheet for hot press formed product having high bendability and ultra high strength, hot press formed product using the same and method for manufacturing the same
WO2015177582A1 (en) * 2014-05-20 2015-11-26 Arcelormittal Investigación Y Desarrollo Sl Double-annealed steel sheet having high mechanical strength and ductility characteristics, method of manufacture and use of such sheets
WO2017006144A1 (en) * 2015-07-09 2017-01-12 Arcelormittal Steel for press hardening and press hardened part manufactured from such steel
KR101725274B1 (en) 2015-10-16 2017-04-10 삼화스틸(주) Steel plate with high tensile strength and process for the same
WO2017125773A1 (en) * 2016-01-18 2017-07-27 Arcelormittal High strength steel sheet having excellent formability and a method of manufacturing the same
CN107619993B (en) * 2016-07-13 2019-12-17 上海梅山钢铁股份有限公司 Cold-rolled martensite steel plate with yield strength of 750MPa and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031462A (en) * 2010-07-29 2012-02-16 Jfe Steel Corp High strength hot dip zinc-coated steel sheet excellent in formability and impact resistance, and manufacturing method therefor
JP2017510703A (en) * 2014-02-05 2017-04-13 アルセロールミタル・エス・ア Hot forming air hardenability weldable steel plate
WO2015151428A1 (en) * 2014-03-31 2015-10-08 Jfeスチール株式会社 High-strength cold rolled steel sheet exhibiting excellent material-quality uniformity, and production method therefor
JP2019505668A (en) * 2015-12-23 2019-02-28 ポスコPosco High yield ratio type high strength cold-rolled steel sheet and manufacturing method thereof
WO2018043453A1 (en) * 2016-08-30 2018-03-08 Jfeスチール株式会社 Thin steel sheet and process for producing same

Also Published As

Publication number Publication date
EP3969628A1 (en) 2022-03-23
US20220213573A1 (en) 2022-07-07
CN113748219A (en) 2021-12-03
WO2020229877A1 (en) 2020-11-19
CA3140117A1 (en) 2020-11-19
WO2020229898A1 (en) 2020-11-19
MA55949A (en) 2022-03-23
ZA202107698B (en) 2022-06-29
JP2024045307A (en) 2024-04-02
CN113748219B (en) 2023-06-20
KR20210149145A (en) 2021-12-08
CA3140117C (en) 2024-01-02

Similar Documents

Publication Publication Date Title
CN113748219B (en) Cold rolled martensitic steel and method for martensitic steel thereof
KR102466818B1 (en) Cold-rolled and heat-treated steel sheet and its manufacturing method
JP2021502484A (en) Cold-rolled heat-treated steel sheet and its manufacturing method
JP7117381B2 (en) Cold-rolled coated steel sheet and its manufacturing method
CN113811624B (en) Cold rolled martensitic steel and method for martensitic steel thereof
KR102647462B1 (en) Cold rolled and coated steel sheet and method of manufacturing the same
JP7463408B2 (en) Cold rolled and coated steel sheet and its manufacturing method
JP2023532756A (en) Heat-treated cold-rolled steel sheet and manufacturing method thereof
JP7022825B2 (en) Ultra-high-strength, high-ductility steel sheet with excellent cold formability and its manufacturing method
JP2023506476A (en) Heat-treated cold-rolled steel sheet and its manufacturing method
JP2022535255A (en) Cold-rolled and coated steel sheet and method for producing same
RU2785760C1 (en) Cold-rolled martensitic steel and method for producing martensitic steel
CA3163376C (en) Heat treated cold rolled steel sheet and a method of manufacturing thereof
CN115698365B (en) Heat-treated cold-rolled steel sheet and method for manufacturing same
JP2023552463A (en) Cold rolled heat treated steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230926