JP2022520913A - New single-focus intraocular lens for refractory macular vision in patients with macular degeneration - Google Patents

New single-focus intraocular lens for refractory macular vision in patients with macular degeneration Download PDF

Info

Publication number
JP2022520913A
JP2022520913A JP2021521005A JP2021521005A JP2022520913A JP 2022520913 A JP2022520913 A JP 2022520913A JP 2021521005 A JP2021521005 A JP 2021521005A JP 2021521005 A JP2021521005 A JP 2021521005A JP 2022520913 A JP2022520913 A JP 2022520913A
Authority
JP
Japan
Prior art keywords
iol
intraocular lens
patients
curvature
lens system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021521005A
Other languages
Japanese (ja)
Other versions
JP7487188B2 (en
Inventor
キュレシ,ムハンマド,アリ
アータル,パブロ
ロビー,スコット
Original Assignee
サイネオス ヘルス インターナショナル リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サイネオス ヘルス インターナショナル リミテッド filed Critical サイネオス ヘルス インターナショナル リミテッド
Publication of JP2022520913A publication Critical patent/JP2022520913A/en
Application granted granted Critical
Publication of JP7487188B2 publication Critical patent/JP7487188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1624Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1637Correcting aberrations caused by inhomogeneities; correcting intrinsic aberrations, e.g. of the cornea, of the surface of the natural lens, aspheric, cylindrical, toric lenses
    • A61F2/164Aspheric lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1637Correcting aberrations caused by inhomogeneities; correcting intrinsic aberrations, e.g. of the cornea, of the surface of the natural lens, aspheric, cylindrical, toric lenses

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

中心窩領域の外側の好ましい網膜遺伝子座における像収差を減少させつつ中心窩における像の質を維持するために選択された、2つの光学面を備える単一レンズからなる眼内レンズシステム。An intraocular lens system consisting of a single lens with two optical planes selected to maintain image quality in the fovea while reducing image aberrations at the preferred retinal loci outside the foveal region.

Description

(関連出願への相互参照)
本PCT特許出願は、2018年11月23日に出願された米国仮特許出願第62/770,999号より優先権の利益を主張するものである。このような仮出願の開示は、追加若しくは代替の内容、特徴及び/又は技術的背景の教示に適している場合には、その全体が引用されることにより本明細書の一部をなし、各々より優先権が主張される。
(Cross-reference to related applications)
This PCT patent application claims priority benefit from US Provisional Patent Application No. 62 / 770,999 filed on November 23, 2018. The disclosure of such provisional applications, where appropriate for teaching additional or alternative content, features and / or technical background, is part of this specification by reference in its entirety, respectively. More priority is claimed.

眼内レンズ(以下「IOL」という。)が最初に導入された後の数十年間は、透明水晶体摘出術及び白内障手術を受ける正視者の最適な視力矯正結果を得ることに主に焦点が置かれていた。これにより、術後惹起乱視を最小減に抑えるよう設計された注入可能な軟質アクリルIOL、及び加齢に伴う角膜の正の球面収差に対抗するための非球面レンズ光学系が開発された。現在、標準的な軟質アクリルIOLは、中心窩にしっかりと焦点のあった像を投影することができ、眼にその他の問題のない患者については、常に良い視力矯正結果を得ることが可能となる。しかし、このようなレンズにより得られる像の質は、中心窩の中心からわずか数度ずれるだけで著しく劣化するため、中心窩の中心部分の外側の健康な網膜を使用するため偏心固視を伴うことの多い黄斑疾患患者の視力矯正結果に重大な影響をもたらす可能性がある。加齢黄斑変性(以下「AMD」という。)の眼はコントラスト感度が低く、視野暗点(しばしば中心部を含む。)を有するため、網膜像の質の低下に特に影響を受ける。中心部に病変の認められる黄斑疾患患者は、AMDなどの病状に伴うコントラスト感度の低下や光受容体の斑状喪失と相まって、標準的なIOLを使用すると視覚の質の低下が予想される。さらに、AMDのような病状が進行すると、患者は、黄斑が更に影響を受けるにつれ、好ましい網膜遺伝子座(以下「PRL」という。)に投影される像の質が低下する。 The decades following the initial introduction of intraocular lenses (“IOL”) have focused primarily on obtaining optimal vision correction results for emmetropic individuals undergoing transparent lensectomy and cataract surgery. It was being killed. This led to the development of injectable soft acrylic IOLs designed to minimize postoperative astigmatism and aspheric lens optics to combat the positive spherical aberration of the cornea with age. Today, standard soft acrylic IOLs can project a well-focused image on the fovea, ensuring good vision correction results for patients with no other eye problems. .. However, the image quality obtained with such a lens is significantly degraded by only a few degrees off the center of the fovea, resulting in eccentric fixation due to the use of a healthy retina outside the central part of the fovea. It can have a significant impact on the results of vision correction in patients with macular disease, which is often the case. Eyes with age-related macular degeneration (hereinafter referred to as "AMD") have low contrast sensitivity and have a visual field scotoma (often including the central part), and are therefore particularly affected by deterioration of retinal image quality. Patients with macular disease with central lesions are expected to have poor visual quality using standard IOLs, coupled with reduced contrast sensitivity and photoreceptor patchy loss associated with pathological conditions such as AMD. In addition, as a condition such as AMD progresses, the patient suffers from poor quality of images projected onto the preferred retinal locus ("PRL") as the macula is further affected.

白内障摘出術及びIOL挿入術を受ける黄斑疾患患者の手術の選択肢は極めて限られている。今のところ、外科医は、主に標準的な単焦点IOLを用いて正視を目指し、該患者の中心窩で厳密に像の焦点を合わせている。しかし、標準的なIOLにより得られる像の質は、この領域において、錐体密度が依然として比較的高く、約20 000/mm2であるにもかかわらず、わずか4度の網膜偏心度(約1.15mm)で急速に低下する13Surgical options for patients with macular disease undergoing cataract removal and IOL insertion are extremely limited. For now, surgeons aim for emmetropia, primarily using standard single-focus IOLs, and focus the image precisely in the fovea of the patient. However, the image quality obtained by a standard IOL is only 4 degrees retinal eccentricity (about 1.15) in this region, despite the relatively high cone density of about 20,000 / mm 2 . mm) drops rapidly 13 .

代替法としては、拡大像を提供する眼内テレスコープの挿入や、単一のPRLを対象とするプリズム装置の使用があげられる。一部の機器では併用アプローチを用いている。AMD患者は、日常生活動作を行うために複数のPRLを使用していることが多いため、特定のPRLを対象とすると、日常生活動作に使用される他の網膜遺伝子座における像の質が損なわれるという欠点がある。特定のPRLにおいて像の最適化を図っても、患者が病気の進行に伴い別のPRLに依拠し始めた場合には、完全に無駄になってしまう可能性もある。 Alternatives include the insertion of an intraocular telescope that provides a magnified image or the use of a prism device for a single PRL. Some devices use a combined approach. Because AMD patients often use multiple PRLs to perform activities of daily living, targeting a particular PRL impairs image quality at other retinal loci used in activities of daily living. There is a drawback that it is. Image optimization in one particular PRL can be completely wasted if the patient begins to rely on another PRL as the disease progresses.

眼内テレスコープは、眼内で像を拡大するという光学的利点があり、手と眼の調整を図る手間を省いて、手持ち式拡大鏡の利便性を高めようとするものである。該装置は、標準的なIOLと比較べ、比較的サイズが大きく、複雑なことが多く、安全な挿入が難しい。眼内テレスコープの主な欠点は、倍率により、周辺視野の狭窄が生ずることである。装置によっては、周辺視野が狭まりすぎるため、片眼のみにしか挿入できないことがある。また、眼内テレスコープは、限られた光量を網膜の広域に分散させるため、得られる像のコントラストの低下を免れない。したがって、眼内テレスコープもプリズム装置も、コントラスト感度と固視安定性の双方が読取能力と相関するため、中心視野の欠損に対処する患者の生来の機能を損ない、視覚機能に影響が及ぶ可能性がある。同様に、装置が片眼のみに挿入された場合には、両眼加算効果が阻害され、読取中に生ずる黄斑全体の像のスキャニングに影響が及び、読取機能が阻害される可能性が高い。 The intraocular telescope has the optical advantage of magnifying the image in the eye, and is intended to improve the convenience of the handheld magnifying glass by eliminating the trouble of adjusting the hand and the eye. The device is relatively large and often complex compared to standard IOLs, making safe insertion difficult. The main drawback of intraocular telescopes is that the magnification causes a narrowing of the peripheral visual field. Depending on the device, the peripheral vision may be too narrow to be inserted into only one eye. In addition, the intraocular telescope distributes a limited amount of light over a wide area of the retina, so that the contrast of the obtained image is inevitably reduced. Therefore, both intraocular telescopes and prism devices correlate reading ability with both contrast sensitivity and fixative stability, which can impair the patient's innate ability to deal with central visual field defects and affect visual function. There is sex. Similarly, when the device is inserted into only one eye, the binocular addition effect is impaired, which affects the scanning of the entire macula image that occurs during reading and is likely to impair the reading function.

本明細書に記載する考案は、中心窩から最大10度までの黄斑の全領域に焦点画像が投影されるよう独自に構成された光学系を有し、水晶体嚢へ挿入する単一の、注入可能な軟質ポリマー(例えば、アクリル)IOLであるが、これは既存技術の改良である。該光学系は、初期疾患患者向けに、中心窩の中心部において像の質を維持するよう設計されている。患者が網膜偏心度を最大10度偏心的に固定するときに生ずる光学収差を補正することにより、該実施形態のIOLは、黄斑疾患における視力回復の可能性を最大限に高め、視力喪失の進行を防ぐものである。このような新規のIOLで+2D~+3.5Dの目標度数でも、眼鏡により10~20%の倍率が得られると推測されるが、これは動作原理の本質的な部分ではない。 The invention described herein has a uniquely configured optical system that projects a focal image over the entire area of the macula from the fovea to a maximum of 10 degrees, and is a single, infusion that is inserted into the capsular bag. A possible soft polymer (eg, acrylic) IOL, which is an improvement over existing technology. The optical system is designed for patients with early-stage disease to maintain image quality in the center of the fovea. By correcting for optical aberrations that occur when the patient eccentrically fixes the degree of retinal eccentricity by up to 10 degrees, the IOL of the embodiment maximizes the potential for vision recovery in macular disease and progresses vision loss. Is to prevent. With such a new IOL, it is estimated that even with a target power of + 2D to + 3.5D, a magnification of 10 to 20% can be obtained with eyeglasses, but this is not an essential part of the operating principle.

本発明の一実施形態において、水晶体嚢に挿入するよう設計された単一の、注入可能な軟質疎水性ポリマー(例えば、アクリル)IOLを提供する。レンズ光学系は独自の最適化がなされ、中心窩から任意の方向の0度から10度の偏心固視がある場合でも、黄斑内のいずれの場所においても像の質が改善される。実施形態のレンズは、偏心固視の患者の場合、標準レンズにおいて生ずると思われる光学収差を最小限に抑えるように形成することによりその効果を発揮する。実施形態のレンズは、中心窩に焦点像を投影し、全ての注視方向において焦点から10度まで(ただし、必ずしもこれに限定されない。)の領域にわたり高次収差を減少させる半径及び円錐定数を有するよう設計されている。 In one embodiment of the invention, there is provided a single, injectable soft hydrophobic polymer (eg, acrylic) IOL designed for insertion into the capsular bag. The lens optics have been uniquely optimized to improve image quality anywhere within the macula, even with eccentric fixation of 0 to 10 degrees in any direction from the fovea. The lens of the embodiment exerts its effect in the case of a patient with eccentric fixative by forming it so as to minimize the optical aberrations that may occur in a standard lens. The lens of the embodiment has a radius and a conical constant that projects a focal image onto the fovea and reduces higher order aberrations over a region from focus to 10 degrees (but not necessarily limited to) in all gaze directions. Is designed to.

新規レンズは、標準的な単焦点IOLと比較して、網膜偏心度の増加に伴い像の質が向上し、黄斑疾患患者に有益である可能性がある。一実施形態のIOLは、遠視の術後屈折を対象に使用することができる。+2D~+3.5Dの目標度数で、眼鏡により10~20%の倍率が得られる可能性がある。術後正視又は近視となる場合も、標準的な単焦点IOLの場合と同様に、視力の改善が見込まれる個人を対象とする、又は術後の不同視の回避を目的とするものである。 The new lens improves image quality with increasing retinal eccentricity compared to standard single focus IOLs and may be beneficial to patients with macular disease. One embodiment of the IOL can be used for postoperative refraction of hyperopia. With a target power of + 2D to + 3.5D, it is possible to obtain a magnification of 10 to 20% with eyeglasses. The purpose of postoperative emmetropia or myopia is to target individuals who are expected to improve their visual acuity, or to avoid postoperative anisometropia, as in the case of standard single focus IOL.

実施形態のIOLの度数は、ジオプトリ-度数11、13、15、17、19、21、23及び25 Dが得られるが、実施形態のIOLは、この範囲に限定されない。個々の眼に適したIOL度数は、白内障手術時に挿入される標準的なlOLと同様に、SRK/T式(又は同様)の生体測定法及びA定数119.2を用いて推定することができる。 The IOL frequency of the embodiment is obtained with diopter frequencies 11, 13, 15, 17, 19, 21, 23 and 25 D, but the IOL of the embodiment is not limited to this range. The IOL power suitable for the individual eye can be estimated using the SRK / T formula (or similar) biometric method and the A constant 119.2, as well as the standard lOL inserted during cataract surgery.

一実施形態のIOLには、黄斑疾患の治療において既存の眼内テレスコープを上回る明らかな利点がある。移植式超小型テレスコープ(以下「IMT」という。)及び視覚障害者用眼内レンズ(以下「IOL- VipTM」という。)のような眼内テレスコープは、比較的高価で複雑なデバイスであり、眼球を大きく切開する必要性、視野の狭窄、角膜内皮代償不全のリスク及び術後の視力のリハビリテーションの必要性があることから、リスク便益プロファイルはそれほど魅力的ではない11, 12One embodiment of the IOL has obvious advantages over existing intraocular telescopes in the treatment of macular disease. Intraocular telescopes such as implantable ultra-compact telescopes (hereinafter referred to as "IMT") and intraocular lenses for the visually impaired (hereinafter referred to as "IOL-VipTM") are relatively expensive and complex devices. The risk-benefit profile is less attractive due to the need for a large incision in the eye, narrowing of the visual field, risk of corneal endothelium compensation failure, and postoperative vision rehabilitation 11, 12 .

一実施形態において、本発明は、水晶体嚢へ挿入するよう設計された、単一の、注入可能な軟質ポリマー(例えば、アクリル)IOLであるが、該レンズ光学系は、中心窩から10度までの黄斑の全領域にわたり、質の高い像が投影されるよう独自の最適化が図られているため、該デバイスは新種のIOLを構成する。 In one embodiment, the invention is a single, injectable soft polymer (eg, acrylic) IOL designed for insertion into the capsular bag, wherein the lens optics are up to 10 degrees from the fovea. The device constitutes a new type of IOL because it has been uniquely optimized to project a high quality image over the entire area of the macula.

実施例1に示すとおり、該レンズは、標準的な単焦点IOLと比べ、網膜偏心度が大きくなると像の質が向上し、黄斑疾患患者に有益となり得る。本発明IOLの実施形態はまた、遠視の術後屈折を対象に使用することができる。例えば、+2.00~+3.50ジオプトリ-の目標度数で、眼鏡により10%~20%の倍率を得ることができるが、遠視の度合いは、黄斑症の重症度及び患者の嗜好又は該アプローチの適性により変わり得る。術後正視又は近視となる場合も、標準的な単焦点IOLの場合と同様に、視力の改善が見込まれる個人を対象とする、又は術後の不同視の回避を目的とするものである。 As shown in Example 1, the lens improves image quality at higher retinal eccentricities compared to standard single focus IOLs and may be beneficial to patients with macular disease. Embodiments of the IOL of the present invention can also be used for postoperative refraction of hyperopia. For example, with a target diopter of +2.00 to +3.50 diopters, a magnification of 10% to 20% can be obtained with spectacles, but the degree of hyperopia depends on the severity of macular disease and the patient's preference or the suitability of the approach. Can change. The purpose of postoperative emmetropia or myopia is to target individuals who are expected to improve their visual acuity, or to avoid postoperative anisometropia, as in the case of standard single focus IOL.

実施形態では、第1表面と第2表面を有するレンズからなり、中心窩から10度までの黄斑の全領域にわたる像の質の向上を図り、患者の視力を改善するPジオプトリ-度数の眼内レンズシステムを提供する。該レンズは、光学部直径(D)及び中心厚(T)として規定する。第1表面は、第1曲率半径(以下「R1」という。)を有する球形である。第2表面は、回転対称円錐面であり、第2曲率半径(以下「R2」という。)を有し、動径座標(以下「r」という。)の関数である面のサグ量(z座標)は、次式により与えられる。

Figure 2022520913000002
In the embodiment, it consists of a lens with a first surface and a second surface, which improves the quality of the image over the entire area of the macula from the fovea to 10 degrees and improves the patient's visual acuity in the intraocular P diopter. Provides a lens system. The lens is defined as an optical portion diameter (D) and a center thickness (T). The first surface is a sphere with a first radius of curvature (hereinafter referred to as "R 1 "). The second surface is a rotationally symmetric conical surface, has a second radius of curvature (hereinafter referred to as "R 2 "), and is a function of radial coordinates (hereinafter referred to as "r"). (Coordinates) is given by the following equation.
Figure 2022520913000002

具体的一実施形態では、好ましい変数は、P = 11ジオプトリー、D = 6.00 mm、T = 0.7 mm、R1 = 19.99 mm、R2 = -143.7 mm、及びk = -12.7である。別の具体的実施形態では、好ましい変数は、P = 17ジオプトリー、D = 6.00 mm、T = 0.7 mm、R1 = 110.53 mm、R2 = -12.96 mm、及びk = -12.7である。さらに別の具体的実施形態では、好ましい変数はP = 25ジオプトリー、D = 6.00 mm、T = 0.7 mm、R1 = -45.52 mm、-6 mm~-19 mmまでのR2、及びk = -12.7である。 In one specific embodiment, the preferred variables are P = 11 diopters, D = 6.00 mm, T = 0.7 mm, R 1 = 19.99 mm, R 2 = -143.7 mm, and k = -12.7. In another specific embodiment, the preferred variables are P = 17 diopters, D = 6.00 mm, T = 0.7 mm, R 1 = 110.53 mm, R 2 = -12.96 mm, and k = -12.7. In yet another specific embodiment, the preferred variables are P = 25 diopters, D = 6.00 mm, T = 0.7 mm, R 1 = -45.52 mm, R 2 from -6 mm to -19 mm, and k =-. It is 12.7.

本発明の実施形態は、以下の添付図面において説明する。 Embodiments of the present invention will be described in the accompanying drawings below.

設計プロセスの概略図である。It is a schematic diagram of a design process.

一実施形態の17ジオプトリー度数のIOLの外形図である。It is an outline drawing of the IOL of 17 diopter frequency of one embodiment.

一実施形態の19ジオプトリー度数のIOLの外形図である。It is an outline drawing of the IOL of 19 diopter frequency of one embodiment.

一実施形態の21ジオプトリー度数のIOLの外形図である。It is an outline drawing of the IOL of 21 diopter frequency of one embodiment.

一実施形態の23ジオプトリー度数のIOLの外形図である。It is an outline drawing of the IOL of 23 diopter frequency of one embodiment.

一実施形態の25ジオプトリー度数のIOLの外形図である。It is an outline drawing of the IOL of 25 diopter frequency of one embodiment.

標準的な単焦点IOLは、中心窩に焦点像を投影する。乾燥型AMD患者では、中枢性知覚麻痺により中心窩の機能的視力が失われることが多い。しかし、患者が偏心固視を行うことができれば、周辺の黄斑部には、まだ、機能的視覚を維持できるだけの十分な受容体密度/視覚機能がある。 A standard single focus IOL projects a focal image onto the fovea. In patients with dry AMD, central sensory paralysis often results in loss of foveal functional visual acuity. However, if the patient is able to perform eccentric fixative, the surrounding macula still has sufficient receptor density / visual function to maintain functional vision.

本明細書に開示されている本発明は、実施形態のIOLにおいて、中心窩における像の質を維持するものの、偏心固視であるために眼を斜めに動かしたときに標準的な単焦点IOLの場合に生ずると思われる光学的収差を修正するように設計されている。これにより、中心窩から10度の範囲内の任意の領域における像の質が最適化されて、該領域をPRLとして使用することが容易となり、挿入後の機能改善につながる。その目的は、偏心度10度まで良好な網膜像を得ることにあり、屈折目標最大+3Dの矯正を行うために眼鏡と組み合わせた際に、像が低倍率で拡大される。 The invention disclosed herein maintains the quality of the image in the fovea in the IOL of the embodiment, but is a standard single focus IOL when the eye is slanted due to eccentric fixative. It is designed to correct the optical aberrations that may occur in the case of. This optimizes the image quality in any region within 10 degrees of the fovea, facilitating the use of that region as a PRL and leading to improved post-insertion function. The purpose is to obtain a good retinal image up to an eccentricity of 10 degrees, and the image is magnified at low magnification when combined with spectacles to correct the refraction target up to + 3D.

該実施形態のIOL設計は、文献から入手した平均的な眼について説明するアイモデル(Liou-Brenan: Liou HL, Brennan NA. Anatomically accurate, finite model eye for optical modelling(光学的モデリングのための解剖学的に正確な有限アイモデル). J Opt Soc Am A. 1997;14(8): 1684-1695.)において、市販のレートレーシングソフトウェア(Zemax OpticStudio, Zemax LLC, 米国)を用いて実施することができる。図1は、設計プロセスの一実施形態の概略図である。 The IOL design of this embodiment is an eye model (Liou-Brenan: Liou HL, Brennan NA. Anatomically accurate, finite model eye for optical modeling) that describes an average eye obtained from the literature. Optimal finite eye model). J Opt Soc Am A. 1997; 14 (8): 1684-1695.), Which can be performed using commercially available rate racing software (Zemax OpticStudio, Zemax LLC, USA). can. FIG. 1 is a schematic diagram of an embodiment of the design process.

上記のアイモデル内の異なるIOLの光学性能を最適化するため、レイトレーシング技術を用いることができる。光学設計ソフトウェアを使用してもよい(Zemax OpticStudio, Zemax LLC, 米国)。また、素材を選択してから、該実施形態のIOLを設計するためのメリット関数を作成してもよい。一般に、パラメータは、目的とするレンズの性能に関連するものの中から選択することができる。最適化手順においては、異なる値を独立変数に系統的に与えてもよい。次いで、これらを用いて選択されたメリット関数コンポーネントを計算することができる。目的は、メリット関数を最小化する一連の変数値を見つけることにある。手順は、局所的最小値ではなく、大域的最小値又は絶対的最小値を見つけて終了するのが理想的である。得られたメリット関数には、IOLの幾何学パラメータの制約が含まれており、該パラメータが生理学的に適合する範囲内に保たれている。この例では、最適化を行うための可変パラメータは、レンズの厚さ、嚢内におけるレンズの位置、曲率半径、及び異なる表面の非球面性であった。軸上、水平方向の偏心度が5度及び10度の入射ビームに対応するメリット関数に三つの構成を同時に含めた。 Ray tracing techniques can be used to optimize the optical performance of different IOLs within the above eye models. Optical design software may be used (Zemax OpticStudio, Zemax LLC, USA). Further, after selecting the material, a merit function for designing the IOL of the embodiment may be created. In general, the parameters can be selected from those related to the performance of the lens of interest. In the optimization procedure, different values may be systematically given to the independent variables. These can then be used to calculate the selected merit function component. The purpose is to find a set of variable values that minimizes the merit function. Ideally, the procedure should be terminated by finding the global or absolute minimum, not the local minimum. The resulting merit function includes constraints on the geometric parameters of the IOL, which are kept within the physiologically compatible range. In this example, the variable parameters for optimizing were the thickness of the lens, the position of the lens within the capsule, the radius of curvature, and the asphericity of the different surfaces. Three configurations were simultaneously included in the merit function corresponding to incident beams with on-axis, horizontal eccentricity of 5 and 10 degrees.

該実施形態の各IOLは、以下の共通する特徴を有する。
前面は、曲率範囲又は曲率半径を有する標準球面である。後面は、回転対称円錐面である。動径座標rの関数である面のサグ量(z座標)は、次式により与えられる。

Figure 2022520913000003
特定の非限定的17Dバージョンのレンズの関連パラメータは、以下のとおりとする。
光学部径: 6.00 mm
中心厚: 0.7 mm
第1(前)表面:
標準球面
曲率半径110.53 mm
第2(後)表面:
回転対称円錐面。動径座標rの関数である面のサグ量(z座標)は、次式により与えられる。
Figure 2022520913000004
特定のパラメータは、以下のとおり。
R = -12.96 mm
k = -12.7
上記値と単位から、zはmmの単位で計算される。 Each IOL of the embodiment has the following common features.
The front surface is a standard spherical surface having a range of curvature or a radius of curvature. The rear surface is a rotationally symmetric conical surface. The sag amount (z coordinate) of the surface, which is a function of the radial coordinate r, is given by the following equation.
Figure 2022520913000003
The relevant parameters for a particular non-limiting 17D version of the lens are:
Optical part diameter: 6.00 mm
Center thickness: 0.7 mm
First (front) surface:
Standard spherical surface
Radius of curvature 110.53 mm
Second (rear) surface:
Rotationally symmetric conical surface. The sag amount (z coordinate) of the surface, which is a function of the radial coordinate r, is given by the following equation.
Figure 2022520913000004
The specific parameters are:
R = -12.96 mm
k = -12.7
From the above values and units, z is calculated in mm.

該設計の標準的なIOLの参照用として、同じアイモデル(Liou-Brennan角膜、眼軸長23.5 mm)を使用することができるが、該実施形態のIOLの代わりに、IOLが網膜上に光の焦点を合わせるために必要な最適ジオプトリ-度数をモデル化した。該アイモデル及び該IOL位置(第2角膜表面からIOL前面までの軸方向距離もまた4.16 mm)については、球面(曲率半径は、前面及び後面でそれぞれ27.51 mm及び-14.59 mm)で、屈折率1.54及び厚さ0.70 mmの、21.5DのIOL(屈折率1.336に浸漬)を用いた。 The same eye model (Liou-Brennan cornea, axial length 23.5 mm) can be used as a reference for the standard IOL of the design, but instead of the IOL of the embodiment, the IOL is lighted onto the retina. We modeled the optimal diopter power required to focus on. For the eye model and the IOL position (the axial distance from the surface of the second cornea to the anterior surface of the IOL is also 4.16 mm), the index of refraction is spherical (radius of curvature is 27.51 mm and -14.59 mm on the anterior and posterior surfaces, respectively). A 21.5D IOL (immersed in a refractive index of 1.336) with a thickness of 1.54 and a thickness of 0.70 mm was used.

該実施形態のIOLの像の質を評価するため、NIMO機器(LAMBDA-X, Nivelles, ベルギー)が、光学ベンチを含み、そのソフトウェアバージョン4.5.15と共に使用される。該機器の動作原理は、位相シフトシュリーレン技術に基づいている71, 72。シュリーレンイメージングの原理と位相シフト法を組み合わせることにより、NIMO機器により光線偏位の測定が可能となり、これを用いて36のゼルニケ係数を考慮した波面解析の計算を行うことができる。この技術により、IOLのインビトロにおける光学的性質を効果的に測定できることが分かっている。該機器は国際標準化機構(ISO)11979-216に準拠している。全てのIOLの測定は、塩化ナトリウム1 mlあたり0.154ミリグラム当量の組成の生理食塩水(Laboratoires Sterop SA, Anderlecht, ベルギー)に浸して行った。測定中にIOLと生理食塩水を適切な位置に保持するために使用したキュベット又は湿電池は、干渉計により検証されており、度数は0.005D未満であることが分かっている。測定に障害が生じないよう、湿電池のクロスチェックを別途実施した。さらに、正確な度数の測定は、セットアップの較正が十分に行われている場合に限り可能である。このため、測定のたびに機器の較正を行った。 To assess the image quality of the IOL of the embodiment, a NIMO instrument (LAMBDA-X, Nivelles, Belgium), including an optical bench, is used with its software version 4.5.15. The operating principle of the device is based on the phase shift Schlieren technology 71, 72 . By combining the principle of Schlieren imaging and the phase shift method, it is possible to measure the ray deviation with NIMO equipment, and it is possible to calculate the wavefront analysis considering the Zernike coefficient of 36. It has been found that this technique can effectively measure the in vitro optical properties of IOLs. The equipment complies with the International Organization for Standardization (ISO) 11979-216. All IOL measurements were performed by immersing in saline (Laboratoires Sterop SA, Anderlecht, Belgium) having a composition equivalent to 0.154 milligrams per ml of sodium chloride. The cuvette or wet cell used to hold the IOL and saline in the proper position during the measurement has been validated by an interferometer and has been found to have a frequency of less than 0.005D. A separate cross-check of the wet cell was performed so that the measurement would not be disturbed. In addition, accurate frequency measurements are possible only if the setup is well calibrated. Therefore, the equipment was calibrated for each measurement.

以下に詳述する実施例Iでは、アイモデルの眼軸長を23.5mmとした。角膜パラメータ(曲率、非球面性、厚さ及び屈折率)は、Liou‐Brennanアイモデル(参照)から取得した。網膜を-12 mmの球体としてシミュレートし、IOL前面の表面を角膜の第 2表面から軸方向に4.16 mmの位置に配置した。 In Example I described in detail below, the axial length of the eye model was set to 23.5 mm. The corneal parameters (curvature, asphericity, thickness and index of refraction) were taken from the Liou-Brennan eye model (see). The retina was simulated as a -12 mm sphere and the anterior surface of the IOL was placed 4.16 mm axially from the second surface of the cornea.

眼鏡レンズは、角膜頂点から12 mm(頂点間距離)に配置した、屈折率1.585(ポリカーボネート)、中心厚5 mmのものを用いてモデル化した。曲率半径は、前面及び後面でそれぞれ32 mmと36 mm(+3ジオプトリー)であった。さらに、前面曲率が同じで、後面曲率半径が44.7 mmの+6Dの眼鏡レンズ(物体を角膜から33cmの位置に置いたとき)をシミュレートした。計算は全て周波数を550 nm、瞳孔径を3 mmとして行った。 The spectacle lens was modeled using a lens with a refractive index of 1.585 (polycarbonate) and a center thickness of 5 mm, which was placed 12 mm (distance between vertices) from the apex of the cornea. The radii of curvature were 32 mm and 36 mm (+3 diopters) on the anterior and posterior surfaces, respectively. In addition, we simulated a + 6D spectacle lens with the same frontal curvature and a posterior radius of curvature of 44.7 mm (when the object was placed 33 cm from the cornea). All calculations were performed with a frequency of 550 nm and a pupil diameter of 3 mm.

該実施形態のIOLレンズは、屈折率1.54(550 nmの場合)、アッベ数40及び厚さ0.70 mmに最適化された。 The IOL lens of this embodiment was optimized for a refractive index of 1.54 (at 550 nm), an Abbe number of 40, and a thickness of 0.70 mm.

この最適化手順を、規定の眼軸長値の異なるモデルについて繰り返し行った。これにより、様々な度数について最適化されたレンズが提供される。図2~6は、様々な度数の最適化された実施形態のIOLの実際の形状を示す。対応する正視目標を、各レンズの下に示す。該方法の設定と目標を用いた場合、この非限定的な例については、IOLのジオプトリ-度数が増加するにつれ、レンズ後面の湾曲は強くなる一方、前面は曲率の符号が変わり、正曲率からより平坦へ、次いで負曲率の値をとる。これは、各モデルの形状係数最適化手順の結果である。
(例1)
臨床試験
This optimization procedure was repeated for models with different specified axial length values. This provides lenses optimized for various powers. Figures 2-6 show the actual shape of the IOL in optimized embodiments of various frequencies. The corresponding emmetropic targets are shown below each lens. When using the setting and target of this method, for this non-limiting example, as the diopter power of the IOL increases, the curvature of the rear surface of the lens becomes stronger, while the sign of the curvature of the front surface changes from the positive curvature. It takes a flatter, then negative curvature value. This is the result of the shape factor optimization procedure for each model.
(Example 1)
Clinical trials

該新規IOL挿入術後の安全性及び初期転帰を評価するため、両眼性の進行AMD患者を対象とする臨床試験を考案し、実施した。≦1の白内障(LOCSIII分類で2より大きくない)、両眼性進行地図状萎縮/乾燥型AMD及び術前矯正遠方視力が≧0.60(CDVA; LogMAR)の7名の被験者の8眼に、遠視の術後屈折目標をもって水晶体摘出術及びIOL挿入術を実施した。目標とする術後の遠視の度合いは、日常生活動作における眼鏡の依存度が増すという欠点と対比しながら、このアプローチを用いた場合に眼鏡により得られると思われる倍率の利点について患者と十分に話し合った上で決定した。全例において、手術眼に中等度から重度の視力低下が認められたため、各人の状況に応じて術後の遠視の度数を1.5D~4.5Dとすることとした(必要に応じて第2眼の手術への同意を含む。)。ベースライン時、1週間後、1ヵ月後及び2ヵ月後に、初期経過観察及び評価を実施した。 In order to evaluate the safety and initial outcome after the new IOL insertion, a clinical trial was devised and conducted in patients with binocular advanced AMD. Eight eyes of seven subjects with ≤1 cataract (not greater than 2 in the LOCS III classification), binocular progressive geographic atrophy / dry AMD and preoperative corrected distant visual acuity ≥0.60 (CDVA; LogMAR) Postoperative refraction target was used to perform lensectomy and IOL insertion. The target degree of postoperative hyperopia is sufficient with the patient for the magnification benefits that would be gained with spectacles when using this approach, while contrasting with the drawback of increased dependence of spectacles in activities of daily living. It was decided after discussion. In all cases, moderate to severe visual acuity deterioration was observed in the surgical eye, so we decided to set the postoperative hyperopia to 1.5D to 4.5D depending on the situation of each person (second if necessary). Includes consent to eye surgery.) Initial follow-up and evaluation were performed at baseline, 1 week, 1 month, and 2 months.

ベースライン時、並びに術後1週間、1ヵ月及び2ヵ月目に、自覚的屈折、矯正近見視力(近点を30cmとし、LogMARで変換したもの)、矯正遠見視力(LogMAR)、眼圧(Goldman圧平眼圧測定)、スペキュラーマイクロスコープ(Nidek CEM-530、Nidek Co. Ltd.; 角膜中央部から得られた許容画像3枚)、臨床検査、前眼部OCT(Visante, Carl Zeiss Meditec AG)及び黄斑OCT(Stratus OCTTM Carl Zeiss Meditec, ドイツ)の各検査を実施した。水晶体混濁の分類を、LOCSIllシステムに基づき行った。視野は、80点の閾値試験により評価した。手術眼において、術後1ヵ月目に屈折異常を矯正した後、読書視力、臨界文字サイズ及び読書速度をMNREADチャートを用いて評価した。ベースライン時及び術後1~2ヵ月時にMacular Integrity Assessment(MAIA, Ellex Medical Lasers Ltd.)を用いて微小視野計測を実施し、認められた変化を確認するため1~3ヵ月間隔でさらに微小視野測定及び評価を実施した。微小視野測定は、黄斑閾値感度及び固視安定性を評価するため、「エキスパート」アルゴリズムを用いて、散瞳を行うことなく薄明視条件下において実施した(PRLを中心とする10度の領域で試験を行った37ポイント; 4-2戦略;持続時間200msの刺激のサイズGoldmann III)。除外基準には、募集後6ヵ月以内に活動性脈絡膜新生血管(CNV)の治療を受けた場合、眼軸長が>24.5 mm又は<20.5 mmの場合、及びコントロール不能の緑内障を患っており、募集後6ヵ月以内に眼内手術を受けた場合が含まれる。 At baseline and at 1 week, 1 month and 2 months after surgery, subjective refraction, corrected near vision (with a near point of 30 cm, converted by LogMAR), corrected distance vision (LogMAR), intraocular pressure ( Goldman ocular tonometry), specular microscope (Nidek CEM-530, Nidek Co. Ltd .; 3 acceptable images obtained from central corneal), clinical examination, anterior ocular OCT (Visante, Carl Zeiss Meditec AG) ) And yellow spot OCT (Stratus OCT TM Carl Zeiss Meditec, Germany) were examined. Classification of lens opacity was performed based on the LOCSIll system. The visual field was evaluated by a threshold test of 80 points. In the surgical eye, after correcting the refractive error 1 month after the operation, the reading visual acuity, the critical character size and the reading speed were evaluated using the MNREAD chart. Microfield measurements were performed using the Macular Integrity Assessment (MAIA, Ellex Medical Lasers Ltd.) at baseline and 1 to 2 months postoperatively, and further microfields were performed at 1 to 3 month intervals to confirm any observed changes. Measurements and evaluations were performed. Microfield measurements were performed under mesopic conditions without mydriasis using an "expert" algorithm to assess macular threshold sensitivity and fixative stability (in the 10 degree region centered on PRL). 37 points tested; 4-2 strategy; size of stimulus with duration 200 ms Goldmann III). Exclusion criteria include treatment for active choroidal neovascularization (CNV) within 6 months of recruitment, axial length of> 24.5 mm or <20.5 mm, and uncontrolled glaucoma. Includes cases of intraocular surgery within 6 months after recruitment.

患者の平均年齢は77±16歳(43歳~91歳)で、男女比は5:3であった。手術は1名の外科医(MAQ)が標準的手法を用いて行った。瞳孔散大には局所散瞳薬を用い、テノン嚢下送達により麻酔を施した。フェムト秒レーザー手術のプラットフォーム(LenSx(R), Alcon(R), FortWorth, 米国テキサス州)を用いて水晶体嚢を5 mm切開して断片化し、WHITESTAR Signature(R)水晶体超音波吸引システム(Abbot Medical Optics, Abbot Laboratories Inc., 米国イリノイ州)を用いて100度の位置で標準的な2.6 mmの角膜切開を行い、水晶体を摘出した。水晶体嚢は凝集型眼粘弾剤(OVD)で満たし、レンズを挿入器に装填して、主な創傷から水晶体嚢に注入し、レンズの中心固定、OVDと緩衝塩類溶液の入替えを行った。被験者は全員、目標ジオプトリ-度数の1D内で術後等価球面度数を達成した(平均+2.9±1.3D)。 The average age of the patients was 77 ± 16 years (43-91 years), and the male-female ratio was 5: 3. Surgery was performed by one surgeon (MAQ) using standard techniques. A local mydriatic drug was used to dilate the pupil, and anesthesia was performed by subcapsular delivery of Tenon. Using a femtosecond laser surgery platform (LenSx (R) , Alcon (R) , FortWorth, Texas, USA), a 5 mm incision was made in the lens capsule and fragmented, and the WHITE STAR Signature (R) lens ultrasound suction system (Abbot Medical) was used. A standard 2.6 mm corneal incision was made at 100 degrees using Optics, Abbot Laboratories Inc. (Illinois, USA) and the lens was removed. The capsular bag was filled with aggregated ocular mucilage (OVD), the lens was loaded into an inserter, injected into the capsular bag through the main wound, the lens was centered, and the OVD and buffer salt solution were replaced. All subjects achieved postoperative equivalent spherical power within 1D of target diopter power (mean + 2.9 ± 1.3D).

結果result

スペキュラーマイクロスコピーでは、術後の内皮細胞数の平均減少率は13±14%(0~37%)であった。2眼では37%と31%の減少が認められた。この被験者は2週間後に追跡不能となったが、この原因として、点眼コンプライアンスの不遵守が考えられる。その他の結果は、標準的な水晶体超音波乳化吸引術による白内障手術後に予測される減少(4~13%)と一致していた8。80点の視野検査の結果は、術前と術後で同様であり(観察された平均点数は、術後53±27に対し術前50±31であった。)、前眼部と黄斑OCT画像により、IOLが良好に中心固定され、術後黄斑が安定していることが分かった。被験者全員について、術後の眼圧は安定しており、術前・術後2ヵ月の平均眼圧は、それぞれ16±2.8 mmHg及び14±2 mmHgであった。 With specular microscopy, the average rate of decrease in the number of endothelial cells after surgery was 13 ± 14% (0-37%). Two eyes showed a 37% and 31% decrease. This subject became unfollowable after 2 weeks, probably due to non-compliance with eye drop compliance. Other results were consistent with the predicted reduction ( 4-13%) after cataract surgery with standard phacoemulsification8. The results of the 80-point visual field test were similar before and after surgery (the average observed score was 53 ± 27 after surgery and 50 ± 31 before surgery), and the anterior eye and macular OCT. The images showed that the IOL was well centered and the postoperative macula was stable. Postoperative intraocular pressure was stable for all subjects, and the mean intraocular pressure before and 2 months after surgery was 16 ± 2.8 mmHg and 14 ± 2 mmHg, respectively.

1例の被験者については、術後のMN読取データを入手できなかった。その他については、平均読書視力は1.07±0.31 LogMARから0.9±0.37 LogMARへ、臨界文字サイズは1.04±0.25から0.95±0.27へとわずかな改善が認められた。平均読書速度は1分あたり28±19単語から44±31単語に増加し、57%の改善がみられた。 Postoperative MN reading data were not available for one subject. For others, the average reading visual acuity improved slightly from 1.07 ± 0.31 LogMAR to 0.9 ± 0.37 LogMAR, and the critical character size improved slightly from 1.04 ± 0.25 to 0.95 ± 0.27. The average reading speed increased from 28 ± 19 words per minute to 44 ± 31 words, with a 57% improvement.

微小視野測定データは、対象眼のうちの1つを除く全てにおいて、術後約1ヵ月及び/又は2ヵ月に得られた。微小視野測定による閾値感度は、平均8.2±4.6 dBから12.0±5.6 dBへの改善がみられた。4度円内にある固視点の平均割合は77±17%から91±11%に増加した。1名の被験者については、術後の微小視野測定データは入手できなかったものの、該被験者の挿入後の視力は有意に改善した。微小視野検査では、術後3眼にごくわずかな変化が認められ、その他については1ヵ月目及び2ヵ月目に漸進的改善の所見が確認された。 Microfield measurement data were obtained approximately 1 and / or 2 months postoperatively in all but one of the target eyes. The threshold sensitivity measured by microfield measurement improved from 8.2 ± 4.6 dB on average to 12.0 ± 5.6 dB. The average percentage of solid viewpoints within the fourth-degree circle increased from 77 ± 17% to 91 ± 11%. For one subject, postoperative microvisual field measurement data was not available, but the subject's visual acuity after insertion was significantly improved. Microvisual field examination revealed slight changes in the 3 eyes after surgery, and other findings of gradual improvement were confirmed at 1 and 2 months.

術眼のうち3眼について更に微小視野検査を実施したところ、2ヵ月目以降に視覚機能の漸進的な改善がみられた。これらの眼におけるPRLは、地図状萎縮部位から次第に離れることが認められた。被験者の第1眼では、平均閾値感度は5ヵ月で0 dBから16.6 dBに上昇し、これに付随して、4度円内にある固視点の平均割合が64%から94%へと増加した。該被験者の第2眼では、術後4ヵ月目の検査で、平均閾値感度が4.2 dBから3 dBにわずかに低下したが、4度円内にある固視点の平均割合は57%から93%に増加し、該固定点は、視神経乳頭と広い地図状萎縮部位との間の狭い経路に集中していた。第3被験者の4ヵ月後の検査では、閾値感度が12.9 dBから27 dBへと増加し、4度円内にある固視点の平均割合が99%から83%へとわずかに減少した。 Further microvisual field examinations were performed on 3 of the surgical eyes, and a gradual improvement in visual function was observed after the second month. PRL in these eyes was found to gradually move away from the geographic atrophy site. In the subject's first eye, the mean threshold sensitivity increased from 0 dB to 16.6 dB in 5 months, with a concomitant increase in the mean percentage of solid viewpoints within the 4 degree circle from 64% to 94%. .. In the subject's second eye, the mean threshold sensitivity dropped slightly from 4.2 dB to 3 dB on examination 4 months after surgery, but the mean percentage of solid viewpoints within the 4 degree circle was 57% to 93%. The fixation points were concentrated in the narrow path between the optic disc and the wide geographic atrophy site. At examination of the third subject four months later, the threshold sensitivity increased from 12.9 dB to 27 dB, and the average percentage of solid viewpoints within the fourth-degree circle decreased slightly from 99% to 83%.

不等像視の症状は報告されなかったが、被験者全員が、後日他眼に該デバイスを挿入した。 No symptoms of unequal vision were reported, but all subjects later inserted the device into the other eye.

中等度から重度のAMD被験者において、実験室のシミュレーション結果と一致する術後視力の改善が認められ、遠見視力及び近見視力は平均18 ETDRS文字改善され、平均読書速度は57%上昇した。該結果は、公表されている、CNV治療を受けた者を含むAMD患者の白内障手術後の転帰と比べ、非常に良好な結果である。最近行われたメタ分析によると、白内障手術を受け、標準的な単焦点IOLを挿入したAMD被験者は、6ヵ月~12ヵ月の経過観察後に6.5~7.5 ETDRS文字の視力の改善が期待できる9, 10Postoperative visual acuity improvements consistent with laboratory simulation results were observed in moderate to severe AMD subjects, with an average improvement of 18 ETDRS characters in distance and near vision, and a 57% increase in average reading speed. The results are very good compared to the published outcomes after cataract surgery in AMD patients, including those who received CNV treatment. According to a recent meta-analysis, AMD subjects who underwent cataract surgery and had a standard single-focus IOL inserted could expect improved visual acuity of 6.5-7.5 ETDRS characters after 6-12 months of follow-up 9, 10 .

好ましい実施形態に関する説明Description of Preferred Embodiment

本発明は、上記のとおりであるが、当業者であれば、添付の請求項に記載された本発明の主旨及び範囲から逸脱することなく、本発明に様々な変更及び/又は修正を加えることができることを容易に察知し得るものである。
(略語及び頭文字)
加齢黄斑変性(AMD)
楕円輪郭領域二変量解析(Bivariate contour ellipse area analysis)(BCEA)
信頼区間(Cl)
矯正遠見視力(CDVA)
矯正近見視力(CNVA)
脈絡膜新生血管(CNV)
糖尿病性網膜症早期治療研究(ETDRS)
移植式超小型テレスコープ(IMT)
眼内レンズ(IOL)
眼圧(IOP)
対数最小分離閾角度(LogMAR)
偏心視を獲得するための眼底視野計(Macular integrity assessment)(MAIA)
眼粘弾剤(OVD)
光干渉断層計(OCT)
好ましい網膜遺伝子座(PRL)
標本平均の標準誤差(SEM)
(参考文献)
1. Artal P. History of IOLs that correct spherical aberration(球面収差を矯正するIOLの変遷). J Cataract Refract Surg. 2009;35(6):962-963. doi:10.1016/j.jcrs.2009.02.023.
2. Guirao A, Redondo M. Geraghty E. Piers P, Norrby S, Artal P. Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted(単焦点眼内レンズの挿入を受けた患者の角膜の光学収差及び網膜像の質). Arch Ophthalmol. 2002;120(9): 1143-1151.
3. Qureshi MA, Robbie SJ, Tabernero J. Artal P. Injectable intraocular telescope: Pilot study(注入可能な眼内テレスコープ:予備研究). J Cataract Refract Surg. 2015;41(10):2125-2135. doi:10.1016/j.jcrs.2015.03.021.
4. Tabernero J, Qureshi MA, Robbie SJ, Artal P. An aspheric intraocular telescope for age-related macular degeneration patients(加齢黄斑変性患者向けの非球面眼内テレスコープ). Biomed Opt Express. 2015;6(3):1010-1020. doi:10.1364/BOE.6.001010.
5. Hengerer FH, Artal P, Kohnen T, Conrad-Hengerer I. Initial clinical results of a new telescopic IOL implanted in patients with dry age-related macular degeneration(乾燥型加齢黄斑変性患者に移植した新規テレスコープIOLの初期臨床結果). J Refract Surg. 2015;31(3):158-162. doi:10.3928/1081597X-20150220-03.
6. Hudson HL, Lane SS, Heier JS, et al. Implantable Miniature Telescope for the Treatment of Visual Acuity Loss Resulting from End-Stage Age-Related Macular Degeneration: 1-Year Results(末期加齢黄斑変性に起因する視力低下治療用の移植式超小型テレスコープ:年間実績). Ophthalmology. 2006;113(11):1987-2001. doi:10.1016/j.ophtha.2006.07.010.
7. Orzalesi N, Pierrottet CO, Zenoni S, Savaresi C. The IOL-Vip System. A Double Intraocular Lens Implant for Visual Rehabilitation of Patients with Macular Disease(黄斑疾患患者の視力のリハビリのための二重焦点眼内レンズの挿入). Ophthalmology. 2007;114(5). doi:10.1016/j.ophtha 2007.01.005.
8. Hwang H Bin, Lyu B, Yim H Bin, Lee NY. Endothelial cell loss after phacoemulsification according to different anterior chamber depths(前房深度に応じた水晶体超音波乳化吸引術後の内皮細胞の喪失). J Ophthalmol. 2015;2015. doi:10.1155/2015/210716.
9. Kessel L, Koefoed Theil P, Lykke Sorensen T, Munch IC. Cataract surgery in patients with neovascular age-related macular degeneration(新生血管を伴う加齢黄斑変性患者における白内障手術). Acta Ophthalmol. 2016;94(8):755-760. doi:10.1111/aos.13120.
10. Kessel L, Erngaard D, Flesner P, Andresen J, Tendal B, Hjortdal J. Cataract surgery and age-related macular degeneration. An evidence-based update(白内障手術と加齢黄斑変性。エビデンスに基づく最新情報). Acta Ophthalmol. 2015;93(7):593-600. doi:10.1111/aos.12665.
11. Brown GC, Brown MM, Lieske HB, Lieske PA, Brown KS, Lane SS. Comparative effectiveness and cost-effectiveness of the implantable miniature telescope(移植式超小型テレスコープの相対的有効性と費用対効果). Ophthalmology. 2011;118(9):1834-1843. doi:10.1016/j.ophtha.2011.02.012.
12. Boyer D, Bailey Freund K. Regillo C. Levy MH. Garg S. Long-term (60-month) results for the implantable miniature telescope: Efficacy and safety outcomes stratified by age in patients with end-stage age-related macular degeneration(移植式超小型テレスコープの長期(60ヵ月)実績:末期加齢黄斑変性患者の年齢層別有効性及び安全性の転帰). Clin Ophthalmol. 2015;9:1099-1107. doi:10.2147/OPTH.S86208.
13. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. Human Photoreceptor Topography(ヒト光受容体の構造). J Comp Neurol. 1990;523(292):497-523. doi:10.1002/cne.902920402.
14. Artal P, Derrington AM, Colombo E. Refraction, aliasing, and the absence of motion reversals in peripheral vision(周辺視野での屈折、エイリアシング及び運動の反転). Vision Res. 1995;35(7):939-947. doi:10.1016/0042-6989(94)00180-T.
15. Williams DR, Artal P, Navarro R, Mcmahon MJ, Brainard DH. Off-axis optical quality and retinal sampling in the human eye(ヒトの眼の軸外における視覚の質と網膜サンプリング). Vision Res. 1996;36(8):1103-1114. doi:10.1016/0042-6989(95)00182-4.
16. Abdelnour O, Kalloniatis M. Word acuity threshold as a function of contrast and retinal eccentricity(コントラスト機能と網膜偏心度の関数としての文字認識能力の閾値). Optom Vis Sci. 2001;78(12):914-919. doi:10.1097/00006324-200112000-00014.
17. Lee BS, Munoz BE, West SK, Gower EW. Functional improvement after one- and two-eye cataract surgery in the salisbury eye evaluation(Salisbury眼評価における片眼及び両眼の白内障手術後の機能改善). Ophthalmology. 2013;120(5):949-955. doi:10.1016/j.ophtha.2012.10.009.
18. Falkenberg HK, Rubin GS, Bex PJ. Acuity, crowding, reading and fixation stability(視力、込み合い効果、読書及び固視安定性). Vision Res. 2007;47(1):126-135. doi:10.1016/j.visres.2006.09.014.
19. Richter-Mueksch S, Sacu S, Weingessel B, Vecsei-Marlovits VP, Schmidt-Erfurth U. The influence of cortical, nuclear, subcortical posterior, and mixed cataract on the results of microperimetry(微小視野計測の結果に基づく皮質白内障、核性白内障、後嚢下白内障及び混合性白内障の影響). Eye (Lond). 2011;25(10):1317-1321. doi:10.1038/eye.2011.156.
20. Crossland MD, Culham LE, Kabanarou SA, Rubin GS. Preferred retinal locus development in patients with macular disease(黄斑疾患患者における好ましい網膜遺伝子座の形成). Ophthalmology. 2005;112(9):1579-1585. doi:10.1016/j.ophtha.2005.03.027.
21. Rees AL. Kabanarou SA, Culham LE, Rubin GS. Can retinal eccentricity predict visual acuity and contrast sensitivity at the PRL in AMD patients?(網膜偏心度によるAMD患者のPRLにおける視力とコントラスト感度の予測可能性) Int Congr Ser. 2005;1282:694-698. doi:10.1016/j.ics.2005.05.172.
22. Denniss J. Baggaley HC, Brown GM, Rubin GS. Astle AT. Properties of visual field defects around the monocular preferred retinal locus in age-related macular degeneration(加齢黄斑変性における単眼の好ましい網膜遺伝子座周辺の視野欠損の特徴). Investing Ophthalmol Vis Sci. 2017;58(5):2652-2658. doi:10.1167/iovs.16-21086.
23. Bedell HE, Pratt JD, Krishnan A, et al. Repeatability of Nidek MP-1 Fixation Measurements in Patients With Bilateral Central Field Loss(両眼中心視野欠損患者におけるニデックMP-1固定測定の再現性). Invest Ophthalmol Vis Sci. 2015;56(4):2624-2630. doi:10.1167/iovs.15-16511.
24. Barboni MTS, Szepessy Z, Ventura DF, Nemeth J. Individual test point fluctuations of macular sensitivity in healthy eyes and eyes with age-related macular degeneration measured with microperimetry(微小視野測定で測定した健眼及び加齢黄斑変性眼における黄斑感度の個別テストポイントの変動). Transl Vis Sci Technol. 2018;7(2). doi:10.1167/tvst.7.2.25.
25. Qureshi MA, Robbie SJ, Hengerer FH, Auffarth GU, Conrad-Hengerer I, Artal P. Consecutive Case Series of 244 Age-Related Macular Degeneration Patients Undergoing Implantation with an Extended Macular Vision IOL(難治性黄斑視用IOLを挿入した加齢黄斑変性患者244例の連続ケースシリーズ). Eur J Ophthalmol. 2018;5(0):ejo.5001052. doi:10.5301/ejo.5001052.
26. Hengerer FH, Auffarth GU, Robbie SJ, Yildirim TM, Conrad-Hengerer I. First Results of a New Hyperaspheric Add-on Intraocular Lens Approach Implanted in Pseudophakic Patients with Age-Related Macular Degeneration(眼内レンズを挿入している加齢黄斑変性患者に移植された新規球面アドオン眼内レンズのアプローチの初期結果). Ophthalmol Retin. July 2018. doi:10.1016/j.oret.2018.02.003.
The present invention is as described above, but those skilled in the art can make various changes and / or modifications to the present invention without departing from the gist and scope of the present invention described in the attached claims. It is easy to detect what can be done.
(Abbreviations and initials)
Age-related macular degeneration (AMD)
Bivariate contour ellipse area analysis (BCEA)
Confidence interval (Cl)
Corrected distance vision (CDVA)
Corrected near vision (CNVA)
Choroidal neovascularization (CNV)
Diabetic Retinopathy Early Treatment Study (ETDRS)
Transplantable Micro Telescope (IMT)
Intraocular lens (IOL)
Intraocular pressure (IOP)
LogMAR
Macular integrity assessment (MAIA) for acquiring eccentric vision
Eye mucilage (OVD)
Optical Coherence Tomography (OCT)
Preferred retinal locus (PRL)
Sample mean standard error (SEM)
(Reference)
1. Artal P. History of IOLs that correct spherical aberration. J Cataract Refract Surg. 2009; 35 (6): 962-963. Doi: 10.1016 / j.jcrs.2009.02.023 ..
2. Guirao A, Redondo M. Geraghty E. Piers P, Norrby S, Artal P. Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were ejected (Optical aberration and quality of retinal image). Arch Ophthalmol. 2002; 120 (9): 1143-1151.
3. Qureshi MA, Robbie SJ, Tabernero J. Artal P. Injectable intraocular telescope: Pilot study. J Cataract Refract Surg. 2015; 41 (10): 2125-2135. Doi 10.1016 / j.jcrs. 2015.03.021.
4. Tabernero J, Qureshi MA, Robbie SJ, Artal P. An aspheric intraocular telescope for age-related macular degeneration patients. Biomed Opt Express. 2015; 6 (3) ): 1010-1020. Doi: 10.1364 / BOE.6.001010.
5. Hengerer FH, Artal P, Kohnen T, Conrad-Hengerer I. Initial clinical results of a new telescopic IOL implanted in patients with dry age-related macular degeneration Initial clinical results). J Refract Surg. 2015; 31 (3): 158-162. Doi: 10.3928 / 1081597X-20150220-03.
6. Hudson HL, Lane SS, Heier JS, et al. Implantable Miniature Telescope for the Treatment of Visual Acuity Loss Resulting from End-Stage Age-Related Macular Degeneration: 1-Year Results Transplantable ultra-compact telescope for treatment: Annual results). Ophthalmology. 2006; 113 (11): 1987-2001. Doi: 10.1016 / j.ophtha. 2006.07.010.
7. Orzalesi N, Pierrottet CO, Zenoni S, Savaresi C. The IOL-Vip System. A Double Intraocular Lens Implant for Visual Rehabilitation of Patients with Macular Disease Insertion of). Ophthalmology. 2007; 114 (5). Doi: 10.1016 / j.ophtha 2007.01.005.
8. Hwang H Bin, Lyu B, Yim H Bin, Lee NY. Endothelial cell loss after phacoemulsification according to different anterior chamber depths. J Ophthalmol. . 2015; 2015. doi: 10.1155 / 2015/210716.
9. Kessel L, Koefoed Theil P, Lykke Sorensen T, Munch IC. Cataract surgery in patients with neovascular age-related macular degeneration. Acta Ophthalmol. 2016; 94 (8) ): 755-760. doi: 10.111 / aos.13120.
10. Kessel L, Erngaard D, Flesner P, Andresen J, Tendal B, Hjortdal J. Cataract surgery and age-related macular degeneration. An evidence-based update. Acta Ophthalmol. 2015; 93 (7): 593-600. Doi: 10.111 / aos.12665.
11. Brown GC, Brown MM, Lieske HB, Lieske PA, Brown KS, Lane SS. Comparative effectiveness and cost-effectiveness of the implantable miniature telescope. Ophthalmology . 2011; 118 (9): 1834-1843. doi: 10.1016 / j.ophtha.2011.02.012.
12. Boyer D, Bailey Freund K. Regillo C. Levy MH. Garg S. Long-term (60-month) results for the implantable miniature telescope: Efficacy and safety outcomes stratified by age in patients with end-stage age-related macular Degeneration (Long-term (60 months) performance of implantable ultra-small telescope: Efficacy and safety outcomes of patients with end-stage age-related macular degeneration by age group). Clin Ophthalmol. 2015; 9: 1099-1107. Doi: 10.2147 / OPTH.S86208.
13. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. Human Photoreceptor Topography. J Comp Neurol. 1990; 523 (292): 497-523. Doi: 10.1002 / cne.902920402.
14. Artal P, Derrington AM, Colombo E. Refraction, aliasing, and the absence of motion reversals in peripheral vision. Vision Res. 1995; 35 (7): 939- 947. doi: 10.1016 / 0042-6989 (94) 00180-T.
15. Williams DR, Artal P, Navarro R, Mcmahon MJ, Brainard DH. Off-axis optical quality and retinal sampling in the human eye. Vision Res. 1996; 36 (8): 1103-1114. Doi: 10.1016 / 0042-6989 (95) 00182-4.
16. Abdelnour O, Kalloniatis M. Word acuity threshold as a function of contrast and retinal eccentricity. Optom Vis Sci. 2001; 78 (12): 914- 919. doi: 10.1097 / 00006324-200112000-00014.
17. Lee BS, Munoz BE, West SK, Gower EW. Functional improvement after one- and two-eye cataract surgery in the salisbury eye evaluation. Ophthalmology. . 2013; 120 (5): 949-955. doi: 10.1016 / j.ophtha. 2012.10.009.
18. Falkenberg HK, Rubin GS, Bex PJ. Acuity, crowding, reading and fixation stability. Vision Res. 2007; 47 (1): 126-135. Doi: 10.1016 /j.visres.2006.09.014.
19. Richter-Mueksch S, Sacu S, Weingessel B, Vecsei-Marlovits VP, Schmidt-Erfurth U. The influence of cortical, nuclear, subcortical posterior, and mixed cataract on the results of microperimetry Effects of cataracts, nuclear cataracts, posterior subcapsular cataracts and mixed cataracts). Eye (Lond). 2011; 25 (10): 1317-1321. Doi: 10.1038 / eye.2011.156.
20. Crossland MD, Culham LE, Kabanarou SA, Rubin GS. Preferred retinal locus development in patients with macular disease. Ophthalmology. 2005; 112 (9): 1579-1585. Doi 10.1016 / j.ophtha.2005.03.027.
21. Rees AL. Kabanarou SA, Culham LE, Rubin GS. Can retinal eccentricity predict visual acuity and contrast sensitivity at the PRL in AMD patients? Congr Ser. 2005; 1282: 694-698. Doi: 10.1016 / j.ics.2005.05.172.
22. Denniss J. Baggaley HC, Brown GM, Rubin GS. Astle AT. Properties of visual field defects around the monocular preferred retinal locus in age-related macular degeneration Features). Investing Ophthalmol Vis Sci. 2017; 58 (5): 2652-2658. doi: 10.1167 / iovs.16-21086.
23. Bedell HE, Pratt JD, Krishnan A, et al. Repeatability of Nidek MP-1 Fixation Measurements in Patients With Bilateral Central Field Loss. Invest Ophthalmol. Vis Sci. 2015; 56 (4): 2624-2630. doi: 10.1167 / iovs.15-16511.
24. Barboni MTS, Szepessy Z, Ventura DF, Nemeth J. Individual test point fluctuations of macular sensitivity in healthy eyes and eyes with age-related macular degeneration measured with microperimetry Fluctuations in individual test points of macular sensitivity in). Transl Vis Sci Technol. 2018; 7 (2). Doi: 10.1167 / tvst.7.2.25.
25. Qureshi MA, Robbie SJ, Hengerer FH, Auffarth GU, Conrad-Hengerer I, Artal P. Consecutive Case Series of 244 Age-Related Macular Degeneration Patients Undergoing Implantation with an Extended Macular Vision IOL A series of 244 cases of age-related macular degeneration). Eur J Ophthalmol. 2018; 5 (0): ejo.5001052. Doi: 10.5301 / ejo.5001052.
26. Hengerer FH, Auffarth GU, Robbie SJ, Yildirim TM, Conrad-Hengerer I. First Results of a New Hyperaspheric Add-on Intraocular Lens Approach Implanted in Pseudophakic Patients with Age-Related Macular Degeneration Initial results of a new spherical add-on intraocular lens approach implanted in patients with age-related macular degeneration). Ophthalmol Retin. July 2018. doi: 10.1016 / j.oret. 2018.02.003.

Claims (5)

第1表面と第2表面を有し、Pジオプトリー度数を提供するレンズを備え、
該レンズは、光学部直径(D)と中心厚(T)を特徴とし、
前記第1表面は、第1曲率半径(R1)を有する球形であり、
前記第2表面は、回転対称円錐面であり、第2曲率半径(R2)を有し、動径座標(r)の関数である面のサグ量(z座標)は、次式により与えられる、
Figure 2022520913000005
患者の視力を改善するための眼内レンズシステム。
With a lens that has a first surface and a second surface and provides P diopter power,
The lens is characterized by an optical portion diameter (D) and a center thickness (T).
The first surface is spherical with a first radius of curvature (R 1 ).
The second surface is a rotationally symmetric conical surface, has a second radius of curvature (R 2 ), and the sag amount (z coordinate) of the surface which is a function of the radial coordinates (r) is given by the following equation. ,
Figure 2022520913000005
An intraocular lens system to improve the patient's eyesight.
IOLのジオプトリ-度数が増加するにつれ、レンズ後面の湾曲は強くなる一方、前面は曲率の符号が変わり、正曲率からより平坦へ、次いで負曲率の値をとることを特徴とする、請求項1に記載の眼内レンズシステム。 Claim 1 is characterized in that as the diopter power of the IOL increases, the curvature of the rear surface of the lens becomes stronger, while the sign of the curvature of the front surface changes from a positive curvature to a flatter one, and then a value of a negative curvature. Intraocular lens system as described in. 以下を特徴とする、請求項1に記載の眼内レンズシステム。
P = 11ジオプトリ-
D = 6.00 mm
T = 0.7 mm
R1 = 19.99 mm
R2 = -143.7 mm
k = -12.7
The intraocular lens system according to claim 1, wherein the intraocular lens system is characterized by the following.
P = 11 diopters
D = 6.00 mm
T = 0.7 mm
R 1 = 19.99 mm
R 2 = -143.7 mm
k = -12.7
以下を特徴とする、請求項1に記載の眼内レンズシステム。
P = 17ジオプトリ-
D = 6.00 mm
T = 0.7 mm
R1 = 110.53 mm
R2 = -12.96 mm
k = -12.7
The intraocular lens system according to claim 1, wherein the intraocular lens system is characterized by the following.
P = 17 diopters
D = 6.00 mm
T = 0.7 mm
R 1 = 110.53 mm
R 2 = -12.96 mm
k = -12.7
以下を特徴とする、請求項1に記載の眼内レンズシステム。
P = 25ジオプトリ-
D = 6.00 mm
T = 0.7 mm
R1 = -45.52 mm
R2 = -6 ~ -19 mm
k = -12.7
The intraocular lens system according to claim 1, wherein the intraocular lens system is characterized by the following.
P = 25 diopters
D = 6.00 mm
T = 0.7 mm
R 1 = -45.52 mm
R 2 = -6 ~ -19 mm
k = -12.7
JP2021521005A 2018-11-23 2019-11-21 A novel monofocal intraocular lens for intractable macular vision in patients with macular degeneration Active JP7487188B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862770999P 2018-11-23 2018-11-23
US62/770,999 2018-11-23
PCT/IB2019/001255 WO2020104852A1 (en) 2018-11-23 2019-11-21 Novel monofocal-type intraocular lens for extended macular vision in patients with macular degeneration

Publications (2)

Publication Number Publication Date
JP2022520913A true JP2022520913A (en) 2022-04-04
JP7487188B2 JP7487188B2 (en) 2024-05-20

Family

ID=69572264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021521005A Active JP7487188B2 (en) 2018-11-23 2019-11-21 A novel monofocal intraocular lens for intractable macular vision in patients with macular degeneration

Country Status (6)

Country Link
US (2) US11147662B2 (en)
EP (2) EP4431060A2 (en)
JP (1) JP7487188B2 (en)
CN (1) CN113164249A (en)
CA (1) CA3120824A1 (en)
WO (1) WO2020104852A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11681146B2 (en) 2021-03-18 2023-06-20 Snap Inc. Augmented reality display for macular degeneration
CN113367840B (en) * 2021-08-12 2021-12-10 微创视神医疗科技(上海)有限公司 Intraocular lens and method of making same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011511671A (en) * 2008-02-07 2011-04-14 アルコン,インコーポレイティド Adjustable IOL with dynamic spherical aberration
US20150250583A1 (en) * 2014-03-10 2015-09-10 Amo Groningen B.V. Intraocular lens that improves overall vision where there is a local loss of retinal function
JP2016527067A (en) * 2013-08-12 2016-09-08 ロンドン アイ ホスピタル ファーマ Intraocular lens system
US20170258578A1 (en) * 2016-03-11 2017-09-14 Amo Groningen B.V. Intraocular lenses that improve peripheral vision

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7905917B2 (en) * 2003-03-31 2011-03-15 Bausch & Lomb Incorporated Aspheric lenses and lens family
BRPI0604841B8 (en) * 2005-04-05 2021-06-22 Alcon Inc ophthalmic lens
US9636213B2 (en) 2005-09-30 2017-05-02 Abbott Medical Optics Inc. Deformable intraocular lenses and lens systems
US20070282438A1 (en) * 2006-05-31 2007-12-06 Xin Hong Intraocular lenses with enhanced off-axis visual performance
US20090292354A1 (en) 2008-05-21 2009-11-26 Staar Surgical Company Optimized intraocular lens
AU2010249415A1 (en) * 2009-05-22 2011-12-15 Abbott Medical Optics Inc. Ophthalmic lenses with enhanced surface and methods of fabrication thereof
ES2374916B1 (en) * 2010-06-02 2013-01-30 Consejo Superior De Investigaciones Científicas (Csic) PROCEDURE FOR PREPARING AN ISOPLANTIC ASPHERIC ASPHERIC MONOFOCAL INTRAOCULAR LENS AND LENS OBTAINED USING THIS PROCEDURE.
WO2012154597A1 (en) * 2011-05-06 2012-11-15 Croma-Pharma Gmbh Tolerant toric intraocular lens
US10667903B2 (en) * 2013-01-15 2020-06-02 Medicem Institute s.r.o. Bioanalogic intraocular lens
AU2015262976B2 (en) * 2014-04-21 2020-02-27 Amo Groningen B.V. Ophthalmic devices, system and methods that improve peripheral vision
EP3267943A1 (en) * 2015-03-10 2018-01-17 Amo Groningen B.V. Fresnel piggyback intraocular lens that improves overall vision where there is a local loss of retinal function
KR20180034320A (en) * 2015-05-01 2018-04-04 메디? 압쌜믹 (씨와이) 리미티드 Method and apparatus for optimizing visual acuity through customization of spherical aberration of the eye

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011511671A (en) * 2008-02-07 2011-04-14 アルコン,インコーポレイティド Adjustable IOL with dynamic spherical aberration
JP2016527067A (en) * 2013-08-12 2016-09-08 ロンドン アイ ホスピタル ファーマ Intraocular lens system
US20150250583A1 (en) * 2014-03-10 2015-09-10 Amo Groningen B.V. Intraocular lens that improves overall vision where there is a local loss of retinal function
US20170258578A1 (en) * 2016-03-11 2017-09-14 Amo Groningen B.V. Intraocular lenses that improve peripheral vision

Also Published As

Publication number Publication date
CN113164249A (en) 2021-07-23
EP3883498A1 (en) 2021-09-29
EP4431060A2 (en) 2024-09-18
US11147662B2 (en) 2021-10-19
WO2020104852A1 (en) 2020-05-28
JP7487188B2 (en) 2024-05-20
US11717395B2 (en) 2023-08-08
US20200163755A1 (en) 2020-05-28
US20220000607A1 (en) 2022-01-06
CA3120824A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
Wolffsohn et al. Presbyopia: effectiveness of correction strategies
Baumeister et al. Position of angle-supported, iris-fixated, and ciliary sulcus–implanted myopic phakic intraocular lenses evaluated by Scheimpflug photography
Grabner et al. The small-aperture IC-8 intraocular lens: a new concept for added depth of focus in cataract patients
JP4764507B2 (en) Aspheric intraocular lens and method for designing such an IOL
Ossma et al. Synchrony dual-optic accommodating intraocular lens: Part 2: Pilot clinical evaluation
JP5785678B2 (en) Prosthetic lens capsule and method of inserting the same
Buckhurst et al. Surgical correction of astigmatism during cataract surgery
Grzybowski et al. Intraocular lenses in age-related macular degeneration
Prieto et al. Visual outcomes after implantation of a refractive multifocal intraocular lens with a+ 3.00 D addition
Fernández-Vega et al. Optical and visual performance of diffractive intraocular lens implantation after myopic laser in situ keratomileusis
Alfonso et al. Visual quality after diffractive intraocular lens implantation in eyes with previous myopic laser in situ keratomileusis
Qureshi et al. Injectable intraocular telescope: pilot study
Nanavaty et al. Visual acuity, wavefront aberrations, and defocus curves with an enhanced monofocal and a monofocal intraocular lens: a prospective, randomized study
Stodulka et al. Visual performance of a polynomial extended depth of focus intraocular lens
US11717395B2 (en) Intra-ocular lens for extended macular vision in patients with macular degeneration
Chaves et al. Comparative study on optical performance and visual outcomes between two diffractive multifocal lenses: AMO Tecnis® ZMB00 and AcrySof® IQ ReSTOR® Multifocal IOL SN6AD1
Auffarth et al. Stability and visual outcomes of the capsulotomy-fixated FEMTIS-IOL after automated femtosecond laser–assisted anterior capsulotomy
RU2377964C2 (en) Intraocular lens
Robbie et al. Initial clinical results with a novel monofocal-type intraocular lens for extended macular vision in patients with macular degeneration
Vasavada et al. Technology and intraocular lenses to enhance cataract surgery outcomes—annual review (January 2013 to January 2014)
RU2436555C1 (en) Method of performing anterior capsulorexis
Alfonso et al. Refractive lens exchange with Acri. LISA bifocal intraocular lens implantation
Ma et al. Comparison of visual quality after implantation of big bag and akreos adapt intraocular lenses in patients with high myopia
Wong Optics of Intraocular Lenses
Jain et al. Intraocular Lenses in the Treatment of Macular Diseases Affecting the Fovea

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240508

R150 Certificate of patent or registration of utility model

Ref document number: 7487188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150