JP2022522298A - 速度および位置情報を使用するレーダ反射の認識 - Google Patents

速度および位置情報を使用するレーダ反射の認識 Download PDF

Info

Publication number
JP2022522298A
JP2022522298A JP2021550204A JP2021550204A JP2022522298A JP 2022522298 A JP2022522298 A JP 2022522298A JP 2021550204 A JP2021550204 A JP 2021550204A JP 2021550204 A JP2021550204 A JP 2021550204A JP 2022522298 A JP2022522298 A JP 2022522298A
Authority
JP
Japan
Prior art keywords
reflected
radar
reflected wave
velocity
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021550204A
Other languages
English (en)
Other versions
JPWO2020176483A5 (ja
JP7464616B2 (ja
Inventor
ワン チャン
クリサー コーヘン ジョシュア
Original Assignee
ズークス インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/288,990 external-priority patent/US11255958B2/en
Priority claimed from US16/289,068 external-priority patent/US11353578B2/en
Application filed by ズークス インコーポレイテッド filed Critical ズークス インコーポレイテッド
Publication of JP2022522298A publication Critical patent/JP2022522298A/ja
Publication of JPWO2020176483A5 publication Critical patent/JPWO2020176483A5/ja
Application granted granted Critical
Publication of JP7464616B2 publication Critical patent/JP7464616B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/581Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/582Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/865Combination of radar systems with lidar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/867Combination of radar systems with cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads

Abstract

レーダセンサデータにおける反射された反射波を決定するための技法ついて説明する。ある例において、レーダ反射波の対は、互いに比較されることができる。例えば、第1のレーダ反射波に関連付けられた速度は、第2のレーダ反射波に関連付けられた半径方向に投影されることができ、投影された速度を決定する。ある例において、投影された速度の大きさが第2のレーダ反射波の大きさに対応する場合、第2のレーダ反射波は、反射された反射波であってよい。他の例において、反射点は、位置データを使用して決定されることができ、オブジェクトが反射点に位置する場合、第2のレーダ反射波は、反射された反射波であってよい。ある例において、自律車両などの車両は、反射された反射波から情報を除外して制御されることができる。

Description

本発明のさまざまな例示的な実施形態は、速度および位置情報を使用するレーダ反射の認識に関する。
本PCT国際特許出願明細書は、参照により開示のそれぞれが本明細書に組み込まれている、2019年2月28日に出願した米国特許出願第16/288,990号明細書、および2019年2月28日に出願した米国特許出願第16/289,068号明細書の出願日の利益および優先権を主張する。
自律車両は、障害物を含む環境を通り抜けるべく様々な方法、装置、およびシステムを利用する。例えば、自律車両は、他の車両、建造物、歩行者などを含むことが可能な区域を通って移動すべくルートプランニング方法、ルートプランニング装置、およびルートプランニングシステムを利用してよい。これらのプランニングシステムは、レーダデータ、LiDARデータ、画像データなどを含むセンサデータに依拠してよい。しかし、ある例において、環境における車両、建造物、および/またはオブジェクトの存在は、例えば、誤検出を含む、不正確な、もしくは誤ったセンサデータをもたらす反射を生じさせる可能性がある。不正確な、かつ/または誤ったセンサデータは、環境を安全に、かつ快適に通り抜けることに難題をもたらす可能性がある。
詳細な説明は、添付の図を参照して説明される。図において、参照番号の左端の数字は、その参照番号が最初に出現する図を識別する。異なる図における同一の参照番号の使用は、類似した、もしくは同一の構成要素または特徴を示す。
本開示の実施形態による、環境におけるオブジェクトを感知するレーダセンサを含む例示的な車両、および車両が動作する環境を示す概略図である。 本開示の実施形態による、環境におけるオブジェクトに関連付けられたレーダ反射波を、介在するオブジェクトから反射される反射された反射波と区別すべく速度情報を使用するための例示的な技法を示す、図1の環境を示す概略図である。 本開示の実施形態による、環境におけるオブジェクトに関連付けられたレーダ反射波を、介在するオブジェクトから反射される反射された反射波と区別すべく位置情報を使用するための例示的な技法を示す、図1の環境を示す別の概略図である。 本開示の実施形態による、本明細書において説明されるレーダ反射認識技法を実施するのに使用可能な、車両と、コンピューティングデバイスとを含む例示的なシステムを示す概略ブロック図である。 本開示の実施形態による、速度情報を使用するレーダ反射認識技法を実施するための例示的なプロセスを示すフローチャートである。 本開示の実施形態による、位置情報を使用するレーダ反射認識技法を実施するための例示的なプロセスを示すフローチャートである。
前段で説明されるとおり、いくつかのタイプのセンサデータ、例えば、レーダデータは、例えば、環境における車両、建造物、および他のオブジェクトからの反射に影響されやすいことがある。そのような反射された反射波は、自律車両が環境を安全に、かつ/または快適に通り抜けることに難題をもたらす可能性がある。これらの存在しない、もしくは幻影の「オブジェクト」に応答してプランニングすることが、車両が不必要なアクション、例えば、制動、ステアリングなどを行うことをもたらすことがある。
本出願は、レーダシステムによってキャプチャされるレーダセンサデータにおける反射された反射波を識別するための技法について説明する。一般に、レーダセンサは、センサに戻るのに先立って環境におけるオブジェクトから反射する(もしくははね返る)無線エネルギーを放射してよい。放射されたエネルギーがオブジェクトからレーダセンサに直接に戻るとき、レーダセンサは、オブジェクトについての正確なデータ(例えば、距離、位置、速度、その他)を含むオブジェクト反射波をキャプチャすることが可能である。しかし、ある例において、無線エネルギーは、レーダセンサに戻るのに先立って、環境における多様なオブジェクトから反射することができる。これらの例において、レーダセンサは、反射された反射波をキャプチャすることができる。反射された反射波は、環境におけるオブジェクトを正確には表さない。少なくともある例において、これらの反射波が実際のオブジェクトからであるか、または反射であるかを知ることなしには、自律車両のための安全がクリティカルな経路プランニングは、影響を受けることがある。
ある例において、本明細書において説明される技法は、オブジェクト反射波を知るべく、反射波の、例えば、考慮されている反射波の一対比較を使用して、レーダ反射波が反射された反射波であると決定してよい。より具体的には、知られているオブジェクトに関連付けられていないレーダ反射波は、レーダ反射波が、何らかの仮定的なオブジェクトからのオブジェクト反射波の理論上の反射に全体的に対応するかどうかを決定すべく、オブジェクト反射波(例えば、知られているオブジェクトに関連付けられた反射波)と比較されてよい。ある例において、オブジェクト反射波は、反射波をトラックに関連付ける情報、または他の以前に獲得された情報に基づいて、すべてのレーダ反射波のなかから決定されることが可能である。非限定的な例として、理論上の反射は、オブジェクト速度(レーダ反射波によってもたらされてよいオブジェクト反射波からの大きさおよび方向)を、車両から、考慮されている反射波までに延びる半径方向上に投影することによって決定されることが可能である。例えば、半径方向に沿って延びる、投影された速度の半径成分は、この半径方向に沿ったオブジェクト反射波の反射の予期される速度を表す。したがって、投影された速度の半径成分の大きさが、問題の反射波に関連付けられた速度に対応するとき、反射波は、反射された反射波として識別されてよい。
ある例において、本明細書において説明される技法は、利用可能であるそれまでの知識が存在しないレーダ反射波の一対比較を使用して、反射波が反射されていると決定することができる。例えば、任意の2つの反射波が、それらの反射波のうちの一方が、例えば、それらの反射波のうちのより遠く離れている方が、それらの反射波のうちの他方の反射波であることが理論上、可能であるかどうかを決定すべく、比較されてよい。ある例において、そのような比較は、それらの反射波のうちのより遠い方の位置上に、より近い方の反射波の速度を投影することに基づいてよい。他の例において、それらの反射波の位置が、センサと、それらの反射波のうちのより遠い方との間の線上で理論上の反射点を決定すべく使用されることが可能である。
ある例において、本明細書において説明される技法は、識別された反射された反射波が、実際に反射であることを確認すべく機能することも可能である。例えば、本明細書において説明される技法は、考慮される反射波が反射された反射波である場合に無線エネルギーが反射されることになる、仮説的な反射点、例えば、考慮されている反射波の半径方向に沿った点を決定することができる。本開示の態様において、環境についてのさらなるセンサ情報、例えば、LiDARデータ、さらなるレーダデータ、飛行時間データ、SONARデータ、画像データなどが、反射点に近接したオブジェクトの存在を確認すべく使用されてよい。別の言い方をすると、仮説的な、または計算された反射点におけるオブジェクトの存在は、反射波が別の反射波の反射された反射波であることをさらに示唆する(かつ/または確認する)ことがある。
また、ある実装形態において、本明細書において説明される技法は、探索のためのすべてのレーダ反射波のサブセットを、潜在的な反射された反射波として決定することができる。例えば、レーダ反射波は、反射された反射波である可能性があるレーダ反射波、および/または車両の動作に無視できないほどの影響を有する可能性があるレーダ反射波だけを含むべくフィルタリングされてよい。ある例において、トラック、または他の以前に獲得された情報に関連付けられた反射波は、オブジェクト反射波として、故に、潜在的な反射された反射波ではないものと指定されてよい。さらに、オブジェクト反射波と比べて、車両に比較的より近い、例えば、半径方向でより近い反射波は、反射された反射波であることは可能でなく、故に、本明細書において説明される技法を使用した考慮から除外されてよい。さらに、しきい値速度以下の速度を有するレーダ反射波は、例えば、それらが車両のプランニングシステムによって考慮されないため、無視されてよい。ある例において、しきい値速度は車両からの距離に伴って変動し得る。少なくともある例において、そのようなレーダ反射波をフィルタリングすることが、反射波が実際のオブジェクトの反射であるかどうかを決定するのに要求される時間、処理、および/または要求されるメモリの量を低減することがある。
ある例において、反射されたレーダ反射波についての情報が、環境を安全に通り抜けるように自律車両を制御すべく自律車両の車両コンピューティングデバイスによって使用されるように出力されてよい。例えば、車両コンピューティングデバイスは、反射された反射波を、ルートプランニングおよび/または軌道プランニングから除外することができる。このようにして、自律車両は、幻影の「オブジェクト」に応答して制動することも、ステアリングすることも、それ以外でアクションを行うこともない。さらに、車両コンピューティングデバイスは、反射された反射波であると決定された反射波を追跡することも、それ以外で追うこともしなくてよく、このことが、例えば、処理負荷を低減することがある。
本明細書において説明される技法は、複数の方法でコンピューティングデバイスの機能を向上させることができる。例えば、車両に関する制御を決定する脈絡において、考慮されるべきデータの量が、例えば、反射された反射波を除外して、その結果、環境についての不必要な決定につぎ込まれる過度のリソースを低減することによって、減らされることが可能である。向上させられた軌道生成が、安全結果を向上させることができ、乗り手体験を向上させること(例えば、幻影のオブジェクトに応答する不必要な制動、幻影のオブジェクトを回避する急な進路変更、およびそれに類することの発生を低減することによって)ができる。コンピュータの機能、および/またはユーザ体験のこれら、およびその他の向上について、本明細書において説明される。
本明細書において説明される技法は、複数の方法で実施されることが可能である。例示的な実装形態が、添付の図を参照して後段で与えられる。自律車両の脈絡において説明されるものの、本明細書において説明される方法、装置、およびシステムは、様々なシステム(例えば、ロボットプラットフォーム)に適用されることが可能であり、自律車両に限定されない。別の例において、技法は、航空もしくは航海の脈絡で、またはマシンビジョンを使用する任意のシステムにおいて利用されることが可能である。
図1は、車両102が動作している環境100の概略図である。例示される例において、車両102は、その環境において走行しているものの、他の例において、車両102は、環境100において静止していてよく、かつ/または駐車していてよい。車両102は、環境100を表すデータをキャプチャする1つまたは複数のレーダセンサシステム104を含む。例として、限定としてではなく、車両102は、運転者(または搭乗者)がいずれの時点でも車両を制御することが予期されることなく、移動全体にわたってすべての安全がクリティカルな機能を実行することができる車両について説明する、米国運輸省道路交通安全局によって発行されたレベル5分類により動作するように構成された自律車両であることが可能である。そのような例において、車両102は、すべての駐車機能を含め、開始から停止まですべての機能を制御するように構成されることが可能であるので、搭乗者なしであることが可能である。これは、例に過ぎず、本明細書において説明されるシステムおよび方法は、運転者によって常時、手動で制御される必要がある車両から、部分的に、または完全に自律的に制御される車両までに及ぶ車両を含め、任意の陸路車両、空路車両、または水路車両に組み込まれることが可能である。車両102に関連付けられたさらなる詳細について、後段で説明される。
車両102は、例えば、概ね、1つまたは複数の他のオブジェクトに対して矢印106によって示される方向で、環境100を通って移動してよい。例えば、環境100は、さらなる車両108(概ね矢印110によって示される方向で移動する)などの動的オブジェクトと、第1の駐車された車両112(1)、第2の駐車された車両112(2)、第3の駐車された車両112(3)(ひとまとめにして、「駐車された車両112」)、第1の建造物114(1)、第2の車両114(2)、および第3の車両114(3)(ひとまとめにして、「建造物114」)などの静止オブジェクトとを含んでよい。さらなる車両106、駐車された車両112、および建造物114は、環境100にあってよいオブジェクトの例に過ぎず、車両、歩行者、自転車に乗った人、樹木、道路標識、設備などを含むが、これらには限定されないさらなるオブジェクト、および/または異なるオブジェクトが、さらに、または代替として環境100にあってもよい。
少なくとも1つの例において、前段で述べられるとおり、車両102は、レーダセンサ104に関連付けられることが可能であり、レーダセンサ104は、車両102の上に配置されることが可能である。レーダセンサ104は、オブジェクトまでの範囲、および/またはオブジェクトの速度を測定するように構成されてよい。ある例示的なシステムにおいて、レーダセンサ104は、ドップラセンサ、パルス型センサ、連続波周波数変調(CFWM)センサなどを含んでよい。レーダセンサ104は、所定の間隔で無線エネルギーのパルスを発してよい。ある実装形態において、間隔は、例えば、比較的遠い距離、または比較的近い距離におけるオブジェクトの強化された検出を促進すべく、構成可能であってよい。一般に、レーダセンサ104によって発せられる無線エネルギーのパルスは、環境100におけるオブジェクトから反射し、例えば、レーダデータまたはレーダ反射波として、レーダセンサ104によって受信されることが可能である。
図1の例において、レーダセンサ104によって、概ね矢印116の方向に沿って発せられる無線エネルギーが、さらなる車両108と接触して、例えば、概ね矢印118の方向に沿って、レーダセンサ104に向かって戻るように反射されることがある。この例において、無線エネルギーは、オブジェクト反射波経路120であることが可能な、概ね同一の経路に沿って発せられ、戻る。オブジェクト反射波経路120は、例示される例において実質的に直線である。オブジェクト反射波経路120に沿って反射された無線エネルギーは、例えば、オブジェクト反射波122として、レーダセンサ104によってキャプチャされる。オブジェクト反射波122は、キャプチャされたデータに基づいて決定された位置におけるブロックとして例示される。例えば、オブジェクト反射波122に関連付けられた情報は、環境における位置、例えば、さらなる車両108の位置を示す情報を含んでよい。位置情報は、車両102に対する範囲および方位角、または局所座標系もしくは全体座標系における位置を含んでよい。また、実装形態において、オブジェクト反射波122は、信号強度情報を含んでよい。例えば、信号強度情報は、オブジェクトのタイプを示すことが可能である。より具体的には、無線波が、或る形状および/または或る成分を有するオブジェクトによってより強く反射されることがある。例えば、広い、平坦な表面、および/または鋭い端部が、丸い表面と比べて、より反射性が高く、金属が、人と比べて、より反射性が高い。ある例において、信号強度は、レーダ断面積(RCS)測定を含んでよい。また、オブジェクト反射波122は、速度情報を含んでもよい。例えば、さらなる車両108の速度が、さらなる車両108によって反射された無線エネルギーの周波数、および/または反射された無線エネルギーが検出された時刻に基づいてよい。
オブジェクト反射波122は、例えば、さらなる車両108に対応する、レーダセンサ104によってキャプチャされた正確なデータの例であってよい。しかし、レーダセンサ104は、信頼性のより低いことがある反射波をキャプチャすることも可能である。例えば、図1は、概ね矢印124の方向に沿ってレーダセンサ104によって発せられた無線エネルギーが、概ね矢印126の方向に沿って進むように、第1の建造物114(1)から反射することがあることも例示する。例示される例において、第1の建造物114(1)から反射された無線エネルギーは、次に、概ね矢印128の方向に沿って、すなわち、矢印126の方向とは反対に、第1の建造物114(1)に向かって戻るようにさらなる車両108によって反射されることがある。最後に、無線エネルギーは、次に、第1の建造物114(1)から再び反射して、概ね矢印130の方向に沿ってレーダセンサ104に戻ることがある。したがって、さらなる車両108から反射された無線エネルギーは、さらなる車両108と第1の建造物114(1)の間の第1の区間134と、第1の建造物114(1)と車両102(例えば、レーダセンサ104)の間の第2の区間136とを含む第1の反射の反射波経路132に沿ってレーダセンサ104に戻ることがある。そのような反射されたエネルギーは、第1の反射された反射波138としてレーダセンサ104によってキャプチャされてよい。図1に例示されるとおり、第1の反射された反射波138は、第2の区間136の方向に沿って、例えば、矢印124、130に沿って受信されるが、第1の反射された反射波経路132の距離、例えば、第1の区間134の距離と第2の区間136の距離の合計である距離と等しい範囲を有する。図1および前述の説明から理解されるとおり、第1の反射された反射波138は、第1の反射された反射波138に対応する位置における、すなわち、第2の区間136の方向に沿ったオブジェクトの存在を示唆する。しかし、本明細書において説明されるとおり、そのような「オブジェクト」は、存在しない、幻影の「オブジェクト」である。
図1は、レーダセンサ104が、第1の駐車された車両112(1)およびさらなる車両108から反射された無線エネルギーに対応する第2の反射された反射波140をキャプチャすることもできることを例示する。より具体的には、概ね矢印142の方向に沿ってレーダセンサ104によって発せられた無線エネルギーが、概ね矢印144の方向に沿って進むように第1の駐車された自動車112(1)から反射することがある。無線エネルギーは、次に、さらなる車両108と接触して、概ね矢印146の方向に沿って、すなわち、矢印144の方向とは反対に、第1の駐車された自動車112(1)に向かって戻るように反射することがある。最後に、無線エネルギーは、次に、概ね矢印148の方向に沿って、第1の駐車された車両116(1)から再び反射することがある。したがって、第2の反射された反射波140に対応する無線エネルギーは、さらなる車両108と第1の駐車された車両112(1)の間の第1の区間156と、第1の駐車された車両112(1)と車両102(例えば、レーダセンサ104)の間の第2の区間158とを含む第2の反射された反射波経路154に沿って移動することがある。図1に例示されるとおり、第2の反射された反射波は、第2の区間158に沿って、例えば、矢印142、148の方向に沿って受信された無線エネルギーについての情報を含むが、第2の反射された反射波経路154の距離、例えば、第1の区間156の距離と第2の区間158の第2の距離の合計である距離と等しい範囲を有する。図1、および前述の説明から理解されるとおり、第2の反射された反射波140は、第2の反射された反射波140に対応する位置における、すなわち、第2の区間158の方向に沿ったオブジェクトの存在を示唆する。しかし、本明細書において説明されるとおり、そのような「オブジェクト」は、存在しない、幻影の「オブジェクト」である。
図1によって例示される位置情報(例えば、範囲および方位角からの)を含めることに加えて、オブジェクト反射波122、第1の反射された反射波138、および第2の反射された反射波140(本明細書において、第1の反射された反射波138と第2の反射された反射波140は、「反射された反射波138、140」と呼ばれてよい)は、速度情報も含んでよい。より具体的には、オブジェクト反射波122は、例えば、矢印118の方向に沿った(さらなる車両108の)速度に対応する、オブジェクト速度160についての情報を含んでよい。同様に、第1の反射された反射波138は、第1の反射された反射波速度162、例えば、第1の反射された反射波経路132の第2の区間136の方向に沿った速度についての情報を含んでよく、第2の反射された反射波140は、第2の反射された反射波速度164、例えば、第2の反射された反射波経路154の第2の区間158の方向に沿った速度についての情報を含んでよい。したがって、オブジェクト反射波122は、さらなる車両108についての情報(例えば、位置、速度)をもたらす一方で、第1の反射された反射波138は、オブジェクト(幻影のオブジェクト)が、第1の反射された反射波速度162でその反射波に関連付けられた位置から接近していることを示唆し、第2の反射された反射波140は、オブジェクト(幻影のオブジェクト)が、第2の反射された反射波速度164でその反射波に関連付けられた位置から接近していることを示唆する。本明細書において説明されるとおり、車両102は、他にも機能のあるなかで、とりわけ、受信されたセンサデータに基づいて環境100におけるオブジェクトに対するルート、軌道、および/または制御を決定するプランニングシステムを含んでよい。しかし、反射された反射波138、140を使用するプランニングシステムは、実際には存在しないオブジェクトに反応するようにプランニングすることがある。
本明細書において説明される技法は、反射波138、140などの反射波を反射された反射波として認識することによって、プランニングシステム精度およびプランニングシステムパフォーマンスを向上させることがある。例えば、図1にさらに例示されるとおり、レーダセンサ104は、車両102に関連付けられた複数のセンサシステム164のうちの1つであってよい。ある例において、センサシステム164は、さらなるレーダセンサ、光検出および測距(LiDAR)センサ、超音波トランスデューサ、音響航法および測距(ソナー)センサ、位置センサ(例えば、全地球測位システム(GPS)、COMPASS、その他)、慣性センサ(例えば、慣性測定ユニット、加速度計、磁力計、ジャイロスコープ、その他)、カメラ(例えば、RGB、IR、強度、深度、飛行時間、その他)、ホイールエンコーダ、マイクロホン、環境センサ(例えば、温度センサ、湿度センサ、光センサ、圧力センサ、その他)、その他を含んでよい、1つまたは複数のさらなるセンサ166をさらに含んでよい。
図1にやはり例示されるとおり、レーダセンサ104は、レーダデータ168を生成することができ、さらなるセンサ166は、センサデータ170を生成することができる。レーダデータ168は、オブジェクト反射波122、第1の反射された反射波138、および第2の反射された反射波140についての、これらの反射波に関連付けられた位置、速度、および/またはその他の情報を含むが、これらには限定されない情報を含んでよい。また、ある例において、レーダデータ168は、RCS測定を含んでよい、信号強度情報を含んでもよい。また、レーダデータは、センサの向き、例えば、車両に対するセンサの体勢、センサに関するパルス繰り返し周波数(PRF)もしくはパルス繰り返し間隔(PRI)、視野もしくは検出アークなどを含むが、これらには限定されない、センサについての特定の情報を含むことも可能である。ある実装形態において、レーダデータ168の一部の態様、例えば、視野、向き、PRFもしくはPRIなどは、事前構成されてよく、その場合、そのデータは、例えば、ストレージにおいて利用可能であってよく、例えば、レーダ反射波と一緒に転送されなくてもよい。センサデータ170は、環境100および/またはさらなるセンサ166についての任意の情報を含むことが可能である。非限定的な例として、さらなるセンサ166がLiDARセンサを含むとき、センサデータ170は、点群データを含んでよく、さらなるセンサ166がカメラを含むとき、センサデータ170は、画像データを含んでよい。レーダセンサ104およびさらなるセンサ166は、異なるセンサシステム164に関して同一であっても、異なってもよい、それぞれ、所定の間隔でレーダデータ168およびセンサデータ170を生成してよい。例えば、レーダセンサ104は、反射波がキャプチャされ、かつレーダデータ168が生成されるスキャンニング周波数を有してよい。
レーダデータ168およびセンサデータ170は、1つまたは複数の車両コンピューティングデバイス172において受信されることが可能であり、かつ車両コンピューティングデバイス172によって、例えば、プランニングシステム(図示されない)を使用してプランニングを実行すべく利用されることが可能である。例示される例において、センサシステム164および車両コンピューティングデバイス172は、例えば、車両102上に配置されて、車両102の一部である。しかし、他の例において、センサシステム164および/または車両コンピューティングデバイス172のうちのいくつか、またはすべては、車両102とは別個であってよく、かつ/または車両102から遠隔に配置されてよい。そのような構成において、データキャプチャ、処理、コマンド、および/または制御は、有線ネットワークおよび/または無線ネットワークを経由して1つまたは複数の遠隔コンピューティングデバイスによって車両102に/車両102から通信されてよい。
少なくとも1つの例において、車両コンピューティングデバイス172は、反射認識の構成要素174におけるセンサシステム164によってキャプチャされたレーダデータ168およびセンサデータ170を利用することができる。例えば、反射認識の構成要素174は、オブジェクト反射波122と、第1の反射された反射波138と、第2の反射された反射波140とを含むレーダデータ168を受信すること、および反射された反射波138、140が、環境における実際のオブジェクトに関連付けられた反射波ではなく、反射された反射波であると決定することができる。この区別をすることによって、反射認識の構成要素174は、プランニングシステムにオブジェクト反射波122だけを送ること(反射された反射波138、140は送ることなく)、ならびに/またはオブジェクトの推定される位置および/または推定される速度をさらに改良すべくさらなる反射波を使用することができる。したがって、制御プランニングが、反射された反射波138、140を除外して実施されることが可能である。図2を参照して後段でより詳細に説明されるとおり、反射認識の構成要素174は、オブジェクト反射波122と、反射波138および/または反射波140などのさらなる反射波などの2つの反射波を比較することによって、反射波(例えば、候補反射波または未確認反射波)が反射された反射波であるかどうかを決定することができる。例えば、反射認識の構成要素174は、オブジェクト反射波122などの知られているオブジェクト反射波を、未確認反射波に関連付けられた方向、例えば、レーダセンサ104から半径方向に延び、かつその未確認反射波を通過する方向に沿って延びる線上に「投影する」ことができる。オブジェクト反射波122を投影するための技法は、図2を参照して後段でより詳細に説明されるが、反射波の投影は、未確認反射波(例えば、レーダセンサ104に対する半径方向)に関連付けられた速度の方向と同一の方向を有する速度成分を有する。また、反射認識の構成要素174は、オブジェクト反射波122の投影に関連付けられた速度の大きさを決定することもできる。ある実装形態において、この大きさが、未確認反射波の速度の大きさと合致する場合、反射認識の構成要素174は、未確認反射波が反射された反射波である(またはそうである尤度が高い)と決定することができる。本明細書において使用されるとおりの大きさは、それらが実質的に等しい場合、例えば、何らかのしきい値範囲内または誤差の範囲内である場合、合致することがある。
反射認識の構成要素174は、環境におけるオブジェクトおよび/または環境自体のいくらかの演繹的知識を利用してよい。例えば、反射認識の構成要素174は、知られているオブジェクト反射波である反射波だけを投影してよい。ある例において、この知識は、さらなる車両108などのオブジェクトを追跡すること、および/または前もって識別することによるものであってよい。例えば、そのような追跡および/または識別は、オブジェクトを感知して以前にキャプチャされたレーダデータ168および/または以前にキャプチャされたセンサデータ170に基づいてよい。例えば、さらなる車両108などのオブジェクトは、数秒間にわたって、かつ/または拡大された距離で追跡されてよい。他方、反射された反射波は、それらが、車両102、さらなる車両108、および介在する、反射するオブジェクト/表面(例えば、第1の駐車された車両112(1)および第1の建造物114(1))の整列を要求するので、より一過性であることがある。それらのオブジェクトのうちの1つまたは複数が動くと、反射された反射波を可能にする条件(例えば、相対的な整列および/または向き)が消えて、反射された反射波を、レーダセンサ104の後続のスキャンから消失させることがある。さらに、または代替として、車両102に利用可能なマップデータ(車両102の位置に基づいて、ときどき、ダウンロードされてよいような、またはそれ以外で車両がアクセス可能であるような)が、例えば、局所3次元環境のメッシュなどの、環境の3次元表現を備えてよい。そのような例において、反射認識の構成要素174は、対応する建造物114(1)の知識に基づいて、第1の反射された反射波138が非物質的な反射波であると決定してよい。
また、反射認識の構成要素174は、候補反射波が反射された反射波であるという構成要素174の決定を確認する機能を含むこともできる。ある例において、反射認識の構成要素174は、反射波を、例えば、レーダデータ168として受信される後続のスキャンにわたって、追跡しようと試みることができる。前段で述べられるとおり、さらなる車両108に対する車両102の相対的な動きが、反射条件が弱まることをもたらして、それ故、反射された反射波に関連付けられた「オブジェクト」に対応する後続の反射波を受信できないことをもたらすことがある。しかし、潜在的な(接近中の)オブジェクトを、そのオブジェクトのトラックが連続的に収集されたレーダスキャンにわたって検証され得るまで無視することは、反応時間を遅くすることがあり、このことは、安全でないことがあり得る。したがって、他の実装形態において、反射認識の構成要素174は、例えば、センサデータ170および/またはレーダデータ168を使用して、反射性のオブジェクトが反射された反射波に向かう方向に沿って配置されているかどうかを決定することができる。図1を参照すると、ある例において、LiDARデータ、画像データ、またはこれらの類するものが、第1の駐車された車両112(1)および/または第1の建造物114(1)の存在を確認してよい。したがって、反射認識の構成要素174は、第1の駐車された車両112(1)および/または第1の建造物114(1)を識別すること、および、例えば、それぞれの反射された反射波経路132、154の区間の間のジャンクションにおける、それらのオブジェクトの位置に基づいて、反射波が反射された反射波138であるという以前の決定を確認することができる。マップデータが、静的な、固定されたオブジェクト、例えば、建造物114、地形、道路標識、ユーティリティ設備などを識別するのに役立つことがある。しかし、リアルタイムの、またはほぼリアルタイムのセンサデータが、静的であるか、動的であるかにかかわらず、可動のオブジェクトを識別するのに要求されることがある。例えば、駐車された車両112、歩行者、自転車に乗った人、他の動いている車両などが、マップデータを介しては利用可能でないことがある。
ある実装形態において、反射認識の構成要素174は、レーダ反射波が反射された反射波であるかどうかを、リアルタイムで、またはほぼリアルタイムで決定すべくレーダ反射波を処理することができる。例えば、反射認識の構成要素174は、複数の反射波を、例えば、並行して、オブジェクト反射波122などの知られているオブジェクト反射波と比較することができる。1つの例において、レーダスキャンにおける知られていないオブジェクト反射波であるすべての反射波が、そのような反射波が反射であるかどうかを決定すべく、知られているオブジェクト反射波と比較されてよい。他のある実装形態において、反射認識の構成要素174は、例えば、反射である尤度が低い、または反射であることが物理的にあり得ない点を除外すべく、反射波をフィルタリングすることができる。非限定的な例として、知られているオブジェクト反射波と比べて、比較的より近い反射波は、オブジェクト反射波の反射ではあり得ない。他の例において、反射認識の構成要素174は、或るしきい値を下回る速度、または0の速度を示す反射波を除外してよい。また、他のフィルタリング技法が、使用されてもよい。
本明細書において説明される例は、点または反射波を知られているオブジェクト反射波122と比較してよいものの、他の例において、反射認識の構成要素174は、さらに、または代替として、反射波の対を、例えば、それらの反射波のうちの一方が知られているオブジェクト反射波であるという知識なしに、比較することができる。より具体的には、本明細書において説明される技法は、2つの反射波が互いの反射である可能性があると決定することを、それらの反射波のうちの一方がオブジェクト反射波であるかどうかにかかわらず、行うことができる。例えば、反射波の対が考慮されるとき、より遠く離れた方の反射波に、潜在的な反射としてタグが付けられること、またはそれ以外でそうであるものとして指定されることが可能である。さらなる処理が、より近い方の反射波が環境におけるオブジェクトに関連付けられる(または、それ以外で、より遠く離れた方の反射波が反射に関連付けられる)かどうかを決定するための基礎として使用されることが可能である。反射認識の構成要素174は、一対比較のための点のサブセットを識別すべく、本明細書において説明される高レベルのフィルタリングを実行することができる。非限定的な例として、しきい値速度を下回る反射波は、省かれてよく、位置および/または速度にあまりにも大きな違い(例えば、しきい値差以上である)を有する対は、比較などされなくてもよい。少なくともある例において、様々な技法が、反射波が反射であるかどうかについての確かさのレベルを向上させるべく組み合わされてよい。
図2は、本開示のさらなる態様を示す環境100の別の概略図である。混乱を回避すべく、環境100のような、図2を参照して具体的に説明される図1からの要素は、図1と図2において同一の参照番号を含む。さらに、明確にするため、環境100のある要素は、図2においてグレー表示される。
より具体的には、図2は、車両102、さらなる車両108、第1の駐車された車両112(1)、および第1の建造物114(1)を示す。また、図2は、オブジェクト反射波122、第1の反射された反射波138、および第2の反射された反射波140も示す。図1に関連して前段で述べられるとおり、オブジェクト反射波122、および反射された反射波138、140は、レーダセンサ104において受信された無線エネルギーの属性に基づく位置情報および速度情報を含んでよい。例えば、車両102とさらなる車両108の両方を通過する線202に沿って車両102から或る距離の間隔が空けられたオブジェクト反射波122が、オブジェクト反射波の位置(それ故、さらなる車両108の位置も)とオブジェクト反射波速度160の両方を示してよい。述べられるとおり、オブジェクト反射波122は、例えば、線202に沿った、さらなる車両108からの知られている(例えば、トラックなどの、環境100および/またはさらなる車両108についての以前に獲得されたデータから)直接の反射であるため、オブジェクト反射波は、さらなる車両108の一部分の正確な表現であると考えられてよい。前段で述べられるとおり、オブジェクト、例えば、さらなる車両108の存在、または反射波がオブジェクト反射波、例えば、オブジェクト反射波122であるという知識は、すべての例において要求されなくてよい。本明細書において説明される技法は、反射波が互いの反射である尤度を決定すべく反射波の一対比較に適用してよい。
また、反射された反射波138、140は、レーダセンサ104において受信された無線エネルギーに関連付けられた少なくとも位置情報および速度情報も含む。前段で述べられるとおり、第1の反射された反射波138は、線204に沿った例示される位置における第1の反射された反射波速度についての情報を含む。線204に沿った第1の反射された反射波138の距離は、レーダセンサ104によって決定された距離または範囲であり、かつ受信された無線エネルギーによってたどられた距離、例えば、図1に示される第1の反射された反射波経路132に対応する距離に対応する。同様に、第2の反射された反射波140は、線206に沿った例示される位置における第2の反射された反射波速度についての情報を含む。線206に沿った第2の反射された反射波140の距離は、レーダセンサ104によって決定された距離または範囲であり、かつ受信された無線エネルギーによってたどられた距離、例えば、図1に示される第2の反射された反射波経路154に対応する距離に対応する。
本明細書において説明される技法は、レーダ反射波が反射された反射波であるかどうかを決定すべく環境100における幾何を利用してよい。例えば、レーダセンサ104におけるキャプチャ時点で、オブジェクト反射波122および反射された反射波138、140は、反射波であるに過ぎない。環境100および/または環境100におけるオブジェクトについてのいくらかの以前に獲得された知識を介して初めて、オブジェクト反射波122にさらなる車両108が確かさをもって割り当てられることが可能である。ある例において、車両102に関連付けられたトラッカまたは他の構成要素が、さらなる車両108を追跡していてよく、反射波は、それが、トラックに関連付けられた予期と合致する場合、オブジェクト反射波122として識別される。他の例において、本明細書において説明されるとおり、オブジェクト反射波122は、オブジェクト反射波122にさらなる車両108が割り当てられるかどうかにかかわらず、例えば、反射波対における一方の反射波として考えられることが可能である。オブジェクト反射波122は、さらなる車両108の前部で中央に位置付けられた位置において、単一の点として例示される一方で、オブジェクト反射波122は、他の1つまたは複数の反射波、および/またはさらなる車両108上の他の1つまたは複数の位置に対応してよい。非限定的な例として、オブジェクト反射波の属性、例えば、オブジェクト反射波速度160は、さらなる車両108に関連付けられた複数の反射波に基づいて決定されてよい。例えば、オブジェクト反射波122は、さらなる車両108からの複数の反射波の平均であってよい。
前段で述べられるとおり、オブジェクト反射波122とは異なり、反射された反射波は、いくつかの条件、例えば、幾何的条件(反射された反射波が不規則に動くこと、または存在するようになったり、存在しなくなったりすることをもたらすことがある)が存在する場合にだけ生じて、一過性であることがある。それ故、反射された反射波についてのトラックも、その他の演繹的の知識もまったく存在しない。しかし、本明細書において説明される技法は、反射波が反射であるか、または環境100における実際のオブジェクトに直接に対応することがあるかを決定する。
前段で述べられるとおり、第1の反射された反射波138は、線204に沿って位置付けられた反射波に対応する。第1の反射された反射波138を反射された反射波として特性化すべく、本明細書における技法は、その反射波を、オブジェクト反射波122と一緒に対として考えてよい。例えば、線204の方向が知られており、かつ線204上のレーダセンサに対しての第1の反射された反射波138の位置が知られているため、オブジェクト反射波122が、第1の反射された反射波の位置上に投影されることが可能である。概念的に、オブジェクト反射波122を投影することは、オブジェクト反射波122に関連付けられた位置(例えば、半径方向の線202に沿った)を、第1の反射された反射波138に関連付けられた位置(例えば、半径方向の線204に沿った)と結び付ける線208を決定することを含むことが可能である。やはり例示されるとおり、線208に垂直であり、かつ線208を二分する線210が、反射点212で線204と交差し、その結果、反射点212とオブジェクト反射波122の間の線分214の距離は、反射点212と第1の反射された反射波138の間の線分216の距離と等しい。さらに、オブジェクト反射波速度160は、線210を軸にして、第1の反射された速度218として反射されることが可能である。ひとたび決定されると、第1の反射された速度218は、2つの速度成分、すなわち、概ね線204に沿った半径方向速度成分220と、半径方向速度成分220に垂直である接線速度成分222とに解析されることが可能である。半径方向速度成分220は、第1の方向204に沿ったオブジェクト反射波122の投影された速度である。別の言い方をすると、第1の投影された速度は、第1の反射された速度218の半径方向速度成分220であり、第1の反射された速度218は、オブジェクト反射波速度160を表すベクトルの、線210を軸にした鏡像である。
図2の例において、半径方向速度成分220(投影された速度)は、さらなる車両108からはね返る無線エネルギーが反射点212においても反射されたとした場合にレーダセンサ104によって感知されることになる速度(すなわち、大きさおよび方向)である。理解されるとおり、第1の反射された速度218の半径方向速度成分220は、第1の反射された反射波速度162(図1に示され、図2には示されない)と同一の方向に沿っている(すなわち、線204に沿っている)。それ故、半径方向速度成分220(第1の投影された速度)の大きさと第1の反射された反射波速度162の大きさが、例えば、互いの所定のしきい値内もしくは所定の範囲内で、実質的に似通っている場合、第1の反射された反射波138には、反射である尤度が高いものとしてフラグ設定される、タグが付けられる、またはそれ以外で識別されることが可能である。
図2は、第2の反射された反射波140が反射された反射波であるかどうかを決定することの類似した概念化を示す。例えば、第2の反射された反射波140の位置における第2の反射された速度224は、線226を軸にしたオブジェクト反射波速度160の鏡像であってよい。線226は、オブジェクト反射波122の位置と第2の反射された反射波140の位置の間に延びる線228に垂直であり、線228を二分する。第2の反射された速度224は、半径方向速度成分230、すなわち、半径方向の線206に沿った成分と、接線速度成分232、すなわち、半径方向の線206に垂直である成分とを含む。
やはり図2に示されるとおり、線226は、反射点234において半径方向の線206と接触する。前段で述べられるとおり、第2の投影された速度224の半径方向速度成分230は、さらなる車両108からはね返されて、反射点234においてレーダセンサ104に戻るように反射する無線エネルギーに関連付けられた反射波の投影された、例えば、予期される、速度(すなわち、方向および大きさ)である。別の言い方をすると、半径方向速度成分230は、投影された速度であり、かつ反射点234における反射に関連付けられた予期される反射波に対応する。第1の投影された反射波の場合と同様に、半径方向速度成分230の方向は、第2の反射された反射波速度164の方向と実質的に同一である。それ故、これらの方向はともに、線206に沿っている。したがって、半径方向速度成分230(第2の投影された反射波)の大きさと第2の反射された反射波速度164の大きさが実質的に同一である場合、第2の反射された反射波140には、反射である尤度が高いものとしてタグが付けられる、フラグ設定される、またはそれ以外で識別されることが可能である。
本開示の実装形態において、本明細書においてさらに説明されるとおり、反射された反射波138、140が、例えば、それぞれの半径方向速度成分220、230が、第1の反射された反射波速度162、および第2の反射された反射波速度164と実質的に同一であるために、反射された反射波であると決定した後、車両102は、プランニングから、反射された反射波138、140を無視する、例えば、除外することができる。また、車両102は、例えば、オブジェクトが反射点212、234のそれぞれに存在すると決定することによって、反射を確認してもよい。例えば、車両102は、本明細書において説明されるとおり、センサデータ、マップデータなどを使用してオブジェクトの存在を確認することができる。少なくともある例において、反射波は、他の構成要素が、それらの反射波に関連付けられた、対応するオブジェクトがまったく存在しないことがあることを意識していてよいようにフラグ設定されてよい。
また、図2は、歩行者236が建造物238を出て、環境100に入る別の例示的な実装形態も示す。例示されるとおり、歩行者236は、第2の反射された反射波140に関連付けられた位置に近い位置で環境に入ってよい。レーダセンサ104が、新たに存在する歩行者についての情報を含むレーダデータを生成してよい。歩行者236は、以前から追跡されてきたわけではないため、すなわち、歩行者236は、出現したばかりであるため、本明細書において説明される実装形態は、本明細書において説明される技法を使用して、歩行者236に関連付けられた反射波を、知られているオブジェクト反射波、例えば、オブジェクト反射波122と比較してよい。例えば、オブジェクト反射波速度160が、歩行者236に関連付けられた位置上に投影されてよい。歩行者236は、さらなる車両108と比べて、レーダセンサ104からより遠く離れているため、反射点も識別されることが可能である。例示される例において、反射点は、反射点234に近い。また、歩行者反射波の位置における投影されたオブジェクト反射波速度の半径方向成分が、他の例における場合と同様に決定されることも可能である。しかし、歩行者反射波は、反射された反射波ではないため、投影されたオブジェクト反射波速度の半径方向速度成分の速度の大きさは、似ていない尤度が高い。例えば、歩行者が、レーダセンサ104に向かう歩行者の速度の成分が、反射された反射波の速度と合致する様態で歩行しているのでない限り、歩行者反射波は、反射として(正しく)識別されない。歩行者反射波が反射ではないと決定すると、歩行者の動きが、追跡されてよく、かつ/または歩行者236についての情報が、車両に関する制御を生成すべく使用されてよい。
本開示の態様は、図2に示される例示的な実装形態に限定されない。例えば、本明細書において説明される技法は、車両102からの反射を含め、環境における他のオブジェクトの反射を識別するのに使用されることが可能である。ある例において、さらなる車両108によって反射された無線エネルギーは、レーダセンサ104によってキャプチャされる前に、車両102から反射する(またははね返る)こと、さらなる車両108(または他のオブジェクト)に戻るように伝わること、およびさらなる車両から再び反射することが可能である。別の言い方をすると、検出された無線エネルギーは、レーダセンサにおいてキャプチャされる前に、線202に沿った経路を4回(各方向で2回)通ることが可能である。この「二重はね返り」は、方向202に沿って、ただし、車両102から2倍の距離で反射波をもたらすことがある。ある例において、速度の大きさは、オブジェクト反射波速度の大きさとは異なり(例えば、半分の速度)、このことが、反射された反射波の識別をもたらすことができる。
さらに、図2は、介在する、反射するオブジェクトを、静止したオブジェクトとして例示する一方で、他の実装形態において、本明細書において説明される技法は、反射波が、動くオブジェクトから反射されるかどうかを決定することも可能である。例えば、介在するオブジェクトの速度が、知られ(例えば、他のレーダ反射波から)、その速度が、投影された速度の半径方向成分を変えるべく使用されることが可能である。また、他の変更も企図される。
図3は、環境100の別の概略図を示し、反射波が他の反射波の反射である(またはそうである尤度が高い)かどうかを決定するための代替の方法を例示すべく使用される。より具体的には、図3は、反射点を決定すべく幾何を使用する技法を例示してよく、この反射点が、次に、例えば、反射点が環境におけるオブジェクトに対応するかどうかを決定すべく、環境情報と比較されてよい。
より具体的には、図3は、オブジェクト反射波122(さらなる車両108からの)および第1の反射された反射波138を例示する。明確にするため、第2の反射された反射波140は、例示されないものの、第1の反射された反射波138と、オブジェクト反射波122とを含む反射波の対を参照して説明される技法は、例えば、オブジェクト反射波122と、第2の反射された反射波138とを含む、第1の反射された反射波138と、第2の反射された反射波140とを含む、かつ/または反射波の他の任意の対を含む、レーダ反射波の任意の対に適用されることが可能である。本明細書において説明されるとおり、環境100の演繹的の知識が、オブジェクト反射波122をさらなる車両108に関連付けることを可能にしてよいものの、本開示の実装形態は、知られているオブジェクトの関連付けにかかわらず、さらに/または環境100の演繹的の知識の利用可能性にかかわらず、レーダ反射波の任意の対に同様に適用してもよい。それ故、反射波には、「オブジェクト」反射波および「反射された」反射波としてラベルが付けられる一方で、それらのラベルの一方または両方は、さらなる処理の後まで知られなくてよい。少なくともある例において、そのようなラベルは、自律車両を誘導することを支援すべく使用されてよい。例えば、「反射された」反射波は、プランニングの際にその反射波の重要度の重み付けが軽くされる、またはそれ以外で考慮に入れられるものの、依然としてナビゲーションのために考慮されてよい。
本明細書において説明されるとおり、レーダセンサ104は、反射波についての範囲情報、位置情報、および/または速度(スピード)情報だけを受信してよい。それ故、例えば、レーダセンサ104は、オブジェクト反射波122の位置と第1の反射された反射波138の位置を示すセンサデータを生成してよい。例えば、図3において、図3における線302は、オブジェクト反射波122の位置とレーダセンサ104の位置の間の線であり、線304は、第1の反射された反射波138の位置とレーダセンサ104の位置の間の線である。反射波122、138、すなわち、反射波122、138の位置に基づいて、線302、304の長さ、および線302と線304の間の角314が知られる(または容易に決定されることが可能である)。本明細書において説明される技法は、線302、304、および角314を使用して、オブジェクト反射波122に関連付けられたオブジェクト(例えば、さらなる車両108)に最初に反射された無線エネルギーが、レーダセンサ104において受信されるのに先立って反射する、線304に沿った潜在的な、または理論上の反射点308を決定することができる。ひとたび、理論上の反射点308の位置が決定されると、本明細書において説明される技法は、オブジェクトが理論上の反射点308に存在するかどうかを決定して、その結果、第1の反射された反射波138がオブジェクト反射波の反射であることを確認する(または少なくとも示唆する)ことができる。
より具体的には、第1の反射された反射波138とオブジェクト反射波122の間の距離、例えば、図3に示される線310の距離が、線302、304の距離、および角306を使用して決定されることが可能である。例えば、余弦定理が、要求されるわけではないものの、線310の長さを決定するのに使用されることが可能である。理論上の反射点308が、その後、線304と、反射波122と反射波138の間に延びる線310を二分し、かつ線310に垂直である線312の交差点として決定されてよい。例えば、センサ304と第1の反射された反射波138の間に延びる線304と、第1の反射された反射波138とオブジェクト反射波122の間に延びる線310との間の角314を決定すべく単純な幾何が使用されることが可能である。その後、線312によって二分される第1の反射された反射波138と反射角316の間の線分316の長さが、線304に沿った反射された反射波308の位置をもたらすべく、容易に決定されることも可能である。さらに、第1の反射された反射波138が真の反射である場合、線分316の距離は、オブジェクト反射波122から反射点308までの距離と等しい。このさらなる情報が、反射点308の位置を計算すべく(さらに、または代替として)使用されることが可能である。
前段で説明されたばかりの実装形態において、潜在的な反射点308は、幾何だけを使用して決定されることが可能である。例えば、反射波についての速度情報は、必要ない。しかし、潜在的な反射点は、異なる距離における反射波の任意の対に関して決定されることが可能である。したがって、本明細書において説明される技法は、反射波のうちの一方、例えば、より遠く離れている方の反射波が、反射であるかどうかを決定すべく、オブジェクトが潜在的な反射点に存在するかどうかを決定することもできる。例えば、LiDARデータ、画像データ、さらなるレーダデータなどを含むが、これらには限定されないセンサデータが、オブジェクトが理論上の反射点308の位置近くに存在するかどうかを決定すべく使用されることが可能である。例示される例において、建造物114(1)が、車両102によってキャプチャされた画像データ、LiDARデータ、および/または他のセンサデータを使用して識別されてよい。他の実施形態において、マップデータが、反射点308におけるオブジェクトの存在を確認してよい。ある例において、速度情報が、反射波からの速度を、他方の反射波に関連付けられた単位ベクトル上に投影することに少なくとも部分的に基づいて、潜在的な反射を決定すべく使用されることが可能である。そのような投影された速度は、その後、他方の反射波の速度と直接に比較されてよい。
図2および図3(ならびに後段の図5および図6)の態様について、例として図1の環境100における、図1に例示される構成要素を参照して説明される。しかし、図2、図3、図5、および図6を参照して例示され、説明される例は、環境100において実行されることにも、図1の構成要素を使用することにも限定されない。例えば、図2、図3、図5、および図6を参照して説明される例のうちのいくつか、またはすべては、本明細書において説明される、図4の1つまたは複数の構成要素によって、または他の1つまたは複数のシステムもしくは構成要素によって実行されることが可能である。
図4は、本明細書において説明される技法を実施するための例示的なシステム400のブロック図を示す。少なくとも1つの例において、システム400は、図1に示される車両102と同一であっても、異なってもよい、車両402を含むことが可能である。
車両402は、車両コンピューティングデバイス404と、1つまたは複数のセンサシステム406と、1つまたは複数のエミッタ408と、1つまたは複数の通信接続410と、1つまたは複数の駆動モジュール412と、少なくとも1つの直接接続414とを含むことが可能である。
車両コンピューティングデバイス404は、1つまたは複数のプロセッサ416と、1つまたは複数のプロセッサ416に通信可能に結合されたメモリ418とを含むことが可能である。例示される例において、車両402は、自律車両である。しかし、車両402は、少なくとも1つのセンサ(例えば、カメラ対応のスマートフォン)を有する他の任意のタイプの車両、または他の任意のシステムであることが可能である。例示される例において、車両コンピューティングデバイス404のメモリ418は、位置特定の構成要素420、知覚構成要素422、予測構成要素424、プランニング構成要素426、反射認識の構成要素428、1つまたは複数のシステムコントローラ430、1つまたは複数のマップ432、およびトラッカ構成要素434を記憶する。例示の目的でメモリ418内に存在するものとして図4に示されるものの、位置特定の構成要素420、知覚構成要素422、予測構成要素424、プランニング構成要素426、反射認識の構成要素428、システムコントローラ430、マップ432、および/またはトラッカ構成要素434は、さらに、または代替として、車両402がアクセス可能であり得る(例えば、車両402から遠隔のメモリ上に記憶される、またはそれ以外でそのようなメモリによってアクセス可能である)ことが企図される。ある例において、車両コンピューティングデバイス404は、図1の車両コンピューティングデバイス172の例に対応する、またはその例であることが可能である。
少なくとも1つの例において、位置特定の構成要素420は、車両402の位置および/または向き(例えば、x、y、z位置、ロール、ピッチ、またはヨーのうちの1つまたは複数)を決定すべくセンサシステム406からデータを受信する機能を含むことが可能である。例えば、位置特定の構成要素420は、環境のマップを含むこと、および/または要求すること/受信することができ、マップ内で自律車両の位置および/または向きを継続的に決定することができる。ある例において、位置特定の構成要素420は、自律車両の位置を正確に決定すべく画像データ、LiDARデータ、レーダデータ、IMUデータ、GPSデータ、ホイールエンコーダデータ、および以上に類するものを受信するようにSLAM(同時の位置特定とマッピング)、CLAMS(同時の較正と位置特定とマッピング)、相対SLAM、バンドル調整、非線形最小二乗最適化などを利用することができる。ある例において、位置特定の構成要素420は、軌道を生成するために自律車両402の初期位置を決定すべく車両402の様々な構成要素にデータを提供することができる。
ある例において、知覚構成要素422は、オブジェクト検出、セグメンテーション、および/または分類を実行する機能を含むことが可能である。ある例において、知覚構成要素422は、車両402に近接したオブジェクトの存在、および/またはオブジェクトタイプ(例えば、自動車、歩行者、サイクリスト、動物、建造物、樹木、道路表面、縁石、歩道、未知、その他)としてのオブジェクトの分類を示す処理されたセンサデータを提供することができる。さらなる例および/または代替の例において、知覚構成要素422は、検出されたオブジェクト(例えば、追跡されるオブジェクト)および/またはオブジェクトが位置付けられる環境に関連付けられた1つまたは複数の特性を示す処理されたセンサデータを提供することができる。ある例において、オブジェクトに関連付けられた特性は、x位置(全体的位置および/または局所的位置)、y位置(全体的位置および/または局所的位置)、z位置(全体的位置および/または局所的位置)、向き(例えば、ロール、ピッチ、ヨー)、オブジェクトタイプ(例えば、分類)、オブジェクトの速度、オブジェクトの加速度、オブジェクトの広がり(サイズ)、その他を含むことが可能であるが、これらには限定されない。環境に関連付けられた特性は、環境における別のオブジェクトの存在、環境における別のオブジェクトの状態、時間帯、曜日、季節、気象条件、暗さ/明るさの指標、その他を含むことが可能であるが、これらには限定されない。ある例において、知覚構成要素422は、オブジェクトを決定すべくレーダデータを使用することができ、例えば、本明細書において説明されるとおり、センサデータを含める/除外するべく、反射された反射波についての情報を受信してよい。
ある例において、予測構成要素424は、環境におけるオブジェクトの予測される軌道を生成する機能を含むことが可能である。例えば、予測構成要素424は、車両402からのしきい値距離内の車両、歩行者、動物、および以上に類するものに関して1つまたは複数の予測される軌道を生成することができる。ある例において、予測構成要素424は、オブジェクトのトレースを測定すること、およびオブジェクトに関する軌道を生成することができる。ある例において、予測構成要素424は、オブジェクトが環境を通って進むにつれ、オブジェクトを追跡すべくトラッカ434と協働してよい。ある例において、予測構成要素424からの情報は、レーダ反射波が、知られているオブジェクトからであるかどうかを決定する際に使用されてよい。
一般に、プランニング構成要素426は、環境を通り抜けるべく車両402が従う経路を決定することができる。例えば、プランニング構成要素426は、様々なルートおよび軌道、ならびに様々な詳細レベルを決定することができる。例えば、プランニング構成要素426は、第1の位置(例えば、現在位置)から第2の位置(例えば、目標位置)まで移動するルートを決定することができる。この説明の目的で、ルートは、2つの位置の間で移動するためのウェイポイントのシーケンスであることが可能である。非限定的な例として、ウェイポイントは、通り、交差点、全地球測位システム(GPS)座標、その他を含む。さらに、プランニング構成要素426は、第1の位置から第2の位置までルートの少なくとも1部分に沿って自律車両を誘導するための命令を生成することができる。少なくとも1つの例において、プランニング構成要素426は、ウェイポイントのシーケンスにおける第1のウェイポイントからウェイポイントのシーケンスにおける第2のウェイポイントまで自律車両をどのように誘導すべきかを決定することができる。ある例において、命令は、軌道、または軌道の一部分であることが可能である。さらに、ある実装形態において、多様な軌道が、多様な軌道のうちの1つが、車両402がナビゲートするように選択されて、後退ホライズン技法により実質的に同時に生成される(例えば、技術的許容差内で)ことが可能である。ある例において、プランニング構成要素426は、センサデータ、例えば、レーダ反射波に少なくとも部分的に基づいて、車両402のための1つまたは複数の軌道を生成することができる。例えば、プランニング構成要素426は、反射された反射波であると決定された反射波を除外してよい。
一般に、反射認識の構成要素428は、センサデータ、例えば、レーダ反射波が、実際のオブジェクトに対応するか、または何らかの介在するオブジェクトからのオブジェクトの反射であるかを識別する機能を含むことが可能である。ある例において、反射認識の構成要素428は、図1の反射認識の構成要素174に対応することが可能である。本明細書において説明されるとおり、反射認識の構成要素428は、感知されたオブジェクトが、実際のオブジェクトであるか、または実際のオブジェクトの反射に過ぎないかを決定すべくレーダデータ、LiDARデータ、画像データ、マップデータ、および以上に類するものを受信することができる。ある例において、反射認識の構成要素428は、いつ、環境を通るように車両402を制御するかを決定すべく、反射に対応するのではないと決定されたセンサ情報をプランニング構成要素426に提供することができる。ある例において、反射認識の構成要素428は、例えば、プランニング構成要素426が、介在するオブジェクトからの反射に関連付けられたものと決定したセンサデータ、例えば、レーダデータを除外して、制御を決定するように、反射に対応すると決定されたセンサデータを、プランニング構成要素426に対して除外してよい。また、反射認識の構成要素428は、例えば、トラッカが環境における動的オブジェクトを追跡するように、センサ情報をトラッカ434に提供することもできる。
システムコントローラ430は、例えば、プランニング構成要素426によって生成された制御、および/またはプランニング構成要素426からの情報に基づいて、車両402のステアリングシステム、推進システム、制動システム、安全システム、エミッタシステム、通信システム、およびその他のシステムを制御すべく構成されることが可能である。システムコントローラ430は、車両402の駆動モジュール414および/または他の構成要素の対応するシステムと通信すること、および/またはそれらのシステムを制御することができる。
マップ432は、車両402によって環境内でナビゲートすべく使用されることが可能である。この説明の目的で、マップは、トポロジ(交差点などの)、通り、山脈、道路、地勢、および環境全般などの、ただし、これらには限定されない環境についての情報を提供することができる、2次元、3次元、またはN次元にモデル化された任意の数のデータ構造であることが可能である。ある例において、マップは、テクスチャ情報(例えば、色情報(例えば、RGB色情報、Lab色情報、HSV/HSL色情報)、および以上に類するもの)、強度情報(例えば、LiDAR情報、レーダ情報、および以上に類するもの)、空間情報(例えば、メッシュ上に投影された画像データ、個々の「サーフェル」(例えば、個別の色および/または強度に関連付けられたポリゴン))、反射性情報(例えば、鏡面性情報、再帰反射性情報、BRDF情報、BSSRDF情報、および以上に類するもの)を含むことが可能であるが、これらには限定されない。1つの例において、マップは、環境の3次元メッシュを含むことが可能である。ある例において、マップは、マップの個々のタイルが環境の別個の部分を表すようにタイル化されたフォーマットで記憶されることが可能であり、必要に応じて作業メモリにロードされることが可能である。ある例において、マップ432は、少なくとも1つのマップ(例えば、画像および/またはメッシュ)を含むことが可能である。車両402は、マップ432に少なくとも部分的に基づいて制御されることが可能である。すなわち、マップ432は、車両402の位置を決定すること、環境におけるオブジェクトを識別すること、ならびに/または環境内でナビゲートするルートおよび/または軌道を生成することを行うべく位置特定の構成要素420、知覚構成要素422、予測構成要素424、プランニング構成要素426、および/または反射認識の構成要素432に関連して使用されることが可能である。さらに、本明細書において説明されるとおり、マップ432は、オブジェクト、例えば、レーダセンサにおいて受信される前に無線エネルギーが反射することがある、介在するオブジェクトの存在を検証すべく使用されることが可能である。
ある例において、マップ432は、1つまたは複数のネットワーク436を介してアクセス可能な1つまたは複数の遠隔コンピューティングデバイス(1つまたは複数のコンピューティングデバイス438などの)上に記憶されることが可能である。ある例において、マップ432は、例えば、特性(例えば、エンティティのタイプ、時間帯、曜日、または年間の季節、その他)に基づいて記憶された多様な類似したマップを含むことが可能である。このように多様なマップ432を記憶することは、類似したメモリ要件を有し得るが、マップにおけるデータにアクセスされ得るスピードを高める。
トラッカ434は、オブジェクトの動きを追跡する、例えば、追う機能を含むことが可能である。例えば、トラッカ434は、車両の環境における動的オブジェクトを表すセンサシステム406のうちの1つまたは複数からセンサデータを受信してよい。例えば、車両402上の画像センサが、画像センサデータをキャプチャしてよく、LiDARセンサが、点群データをキャプチャしてよく、レーダセンサが、多様な時点で環境におけるオブジェクトの位置、体勢などを示す反射波を獲得してよい。このデータに基づいて、トラッカ434は、オブジェクトのトラック情報を決定することができる。例えば、トラック情報は、関連付けられたオブジェクトに関する履歴上の位置、速度、加速度、および以上に類するものを提供してよい。さらに、ある例において、トラッカ434は、環境の閉塞された領域内のオブジェクトを追跡してよい。参照により本明細書に開示の全体が組み込まれている、「レーダ空間推定(Radar Spatial Estimation)」に関する、2018年9月28日に出願された米国特許出願第16/147,177号が、閉塞された領域内のオブジェクトを追跡するための技法について説明する。本明細書において説明されるとおり、トラッカ434からの情報は、レーダ反射波が追跡されるオブジェクトに対応することを検証すべく使用されてよい。少なくともある例において、トラッカ434は、知覚構成要素422が、新たに識別されたオブジェクトが以前に識別されたオブジェクトに関連付けられるべきかどうかを決定すべくデータ関連付けを実行するように、知覚構成要素422に関連付けられることが可能である。
理解されるとおり、本明細書において説明される構成要素(例えば、位置特定の構成要素420、知覚構成要素422、予測構成要素424、プランニング構成要素426、反射認識の構成要素428、システムコントローラ430、マップ432、およびトラッカ構成要素434)は、例示の目的で分割されたものとして説明される。しかし、様々な構成要素によって実行される動作は、他の任意の構成要素において組み合わされること、または実行されることが可能である。例として、反射認識機能が、システムによって転送されるデータの量を低減すべく、知覚構成要素422および/またはプランニングシステム426によって(例えば、反射認識の構成要素428によってではなく)実行されてよい。
ある例において、本明細書において説明される構成要素のうちのいくつか、またはすべての構成要素の態様が、モジュール、アルゴリズム、および/または機械学習アルゴリズムを含むことが可能である。例えば、ある例において、メモリ418(および/または、後段で説明されるメモリ442)における構成要素は、ニューラルネットワークとして実装されることが可能である。
本明細書において説明される、例示的なニューラルネットワークは、入力デーが一連の接続された層を通るようにして出力をもたらす生物学に着想を得たアルゴリズムである。ニューラルネットワークの各層が、別のニューラルネットワークを備えることも可能であり、または任意の数の層(畳み込み層であるか否かにかかわらず)を備えることが可能である。本開示の脈絡で理解されることが可能であるとおり、ニューラルネットワークは、機械学習を利用することができ、機械学習は、出力が学習されたパラメータに基づいて生成されるそのような幅広いクラスのアルゴリズムを指すことが可能である。
ニューラルネットワークの脈絡で説明されるものの、任意のタイプの機械学習が、本開示と整合するように使用され得る。例えば、機械学習アルゴリズムは、回帰アルゴリズム(例えば、通常の最小二乗回帰(OLSR)、線形回帰、ロジスティック回帰、段階的回帰、多変量適応回帰スプライン(MARS)、局所的に推定されたスキャッタプロット平滑化(LOESS))、例ベースのアルゴリズム(例えば、リッジ回帰、最小絶対収縮および選択演算子(LASSO)、弾力ネット、最小角度回帰(LARS))、決定木アルゴリズム(例えば、分類および回帰木(CART)、反復ダイコトマイザ4(ID3)、カイ二乗自動相互作用検出(CHAID)、決定切り株、条件付き決定木)、ベイジアンアルゴリズム(例えば、ナイーブベイズ、ガウスナイーブベイズ、多項ナイーブベイズ、平均1依存エスティメータ(AODE)、ベイジアンビリーフネットワーク(BNN)、ベイジアンネットワーク)、クラスタリングアルゴリズム(例えば、k平均、kメジアン、期待値最大化(EM)、階層的クラスタリング)、相関規則学習アルゴリズム(例えば、パーセプトロン、逆伝搬、ホップフィールドネットワーク、動径基底関数ネットワーク(RBFN))、深層学習アルゴリズム(例えば、深層ボルツマンマシン(DBM)、深層ビリーフネットワーク(DBN)、畳み込みニューラルネットワーク(CNN)、積層自動エンコーダ)、次元縮小アルゴリズム(例えば、主成分分析(PCA)、主成分回帰(PCR)、部分最小二乗回帰(PLSR)、サモンマッピング、多次元尺度構成法(MDS)、射影追跡、線形判別分析(LDA)、混合判別分析(MDA)、二次判別分析(QDA)、柔軟判別分析(FDA))、アンサンブルアルゴリズム(例えば、ブースティング、ブートストラップアグリゲーション(バギング)、アダブースト)、積層ジェネラリゼーション(ブレンディング)、勾配ブースティングマシン(GBM)、勾配ブースト回帰木(GBRT)、ランダムフォレスト)、SVM(サポートベクタマシン)、教師あり学習、教師なし学習、半教師あり学習、その他を含むことが可能であるが、これらには限定されない。
アーキテクチャのさらなる例は、ResNet70、ResNet101、VGG、DenseNet、PointNet、およびこれらの類するものなどのニューラルネットワークを含む。
少なくとも1つの例において、センサシステム406は、LiDARセンサ、レーダセンサ、超音波トランスデューサ、ソナーセンサ、位置センサ(例えば、GPS、COMPASS、その他)、慣性センサ(例えば、慣性測定ユニット(IMU)、加速度計、磁力計、ジャイロスコープ、その他)、カメラ(例えば、RGB、IR、強度、深度、飛行時間、その他)、マイクロホン、ホイールエンコーダ、環境センサ(例えば、温度センサ、湿度センサ、光センサ、圧力センサ、その他)、その他を含むことが可能である。センサシステム406は、これら、または他のタイプのセンサのそれぞれの多様な例を含むことが可能である。例えば、LiDARセンサは、車両402のコーナ、前部、後部、側部、および/または頂部に配置された個々のLiDARセンサを含むことが可能である。別の例として、カメラセンサは、車両402の外側および/または内側のまわりの様々な位置に配置された多様なカメラを含むことが可能である。別の例として、レーダシステムは、車両402のまわりの様々な位置に配置された同一の、または異なるレーダセンサの多様な例を含むことが可能である。センサシステム406は、車両コンピューティングデバイス404に入力を提供することができる。さらに、または代替として、センサシステム406は、所定の期間の経過後、ほぼリアルタイムでなど、特定の頻度で、1つまたは複数のネットワーク436を介して、コンピューティングデバイス438にセンサデータを送ることができる。ある例において、センサシステム406は、レーダセンサ104および/またはさらなるセンサ166を含む、図1のセンサシステム164に対応することが可能である。
エミッタ408は、光および/またはサウンドを発するように構成されることが可能である。この例におけるエミッタ408は、車両402の搭乗者と通信すべく内部オーディオエミッタおよび内部視覚エミッタを含むことが可能である。例として、限定としてではなく、内部エミッタは、スピーカ、照明、標識、ディスプレイスクリーン、タッチスクリーン、触覚エミッタ(例えば、振動フィードバックおよび/または力フィードバック)、機械的アクチュエータ(例えば、シートベルトテンショナ、座席ポジショナ、ヘッドレストポジショナ、その他)、およびこれらに類するものを含むことが可能である。また、この例におけるエミッタ408は、外部エミッタを含むことも可能である。例として、限定としてではなく、この例における外部エミッタは、移動の方向を合図する照明、もしくは車両のアクションの他のインジケータ(例えば、インジケータ照明、標識、照明アレイ、その他)、ならびに歩行者、または音響ビームステアリング技術を1つまたは複数が含む近辺の他の車両と音響で通信する1つまたは複数のオーディオエミッタ(例えば、スピーカ、スピーカアレイ、ホーン、その他)を含む。
通信接続410が、車両402と他の1つまたは複数のローカルコンピューティングデバイスまたは遠隔コンピューティングデバイスの間で通信を可能にすることができる。例えば、通信接続410は、車両402上の他のローカルコンピューティングデバイス、および/または駆動モジュール414との通信を容易化することができる。また、通信接続410は、車両が、他の近辺のコンピューティングデバイス(例えば、他の近辺の車両、交通信号、その他)と通信することを可能にすることもできる。また、通信接続410は、車両402が、遠隔テレオペレーションコンピューティングデバイスまたは他の遠隔サービスと通信することも可能にする。
通信接続410は、車両コンピューティングデバイス404を、別のコンピューティングデバイス、またはネットワーク436などのネットワークに接続するための物理インタフェースおよび/または論理インタフェースを含むことが可能である。例えば、通信接続410は、IEEE802.11標準によって定義された周波数、Bluetooth(登録商標)などの短距離無線周波数、セルラ通信(例えば、2G、3G、4G、4G LTE、5G、その他)、またはそれぞれのコンピューティングデバイスがその他のコンピューティングデバイスとインタフェースをとることを可能にする任意の適切な有線通信プロトコルもしくは無線通信プロトコルを介するなどして、Wi-Fiベースの通信を可能にすることができる。
少なくとも1つの例において、車両402は、駆動モジュール412を含むことが可能である。ある例において、車両402は、単一の駆動モジュール412を含むことが可能である。少なくとも1つの例において、車両402は、駆動モジュール412の個々が、車両402の反対の終端部(例えば、前部と後部、その他)上に配置された、多様な駆動モジュール412を有してよい。少なくとも1つの例において、駆動モジュール412は、駆動モジュール412および/または車両402の周囲の条件を検出すべく1つまたは複数のセンサシステムを含むことが可能である。例として、限定としてではなく、駆動モジュール412に関連付けられたセンサシステムは、駆動モジュールのホイールの回転を感知する1つまたは複数のホイールエンコーダ(例えば、回転エンコーダ)、駆動モジュールの向きおよび加速度を測定する慣性センサ(例えば、慣性測定ユニット、加速度計、ジャイロスコープ、磁力計、その他)、カメラもしくは他の画像センサ、駆動モジュールの周囲におけるオブジェクトを音響的に検出する超音波センサ、LiDARセンサ、レーダセンサ、その他を含むことが可能である。そのようなホイールエンコーダのあるセンサは、駆動モジュール412に固有であることが可能である。ある事例において、駆動モジュール412上のセンサシステムは、車両402の対応するシステム(例えば、センサシステム406)を重なり合うこと、またはそのシステムを補完することが可能である。
駆動モジュール412は、高電圧バッテリ、車両を推進するモータ、バッテリからの直流を、他の車両システムによって使用されるように交流に変換するインバータ、ステアリングモータと、ステアリングラック(電動であり得る)とを含むステアリングシステム、油圧アクチュエータもしくは電動アクチュエータを含む制動システム、油圧構成要素および/または空気圧構成要素を含むサスペンションシステム、摩擦が失われることを緩和して、制御を維持すべく制動力を分散させるための安定性制御システム、HVACシステム、照明(例えば、車両の外側周囲を照射するヘッドライト/テールライトなどの照明)、ならびに他の1つまたは複数のシステム(例えば、冷却システム、安全システム、搭載充電システム、DC/DCコンバータなどの他の電気構成要素、高電圧ジャンクション、高電圧ケーブル、充電システム、充電ポート、その他)を含め、車両システムの多くを含むことが可能である。さらに、駆動モジュール412は、センサシステムからのデータを受信して、前処理することができ、様々な車両システムの動作を制御する駆動モジュールコントローラを含むことが可能である。ある例において、駆動モジュールコントローラは、1つまたは複数のプロセッサと、その1つまたは複数のプロセッサと通信可能に結合されたメモリとを含むことが可能である。メモリは、駆動モジュール412の様々な機能を実行する1つまたは複数のモジュールを記憶することができる。さらに、駆動モジュール412は、それぞれの駆動モジュールによる、他の1つまたは複数のローカルコンピューティングデバイスまたは遠隔コンピューティングデバイスとの通信を可能にする1つまたは複数の通信接続を含んでもよい。
少なくとも1つの例において、直接接続414は、駆動モジュール412を車両402の本体に結合する物理インタフェースを提供することができる。例えば、方向接続414は、駆動モジュール412と車両の間でエネルギー、液体、空気、データ、その他の転送を可能にすることができる。ある例において、直接接続414は、駆動モジュール412を車両402の本体に解放可能に固定することがさらにできる。
少なくとも1つの例において、位置特定の構成要素420、知覚構成要素422、予測構成要素424、プランニング構成要素426、反射認識の構成要素428、システムコントローラ430、マップ432、および/またはトラッカ434が、前段で説明されるとおり、センサデータを処理することができ、1つまたは複数のネットワーク436を介して、1つまたは複数のコンピューティングデバイス438にそれぞれの出力を送ることができる。少なくとも1つの例において、位置特定の構成要素420、知覚構成要素422、予測構成要素424、プランニング構成要素426、反射認識の構成要素428、システムコントローラ430、マップ432、および/またはトラッカ434は、所定の期間の経過後、ほぼリアルタイムでなど、特定の頻度で、1つまたは複数のコンピューティングデバイス438にそれぞれの出力を送ることができる。
ある例において、車両402は、例えば、ネットワーク436を介して、コンピューティングデバイス438にセンサデータを送ることができる。ある例において、車両402は、コンピューティングデバイス438に生のセンサデータを送ることができる。他の例において、車両402は、処理されたセンサデータ、および/またはセンサデータの表現(例えば、空間グリッドデータ)をコンピューティングデバイス438に送ることができる。ある例において、車両402は、所定の期間の経過後、ほぼリアルタイムでなど、特定の頻度で、コンピューティングデバイス48にセンサデータを送ることができる。ある事例において、車両402は、1つまたは複数のログファイルとしてコンピューティングデバイス438にセンサデータ(生のまたは処理された)を送ることができる。
コンピューティングデバイス438は、プロセッサ440と、1つまたは複数のマップ444および/または反射認識の構成要素446を記憶するメモリ442とを含むことが可能である。
ある例において、マップ444は、マップ432と同様であることが可能である。反射認識の構成要素448は、車両コンピューティングデバイス404における機能を実行することに加えて、またはその代わりに、反射認識の構成要素428に関して説明された機能と実質的に同一の機能を実行してよい。
車両402のプロセッサ416、およびコンピューティングデバイス438のプロセッサ440は、データを処理し、本明細書において説明される動作を実行すべく命令を実行することができる任意の適切なプロセッサであることが可能である。例として、限定としてではなく、プロセッサ416および440は、電子データを処理して、レジスタおよび/またはメモリに記憶され得る他の電子データにその電子データを変換する、1つまたは複数の中央処理装置(CPU)、グラフィクスプロセシングユニット(GPU)、または他の任意のデバイス、もしくはデバイスの他の任意の部分を備えることが可能である。ある例において、集積回路(例えば、ASIC、その他)ゲートアレイ(例えば、FPGA、その他)、および他のハードウェアデバイスが、それらがエンコードされた命令を実装するように構成される限り、プロセッサと考えられることも可能である。
メモリ418および442は、非一過性のコンピュータ可読媒体の例である。メモリ418および442は、オペレーティングシステム、ならびに本明細書において説明される方法、および様々なシステムに割り当てられた機能を実装する1つまたは複数のソフトウェアアプリケーション、命令、プログラム、および/またはデータを記憶することができる。様々な実装形態において、メモリは、スタティックランダムアクセスメモリ(SRAM)、シンクロナスダイナミックRAM(SDRAM)、不揮発性/フラッシュタイプのメモリ、または情報を記憶することができる他の任意のタイプのメモリなどの任意の適切なメモリ技術を使用して実装されることが可能である。本明細書において説明されるアーキテクチャ、システム、および個々の要素は、添付の図に示される構成要素が、本明細書の説明に関係付けられる例に過ぎない、他の多くの論理構成要素、プログラマティック構成要素、および物理構成要素を含むことが可能である。
図4は、分散されたシステムとして例示される一方で、代替の例において、車両402の構成要素は、コンピューティングデバイス438に関連付けられることが可能であり、かつ/またはコンピューティングデバイス438の構成要素は、車両402に関連付けられることが可能であることに留意されたい。すなわち、車両402は、コンピューティングデバイス438に関連付けられた機能のうちの1つまたは複数を実行することができ、コンピューティングデバイス438は、車両402に関連付けられた機能のうちの1つまたは複数を実行することができる。さらに、反射認識の構成要素428、446、および/またはトラッカ434の態様は、本明細書において説明されるデバイスのうちの任意のデバイス上で実行されることも可能である。
図5は、本開示の実施形態による、レーダ反射波が反射された反射波であるかどうかを決定するための例示的なプロセス500のフロー図である。レーダデータの脈絡において説明されるものの、例示的なプロセス500は、LiDARデータ、ソナーデータ、飛行時間画像データ、および/または他のタイプのデータの脈絡で、かつ/またはこれらのデータとの組み合わせで使用されてよい。
動作502において、プロセス500が、環境に関するレーダデータを受信することを含むことが可能である。例えば、レーダデータは、位置情報、速度情報、および/または強度情報を含むレーダ反射波を含んでよい。ある例において、レーダシステムは、1つまたは複数のレーダセンサを含んでよく、前述される車両102などの自律車両のセンサシステムであってよい。レーダデータは、位置と、0の速度とを有するオブジェクトに対応する静的反射波、および位置と、0ではない速度とを有する動くオブジェクトに対応する動的反射波もしくはレーダトラックを含む、多様な反射波を含んでよい。
動作504において、プロセス500が、レーダデータにおける第1のレーダ反射波に基づいて、第1の半径方向に沿った第1の位置における第1の速度を決定することを含むことが可能である。第1のレーダ反射波は、オブジェクトと車両の間の第1の方向に沿った、例えば、車両(上のレーダセンサ)からオブジェクトを通って延びる半径方向に沿った方向を有する速度を含んでよい。ある例において、第1のレーダ反射波は、例えば、環境における知られているオブジェクトに対応する、オブジェクト反射波であってよい。ある例において、第1のレーダ反射波は、レーダデータを受信することに先立って生成された追跡情報に基づいて、オブジェクト反射波に対応すると決定されてよい。しかし、他の例において、本明細書において説明される技法は、まったく反射波の演繹的の知識なしに働くことが可能である。別の言い方をすると、第1の反射波(および、後段で説明される第2の反射波を含む、さらなる反射波)は、環境におけるオブジェクトに関連付けられていなくてよく、そのような関連付けは、ある例において不必要であることがある。第1のレーダ反射波の位置は、第1のレーダ方向に沿った距離であってよい。
動作506において、プロセス500が、レーダデータにおける第2のレーダ反射波に基づいて、第2の半径方向に沿った第2の位置における第2の速度を決定することを含むことが可能である。例えば、第1のレーダ反射波と同様に、第2のレーダ反射波(および他のレーダ反射波)は、環境における知られているオブジェクトに関連付けられていなくてよい。第2のレーダ反射波は、環境における別のオブジェクト、例えば、新たに検出可能なオブジェクトから、および/または環境における何らかの介在するオブジェクトからの反射からの反射波であってよい。後者の事例において、第2のレーダ反射波は、第2の半径方向に沿った位置で幻影の「オブジェクト」を識別してよい。
動作508において、プロセス500が、投影された速度を、第2の半径方向上の第1の速度の投影として決定することが可能である。例えば、動作508は、反射波の対における反射波のうちの一方、例えば、第1の反射波を、対における反射波の他方に関連付けられた方向、例えば、第2の反射波に関連付けられた単位ベクトル上に投影することができる。理解されるとおり、反射された反射波は、オブジェクト(例えば、直接の)反射波と比べて、より近いことはあり得ないので、動作508は、第1の反射波および第2の反射波のより近い方に関連付けられた速度を、それらの反射波のより遠く離れた方に関連付けられた方向上に投影してよい。例えば、図2の例を参照して、第1の反射波は、オブジェクト反射波122であってよく、第2の反射波は、第1の反射された反射波138であってよい。動作508によって決定される投影された速度は、オブジェクト反射波122と第1の反射された反射波138を接続する線208を二分し、かつ線208に垂直である線210上に反射されたオブジェクト反射波速度160の半径方向成分であってよい。したがって、投影された速度は、最初にオブジェクトからの、続いて第2の方向に沿って配置された介在するオブジェクトからの無線エネルギーの反射からもたらされる速度であってよい。
動作510において、プロセス500が、投影された速度が第2の速度に対応するかどうかを決定することができる。例えば、動作510において、投影された速度の半径方向成分、例えば、第2の半径方向に沿った成分の大きさが、第2の速度の大きさ(レーダセンサによって第2の半径方向に沿って測定される)と比較されてよい。例えば、比較は、半径方向成分の大きさが、第2の速度の大きさと実質的に等しいかどうかを決定してよい。本明細書において使用される、実質的に等しいという用語、および類似した用語は、2つの値が等しいこと、または互いの何らかのしきい値格差内であることを表してよい。例えば、格差は、絶対値(例えば、毎秒0.1メートル、毎秒0.5メートル、毎秒2メートル、またはこれらに類するもの)、パーセンテージ(例えば、0.5%、1%、10%)、または他の何らかの測定値であってよい。ある例において、格差は、レーダセンサの忠実度、オブジェクトの距離、反射波に関連付けられた距離、オブジェクトの速度、反射波に関連付けられた速度、ならびに/またはその他の特徴および/または要因に基づいてよい。
動作510において、投影される速度が第2の速度に対応すると決定された場合、動作512において、プロセス500が、第2のレーダ反射波を、反射されたレーダ反射波として(またはそうである尤度が高いものとして)識別することができる。例えば、反射波が、第1の反射波の(理論上の)反射に緊密に対応するため、車両コンピューティングデバイスが、反射波は反射された反射波である(そうである尤度が高い)と決定してよい。
動作514において、プロセス500が、オプションとして、さらなるセンサデータを受信してよく、動作516において、プロセス500が、オプションとして、さらなるセンサデータに基づいて、介在するオブジェクトの存在を確認してよい。例えば、動作514、516は、反射を生じさせる介在するオブジェクト(反射された無線エネルギーを有する)の存在を確認することによって、第2のレーダ反射波が反射された反射波であることを確認してよい。本明細書において説明されるとおり、さらなるセンサデータは、車両上に配置された、またはそれ以外で車両に関連付けられた1つまたは複数のセンサモダリティからの任意のタイプのセンサデータであってよい。ある例において、介在するオブジェクトの存在は、(例えば、介在するオブジェクトが、設備、地形的特徴、またはこれらに類するものであるとき)マップデータから確認されてもよい。他の実装形態において、動作514において受信されるさらなるセンサデータは、後に続くレーダデータを含むが、これには限定されない、後に続いて受信されるデータであり得る。非限定的な例として、後に続いて受信されるデータは、時とともに第2の反射波を追跡すべく使用されることが可能である。本明細書において述べられるとおり、反射された反射波は、一過性であることがあり、以前のさらなるセンサデータ、および/または後に続くさらなるセンサデータを用いて第2の反射波を追跡しようとする試みは、無駄であることがある。
動作518において、プロセス500が、レーダ反射波を除外して車両を制御してよい。例えば、レーダ反射波が、反射された反射波であり、環境における実際のオブジェクトを表すものではないと決定されているため、車両の制御は、レーダ反射波に依存しなくてよい。本明細書において説明されるとおり、従来のプランニングシステムは、レーダ反射波によって表される幻影の「オブジェクト」に対して反応するように(例えば、制動すること、ステアリングすること、またはこれらに類することによって)車両を制御してきたことがある。しかし、反射された反射波を識別すること、および除外することによって、本明細書において説明される技法は、向上させられた制御を提供すること、例えば、環境における実際のオブジェクトだけに応答することが可能である。
対照的に、動作512において、投影された速度が第2の速度に対応しないと決定された場合、動作520において、プロセス500が、レーダ反射波を、環境における潜在的なさらなるオブジェクトとして識別することができる。例えば、第2の速度の大きさが、投影された速度の半径方向成分に対応しないとき、第2のレーダ反射波は、反射された反射波ではない尤度が高い。代わりに、第2の反射波は、環境における実際のオブジェクトに対応してよい。例えば、第2の反射波は、新たに検出されたオブジェクト、例えば、図2の例における建造物から現れる歩行者からであってよい。
動作522において、プロセス500が、オプションとして、さらなるオブジェクトの存在を確認してよい。例えば、動作522は、さらなるセンサ情報を受信すること、および、そのさらなるセンサ情報に少なくとも部分的に基づいて、第2のレーダ反射波に関連付けられた位置でオブジェクトの存在を決定することを含んでよい。さらなるセンサ情報は、LiDARデータ、画像データ、さらなるレーダデータ、飛行時間データ、またはこれらに類するもののうちの1つまたは複数を含んでよい。ある例において、動作522は、動作516と実質的に同一であり得るが、何らかの介在する点における代わりに、第2の位置においてオブジェクトの存在を確認する。
動作524において、プロセス500が、第2のレーダ反射波に少なくとも部分的に基づいて、車両を制御することを含むことが可能である。例えば、第2のレーダ反射波は、実際の動的オブジェクトに関連付けられることがあるため、本明細書において説明される技法は、そのオブジェクトとの関係で車両を制御してよい。ある例において、車両の軌道が、第2のレーダ反射波に少なくとも部分的に基づいて決定されることが可能である。非限定的な例として、予測システムが、予測構成要素324と同様に、さらなるオブジェクトの予測される軌道を決定することができ、プランニングシステム、例えば、プランニング構成要素326が、さらなるオブジェクトの予測される軌道との関係で車両に関する軌道を生成することができる。ある実装形態において、動作524は、さらに、または代替として、例えば、さらなるオブジェクトからの後に続く反射波がオブジェクト反射波として扱われ得るように、さらなるオブジェクトを追跡することを含むことも可能である。そのようなオブジェクト反射波は、さらなるオブジェクトによって生じさせられる反射された反射波を決定すべく使用されてよい。
図6は、本開示の実施形態による、レーダ反射波が反射された反射波であるかどうかを決定するための別の例示的なプロセス600のフロー図である。プロセス600は、前段で説明されるプロセス500の代わりに、またはそれに加えて使用されてよい。プロセス600は、図3に示される環境に限定されないものの、プロセス600の態様は、図3を参照して前段で説明される技法に対応してよい。さらに、レーダデータの脈絡において説明されるものの、例示的なプロセス600は、LiDARデータ、ソナーデータ、飛行時間画像データ、および/または他のタイプのデータの脈絡で、かつ/またはこれらのデータとの組み合わせで使用されてよい。
動作602において、プロセス600は、環境に関するレーダデータを受信することを含むことが可能である。例えば、レーダデータは、位置情報、速度情報、および/または強度情報を含むレーダ反射波を含んでよい。ある例において、レーダシステムは、1つまたは複数のレーダセンサを含んでよく、前段で説明される車両102、402などの自律車両のセンサシステムであってよい。レーダデータは、位置と、0の速度とを有するオブジェクトに対応する静的反射波、および位置と、0ではない速度とを有する動くオブジェクトに対応する動的反射波もしくはレーダトラックを含む、多様な反射波を含んでよい。
動作604において、プロセス600は、レーダデータの第1の反射波の第1の位置を識別することを含むことが可能である。第1のレーダ反射波は、反射波の深度もしくは範囲、位置、例えば、センサとの関係における反射波の角位置、および/または速度を識別してよい。ある例において、第1のレーダ反射波は、例えば、環境における知られているオブジェクトに対応する、オブジェクト反射波であってよい。ある例において、第1のレーダ反射波は、レーダデータを受信することに先立って生成された追跡情報に基づいて、オブジェクト反射波に対応すると決定されてよい。しかし、他の例において、本明細書において説明される技法は、まったく反射波の演繹的の知識なしに働くことが可能である。別の言い方をすると、第1の反射波(および、後段で説明される第2の反射波を含む、さらなる反射波)は、環境におけるオブジェクトに関連付けられていなくてよく、そのような関連付けは、ある例において不必要であることがある。第1のレーダ反射波の位置は、第1の半径方向に沿った位置、座標系におけるx-y座標、または他の何らかの位置情報であってよい。
動作606において、プロセス600は、レーダデータの第2の反射波の第2の位置を識別することを含むことが可能である。第2のレーダ反射波は、反射波の深度もしくは範囲、位置、例えば、センサとの関係における反射波の角位置、および/または速度を識別してよい。他の実装形態において、第2のレーダ反射波の位置は、座標系におけるx-y座標、または他の何らかの位置情報であってよい。第2のレーダ反射波は、環境における別のオブジェクト、例えば、新たに検出可能なオブジェクトからの、および/または環境における何らかの介在するオブジェクトからの反射からの反射波であってよい。後者の事例において、レーダ反射波は、半径方向に沿った位置で幻影の「オブジェクト」を識別してよい。本明細書において説明される技法は、反射波が反射された反射波であるかどうかを決定すべく使用されてよい。
動作608において、プロセス600が、第1の位置、および第2の位置に基づいて、反射点の位置を決定することができる。例えば、本明細書において説明される技法は、反射点を、無線エネルギーが、センサが第2の反射波を生成するように反射した第1の反射波に関連付けられたオブジェクトから反射した、第2の半径方向に沿った、空間における点として決定することができる。ある例において、動作610は、第1の反射波および第2の反射波の位置に関連付けられた幾何を使用して反射点を決定することができる。図3は、反射点が、センサと第2の反射波の間に延びる第1の線と、第1の反射波と第2の反射波の間に延びる線に垂直であり、かつこの線を二分する第2の線の交差点として決定されることが可能である。さらに、または代替として、反射点からその2つの点までの線分が等しいという想定が、その線に沿ってどこに反射点があるかを決定すべく使用されることが可能である。理解されるとおり、点の任意の所与の対に関して、反射点は、必然的に、センサとセンサから半径方向でより遠く離れた反射波の間の線上にあり、それ故、図6の例において、第2の反射波は、第1の反射波と比べて、より遠く離れている。
動作610において、プロセス600が、環境におけるオブジェクトについてのデータを受信することができる。例えば、動作610は、環境についてのさらなるセンサデータを受信することを含んでよい。そのようなさらなるセンサデータは、車両上に配置された、またはそれ以外で車両に関連付けられた1つまたは複数のセンサモダリティからの任意のタイプのセンサデータであってよい。ある例において、動作610は、環境のマップデータを受信することを含むことが可能である。本明細書において説明される例において、オブジェクトについてのデータは、環境内における静的であるか、動的であるかにかかわらず、オブジェクトについての情報を提供することが可能である任意のソースからであってよい。
動作612において、プロセス600が、オブジェクトが反射点の位置にあるかどうかを決定する。前段で説明されるとおり、反射波の幾何が、理論上の反射点、すなわち、最初に第1の反射波に関連付けられたオブジェクトから反射された無線エネルギーが、第2の反射波の位置で反射波を与えるべく、後に続いて反射する点を決定することを可能にする。そのような反射は、環境におけるオブジェクトからの(直接の)反射と対比される、ゴーストの、または幻影の反射である。それ故、そのような理論上の点が、反射波の任意の対に関して決定され得る一方で、610で受信されたオブジェクトについてのデータが、その理論上の反射点に実際にオブジェクトが存在するかどうかを決定すべく使用されることが可能である。
動作612において、反射点にオブジェクトが存在すると決定された場合、動作614において、プロセス600が、第2のレーダ反射波を、反射されたレーダ反射波として識別することができる。例えば、第2の反射波の位置が、反射点における第1の反射波の(理論上の)反射の位置に緊密に対応し、かつその理論上の反射点にオブジェクトが存在するため、車両コンピューティングデバイスが、反射波は反射された反射波であると決定してよい。例えば、車両コンピューティングデバイスは、第2の反射波に、潜在的な反射された反射波としてフラグ設定すること、および/または車両の他の構成要素に情報を送ることができる。
動作616において、プロセス600が、第2のレーダ反射波を除外して車両を制御してよく、またはそれ以外でそれを考慮に入れてよい。例えば、第2のレーダ反射波は、反射された反射波であり、環境における実際のオブジェクトを表すものではないと決定されているため、車両の制御は、第2のレーダ反射波に依存しなくてよい。本明細書において説明されるとおり、従来のプランニングシステムは、第2のレーダ反射波によって表される幻影の「オブジェクト」に対して反応するように(例えば、制動すること、ステアリングすること、またはこれらに類することによって)車両を制御してきたことがある。しかし、反射された反射波を識別すること、および除外することによって、本明細書において説明される技法は、向上させられた制御を提供すること、例えば、環境における実際のオブジェクトだけに応答することが可能である。ある実装形態において、本明細書において説明される技法は、第2の反射波を、それが反射点であることを確認すべく追跡することもできる。前段で述べられるとおり、環境の幾何が、反射された反射波を可能にする条件を生じさせるが、その幾何は、不断に変化している。それ故、反射された反射波が1つのレーダスキャンに存在することがある一方で、後に続く(または先行する)スキャンに存在する尤度は低く、それ故、一過性の反射波を追跡しようと試みることは、可能でないことがある。
対照的に、動作612において、反射点の位置にオブジェクトが存在しないと決定された場合、動作518において、プロセス600が、第2のレーダ反射波を、環境におけるさらなる潜在的なオブジェクトとして識別することができる。例えば、反射点にオブジェクトが存在しないとき、レーダ反射波は、反射された反射波でない尤度が高い。代わりに、第2の反射波は、環境における実際のオブジェクトに対応してよい。例えば、反射波は、新たに検出されたオブジェクト、例えば、図3の例における建造物から出現する歩行者であってよい。
動作620において、プロセス600が、オプションとして、さらなるオブジェクトの存在を確認してよい。例えば、動作624は、さらなるセンサ情報を受信すること、および、さらなるセンサ情報に少なくとも部分的に基づいて、第2のレーダ反射波に関連付けられた位置におけるオブジェクトの存在を決定することを含んでよい。さらなるセンサ情報は、LiDARデータ、画像データ、さらなるレーダデータ、飛行時間データ、またはこれらに類するもののうちの1つまたは複数を含んでよい。ある実装形態において、動作620は、動作610、612と実質的に同一であってよいが、反射点におけるオブジェクトの存在を決定する代わりに、プロセス600は、第2の位置におけるオブジェクトの、すなわち、第2の反射波の存在を決定してよい。
動作622において、プロセス600が、第2の反射波に少なくとも部分的に基づいて車両を制御することを含むことが可能である。例えば、第2の反射波は、実際の動的オブジェクトに関連付けられることがあるため、本明細書において説明される技法は、そのオブジェクトとの関係において車両を制御してよい。ある例において、車両の軌道は、第2の反射波に少なくとも部分的に基づいて決定されることが可能である。非限定的な例として、予測システムが、予測構成要素424と同様に、さらなるオブジェクトの予測される軌道を決定することができ、プランニングシステム、例えば、プランニング構成要素426が、さらなるオブジェクトの予測される軌道との関係で車両の軌道を生成することができる。ある実装形態において、動作622は、さらに、または代替として、例えば、さらなるオブジェクトからの後に続く反射波がオブジェクト反射波として扱われ得るように、さらなるオブジェクトを追跡することを含むことも可能である。そのようなオブジェクト反射波は、さらなるオブジェクトによって生じさせられる反射された反射波を決定すべく使用されてよい。
プロセス500、600の動作は、順次に実行されること、および/または並行に実行されることがある。非限定的な例として、動作502、504、602において受信されるレーダデータは、複数のレーダ反射波を含んでよい。ある実装形態において、動作506、508、510、512、608、610、612、およびその他は、レーダ反射波のそれぞれに関して、例えば、並行に実行されてよい。それ故、レーダデータからのすべての反射された反射波が、本明細書において説明されるとおり、比較的迅速に識別され、考慮から除外されてよい。さらに、反射波の単一の対だけが図5および図6において参照される一方で、反射波の多様な対が、本明細書において説明される技法を使用して比較されてよい。非限定的な例として、同一の反射波が、他の多様な反射波(環境におけるオブジェクトに関連付けられていることが知られていても、知られていなくてもよい)と比較されてよい。ある例において、知られている各オブジェクトに関する複数のレーダ反射波が受信されることが可能であり、それらの反射波が、例えば、プロセス400またはプロセス500を使用して、オブジェクトに関連付けられていない他の反射波と比較されることが可能である。さらに、反射波の対が、例えば、反射波が反射であることのさらなる信頼度を得るべく、プロセス400とプロセス500の両方により処理されてよい。さらに別の実装形態において、複数のレーダ反射波は、例えば、複数のレーダ反射波のうちの何らかのサブセットだけが処理されるように、フィルタリングされてよい。例えば、知られているオブジェクトと比べて、車両102に相対的により近いレーダ反射波は、反射された反射波ではあり得ず、それ故、プロセス500の態様により探索されなくてよい。さらに、例えば、0ではない、最低限の速度を下回る速度を有するレーダ反射波は、例えば、それらの反射波が、反射された反射波である場合でも、車両に極めてわずかな影響しか与えないことがあるため、探索から除外されてもよい。さらに、しきい値角度、例えば、45度、60度、90度、またはこれらに類するもの以上の角度(レーダセンサ104/車両102との関係で)を有する反射波、また、他のフィルタリング技法および基準が使用されてもよい。
図5および図6は、本開示の実施形態による例示的なプロセスを示す。図5および図6に示されるプロセスは、複数のサブプロセスとして、例えば、車両102、402の様々な構成要素によって実行されてよいが、必ずしもそのように実行される必要はない。プロセス500、600は、各動作が、ハードウェアで、ソフトウェアで、またはその組み合わせで実施され得る動作のシーケンスを表す論理フローチャートとして例示される。ソフトウェアの脈絡において、動作は、1つまたは複数のプロセッサによって実行されたとき、記載される動作をコンピュータまたは自律車両に実行させる1つまたは複数の非一過性のコンピュータ可読記憶媒体上に記憶されたコンピュータ実行可能命令を表す。一般に、コンピュータ実行可能命令は、特定の機能を実行する、または特定の抽象データ型を実装するルーチン、プログラム、オブジェクト、構成要素、データ構造、およびこれらに類するものを含む。動作が説明される順序は、限定として解釈されることが意図されるわけではなく、任意の数の説明される動作が、プロセスを実施すべく任意の順序で、かつ/または並行に組み合わされることが可能である。
(例条項)
A 例示的な自律車両は、自律車両上のレーダセンサと、1つまたは複数のプロセッサと、その1つまたは複数のプロセッサによって実行されたとき、レーダセンサから、レーダセンサからの第1の半径方向に沿った第1の速度と、第1の範囲とを備える第1のレーダ反射波と、レーダセンサからの第2の半径方向に沿った第2の速度と、第2の範囲とを備える第2のレーダ反射波とを備える、環境のレーダデータを受信すること、投影された速度として、第2のレーダ反射波に対応する点上に第1の速度を投影すること、第2の速度および投影された速度に少なくとも部分的に基づいて、第2のレーダ反射波が、介在する表面から反射した反射されたレーダ反射波に対応すると決定すること、および第2のレーダ反射波を除外して環境内で自律車両を制御することを備える動作を自律車両に実行させるプロセッサ実行可能命令を記憶するメモリとを含む。
B 例Aの自律車両であって、第1の速度を投影することが、第1の半径方向上の第1の範囲、および第2の半径方向上の第2の範囲に少なくとも部分的に基づいて、反射線を決定すること、反射線を軸にして第1の位置から第2の位置に第1の速度を反射すること、および投影された速度を、第2の半径方向に沿った反射された速度の成分として決定することを備える、自律車両。
C 例Aまたは例Bの自律車両であって、第2のレーダ反射波が反射されたレーダ反射波に対応すると決定することが、投影された速度の第1の大きさを第2の速度の第2の大きさと比較すること、および第1の大きさが第2の大きさと実質的に等しいと決定することを備える、自律車両。
D 例A乃至例Cのいずれか1つの例の自律車両であって、動作が、レーダデータを受信することに先立って、オブジェクトに関連付けられた以前のレーダ反射波を受信すること、および、以前のレーダ反射波に少なくとも部分的に基づいて、第1の反射波を、オブジェクトに関連付けられたオブジェクト反射波として識別することをさらに備える、自律車両。
E 車両上に少なくとも1つのさらなるセンサをさらに備える、例A乃至例Dのいずれか1つの例の自律車両であって、動作が、少なくとも1つのさらなるセンサから、さらなるセンサデータを受信すること、および、さらなるセンサデータに少なくとも部分的に基づいて、介在するオブジェクトの存在を検証することをさらに備える、自律車両。
F 例A乃至例Eのいずれか1つの例の自律車両であって、動作が、第1の反射波および第2の反射波に関連付けられた距離、第1の反射波および第2の反射波に関連付けられた位置、または第1の反射波および第2の反射波に関連付けられた速度のうちの1つまたは複数に少なくとも部分的に基づいて、複数の候補レーダ反射波から第1の反射波および第2の反射波を選択することをさらに備える、自律車両。
G 例示的な方法は、車両上のレーダセンサによって、複数のレーダ反射波を含む、環境のレーダデータをキャプチャすること、複数のレーダ反射波の第1のレーダ反射波に少なくとも基づいて、車両から延びる第1の半径方向に沿った第1の速度を決定すること、複数のレーダ反射波の第2のレーダ反射波に少なくとも部分的に基づいて、車両から延びる第2の半径方向に沿った第2の速度を決定すること、第2の方向に沿って第1の速度の投影された速度を決定すること、投影された速度と第2の速度の比較に少なくとも部分的に基づいて、第2のレーダ反射波が、オブジェクト、およびオブジェクトとレーダセンサの間の介在するオブジェクトから反射された反射されたレーダ反射波に対応すると決定することを含む。
H レーダセンサまたはさらなるセンサのうちの少なくとも1つからセンサデータを受信すること、および、センサデータに少なくとも部分的に基づいて、第1の反射波が環境におけるオブジェクトに関連付けられていると識別することをさらに備える例Gの方法。
I センサデータに少なくとも部分的に基づいて、かつ第1のレーダ反射波および第2のレーダ反射波をキャプチャすることに先立って、環境におけるオブジェクトを追跡することをさらに備え、第2の反射波が反射された反射波であると決定することが、追跡することに少なくとも部分的にさらに基づく、例Gまたは例Hの方法。
J 投影される速度が、第2の方向に沿って第2の反射波に対応する位置上に投影された速度を備える、例G乃至例Iのいずれか1つの例の方法。
K 投影された速度を決定することが、第1の反射波に関連付けられた第1の範囲、および第2の反射波に関連付けられた第2の範囲に少なくとも部分的に基づいて、反射線を決定すること、反射された速度を決定すべく反射線を軸にして第1の速度を反射すること、および投影された速度を、第2の半径方向に沿った反射された速度の成分として決定することを備える、例G乃至例Jのいずれか1つの例の方法。
L 反射点を、反射線と、レーダセンサと第2の位置の間に延びる線の交差点として決定することをさらに備え、反射点が、介在するオブジェクトに関連付けられた位置である、例G乃至例Kのいずれか1つの例の方法。
M さらなるセンサデータまたはマップデータのうちの少なくとも1つを受信すること、および、さらなるセンサデータまたはマップデータに少なくとも部分的に基づいて、反射点における介在するオブジェクトを識別することをさらに備える例G乃至例Lのいずれか1つの例の方法。
N 第1の反射波および第2の反射波が、第1の反射波および第2の反射波に関連付けられた距離、第1の反射波および第2の反射波に関連付けられた位置、または第1の反射波および第2の反射波に関連付けられた速度のうちの少なくとも1つに少なくとも部分的に基づいて、選択される、例G乃至例Mのいずれか1つの例の方法。
O 第1の反射波が、環境におけるオブジェクトに関連付けられ、第2の反射波が、第1のレーダ反射波に関連付けられた第1の距離と比べて、より大きい第2の距離を有する第2のレーダ反射波、またはしきい値速度以上である第2の速度のうちの少なくとも1つに少なくとも部分的に基づいて、決定される、例G乃至例Nのいずれか1つの例の方法
P 実行されたとき、レーダセンサによって、第1の速度と、第1の方向と、第1の範囲とを備える第1のレーダ反射波と、第2の速度と、第2の方向と、第2の範囲とを備える第2のレーダ反射波と含む、環境のレーダデータをキャプチャすること、第2の方向に関して第1の速度の投影された速度を決定すること、および、投影された速度と第2の速度の比較に少なくとも部分的に基づいて、第2のレーダ反射波が反射されたレーダ反射波に対応すると決定することを含む動作を1つまたは複数のプロセッサに実行させる命令を記憶する1つまたは複数の例示的な非一過性のコンピュータ可読媒体。
Q 例Pの1つまたは複数の非一過性のコンピュータ可読媒体であって、投影された速度を決定することが、第1の反射波および第2の反射波に少なくとも部分的に基づいて、反射線を決定すること、反射された速度を決定すべく反射線を軸にして第1の位置から第2の位置に第1の速度を反射すること、および投影された速度を、第2の方向に沿った反射された速度の成分として決定することを備える、コンピュータ可読媒体。
R 反射点を、反射点からの線が第1の点から第2の点までの接続線を二分するように第2の方向に沿った点として決定すること、さらなるセンサデータを受信すること、さらなるセンサデータに少なくとも部分的に基づいて、反射点における表面の存在を決定すること、および第2のレーダ反射波が反射されたレーダ反射波に対応することを検証することをさらに備える例Pまたは例Qの方法。
S 動作は、レーダセンサまたはさらなるセンサのうちの少なくとも1つからセンサデータを受信すること、および、センサデータに少なくとも部分的に基づいて、第1の反射された反射波が、環境におけるオブジェクトに関連付けられていると決定することをさらに備える、例P乃至例Rのいずれか1つの例の1つまたは複数の非一過性のコンピュータ可読媒体。
T 動作が、複数の反射の反射波から1つまたは複数の候補反射の反射波を識別することをさらに備え、1つまたは複数の候補反射の反射波が、第2のレーダ反射波を含み、識別することが、1つまたは複数の候補反射の反射波の個々に関連付けられた範囲、または1つまたは複数の候補反射の反射波の個々に関連付けられた速度のうちの少なくとも1つに少なくとも部分的に基づく、例P乃至例Sのいずれか1つの例の1つまたは複数の非一過性のコンピュータ可読媒体。
U 例示的な自律車両は、少なくともレーダセンサを含む自律車両上の1つまたは複数のセンサと、1つまたは複数のプロセッサと、1つまたは複数のプロセッサによって実行されたとき、レーダセンサから、レーダセンサからの第1の半径方向に沿った第1の範囲を備える関連付けられた第1の位置を有する第1のレーダ反射波と、レーダセンサからの第2の半径方向に沿った第2の範囲を備える関連付けられた第2の位置を有する第2のレーダ反射波とを備える、環境のレーダデータを受信すること、第1の位置および第2の位置に少なくとも部分的に基づいて、第2の半径方向に沿って反射点を決定すること、1つまたは複数のセンサから、さらなるセンサデータを受信すること、さらなるセンサデータに少なくとも部分的に基づいて、環境におけるオブジェクトを識別すること、反射点に配置されているオブジェクトに少なくとも部分的に基づいて、第2のレーダ反射波が反射された反射波であると決定すること、および第2のレーダ反射波を除外して環境内で自律車両を制御することを備える動作を自律車両に実行させるプロセッサ実行可能命令を記憶するメモリとを含む。
V 反射点を決定することが、第1の位置および第2の位置に少なくとも部分的に基づいて、反射線を決定すること、および反射点を、反射線と第2の方向に沿って延びる線の交差点として決定することを備える、例Uの自律車両。
W 動作が、レーダセンサから、かつレーダデータを受信することに先立って、第2のオブジェクトに関連付けられた以前のセンサデータを受信すること、および、以前のセンサデータに少なくとも部分的に基づいて、第1の反射波を、第2のオブジェクトに関連付けられたオブジェクト反射波として識別することをさらに備える、例Uまたは例Vの自律車両。
X 動作が、第2の範囲が第1の範囲と比べてより大きいことに少なくとも部分的に基づいて、複数の反射波から第2の反射波を選択することをさらに備える、例U乃至例Wのいずれか1つの例の自律車両。
Y 動作が、レーダセンサから、かつレーダデータを受信した後、環境に関連付けられたさらなるレーダ反射波を受信すること、およびさらなるレーダ反射波に少なくとも部分的に基づいて、第2のレーダ反射波が反射された反射波であると識別することをさらに備える、例U乃至例Xのいずれか1つの例の自律車両。
Z 車両上のレーダセンサから、複数のレーダ反射波を含む、環境のレーダデータを受信すること、複数のレーダ反射波のうちの第1のレーダ反射波に少なくとも基づいて、レーダセンサから延びる第1の半径方向上の第1の位置を決定すること、複数のレーダ反射波のうちの第2のレーダ反射波に少なくとも部分的に基づいて、レーダセンサから延びる第2の半径方向上の第2の位置を決定すること、第2の半径方向に沿って、かつレーダセンサと第2の位置の間で反射点を決定すること、および環境についてのさらなるデータに少なくとも部分的に基づいて、第2のレーダ反射波が反射された反射波であると決定することを備える例示的な方法。
AA 第2のレーダ反射波を除外して環境内で車両を制御することをさらに備える例Zの方法。
BB 反射点を決定することが、第1の位置および第2の位置に少なくとも部分的に基づいて、反射線を決定することを備える、例Zまたは例AAの方法。
CC さらなるデータが、センサデータまたはマップデータのうちの少なくとも1つを備え、センサデータが、LiDARデータ、さらなるレーダデータ、もしくは画像データのうちの1つまたは複数を備える、例Z乃至例BBのいずれか1つの例の方法。
DD レーダセンサから、環境に関連付けられたさらなるレーダ反射波を受信すること、およびさらなるレーダ反射波に少なくとも基づいて、第2のレーダ反射波が反射された反射波であることを識別することをさらに備える例Z乃至例CCのいずれか1つの例の方法。
EE レーダセンサから、かつレーダデータを受信することに先立って、環境における追跡されるオブジェクトに関連付けられた以前のレーダ反射波を受信すること、以前のレーダ反射波に少なくとも部分的に基づいて、第1の反射波を、追跡されるオブジェクトに関連付けられたオブジェクト反射波として識別することさらに備える例Z乃至例DDのいずれか1つの例の方法。
FF 第1の反射波および第2の反射波が、第1の反射波および第2の反射波に関連付けられた範囲、第1の反射波および第2の反射波に関連付けられた第1の位置および第2の位置、または速度のうちの少なくとも1つに少なくとも部分的に基づいて、選択される、例Z乃至例EEのいずれか1つの例の方法。
GG 第1の反射波が、環境におけるオブジェクトに関連付けられ、第2の反射波が、第2のレーダ反射波が、第1のレーダ反射波に関連付けられた第1の範囲と比べてより大きい第2の範囲を有すること、または第2のレーダ反射波の第2の速度が、しきい値速度以上であることのうちの少なくとも1つに少なくとも部分的に基づいて、決定される、例Z乃至例FFのいずれか1つの例の方法。
HH 車両上のさらなるセンサから、さらなるセンサデータを受信すること、およびさらなるセンサデータに少なくとも部分的に基づいて、第1の反射波に関連付けられたオブジェクトを識別することをさらに備える、例Z乃至例GGのいずれか1つの例の方法。
II 実行されたとき、車両上のレーダセンサから、複数のレーダ反射波を含む、環境のレーダデータを受信すること、複数のレーダ反射波のうちの第1のレーダ反射波に少なくとも基づいて、レーダセンサから延びる第1の半径方向上の第1の位置を決定すること、複数のレーダ反射波のうちの第2のレーダ反射波に少なくとも部分的に基づいて、レーダセンサから延びる第2の半径方向上の第2の位置を決定すること、第2の半径方向に沿って、かつレーダセンサと第2の位置の間で反射点を決定すること、環境についてのさらなるデータに少なくとも部分的に基づいて、反射点に対応する位置におけるオブジェクトの存在を決定すること、およびその位置におけるオブジェクトの存在に少なくとも部分的に基づいて、第2のレーダ反射波が反射された反射波であると決定することを含む動作を1つまたは複数のプロセッサに実行させる命令を記憶する1つまたは複数の例示的な非一過性のコンピュータ可読媒体。
JJ 反射点を決定することが、第1の位置および第2の位置に少なくとも部分的に基づいて、反射線を決定することを備える、例IIの1つまたは複数の非一過性のコンピュータ可読媒体。
KK さらなるデータが、センサデータまたはマップデータのうちの少なくとも1つを備え、センサデータが、LiDARデータまたは画像データのうちの1つまたは複数を備える、例IIまたは例JJの1つまたは複数の非一過性のコンピュータ可読媒体。
LL 動作が、レーダセンサから、環境に関連付けられたさらなるレーダ反射波を受信すること、およびさらなるレーダ反射波に少なくとも部分的に基づいて、第2のレーダ反射波が反射された反射波であることを検証することをさらに備える、例II乃至例KKのいずれか1つの例の1つまたは複数の非一過性のコンピュータ可読媒体。
MM 動作が、レーダセンサから、かつレーダデータを受信することに先立って、環境における追跡されるオブジェクトに関連付けられた以前のレーダ反射波を受信すること、以前のレーダ反射波に少なくとも部分的に基づいて、第1の反射波を、追跡されるオブジェクトに関連付けられたオブジェクト反射波として識別することをさらに備える、例II乃至例LLのいずれか1つの例の1つまたは複数の非一過性のコンピュータ可読媒体。
NN 第1の反射波および第2の反射波が、第1の反射波および第2の反射波に関連付けられた範囲、第1の反射波および第2の反射波に関連付けられた第1の位置および第2の位置、または速度のうちの少なくとも1つに少なくとも部分的に基づいて、選択される、例II乃至例MMのいずれか1つの例の1つまたは複数の非一過性のコンピュータ可読媒体。
前段で説明される例条項は、1つの特定の実装形態に関して説明される一方で、本明細書の脈絡において、例条項の内容は、方法、デバイス、システム、コンピュータ可読媒体、および/または別の実装形態を介して実施されることも可能であることを理解されたい。
前段で説明される例条項は、1つの特定の実装形態に関して説明される一方で、本明細書の脈絡において、例条項の内容は、方法、デバイス、システム、コンピュータ可読媒体、および/または別の実装形態を介して実施されることも可能であることを理解されたい。
(結論)
本明細書において説明される技法の1つまたは複数の例が説明されてきた一方で、それらの例の様々な変更形態、追加形態、置換形態、および均等形態が、本明細書において説明される技法の範囲内に含められる。
例の説明において、例示として、主張される主題の特定の例を示す、説明の一部を形成する添付の図面に対する参照が行われる。他の例が使用されることが可能であること、および構造上の変更などの変更または変形が行われることが可能であることを理解されたい。そのような例、変更、または変形は、必ずしも、意図される主張される主題の範囲からの逸脱ではない。本明細書において説明されるステップは、或る順序で提示され得る一方で、ある事例において、順序は、説明されるシステムおよび方法の機能を変更することなしに、いくつかの入力が異なる時点で、または異なる順序で提供されるように変更されることが可能である。また、開示される手続きは、異なる順序で実行されることも可能である。さらに、本明細書における様々な計算は、開示される順序で実行される必要はなく、計算の代替の順序を使用する他の例が、容易に実施されることが可能である。順序変更されることに加えて、計算は、同一の結果を伴って部分計算に分解されることも可能である。

Claims (15)

  1. 自律車両であって、
    前記自律車両のレーダセンサと、
    1つまたは複数のプロセッサと、
    前記1つまたは複数のプロセッサによって実行された場合に、前記自律車両に、
    前記レーダセンサから環境のレーダデータを受信し、前記レーダデータは、
    前記レーダセンサから第1の半径方向に沿った第1の速度および前記第1の半径方向に沿った第1の範囲での第1の位置を含む第1のレーダ反射波と、
    前記レーダセンサから第2の半径方向に沿った第2の速度および第2の範囲を含む第2のレーダ反射波とを含み、
    前記第1の位置および前記第2の位置または前記第1の速度および前記第2の速度のうちの少なくとも1つに少なくとも部分的に基づいて、前記第2のレーダ反射波が中間表面で反射された反射されたレーダ反射波に対応することを決定し、
    前記第2のレーダ反射波を除いた前記環境内の前記自律車両を制御する動作を実行させるプロセッサ実行可能命令を格納するメモリと
    を備える自律車両。
  2. 前記第2のレーダ反射波が前記反射されたレーダ反射波に対応することを前記決定することは、
    投影された速度として、前記第1の速度を前記第2のレーダ反射波に対応する点に投影することと、
    前記投影された速度の第1の大きさが前記第2の速度の第2の大きさに実質的に等しいことを決定することと
    を含む請求項1に記載の自律車両。
  3. 前記第1の速度を投影することは、
    前記第1の半径方向の前記第1の範囲および前記第2の半径方向の前記第2の範囲に少なくとも部分的に基づいて反射線を決定することと、
    前記第1の速度を前記反射線について前記第1の位置から前記第2の位置まで反射することと、
    前記投影速度を前記第2の半径方向に沿った前記反射された速度の成分として決定することと
    を含む請求項2に記載の自律車両。
  4. 前記第2のレーダ反射波が前記反射されたレーダ反射波に対応することを決定することは、
    前記第1の位置および前記第2の位置に少なくとも部分的に基づいて、前記第2の半径方向に沿った反射点を決定することと、
    1つまたは複数のさらなるセンサから、さらなるセンサデータを受信することと、
    前記さらなるセンサデータに少なくとも部分的に基づいて、前記環境におけるオブジェクトを識別することと、
    前記オブジェクトが前記反射点に配置されていることを決定することと
    を含む請求項1ないし3のいずれか一項に記載の自律車両。
  5. 前記反射点を決定することは、
    前記第1の位置および前記第2の位置に少なくとも部分的に基づいて、反射線を決定することと、
    前記反射点を前記反射線と前記第2の半径方向に沿って延びる線との交点として決定することと
    を含む請求項4に記載の自律車両。
  6. 前記動作は、
    前記レーダデータを受信する前に、オブジェクトに関連付けられた以前のレーダ反射波を受信することと、
    少なくとも部分的に前記以前のレーダ反射波に基づいて、前記第1のレーダ反射波を前記オブジェクトに関連付けられたオブジェクト反射波として識別することと
    をさらに含む請求項1ないし5のいずれか一項に記載の自律車両。
  7. 前記自律車両に少なくとも1つのさらなるセンサをさらに含み、前記動作は、
    前記少なくとも1つのさらなるセンサから、さらなるセンサデータを受信することと、
    前記さらなるセンサデータに少なくとも部分的に基づいて、前記中間表面の存在を検証することとをさらに含む請求項1ないし6のいずれか一項に記載の自律車両。
  8. 車両のレーダセンサによって、環境のレーダデータをキャプチャするステップであって、前記レーダデータは、複数のレーダ反射波を含むステップと、
    前記複数のレーダ反射波のうちの第1のレーダ反射波に少なくとも基づいて、前記車両から延びる第1の半径方向に沿った第1の速度または前記第1の半径方向に沿った第1の範囲での第1の位置の少なくとも1つを決定するステップと、
    前記複数のレーダ反射波のうちの第2のレーダ反射波に少なくとも部分的に基づいて、前記車両から延びる第2の半径方向に沿った第2の速度または前記第2の半径方向に沿った第2の範囲での第2の位置の少なくとも1つを決定するステップと、
    前記第1の位置および前記第2の位置または前記第1の速度および前記第2の速度のうちの少なくとも1つに少なくとも部分的に基づいて、前記第2のレーダ反射波がオブジェクトおよび前記オブジェクトと前記レーダセンサとの間の中間オブジェクトから反射されたレーダ反射波に対応することを決定するステップと
    を備える方法。
  9. 投影された速度として、前記第1の速度を前記第2のレーダ反射波に対応する点に投影するステップと、
    前記投影された速度の第1の大きさが前記第2の速度の第2の大きさに実質的に等しいことを決定するステップと
    をさらに備える請求項8に記載の方法。
  10. 前記第1の速度を前記投影することは、
    前記第1の半径方向の前記第1の範囲および前記第2の半径方向の前記第2の範囲に少なくとも部分的に基づいて反射線を決定するステップと、
    前記第1の速度を前記反射線について前記第1の位置から前記第2の位置まで反射するステップと、
    前記投影速度を前記第2の半径方向に沿った前記反射された速度の成分として決定するステップと
    を含む請求項9に記載の方法。
  11. 反射点を、前記反射線と前記レーダセンサと前記第2の位置との間に延びる線との交点として決定するステップであって、前記反射点は、前記中間オブジェクトに関連付けられた位置であるステップをさらに備える請求項10に記載の方法。
  12. 前記第1の位置および前記第2の位置に少なくとも部分的に基づいて、前記第2の半径方向に沿った反射点を決定するステップと、
    1つまたは複数のさらなるセンサから、さらなるセンサデータを受信するステップと、
    前記さらなるセンサデータに少なくとも部分的に基づいて、前記環境におけるさらなるオブジェクトを識別するステップとをさらに備え、
    前記第2のレーダ反射波が反射された反射波であるという前記決定は、少なくとも部分的に、前記反射点に配置されている前記さらなるオブジェクトに基づいている、
    請求項8ないし11のいずれか一項に記載の方法。
  13. 前記反射点を前記決定するステップは、
    前記第1の位置および前記第2の位置に少なくとも部分的に基づいて、反射線を決定するステップと、
    前記反射点を前記反射線と前記第2の半径方向に沿って延びる線との交点として決定するステップと、
    前記反射点を前記反射線と前記第2の半径方向に沿って延びる線との交点として決定するステップと
    を含む請求項12に記載の方法。
  14. 前記第1の範囲および前記第2の範囲、前記第1の位置および前記第2の位置、または前記第1の速度および前記第2の速度のうちの少なくとも1つに少なくとも部分的に基づいて、前記第1のレーダ反射波および前記第2のレーダ反射波を選択するステップをさらに備える請求項8ないし13のいずれか一項に記載の方法。
  15. 実行された場合に、1つまたは複数のプロセッサに、請求項8ないし14のいずれか一項に記載の方法を実行させる命令を格納する1つまたは複数の非一時的なコンピュータ可読媒体。
JP2021550204A 2019-02-28 2020-02-25 速度および位置情報を使用するレーダ反射の認識 Active JP7464616B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US16/288,990 2019-02-28
US16/288,990 US11255958B2 (en) 2019-02-28 2019-02-28 Recognizing radar reflections using velocity information
US16/289,068 2019-02-28
US16/289,068 US11353578B2 (en) 2019-02-28 2019-02-28 Recognizing radar reflections using position information
PCT/US2020/019674 WO2020176483A1 (en) 2019-02-28 2020-02-25 Recognizing radar reflections using velocity and position information

Publications (3)

Publication Number Publication Date
JP2022522298A true JP2022522298A (ja) 2022-04-15
JPWO2020176483A5 JPWO2020176483A5 (ja) 2023-03-03
JP7464616B2 JP7464616B2 (ja) 2024-04-09

Family

ID=69941497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021550204A Active JP7464616B2 (ja) 2019-02-28 2020-02-25 速度および位置情報を使用するレーダ反射の認識

Country Status (4)

Country Link
EP (1) EP3931593A1 (ja)
JP (1) JP7464616B2 (ja)
CN (1) CN113544538A (ja)
WO (1) WO2020176483A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11693110B2 (en) 2020-11-04 2023-07-04 Ford Global Technologies, Llc Systems and methods for radar false track mitigation with camera
DE102022211987A1 (de) 2021-11-12 2023-05-17 Zf Friedrichshafen Ag Verfahren, Computerprogramm, maschinenlesbares Speichermedium und System zur Klassifizierung von Geisterobiekten in einer Umgebung eines Straßenfahrzeugs, eines Beförderungssystems und/oder einer Komponente einer Verkehrsinfrastruktur

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3608991B2 (ja) 1999-10-22 2005-01-12 富士通テン株式会社 車間距離センサ
JP3770189B2 (ja) 2002-03-19 2006-04-26 株式会社デンソー 物体認識装置、物体認識方法、レーダ装置
JP5061814B2 (ja) 2007-09-25 2012-10-31 株式会社デンソー 車幅検出方法及び装置、車両制御装置
WO2016003473A1 (en) 2014-07-03 2016-01-07 GM Global Technology Operations LLC Vehicle radar methods and systems
US9810782B2 (en) * 2015-03-20 2017-11-07 Delphi Technologies, Inc. Vehicle radar system with image reflection detection
US10296001B2 (en) * 2016-10-27 2019-05-21 Uber Technologies, Inc. Radar multipath processing
JP7053982B2 (ja) * 2017-05-25 2022-04-13 ミツミ電機株式会社 ゴースト除去方法及びレーダ装置

Also Published As

Publication number Publication date
WO2020176483A1 (en) 2020-09-03
EP3931593A1 (en) 2022-01-05
JP7464616B2 (ja) 2024-04-09
CN113544538A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
JP7422687B2 (ja) オクルージョン認識プランニング
US11255958B2 (en) Recognizing radar reflections using velocity information
US11965956B2 (en) Recognizing radar reflections using position information
JP2021531208A (ja) 車両のための衝突予測及び回避
JP2022527072A (ja) 属性に基づく歩行者の予測
JP2021524410A (ja) ドライブエンベロープの決定
WO2020139666A1 (en) Collision avoidance system
JP2023515494A (ja) 組み合わされたトラック信頼度及び分類モデル
US11275173B2 (en) Yaw rate from radar data
US20220204029A1 (en) Collision avoidance using an object contour
US11614742B2 (en) Height estimation using sensor data
JP2023514618A (ja) レーダー追跡されたオブジェクト速度及び/又はヨー
WO2022232708A1 (en) Velocity regression safety system
WO2022125308A1 (en) Determining inputs for perception system
JP2023547988A (ja) 衝突回避計画システム
JP2022522298A (ja) 速度および位置情報を使用するレーダ反射の認識
US11960009B2 (en) Object contour determination
US20230003872A1 (en) Tracking objects with radar data
US11761780B1 (en) Determining data for semantic localization
US20230003871A1 (en) Associating radar data with tracked objects
WO2021211322A1 (en) Teleoperations for collaborative vehicle guidance
US11953590B1 (en) Radar multipath detection based on changing virtual arrays
US20240124020A1 (en) Stopping action of an autonomous vehicle
US11807233B1 (en) Procedurally generated safety system determination
WO2023278771A1 (en) Associating radar data with tracked objects

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240328

R150 Certificate of patent or registration of utility model

Ref document number: 7464616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150