JP2022518480A - A positive electrode active material containing a lithium nickel-based oxide doped with a doping element, and a secondary battery containing the same. - Google Patents

A positive electrode active material containing a lithium nickel-based oxide doped with a doping element, and a secondary battery containing the same. Download PDF

Info

Publication number
JP2022518480A
JP2022518480A JP2021542179A JP2021542179A JP2022518480A JP 2022518480 A JP2022518480 A JP 2022518480A JP 2021542179 A JP2021542179 A JP 2021542179A JP 2021542179 A JP2021542179 A JP 2021542179A JP 2022518480 A JP2022518480 A JP 2022518480A
Authority
JP
Japan
Prior art keywords
positive electrode
doping
doping element
active material
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021542179A
Other languages
Japanese (ja)
Other versions
JP7258403B2 (en
Inventor
ジュンミン・ハン
ギ・ボム・ハン
サン・ウク・イ
ハクユン・キム
ソラ・ベク
ワン・モ・ジュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Energy Solution Ltd
Original Assignee
LG Energy Solution Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200118542A external-priority patent/KR20210065831A/en
Application filed by LG Energy Solution Ltd filed Critical LG Energy Solution Ltd
Publication of JP2022518480A publication Critical patent/JP2022518480A/en
Application granted granted Critical
Publication of JP7258403B2 publication Critical patent/JP7258403B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本発明は、ドーピング元素(M’)でドーピングされたリチウムニッケル系酸化物を含み、前記ドーピング元素(M’)は、チタン(Ti)およびマグネシウム(Mg)からなる群より選択される1種以上であり、前記ドーピング元素(M’)がTiの時、ドーピング含有量は、ドーピング元素を除いたリチウムニッケル系酸化物の全量を基準として3000ppm~5000ppmであり、前記ドーピング元素(M’)がMgの時、ドーピング含有量は、ドーピング元素を除いたリチウムニッケル系酸化物の全量を基準として500ppm~5000ppmであり、前記ドーピング元素(M’)がTiおよびMgの時、総ドーピング含有量は、ドーピング元素を除いたリチウムニッケル系酸化物の全量を基準として3500ppm~5000ppmである二次電池用正極活物質を提供する。The present invention contains a lithium nickel-based oxide doped with a doping element (M'), wherein the doping element (M') is one or more selected from the group consisting of titanium (Ti) and magnesium (Mg). When the doping element (M') is Ti, the doping content is 3000 ppm to 5000 ppm based on the total amount of the lithium nickel-based oxide excluding the doping element, and the doping element (M') is Mg. At this time, the doping content is 500 ppm to 5000 ppm based on the total amount of the lithium nickel-based oxide excluding the doping element, and when the doping element (M') is Ti and Mg, the total doping content is doping. Provided is a positive electrode active material for a secondary battery, which is 3500 ppm to 5000 ppm based on the total amount of lithium nickel-based oxide excluding elements.

Description

関連出願との相互参照
本出願は、2019年11月27日付の韓国特許出願第10-2019-0154435号および2020年9月15日付の韓国特許出願第10-2020-0118542号に基づく優先権の利益を主張し、当該韓国特許出願の文献に開示されたすべての内容は本明細書の一部として含まれる。
Mutual reference with related applications This application has priority based on Korean Patent Application No. 10-2019-0154435 dated November 27, 2019 and Korean Patent Application No. 10-2020-0118542 dated September 15, 2020. All content claimed in the interest and disclosed in the literature of the Korean patent application is included as part of this specification.

本発明は、ドーピング元素がドーピングされたリチウムニッケル系酸化物を含む正極活物質、およびこれを含む二次電池に関する。 The present invention relates to a positive electrode active material containing a lithium nickel-based oxide doped with a doping element, and a secondary battery containing the same.

化石燃料使用の急激な増加によって代替エネルギー、クリーンエネルギーの使用に対する要求が増加しており、その一環として最も活発に研究されている分野が電気化学を利用した発電、蓄電分野である。 Due to the rapid increase in the use of fossil fuels, the demand for the use of alternative energy and clean energy is increasing, and as part of this, the fields most actively studied are the fields of power generation and electricity storage using electrochemicals.

現在、このような電気化学的エネルギーを用いる電気化学素子の代表例として二次電池が挙げられ、ますますその使用領域が拡大する傾向にある。 At present, a secondary battery is mentioned as a typical example of an electrochemical element using such electrochemical energy, and its range of use is expanding more and more.

最近は、携帯用コンピュータ、携帯用電話、カメラなどの携帯用機器に対する技術開発と需要が増加するに伴い、エネルギー源として二次電池の需要が急激に増加しており、そのような二次電池のうち、高いエネルギー密度と作動電位を示し、サイクル寿命が長く自己放電率が低いリチウム二次電池について多くの研究が行われてきており、また、商用化されて幅広く用いられている。 Recently, with the increase in technological development and demand for portable devices such as portable computers, portable phones, and cameras, the demand for secondary batteries as an energy source has increased sharply, and such secondary batteries have increased rapidly. Of these, much research has been conducted on lithium secondary batteries that exhibit high energy density and operating potential, have a long cycle life, and have a low self-discharge rate, and have been commercialized and widely used.

また、環境問題への関心が大きくなるに伴い、大気汚染の主因の一つであるガソリン車両、ディーゼル車両など化石燃料を使用する車両を代替できる電気自動車、ハイブリッド電気自動車などに関する研究が多く進められている。このような電気自動車、ハイブリッド電気自動車などの動力源としては、主にニッケル水素金属二次電池が用いられているが、高いエネルギー密度と放電電圧のリチウム二次電池を用いる研究が活発に進められており、一部商用化の段階にある。 In addition, as interest in environmental issues grows, much research is being carried out on electric vehicles, hybrid electric vehicles, etc. that can replace vehicles that use fossil fuels, such as gasoline vehicles and diesel vehicles, which are one of the main causes of air pollution. ing. Nickel-metal hydride secondary batteries are mainly used as the power source for such electric vehicles and hybrid electric vehicles, but research using lithium secondary batteries with high energy density and discharge voltage is being actively promoted. It is in the stage of commercialization.

現在、リチウム二次電池の正極材としては、LiCoO、三成分系(NMC/NCA)、LiMnO、LiFePOなどが使用されている。このうち、LiCoOの場合、コバルトの価格が高く、三成分系に比べて同じ電圧で容量が小さい問題があり、二次電池を高容量化するために、高いNiの含有量を有する三成分系などの使用量が次第に増加している。 Currently, as the positive electrode material of the lithium secondary battery, LiCoO 2 , a three-component system (NMC / NCA), LiMnO 4 , LiFePO 4 , and the like are used. Of these, LiCoO 2 has the problem that the price of cobalt is high and the capacity is small at the same voltage as compared to the three-component system, and in order to increase the capacity of the secondary battery, the three components have a high Ni content. The amount of system used is gradually increasing.

一方、このような正極材を用いて正極を製造する場合、電極工程中に電極を圧延する過程が行われるが、この時、正極の電極密度を高めるために、圧延密度を高める。 On the other hand, when a positive electrode is manufactured using such a positive electrode material, a process of rolling the electrode is performed during the electrode process. At this time, the rolling density is increased in order to increase the electrode density of the positive electrode.

しかし、このように圧延密度を高めるために、圧延の圧力を高めると、粒子の割れが現れ、この場合、活物質の比表面積の増加に伴う活物質と電解液との副反応が加速化されることから、多量のガスが発生し、寿命特性が急激に低下する問題がある。 However, when the rolling pressure is increased in order to increase the rolling density in this way, cracks in the particles appear, and in this case, the side reaction between the active material and the electrolytic solution is accelerated as the specific surface area of the active material increases. Therefore, there is a problem that a large amount of gas is generated and the life characteristic is sharply deteriorated.

したがって、上記の問題を解決して、高い圧延圧力にも粒子の割れを防止して、上記の問題を解決できる技術の開発が切実であるのが現状である。 Therefore, the current situation is that there is an urgent need to develop a technology that can solve the above-mentioned problems, prevent the particles from cracking even at a high rolling pressure, and solve the above-mentioned problems.

本発明は、上記の問題を解決して、高い圧力での圧延時にも正極活物質の割れを最小化して、正極活物質の比表面積の増加に伴う電解液の副反応を防止してガス発生および高温保存時の抵抗増加の問題を解決しながら、寿命特性を向上させることができる正極活物質およびこれを含む二次電池を提供する。 The present invention solves the above problems, minimizes cracking of the positive electrode active material even during rolling at high pressure, and prevents side reactions of the electrolytic solution due to an increase in the specific surface area of the positive electrode active material to generate gas. To provide a positive electrode active material capable of improving life characteristics while solving the problem of increased resistance during high temperature storage, and a secondary battery containing the same.

本明細書および特許請求の範囲に使われた用語や単語は通常または辞書的な意味に限定して解釈されてはならず、発明者は自らの発明を最善の方法で説明するために用語の概念を適切に定義できるという原則に則り、本発明の技術的な思想に符合する意味と概念で解釈されなければならない。 Terms and words used herein and in the scope of claims shall not be construed in a normal or lexical sense and the inventor shall use the terms to best describe his invention. It must be interpreted with meanings and concepts that are consistent with the technical ideas of the invention, in accordance with the principle that concepts can be properly defined.

以下、本発明の一実施形態による正極活物質、およびこれを含む二次電池について説明する。 Hereinafter, the positive electrode active material according to the embodiment of the present invention and the secondary battery containing the positive electrode active material will be described.

本発明の一実施形態によれば、ドーピング元素(M’)でドーピングされたリチウムニッケル系酸化物を含み、
前記ドーピング元素(M’)は、チタン(Ti)およびマグネシウム(Mg)からなる群より選択される1種以上であり、
前記ドーピング元素(M’)がTiの時、ドーピング含有量は、ドーピング元素を除いたリチウムニッケル系酸化物の全量を基準として3000ppm~5000ppmであり、
前記ドーピング元素(M’)がMgの時、ドーピング含有量は、ドーピング元素を除いたリチウムニッケル系酸化物の全量を基準として500ppm~5000ppmであり、
前記ドーピング元素(M’)がTiおよびMgの時、総ドーピング含有量は、ドーピング元素を除いたリチウムニッケル系酸化物の全量を基準として3500ppm~5000ppmである二次電池用正極活物質が提供される。
According to one embodiment of the invention, it comprises a lithium nickel-based oxide doped with a doping element (M').
The doping element (M') is one or more selected from the group consisting of titanium (Ti) and magnesium (Mg).
When the doping element (M') is Ti, the doping content is 3000 ppm to 5000 ppm based on the total amount of the lithium nickel-based oxide excluding the doping element.
When the doping element (M') is Mg, the doping content is 500 ppm to 5000 ppm based on the total amount of the lithium nickel-based oxide excluding the doping element.
When the doping element (M') is Ti and Mg, the positive electrode active material for a secondary battery has a total doping content of 3500 ppm to 5000 ppm based on the total amount of the lithium nickel-based oxide excluding the doping element. To.

具体的には、ドーピング元素(M’)はTiの時、Tiのドーピング含有量は、ドーピング元素を除いたリチウムニッケル系酸化物の全量を基準として前記範囲であってもよく、詳しくは、3000ppm~4000ppmであってもよい。 Specifically, when the doping element (M') is Ti, the doping content of Ti may be in the above range based on the total amount of the lithium nickel-based oxide excluding the doping element, and more specifically, 3000 ppm. It may be up to 4000 ppm.

あるいは、前記ドーピング元素(M’)がMgの時、Mgのドーピング含有量は、ドーピング元素を除いたリチウムニッケル系酸化物の全量を基準として前記範囲であってもよく、詳しくは、2000ppm~4000ppmであってもよい。 Alternatively, when the doping element (M') is Mg, the doping content of Mg may be in the above range based on the total amount of the lithium nickel-based oxide excluding the doping element, and more specifically, 2000 ppm to 4000 ppm. It may be.

あるいは、前記ドーピング元素(M’)がTiおよびMgの時、総ドーピング含有量は、ドーピング元素を除いたリチウムニッケル系酸化物の全量を基準として前記範囲であってもよく、詳しくは、4000ppm~5000ppmであってもよい。そして、TiとMgのドーピング含有量比は、重量を基準として1:9~9:1、詳しくは、5:5~9:1であってもよい。 Alternatively, when the doping element (M') is Ti and Mg, the total doping content may be in the above range based on the total amount of the lithium nickel-based oxide excluding the doping element, and more specifically, 4000 ppm or more. It may be 5000 ppm. The doping content ratio of Ti and Mg may be 1: 9 to 9: 1, specifically 5: 5 to 9: 1, based on the weight.

前記ドーピングされた前記リチウムニッケル系酸化物は、下記の化学式1で表される二次電池用正極活物質であってもよい。
LiNi1-x-y-zCoM’2-w (1)
上記式中、
Mは、MnおよびAlからなる群より選択される少なくとも1種であり、
M’は、TiおよびMgからなる群より選択される少なくとも1種であり、
Aは、酸素置換型ハロゲンであり、
1.00≦a≦1.5、0<x<y、0.2≦x+y≦0.4、および0≦w≦0.001であり、前記zは、ドーピング元素により、請求項1に定義した含有量に応じて定められる。
The doped lithium nickel-based oxide may be a positive electrode active material for a secondary battery represented by the following chemical formula 1.
Li a Ni 1-x-y-z Co x My M'z O 2-w A w (1)
In the above formula,
M is at least one selected from the group consisting of Mn and Al.
M'is at least one selected from the group consisting of Ti and Mg.
A is an oxygen-substituted halogen and
1.00 ≦ a ≦ 1.5, 0 <x <y, 0.2 ≦ x + y ≦ 0.4, and 0 ≦ w ≦ 0.001, and z is defined in claim 1 by a doping element. It is determined according to the content of the product.

詳しくは、Mとして、Mnを必須として含む下記の化学式2で表される二次電池用正極活物質であってもよい。
LiNi1-x-y-zCo(MnAlM’2-w (2)
上記式中、
M’は、TiおよびMgからなる群より選択される少なくとも1種であり、
Aは、酸素置換型ハロゲンであり、
1.00≦a≦1.5、0<x<y、0.2≦x+y≦0.4、0<s≦1、0≦t<1、および0≦w≦0.001であり、前記zは、ドーピング元素により、請求項1に定義した含有量に応じて定められる。
Specifically, M may be a positive electrode active material for a secondary battery represented by the following chemical formula 2 containing Mn as essential.
Li a Ni 1-x-y-z Co x (Mn s Alt ) y M'z O 2-w A w (2)
In the above formula,
M'is at least one selected from the group consisting of Ti and Mg.
A is an oxygen-substituted halogen and
1.00 ≦ a ≦ 1.5, 0 <x <y, 0.2 ≦ x + y ≦ 0.4, 0 <s ≦ 1, 0 ≦ t <1, and 0 ≦ w ≦ 0.001. z is determined by the doping element according to the content defined in claim 1.

一方、本発明の他の実施形態によれば、前記正極活物質を含む正極が提供される。 On the other hand, according to another embodiment of the present invention, a positive electrode containing the positive electrode active material is provided.

また、前記正極と、負極と、前記正極と前記負極との間に介在する分離膜とを含む電極組立体が電解液に含浸された状態で電池ケースに内蔵されている構造の二次電池が提供される。 Further, a secondary battery having a structure in which an electrode assembly including the positive electrode, the negative electrode, and a separation membrane interposed between the positive electrode and the negative electrode is impregnated in the electrolytic solution is built in the battery case. Provided.

以下、本発明をより詳しく説明する。 Hereinafter, the present invention will be described in more detail.

本発明の一実施形態によれば、ドーピング元素(M’)でドーピングされたリチウムニッケル系酸化物を含み、
前記ドーピング元素(M’)は、チタン(Ti)およびマグネシウム(Mg)からなる群より選択される1種以上であり、
前記ドーピング元素(M’)がTiの時、ドーピング含有量は、ドーピング元素を除いたリチウムニッケル系酸化物の全量を基準として3000ppm~5000ppmであり、
前記ドーピング元素(M’)がMgの時、ドーピング含有量は、ドーピング元素を除いたリチウムニッケル系酸化物の全量を基準として500ppm~5000ppmであり、
前記ドーピング元素(M’)がTiおよびMgの時、総ドーピング含有量は、ドーピング元素を除いたリチウムニッケル系酸化物の全量を基準として3500ppm~5000ppmである二次電池用正極活物質が提供される。
According to one embodiment of the invention, it comprises a lithium nickel-based oxide doped with a doping element (M').
The doping element (M') is one or more selected from the group consisting of titanium (Ti) and magnesium (Mg).
When the doping element (M') is Ti, the doping content is 3000 ppm to 5000 ppm based on the total amount of the lithium nickel-based oxide excluding the doping element.
When the doping element (M') is Mg, the doping content is 500 ppm to 5000 ppm based on the total amount of the lithium nickel-based oxide excluding the doping element.
When the doping element (M') is Ti and Mg, the positive electrode active material for a secondary battery has a total doping content of 3500 ppm to 5000 ppm based on the total amount of the lithium nickel-based oxide excluding the doping element. To.

つまり、本発明の効果を発揮するための、前記ドーピング元素(M’)のドーピング含有量は、どのようなドーピング元素がドーピングされるかによって定められる。 That is, the doping content of the doping element (M') for exerting the effect of the present invention is determined by what kind of doping element is doped.

言い換えれば、前記ドーピング元素がチタン(Ti)単独なのか、マグネシウム(Mg)単独なのか、またはチタン(Ti)とマグネシウム(Mg)が共にドーピングされるかによって異なる。 In other words, it depends on whether the doping element is titanium (Ti) alone, magnesium (Mg) alone, or whether titanium (Ti) and magnesium (Mg) are doped together.

具体的には、前記ドーピング元素(M’)がTiの場合、ドーピング含有量は、ドーピング元素を除いたリチウムニッケル系酸化物の全量を基準として3000ppm~5000ppmであってもよく、詳しくは、3000ppm~4000ppmであってもよい。 Specifically, when the doping element (M') is Ti, the doping content may be 3000 ppm to 5000 ppm based on the total amount of the lithium nickel-based oxide excluding the doping element, and more specifically, 3000 ppm. It may be up to 4000 ppm.

前記ドーピング元素(M’)はMgの場合には、ドーピング含有量は、ドーピング元素を除いたリチウムニッケル系酸化物の全量を基準として500ppm~5000ppmであってもよく、詳しくは、1000ppm~5000ppmであってもよく、より詳しくは、2000ppm~4000ppmであってもよい。 When the doping element (M') is Mg, the doping content may be 500 ppm to 5000 ppm based on the total amount of the lithium nickel-based oxide excluding the doping element, and more specifically, 1000 ppm to 5000 ppm. It may be present, and more specifically, it may be 2000 ppm to 4000 ppm.

あるいは、前記ドーピング元素(M’)がTiおよびMgの場合、総ドーピング含有量は、ドーピング元素を除いたリチウムニッケル系酸化物の全量を基準として3500ppm~5000ppmであってもよく、詳しくは、4000ppm~5000ppmであってもよい。 Alternatively, when the doping element (M') is Ti and Mg, the total doping content may be 3500 ppm to 5000 ppm based on the total amount of the lithium nickel-based oxide excluding the doping element, and more specifically, 4000 ppm. It may be up to 5000 ppm.

前記範囲を外れて、ドーピング含有量が少なすぎる場合には、本発明による効果として正極活物質の粒子割れの防止効果を得ることができず、これに対し、多すぎる場合には、むしろ、ドーピング元素によってリチウムニッケル系酸化物の結晶構造の安定性が低下することによる粒子の割れが容易に発生しうるので、望ましくない。 If the doping content is out of the above range and the doping content is too small, the effect of preventing particle cracking of the positive electrode active material cannot be obtained as an effect of the present invention. It is not desirable because the element can easily cause the cracking of particles due to the decrease in the stability of the crystal structure of the lithium nickel-based oxide.

一方、本出願の発明者らが突っ込んだ研究を繰り返した結果、ドーピング元素(M’)はTiの場合に最も好ましく、少なくともTiを含むことが好ましいことを見出した。 On the other hand, as a result of repeated in-depth studies by the inventors of the present application, it has been found that the doping element (M') is most preferable in the case of Ti, and it is preferable that it contains at least Ti.

具体的には、従来は多様な元素をドーピング元素として開示していたが、ドーピング元素が過度に多く要求される場合には、製造費用が上昇し、本来のニッケル高含有量のリチウムニッケル系酸化物が発揮する特性に影響を及ぼすので、望ましくない。つまり、粒子の割れを防止しながらもリチウムニッケル系酸化物自体の特性には影響を及ぼさないドーピング量は前記範囲程度の場合が最も好ましい。それにもかかわらず、一部のドーピング元素は、粒子割れの防止効果を発揮するためには多量のドーピング量を必要とする問題があるのに対し、前記範囲を満足する時、最も優れた粒子割れの防止効果を示す元素がTiである。 Specifically, in the past, various elements were disclosed as doping elements, but if excessively large amounts of doping elements are required, the manufacturing cost will increase and the original high nickel content of lithium nickel-based oxidation will occur. It is not desirable as it affects the properties exhibited by the object. That is, the doping amount that prevents the particles from cracking but does not affect the characteristics of the lithium nickel-based oxide itself is most preferably in the above range. Nevertheless, some doping elements have a problem that a large amount of doping is required in order to exert the effect of preventing particle cracking, whereas when the above range is satisfied, the most excellent particle cracking occurs. The element that exhibits the preventive effect is Ti.

ただし、Tiと比較して粒子割れの改善には限界があるが、Mgの場合、より少ないドーピング量でも粒子割れの改善効果を示すので、より少量で効果を発揮しようとする場合には、Mgを使用することが好ましい。 However, although there is a limit to the improvement of particle cracking compared to Ti, in the case of Mg, the effect of improving particle cracking is shown even with a smaller doping amount, so when trying to exert the effect with a smaller amount, Mg is used. It is preferable to use.

このような理由から、前記ドーピング元素(M’)としてTiとMgをすべて含む場合、これらの含有量比は、重量を基準として1:9~9:1であってもよく、詳しくは、Tiが最も好ましい粒子割れの改善効果を示すので、5:5~9:1であってもよい。 For this reason, when Ti and Mg are all contained as the doping element (M'), the content ratio thereof may be 1: 9 to 9: 1 with respect to the weight, and more specifically, Ti. Is the most preferable effect for improving particle cracking, and may be 5: 5 to 9: 1.

一方、本発明によるリチウムニッケル系酸化物は、具体的には、下記の化学式1で表される。
LiNi1-x-y-zCoM’2-w (1)
上記式中、
Mは、MnおよびAlからなる群より選択される少なくとも1種であり、
M’は、TiおよびMgからなる群より選択される少なくとも1種であり、
Aは、酸素置換型ハロゲンであり、
1.00≦a≦1.5、0<x<y、0.2≦x+y≦0.4、および0≦w≦0.001であり、前記zは、ドーピング元素により、請求項1に定義した含有量に応じて定められる。
On the other hand, the lithium nickel-based oxide according to the present invention is specifically represented by the following chemical formula 1.
Li a Ni 1-x-y-z Co x My M'z O 2-w A w (1)
In the above formula,
M is at least one selected from the group consisting of Mn and Al.
M'is at least one selected from the group consisting of Ti and Mg.
A is an oxygen-substituted halogen and
1.00 ≦ a ≦ 1.5, 0 <x <y, 0.2 ≦ x + y ≦ 0.4, and 0 ≦ w ≦ 0.001, and z is defined in claim 1 by a doping element. It is determined according to the content of the product.

具体的には、本発明によるリチウムニッケル系酸化物は、Ni、およびCoを必須として含み、MnおよびAlのうちの少なくとも1つの元素を必須として含むリチウム遷移金属酸化物であってもよい。 Specifically, the lithium nickel-based oxide according to the present invention may be a lithium transition metal oxide containing Ni and Co as essential and at least one element of Mn and Al as essential.

また、このようなリチウム遷移金属酸化物に、Tiおよび/またはMgがドーピングされた構成であってもよい。 Further, such a lithium transition metal oxide may be doped with Ti and / or Mg.

より具体的には、前記リチウムニッケル系酸化物は、Ni、Co、Mnを必須として含む下記の化学式2で表される。
LiNi1-x-y-zCo(MnAlM’2-w (2)
上記式中、
M’は、TiおよびMgからなる群より選択される少なくとも1種であり、
Aは、酸素置換型ハロゲンであり、
1.00≦a≦1.5、0<x<y、0.2≦x+y≦0.4、0<s≦1、0≦t<1、および0≦w≦0.001であり、前記zは、ドーピング元素により、請求項1に定義した含有量に応じて定められる。
More specifically, the lithium nickel-based oxide is represented by the following chemical formula 2 containing Ni, Co, and Mn as essential.
Li a Ni 1-x-y-z Co x (Mn s Alt ) y M'z O 2-w A w (2)
In the above formula,
M'is at least one selected from the group consisting of Ti and Mg.
A is an oxygen-substituted halogen and
1.00 ≦ a ≦ 1.5, 0 <x <y, 0.2 ≦ x + y ≦ 0.4, 0 <s ≦ 1, 0 ≦ t <1, and 0 ≦ w ≦ 0.001. z is determined by the doping element according to the content defined in claim 1.

このような活物質を使用する場合、本発明が限定した元素のドーピングによる粒子割れの改善効果に最も優れている。 When such an active material is used, it is most excellent in the effect of improving particle cracking by doping the element limited by the present invention.

このような前記ドーピングされたリチウムニッケル系酸化物は、リチウム遷移金属酸化物にドーピング元素を添加してドーピングさせる従来の方法であれば限定されず、いかなる方法でも製造可能であり、例えば、Ni‐Co‐M前駆体を製造し、以後、リチウム前駆体とドーピング(M’)前駆体とを混合熱処理して製造することができ、あるいは、ドーピング元素を含まないリチウムニッケル系酸化物を製造し、追ってドーピング前駆体を混合、熱処理して製造することができ、詳しくは、Ni‐Co‐M前駆体を製造し、以後、リチウム前駆体とドーピング(M’)前駆体とを混合熱処理して製造することができる。 The doped lithium nickel-based oxide is not limited to the conventional method of adding a doping element to the lithium transition metal oxide to be doped, and can be produced by any method, for example, Ni-. A Co-M precursor can be produced, and thereafter, a lithium precursor and a doping (M') precursor can be mixed and heat-treated to produce, or a lithium nickel-based oxide containing no doping element can be produced. The doping precursor can be subsequently mixed and heat-treated to produce, more specifically, a Ni-Co-M precursor is produced, and thereafter, a lithium precursor and a doping (M') precursor are mixed and heat-treated to produce the Ni-Co-M precursor. can do.

一方、本発明のさらに他の実施形態によれば、前記正極活物質を含む正極が提供され、また、前記正極と、負極と、前記正極と前記負極との間に介在する分離膜とを含む電極組立体が電解液に含浸された状態で電池ケースに内蔵されている構造の二次電池が提供される。 On the other hand, according to still another embodiment of the present invention, a positive electrode containing the positive electrode active material is provided, and also includes the positive electrode, a negative electrode, and a separation film interposed between the positive electrode and the negative electrode. A secondary battery having a structure built in a battery case with the electrode assembly impregnated with the electrolytic solution is provided.

詳しくは、前記二次電池は、リチウム二次電池であってもよい。 Specifically, the secondary battery may be a lithium secondary battery.

前記正極活物質は、前記リチウムニッケル系酸化物のほか、LiNiO、LiMnO、LiMn、Li(NiCoMn)O(0<a<0.8、0<b<1、0<c<1、a+b+c=1)、LiNi1-dCo、LiCo1-dMn、LiNi1-dMn(0.2<d<1)、Li(NiCoMn)O(0<a<2、0<b<2、0<c<2、a+b+c=2)、LiMn2-eNi、LiMn2-eCo(0<e<2)、LiCoPO、またはLiFePOなどが挙げられ、これらのいずれか1つまたは2以上の混合物が少量さらに含まれてもよいことはもちろんである。 In addition to the lithium nickel oxide, the positive electrode active material includes LiNiO 2 , LiMnO 2 , LiMn 2 O 2 , and Li (Nia Cob Mn c ) O 2 (0 <a <0.8, 0 < b <. 1, 0 <c <1, a + b + c = 1), LiNi 1-d Cod O 2 , LiCo 1-d Mn d O 2 , LiNi 1-d Mn d O 2 (0.2 <d <1), Li (Ni a Co b Mn c ) O 4 (0 <a <2, 0 <b <2, 0 <c <2, a + b + c = 2), LiMn 2-e Ni e O 4 , LiMn 2-e Co e O 4 (0 <e <2), LiCoPO 4 , LiFePO 4 , etc. may be mentioned, and of course, a mixture of any one or more of these may be further contained in a small amount.

ただし、前記リチウムニッケル系酸化物が全体正極活物質の重量を基準として少なくとも60重量%以上含まれる。 However, the lithium nickel-based oxide is contained in an amount of at least 60% by weight or more based on the weight of the total positive electrode active material.

前記正極は、前記正極活物質のほか、導電材、バインダー、および必要に応じて充填剤などをさらに含む正極材が正極集電体上に塗布されて形成される。 The positive electrode is formed by applying a positive electrode material further containing a conductive material, a binder, and if necessary, a filler, and the like, in addition to the positive electrode active material, onto the positive electrode current collector.

前記導電材は、電極に導電性を付与するために用いられるものであって、構成される電池において、化学変化を引き起こすことなく電子伝導性を有するものであれば特別な制限なく使用可能である。具体例としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック、炭素繊維などの炭素系物質;天然黒鉛や人造黒鉛などの黒鉛;銅、ニッケル、アルミニウム、銀などの金属粉末または金属繊維;酸化亜鉛、チタン酸カリウムなどの導電性ウィスカー;酸化チタンなどの導電性金属酸化物;またはポリフェニレン誘導体などの導電性高分子などが挙げられ、これらの1種単独または2種以上の混合物が使用できる。前記導電材は、正極材の総重量に対して1重量%~30重量%、詳しくは、1重量%~10重量%、より詳しくは、1重量%~5重量%含まれる。 The conductive material is used to impart conductivity to an electrode, and can be used without any special limitation as long as it has electron conductivity without causing a chemical change in the constituent battery. .. Specific examples include carbon-based substances such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and carbon fiber; graphite such as natural graphite and artificial graphite; copper, nickel, and aluminum. Metal powders or metal fibers such as silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like alone. Alternatively, a mixture of two or more can be used. The conductive material is contained in an amount of 1% by weight to 30% by weight, specifically 1% by weight to 10% by weight, and more specifically 1% by weight to 5% by weight, based on the total weight of the positive electrode material.

前記バインダーは、正極活物質粒子間の付着および正極活物質と集電体との接着力を向上させる役割を果たす。具体例としては、ポリビニリデンフルオライド(PVDF)、ビニリデンフルオライド‐ヘキサフルオロプロピレンコポリマー(PVDF‐co‐HFP)、ポリビニルアルコール、ポリアクリロニトリル(polyacrylonitrile)、カルボキシメチルセルロース(CMC)、デンプン、ヒドロキシプロピルセルロース、再生セルロース、ポリビニルピロリドン、テトラフルオロエチレン、ポリエチレン、ポリプロピレン、エチレン‐プロピレン‐ジエンポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム、またはこれらの多様な共重合体などが挙げられ、これらの1種単独または2種以上の混合物が使用できる。前記バインダーは、正極材の総重量に対して1重量%~30重量%、詳しくは、1重量%~10重量%、より詳しくは、1重量%~5重量%含まれる。 The binder plays a role of improving the adhesion between the positive electrode active material particles and the adhesive force between the positive electrode active material and the current collector. Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacryllonerile, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, and the like. Examples include regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-dienepolymer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof. , One of these alone or a mixture of two or more can be used. The binder is contained in an amount of 1% by weight to 30% by weight, specifically 1% by weight to 10% by weight, and more specifically 1% by weight to 5% by weight, based on the total weight of the positive electrode material.

前記正極集電体は、電池に化学的変化を誘発することなく導電性を有するものであれば特に限定されず、例えば、ステンレススチール、アルミニウム、ニッケル、チタン、焼成炭素、またはアルミニウムやステンレススチールの表面に炭素、ニッケル、チタン、銀などで表面処理したものなどが使用できる。また、前記正極集電体は、3μm~500μmの厚さを有することができ、前記集電体の表面上に微細な凹凸を形成して正極活物質の接着力を高めることもできる。例えば、フィルム、シート、箔、ネット、多孔質体、発泡体、不織布体などの多様な形態で使用可能である。 The positive current collector is not particularly limited as long as it has conductivity without inducing a chemical change in the battery, and is, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel. Surface-treated surfaces such as carbon, nickel, titanium, and silver can be used. Further, the positive electrode current collector can have a thickness of 3 μm to 500 μm, and fine irregularities can be formed on the surface of the current collector to enhance the adhesive force of the positive electrode active material. For example, it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a non-woven fabric.

前記負極も、負極活物質を含む負極材が負極集電体上に塗布される形態で製造可能であり、前記負極材は同じく、負極活物質と共に、上記で説明したような、導電材およびバインダー、必要に応じて充填剤をさらに含むことができる。 The negative electrode can also be manufactured in a form in which a negative electrode material containing a negative electrode active material is applied onto a negative electrode current collector, and the negative electrode material is also a conductive material and a binder as described above together with the negative electrode active material. , Additional fillers may be included as needed.

前記負極活物質は、リチウムの可逆的な挿入および脱離が可能な化合物が使用できる。具体例としては、人造黒鉛、天然黒鉛、黒鉛化炭素繊維、非晶質炭素などの炭素質材料;Si、Al、Sn、Pb、Zn、Bi、In、Mg、Ga、Cd、Si合金、Sn合金またはAl合金などリチウムと合金化可能な金属質化合物;SiO(0<x<2)、SnO、バナジウム酸化物、リチウムバナジウム酸化物のようにリチウムをドープおよび脱ドープ可能な金属酸化物;またはSi‐C複合体またはSn‐C複合体のように前記金属質化合物と炭素質材料とを含む複合物などが挙げられ、これらのいずれか1つまたは2以上の混合物が使用できる。また、前記負極活物質として金属リチウム薄膜が使用されてもよい。なお、炭素材料は、低結晶炭素および高結晶性炭素などがすべて使用可能である。低結晶性炭素としては、軟化炭素(soft carbon)および硬化炭素(hard carbon)が代表的であり、高結晶性炭素としては、無定形、板状、鱗片状、球状または繊維状の天然黒鉛または人造黒鉛、キッシュ黒鉛(Kish graphite)、熱分解炭素(pyrolytic carbon)、液晶ピッチ系炭素繊維(mesophase pitch based carbon fiber)、炭素微小球体(meso-carbon microbeads)、液晶ピッチ(Mesophase pitches)および石油と石炭系コークス(petroleum or coal tar pitch derived cokes)などの高温焼成炭素が代表的である。 As the negative electrode active material, a compound capable of reversible insertion and desorption of lithium can be used. Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn. Metallic compounds that can be alloyed with lithium, such as alloys or Al alloys; metal oxides that can be doped and dedoped with lithium, such as SiO x (0 <x <2), SnO 2 , vanadium oxide, lithium vanadium oxide. ; Or a complex containing the metallic compound and a carbonaceous material such as a Si—C complex or a Sn—C complex, and any one or a mixture of two or more of these can be used. Further, a metallic lithium thin film may be used as the negative electrode active material. As the carbon material, low crystalline carbon, high crystalline carbon and the like can all be used. Typical examples of low crystalline carbon are soft carbon and hard carbon, and examples of high crystalline carbon include amorphous, plate-like, scaly, spherical or fibrous natural graphite or Artificial graphite, Kish graphite, thermally decomposed carbon (pyrolic carbon), liquid crystal pitch carbon fiber (mesophase platinum based carbon fiber), carbon microspheres (meso-carbon microbeads), liquid crystal pitch (meso-carbon microbeads), liquid crystal pitch High-temperature calcined carbon such as petroleum or coal tar pitch divided cokes is typical.

前記負極集電体は、電池に化学的変化を誘発することなく高い導電性を有するものであれば特に限定されるものではなく、例えば、銅、ステンレススチール、アルミニウム、ニッケル、チタン、焼成炭素、銅やステンレススチールの表面に炭素、ニッケル、チタン、銀などで表面処理したもの、アルミニウム-カドミウム合金などが使用できる。また、前記負極集電体は、通常、3μm~500μmの厚さを有することができ、正極集電体と同様に、前記集電体の表面に微細な凹凸を形成して負極活物質の結合力を強化させることもできる。例えば、フィルム、シート、箔、ネット、多孔質体、発泡体、不織布体などの多様な形態で使用可能である。 The negative electrode current collector is not particularly limited as long as it has high conductivity without inducing chemical changes in the battery, and is, for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, and the like. The surface of copper or stainless steel can be surface-treated with carbon, nickel, titanium, silver, etc., or an aluminum-cadmium alloy can be used. Further, the negative electrode current collector can usually have a thickness of 3 μm to 500 μm, and similarly to the positive electrode current collector, fine irregularities are formed on the surface of the current collector to bond the negative electrode active material. You can also strengthen your power. For example, it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a non-woven fabric.

前記分離膜は、負極と正極とを分離し、リチウムイオンの移動通路を提供するもので、通常、リチウム二次電池におけるセパレータとして用いられるものであれば特別な制限なく使用可能であり、特に、電解質のイオン移動に対して低抵抗でかつ電解液含湿能力に優れたものが好ましい。具体的には、多孔性高分子フィルム、例えば、エチレン単独重合体、プロピレン単独重合体、エチレン/ブテン共重合体、エチレン/ヘキセン共重合体およびエチレン/メタクリレート共重合体などのようなポリオレフィン系高分子で製造した多孔性高分子フィルムまたはこれらの2層以上の積層構造体が使用できる。また、通常の多孔性不織布、例えば、高融点のガラス繊維、ポリエチレンテレフタレート繊維などからなる不織布が使用されてもよい。なお、耐熱性または機械的強度確保のためにセラミック成分または高分子物質が含まれているコーティングされた分離膜が使用されてもよいし、選択的に単層または多層構造で使用可能である。 The separation membrane separates the negative electrode and the positive electrode and provides a passage for moving lithium ions, and can be used without any special limitation as long as it is usually used as a separator in a lithium secondary battery, and in particular, it can be used. Those having low resistance to ion transfer of the electrolyte and excellent in the moisture-containing capacity of the electrolytic solution are preferable. Specifically, polyolefin-based high polymers such as porous polymer films such as ethylene homopolymers, propylene homopolymers, ethylene / butene copolymers, ethylene / hexene copolymers and ethylene / methacrylate copolymers. A porous polymer film made of molecules or a laminated structure having two or more layers thereof can be used. Further, a normal porous non-woven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. A coated separation membrane containing a ceramic component or a polymer substance may be used for heat resistance or mechanical strength assurance, or may be selectively used in a single layer or a multilayer structure.

また、本発明で用いられる電解液としては、リチウム二次電池の製造時に使用可能な有機系液体電解質、無機系液体電解質、固体高分子電解質、ゲル状高分子電解質、固体無機電解質、溶融型無機電解質などが挙げられ、これらに限定されるものではない。 The electrolyte used in the present invention includes an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte that can be used in the production of a lithium secondary battery. Examples include, but are not limited to, electrolytes.

具体的には、前記電解液は、有機溶媒およびリチウム塩を含むことができる。 Specifically, the electrolytic solution can contain an organic solvent and a lithium salt.

前記有機溶媒としては、電池の電気化学的反応に関与するイオンが移動可能な媒質の役割を果たすものであれば、特別な制限なく使用可能である。具体的には、前記有機溶媒としては、メチルアセテート(methyl acetate)、エチルアセテート(ethyl acetate)、γ‐ブチロラクトン(γ‐butyrolactone)、ε‐カプロラクトン(ε‐caprolactone)などのエステル系溶媒;ジブチルエーテル(dibutyl ether)またはテトラヒドロフラン(tetrahydrofuran)などのエーテル系溶媒;シクロヘキサノン(cyclohexanone)などのケトン系溶媒;ベンゼン(benzene)、フルオロベンゼン(fluorobenzene)などの芳香族炭化水素系溶媒;ジメチルカーボネート(dimethylcarbonate、DMC)、ジエチルカーボネート(diethylcarbonate、DEC)、メチルエチルカーボネート(methylethylcarbonate、MEC)、エチルメチルカーボネート(ethylmethylcarbonate、EMC)、エチレンカーボネート(ethylene carbonate、EC)、プロピレンカーボネート(propylene carbonate、PC)などのカーボネート系溶媒;エチルアルコール、イソプロピルアルコールなどのアルコール系溶媒;R‐CN(Rは、C2~C20の直鎖状、分枝状または環構造の炭化水素基であり、二重結合芳香環またはエーテル結合を含んでもよい)などのニトリル類;ジメチルホルムアミドなどのアミド類;1,3‐ジオキソランなどのジオキソラン類;またはスルホラン(sulfolane)類などが使用できる。なかでも、カーボネート系溶媒が好ましく、電池の充放電性能を高められる高いイオン伝導度および高誘電率を有する環状カーボネート(例えば、エチレンカーボネートまたはプロピレンカーボネートなど)と、低粘度の線状カーボネート系化合物(例えば、エチルメチルカーボネート、ジメチルカーボネートまたはジエチルカーボネートなど)との混合物がより好ましい。この場合、環状カーボネートと鎖状カーボネートは、約1:1~約1:9の体積比で混合して使用する方が、電解液の性能に優れることができる。 The organic solvent can be used without any special limitation as long as the ions involved in the electrochemical reaction of the battery serve as a movable medium. Specifically, examples of the organic solvent include ester solvents such as methyl acetate, ethyl acetate, γ-butyrolactone, and ε-caprolactone; dibutyl ether. Ether-based solvents such as (dibutyl ether) or tetrahydrofuran (tellahydrofuran); ketone-based solvents such as cyclohexanone; aromatic hydrocarbon-based solvents such as benzene and fluorobenzene; dimethyl carbonate, dimethylcarbon. ), Dithylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylenecarbonate (ethylene carbonone, EC), propylene carbonate (propylenePC), etc. Alcohol-based solvents such as ethyl alcohol and isopropyl alcohol; R-CN (R is a linear, branched or ring-structured hydrocarbon group of C2-C20 and contains a double-bonded aromatic ring or ether bond. Nitriles such as (may be); amides such as dimethylformamide; dioxolanes such as 1,3-dioxolane; or solvents and the like can be used. Among them, a carbonate-based solvent is preferable, and a cyclic carbonate (for example, ethylene carbonate or propylene carbonate) having a high ionic conductivity and a high dielectric constant that can enhance the charge / discharge performance of the battery and a low-viscosity linear carbonate-based compound (for example). For example, a mixture with ethylmethyl carbonate, dimethyl carbonate, diethyl carbonate, etc.) is more preferable. In this case, the performance of the electrolytic solution can be improved by mixing the cyclic carbonate and the chain carbonate in a volume ratio of about 1: 1 to about 1: 9.

前記リチウム塩は、リチウム二次電池で用いられるリチウムイオンを提供できる化合物であれば、特別な制限なく使用可能である。具体的には、前記リチウム塩は、LiPF、LiClO、LiAsF、LiBF、LiSbF、LiAl0、LiAlCl、LiCFSO、LiCSO、LiN(CSO、LiN(CSO、LiN(CFSO、LiCl、LiI、またはLiB(Cなどが使用できる。前記リチウム塩の濃度は、0.1M~2.0Mの範囲内で使用するのが良い。リチウム塩の濃度が前記範囲に含まれると、電解質が適切な伝導度および粘度を有するので、優れた電解質性能を示すことができ、リチウムイオンが効果的に移動可能である。 The lithium salt can be used without any special limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery. Specifically, the lithium salts are LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO). 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiCl, LiI, or LiB (C 2 O 4 ) 2 can be used. The concentration of the lithium salt is preferably used in the range of 0.1 M to 2.0 M. When the concentration of the lithium salt is within the above range, the electrolyte has appropriate conductivity and viscosity, so that excellent electrolyte performance can be exhibited and lithium ions can be effectively transferred.

前記電解液には、上記の構成成分以外にも、電池の寿命特性の向上、電池容量の減少抑制、電池の放電容量の向上などを目的として、例えば、ジフルオロエチレンカーボネートなどのようなハロアルキレンカーボネート系化合物、ピリジン、トリエチルホスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n‐グリム(glyme)、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、硫黄、キノンイミン染料、N‐置換オキサゾリジノン、N,N-置換イミダゾリジン、エチレングリコールジアルキルエーテル、アンモニウム塩、ピロール、2‐メトキシエタノールまたは三塩化アルミニウムなどの添加剤が1種以上さらに含まれてもよい。この時、前記添加剤は、電解液の総重量に対して0.1重量%~5重量%含まれる。 In addition to the above-mentioned components, the electrolytic solution contains a haloalkylene carbonate such as difluoroethylene carbonate for the purpose of improving the life characteristics of the battery, suppressing the decrease in the battery capacity, improving the discharge capacity of the battery, and the like. System compounds, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinoneimine dye, N-substituted oxazolidinone, N, N-substituted imidazolidine, One or more additives such as ethylene glycol dialkyl ether, ammonium salt, pyrrol, 2-methoxyethanol or aluminum trichloride may be further contained. At this time, the additive is contained in an amount of 0.1% by weight to 5% by weight based on the total weight of the electrolytic solution.

上記のように、本発明による二次電池は、携帯電話、ノートパソコン、デジタルカメラなどの携帯用機器、およびハイブリッド電気自動車(hybrid electric vehicle、HEV)などの電気自動車分野などにおけるデバイス電源として利用可能である。 As described above, the secondary battery according to the present invention can be used as a device power source in a portable device such as a mobile phone, a laptop computer, a digital camera, and a device power source in the electric vehicle field such as a hybrid electric vehicle (HEV). Is.

以下、本発明の属する技術分野における通常の知識を有する者が容易に実施できるように、本発明の実施例について詳細に説明する。しかし、本発明は種々の異なる形態で実現可能であり、ここで説明する実施例に限定されない。 Hereinafter, examples of the present invention will be described in detail so that a person having ordinary knowledge in the technical field to which the present invention belongs can easily carry out the present invention. However, the present invention is feasible in a variety of different forms and is not limited to the examples described herein.

<比較例1>
ニッケル前駆体としてNiSO・6HO、コバルト前駆体としてCoSO・7HO、マンガン前駆体としてMnSO・HOを用い、Ni:Co:Mnがモル比65:15:20で混合されるように蒸留水で金属塩水溶液を製造し、共沈反応器(容量20L、回転モータの出力200W)の供給タンクに装入した。
<Comparative Example 1>
NiSO 4.6H 2 O as a nickel precursor, CoSO 4.7H 2 O as a cobalt precursor, and MnSO 4.7H 2 O as a manganese precursor are used, and Ni: Co: Mn is mixed at a molar ratio of 65:15:20. A metal salt aqueous solution was produced from distilled water so as to be charged, and charged into a supply tank of a co-precipitation reactor (capacity 20 L, rotary motor output 200 W).

前記共沈反応器に蒸留水3リットルを入れた後、窒素ガスを2リットル/分の速度で供給しながら、溶存酸素を除去し、反応器の温度を50℃に維持させながら140rpmで撹拌した。 After putting 3 liters of distilled water into the coprecipitation reactor, dissolved oxygen was removed while supplying nitrogen gas at a rate of 2 liters / minute, and the mixture was stirred at 140 rpm while maintaining the temperature of the reactor at 50 ° C. ..

また、キレート剤として14M濃度のNH(OH)を0.06リットル/時間で、pH調節剤としての8M濃度のNaOH溶液を0.1リットル/時間でそれぞれ反応器に連続的に投入し、工程の進行中に反応器内pH12に維持されるようにその投入量を適切に制御した。 Further, 14 M concentration of NH 4 (OH) as a chelating agent was continuously added to the reactor at 0.06 liter / hour, and 8 M concentration of NaOH solution as a pH adjuster was continuously added to the reactor at 0.1 liter / hour. The input amount was appropriately controlled so as to maintain the pH in the reactor at 12 during the course of the process.

以後、金属塩水溶液の供給タンクから金属塩溶液を0.4リットル/時間で投入しながら、反応器のインペラ速度を140rpmに調節して共沈反応を行った。 After that, the coprecipitation reaction was carried out by adjusting the impeller speed of the reactor to 140 rpm while pouring the metal salt solution from the metal salt aqueous solution supply tank at 0.4 liter / hour.

以後、得られる沈殿物をろ過し、水で洗浄した後、100℃のオーブンで24時間乾燥させて、Ni0.65Co0.15Mn0.20(OH)の水和物前駆体粒子を製造した。 After that, the obtained precipitate was filtered, washed with water, and dried in an oven at 100 ° C. for 24 hours to obtain hydrate precursor particles of Ni 0.65 Co 0.15 Mn 0.20 (OH) 2 . Manufactured.

以後、前記水和物前駆体粒子に対してリチウム前駆体(LiOH)が1:1となるようにし、ドーピング元素を除いた正極活物質の重量に対してTiが1000ppmとなるようにTiOを乾式混合した後、これを炉(furnace)に入れて、850℃で10時間焼成して、TiがドーピングされたLiNi0.648Co0.15Mn0.20Ti0.002正極活物質を製造した。 After that, the lithium precursor (LiOH) is set to 1: 1 with respect to the hydrate precursor particles, and TiO 2 is added so that Ti is 1000 ppm with respect to the weight of the positive electrode active material excluding the doping element. After dry mixing, this is placed in a furnace and fired at 850 ° C. for 10 hours to be Ti-doped LiNi 0.648 Co 0.15 Mn 0.20 Ti 0.002 O 2 positive electrode active material. Manufactured.

<実施例1>
比較例1において、ドーピング前駆体として、ドーピング元素を除いた正極活物質の重量に対してTiが3000ppmとなるようにTiOを乾式混合してLiNi0.644Co0.15Mn0.20Ti0.006を製造したことを除けば、比較例1と同様に正極活物質を製造した。
<Example 1>
In Comparative Example 1, as a doping precursor, TiO 2 was dry-mixed so that Ti was 3000 ppm with respect to the weight of the positive electrode active material excluding the doping element, and LiNi 0.644 Co 0.15 Mn 0.20 Ti. Except for the fact that 0.006 O 2 was produced, the positive electrode active material was produced in the same manner as in Comparative Example 1.

<実施例2>
実施例1において、ドーピング前駆体として、ドーピング元素を除いた正極活物質の重量に対してTiが5000ppmとなるようにTiOを乾式混合してLiNi0.64Co0.15Mn0.20Ti0.01を製造したことを除けば、実施例1と同様に正極活物質を製造した。
<Example 2>
In Example 1, as a doping precursor, TiO 2 was dry-mixed so that Ti was 5000 ppm with respect to the weight of the positive electrode active material excluding the doping element, and LiNi 0.64 Co 0.15 Mn 0.20 Ti. Except for the fact that 0.01 O 2 was produced, the positive electrode active material was produced in the same manner as in Example 1.

<実施例3>
実施例1において、ドーピング前駆体として、ドーピング元素を除いた正極活物質の重量に対してMgが1000ppmとなるようにMgOを乾式混合してLiNi0.646Co0.15Mn0.20Mg0.004を製造したことを除けば、実施例1と同様に正極活物質を製造した。
<Example 3>
In Example 1, as a doping precursor, MgO was dry-mixed so that Mg was 1000 ppm with respect to the weight of the positive electrode active material excluding the doping element, and LiNi 0.646 Co 0.15 Mn 0.20 Mg 0 . Except for the production of .004 O 2 , the positive electrode active material was produced in the same manner as in Example 1.

<実施例4>
実施例1において、ドーピング前駆体として、ドーピング元素を除いた正極活物質の重量に対してMgが2000ppmとなるようにMgOを乾式混合してLiNi0.642Co0.15Mn0.20Mg0.008を製造したことを除けば、実施例1と同様に正極活物質を製造した。
<Example 4>
In Example 1, as a doping precursor, MgO was dry-mixed so that Mg was 2000 ppm with respect to the weight of the positive electrode active material excluding the doping element, and LiNi 0.642 Co 0.15 Mn 0.20 Mg 0 . Except for the production of .008 O 2 , the positive electrode active material was produced in the same manner as in Example 1.

<実施例5>
実施例1において、ドーピング前駆体として、ドーピング元素を除いた正極活物質の重量に対してMgが4000ppmとなるようにMgOを乾式混合してLiNi0.634Co0.15Mn0.20Mg0.016を製造したことを除けば、実施例1と同様に正極活物質を製造した。
<Example 5>
In Example 1, as a doping precursor, MgO was dry-mixed so that Mg was 4000 ppm with respect to the weight of the positive electrode active material excluding the doping element, and LiNi 0.634 Co 0.15 Mn 0.20 Mg 0 . A positive electrode active material was produced in the same manner as in Example 1 except that 1.016 O 2 was produced.

<比較例2>
実施例1において、ドーピング前駆体として、ドーピング元素を除いた正極活物質の重量に対してTiが1000ppm、Mgが2000ppmとなるようにTiO、およびMgOを乾式混合してLiNi0.64Co0.15Mn0.20Ti0.002Mg0.008を製造したことを除けば、実施例1と同様に正極活物質を製造した。
<Comparative Example 2>
In Example 1, as a doping precursor, TiO 2 and MgO are dry-mixed so that Ti is 1000 ppm and Mg is 2000 ppm with respect to the weight of the positive electrode active material excluding the doping element, and LiNi 0.64 Co 0 . .15 A positive electrode active material was produced in the same manner as in Example 1 except that Mn 0.20 Ti 0.002 Mg 0.008 O 2 was produced.

<実施例6>
実施例1において、ドーピング前駆体として、ドーピング元素を除いた正極活物質の重量に対してTiが2500ppm、Mgが1000ppmとなるようにTiO、およびMgOを乾式混合してLiNi0.641Co0.15Mn0.20Ti0.005Mg0.004を製造したことを除けば、実施例1と同様に正極活物質を製造した。
<Example 6>
In Example 1, as a doping precursor, TiO 2 and MgO are dry-mixed so that Ti is 2500 ppm and Mg is 1000 ppm with respect to the weight of the positive electrode active material excluding the doping element, and LiNi 0.641 Co 0 . .15 A positive electrode active material was produced in the same manner as in Example 1 except that Mn 0.20 Ti 0.005 Mg 0.004 O 2 was produced.

<実施例7>
実施例1において、ドーピング前駆体として、ドーピング元素を除いた正極活物質の重量に対してTiが3500ppm、Mgが1500ppmとなるようにTiO、およびMgOを乾式混合してLiNi0.637Co0.15Mn0.20Ti0.007Mg0.006を製造したことを除けば、実施例1と同様に正極活物質を製造した。
<Example 7>
In Example 1, as a doping precursor, TiO 2 and MgO are dry-mixed so that Ti is 3500 ppm and Mg is 1500 ppm with respect to the weight of the positive electrode active material excluding the doping element, and LiNi 0.637 Co 0 . .15 A positive electrode active material was produced in the same manner as in Example 1 except that Mn 0.20 Ti 0.007 Mg 0.006 O 2 was produced.

<実施例8>
マンガン前駆体の代わりに、アルミニウム前駆体としてAl(SO・HOを用い、Ni:Co:Alがモル比65:15:20で混合されてNi0.65Co0.15Al0.20(OH)の水和物前駆体粒子を製造したことを除けば、実施例1と同様にしてLiNi0.646Co0.15Al0.2Ti0.004の正極活物質を製造した。
<Example 8>
Instead of the manganese precursor, Al 2 (SO 4 ) 3 · H 2 O was used as the aluminum precursor, and Ni: Co: Al was mixed at a molar ratio of 65:15:20 to make Ni 0.65 Co 0.15 . Positive electrode of LiNi 0.646 Co 0.15 Al 0.2 Ti 0.004 O 2 in the same manner as in Example 1 except that hydrate precursor particles of Al 0.20 (OH) 2 were produced. Manufactured active material.

<比較例3>
実施例1において、ドーピング前駆体として、ドーピング元素を除いた正極活物質の重量に対してTiが450ppmとなるようにTiOを乾式混合してLiNi0.6491Co0.15Mn0.20Ti0.0009を製造したことを除けば、実施例1と同様に正極活物質を製造した。
<Comparative Example 3>
In Example 1, as a doping precursor, TiO 2 was dry-mixed so that Ti was 450 ppm with respect to the weight of the positive electrode active material excluding the doping element, and LiNi 0.6491 Co 0.15 Mn 0.20 Ti. Except for the production of 0.0009 O 2 , the positive electrode active material was produced in the same manner as in Example 1.

<比較例4>
実施例1において、ドーピング前駆体として、ドーピング元素を除いた正極活物質の重量に対してTiが5500ppmとなるようにTiOを乾式混合してLiNi0.639Co0.15Mn0.20Ti0.011を製造したことを除けば、実施例1と同様に正極活物質を製造した。
<Comparative Example 4>
In Example 1, as a doping precursor, TiO 2 was dry-mixed so that Ti was 5500 ppm with respect to the weight of the positive electrode active material excluding the doping element, and LiNi 0.639 Co 0.15 Mn 0.20 Ti. Except for the fact that 0.011 O 2 was produced, the positive electrode active material was produced in the same manner as in Example 1.

<比較例5>
実施例1において、ドーピング前駆体として、ドーピング元素を除いた正極活物質の重量に対してMgが450ppmとなるようにMgOを乾式混合してLiNi0.648Co0.15Mn0.20Mg0.002を製造したことを除けば、実施例1と同様に正極活物質を製造した。
<Comparative Example 5>
In Example 1, as a doping precursor, MgO was dry-mixed so that Mg was 450 ppm with respect to the weight of the positive electrode active material excluding the doping element, and LiNi 0.648 Co 0.15 Mn 0.20 Mg 0 . A positive electrode active material was produced in the same manner as in Example 1 except that .002 O 2 was produced.

<比較例6>
実施例1において、ドーピング前駆体として、ドーピング元素を除いた正極活物質の重量に対してMgが5500ppmとなるようにMgOを乾式混合してLiNi0.628Co0.15Mn0.20Mg0.022を製造したことを除けば、実施例1と同様に正極活物質を製造した。
<Comparative Example 6>
In Example 1, as a doping precursor, MgO was dry-mixed so that Mg would be 5500 ppm with respect to the weight of the positive electrode active material excluding the doping element, and LiNi 0.628 Co 0.15 Mn 0.20 Mg 0 . A positive electrode active material was produced in the same manner as in Example 1 except that .022 O 2 was produced.

<比較例7>
実施例1において、ドーピング前駆体として、ドーピング元素を除いた正極活物質の重量に対してZrが2000ppmとなるようにZrOを乾式混合してLiNi0.648Co0.15Mn0.20Zr0.002を製造したことを除けば、実施例1と同様に正極活物質を製造した。
<Comparative Example 7>
In Example 1 , ZrO2 was dry-mixed as a doping precursor so that Zr was 2000 ppm with respect to the weight of the positive electrode active material excluding the doping element, and LiNi 0.648 Co 0.15 Mn 0.20 Zr. Except for the fact that 0.002 O 2 was produced, the positive electrode active material was produced in the same manner as in Example 1.

<比較例8>
実施例1において、ドーピング前駆体として、ドーピング元素を除いた正極活物質の重量に対してZrが4000ppmとなるようにZrOを乾式混合してLiNi0.646Co0.15Mn0.20Zr0.004を製造したことを除けば、実施例1と同様に正極活物質を製造した。
<Comparative Example 8>
In Example 1, as a doping precursor, ZrO2 was dry - mixed so that Zr was 4000 ppm with respect to the weight of the positive electrode active material excluding the doping element, and LiNi 0.646 Co 0.15 Mn 0.20 Zr. Except for the fact that 0.004 O 2 was produced, the positive electrode active material was produced in the same manner as in Example 1.

<実験例1>
前記実施例1~8、比較例1~6の正極活物質をサンプルホルダーに入れて、Carverの圧延密度測定装置を用いて9tonまで圧延して、圧延前の比表面積(BET)と圧延後の比表面積(BET)を測定し、その結果を下記表1に示した。
<Experimental Example 1>
The positive electrode active materials of Examples 1 to 8 and Comparative Examples 1 to 6 were placed in a sample holder and rolled to 9 tons using Carver's rolling density measuring device to obtain the specific surface area (BET) before rolling and the specific surface area (BET) after rolling. The specific surface area (BET) was measured and the results are shown in Table 1 below.

前記「比表面積」は、BET法によって測定したものであって、具体的には、BEL Japan社のBELSORP‐mino IIを用いて、液体窒素温度下(77K)での窒素ガスの吸着量から算出した。 The "specific surface area" is measured by the BET method, and is specifically calculated from the amount of nitrogen gas adsorbed under liquid nitrogen temperature (77K) using BELSORP-mino II manufactured by BEL Japan. did.

Figure 2022518480000001
Figure 2022518480000001

前記表1を参照すれば、実施例による正極活物質が同一の圧延を行った時、比較例の正極活物質に比べて粒子の割れが少なく発生したことを確認できる。 With reference to Table 1 above, it can be confirmed that when the positive electrode active material according to the example was rolled in the same manner, the particles were less cracked than the positive electrode active material of the comparative example.

<実験例2>
前記実施例1~8、および比較例1~6で製造された正極活物質を用い、バインダーとしてPVdFおよび導電材として天然黒鉛を用いた。正極活物質:バインダー:導電材を重量比96:2:2となるようにNMPによく混合した後、20μmの厚さのAl箔に塗布した後、130℃で乾燥して正極を製造した。負極としてはリチウム箔を用い、EC:DMC:DEC=1:2:1の溶媒に1MのLiPF6が入っている電解液を用いて、ハーフコインセルを製造した。
<Experimental Example 2>
The positive electrode active materials produced in Examples 1 to 8 and Comparative Examples 1 to 6 were used, PVdF was used as a binder, and natural graphite was used as a conductive material. The positive electrode active material: binder: conductive material was well mixed with NMP so as to have a weight ratio of 96: 2: 2, then applied to an Al foil having a thickness of 20 μm, and then dried at 130 ° C. to produce a positive electrode. A lithium foil was used as the negative electrode, and a half-coin cell was manufactured using an electrolytic solution containing 1 M LiPF6 in a solvent of EC: DMC: DEC = 1: 2: 1.

前記ハーフコインセルを0.33Cで4.3Vまで満充電した後、セルを分解して正極と分離膜をDimethyl Carbonate(DMC)溶液で洗浄した後、大気中に乾燥した正極と分離膜をAlパウチに入れて、前記と同一の電解液を新たに注入した後、パウチを真空シーリングしてガス発生量測定のためのパウチを製造した。製造したパウチを60℃で4週間高温保存しながら、アルキメデスの原理を利用して、一定体積の蒸留水の入った水槽にパウチを入れて水中の質量を測定し、大気中での質量と、測定時の水の温度に応じた密度を用いて、パウチの体積変化を計算した。測定したガス発生量の結果は下記表2に示した。 The half-coin cell is fully charged at 0.33C to 4.3V, the cell is disassembled, the positive electrode and the separation membrane are washed with a Dimethyl Carbonate (DMC) solution, and then the positive electrode and the separation membrane dried in the air are placed in an Al pouch. After newly injecting the same electrolytic solution as above, the pouch was vacuum-sealed to produce a pouch for measuring the amount of gas generated. While storing the manufactured pouch at a high temperature of 60 ° C for 4 weeks, using Archimedes' principle, the pouch was placed in a water tank containing a certain volume of distilled water and the mass in water was measured. The volume change of the pouch was calculated using the density according to the temperature of water at the time of measurement. The results of the measured gas generation amount are shown in Table 2 below.

Figure 2022518480000002
Figure 2022518480000002

前記表2を参照すれば、前記表1にて粒子の割れが少なくてBET変化率が少ない実施例であるほど、高温保存性能に優れていることを確認できる。 With reference to Table 2, it can be confirmed in Table 1 that the smaller the cracking of the particles and the smaller the BET change rate, the better the high temperature storage performance.

<実験例3>
前記実験例2で製造したハーフコインセルを45℃で定電流/定電圧(CC/CV)の条件で4.3Vまで1Cで充電した後、定電流(CC)の条件で3.0Vまで1Cで放電し、その放電容量を1サイクル放電容量とした。これを400サイクルまで繰り返し実施し、(400サイクル後の容量/1サイクル後の容量)×100で計算された値を高温寿命維持率(%)として、その結果を表3に示した。
<Experimental example 3>
The half coin cell manufactured in Experimental Example 2 is charged at 45 ° C. under constant current / constant voltage (CC / CV) conditions at 1C to 4.3V, and then charged at constant current (CC) conditions at 1C up to 3.0V. It was discharged, and the discharge capacity was defined as one cycle discharge capacity. This was repeated up to 400 cycles, and the value calculated by (capacity after 400 cycles / capacity after 1 cycle) × 100 was defined as the high temperature life retention rate (%), and the results are shown in Table 3.

Figure 2022518480000003
Figure 2022518480000003

前記表3を参照すれば、前記表1にて粒子の割れが少なくてBET変化率が少ない実施例であるほど、高温寿命特性に優れていることを確認できる。 With reference to Table 3, it can be confirmed in Table 1 that the smaller the number of particles cracked and the smaller the BET change rate, the better the high temperature life characteristics.

本発明による正極活物質は、特定のドーピング元素を特定の含有量で含むドーピング最適化により高い圧力の圧延にも粒子の割れを最小化することによって、正極活物質の比表面積の増加に伴う、電解液との副反応の増加によるガス発生による高温保存時の抵抗増加を解決し、寿命特性を向上させることができる効果がある。 The positive electrode active material according to the present invention is accompanied by an increase in the specific surface area of the positive electrode active material by minimizing the cracking of particles even in high pressure rolling by doping optimization containing a specific doping element at a specific content. It has the effect of solving the increase in resistance during high-temperature storage due to the generation of gas due to the increase in side reactions with the electrolytic solution, and improving the life characteristics.

Claims (10)

ドーピング元素(M’)でドーピングされたリチウムニッケル系酸化物を含み、
前記ドーピング元素(M’)は、チタン(Ti)およびマグネシウム(Mg)からなる群より選択される1種以上であり、
前記ドーピング元素(M’)がTiの時、ドーピング含有量は、ドーピング元素を除いたリチウムニッケル系酸化物の全量を基準として3000ppm~5000ppmであり、
前記ドーピング元素(M’)がMgの時、ドーピング含有量は、ドーピング元素を除いたリチウムニッケル系酸化物の全量を基準として500ppm~5000ppmであり、
前記ドーピング元素(M’)がTiおよびMgの時、総ドーピング含有量は、ドーピング元素を除いたリチウムニッケル系酸化物の全量を基準として3500ppm~5000ppmである二次電池用正極活物質。
Contains lithium nickel oxides doped with a doping element (M')
The doping element (M') is one or more selected from the group consisting of titanium (Ti) and magnesium (Mg).
When the doping element (M') is Ti, the doping content is 3000 ppm to 5000 ppm based on the total amount of the lithium nickel-based oxide excluding the doping element.
When the doping element (M') is Mg, the doping content is 500 ppm to 5000 ppm based on the total amount of the lithium nickel-based oxide excluding the doping element.
When the doping element (M') is Ti and Mg, the total doping content is 3500 ppm to 5000 ppm based on the total amount of the lithium nickel-based oxide excluding the doping element, which is a positive electrode active material for a secondary battery.
前記ドーピング元素(M’)がTiの時、Tiのドーピング含有量は、ドーピング元素を除いたリチウムニッケル系酸化物の全量を基準として3000ppm~4000ppmである、請求項1に記載の二次電池用正極活物質。 The secondary battery according to claim 1, wherein when the doping element (M') is Ti, the doping content of Ti is 3000 ppm to 4000 ppm based on the total amount of the lithium nickel-based oxide excluding the doping element. Positive active material. 前記ドーピング元素(M’)がMgの時、Mgのドーピング含有量は、ドーピング元素を除いたリチウムニッケル系酸化物の全量を基準として2000ppm~4000ppmである、請求項1に記載の二次電池用正極活物質。 The secondary battery according to claim 1, wherein when the doping element (M') is Mg, the doping content of Mg is 2000 ppm to 4000 ppm based on the total amount of the lithium nickel-based oxide excluding the doping element. Positive active material. 前記ドーピング元素(M’)がTiおよびMgの時、総ドーピング含有量は、ドーピング元素を除いたリチウムニッケル系酸化物の全量を基準として4000ppm~5000ppmである、請求項1に記載の二次電池用正極活物質。 The secondary battery according to claim 1, wherein when the doping element (M') is Ti and Mg, the total doping content is 4000 ppm to 5000 ppm based on the total amount of the lithium nickel-based oxide excluding the doping element. Positive active material for. 前記TiとMgのドーピング含有量比は、重量を基準として1:9~9:1である、請求項1又は4に記載の二次電池用正極活物質。 The positive electrode active material for a secondary battery according to claim 1 or 4, wherein the doping content ratio of Ti and Mg is 1: 9 to 9: 1 with respect to the weight. 前記TiとMgのドーピング含有量比は、重量を基準として5:5~9:1である、請求項5に記載の二次電池用正極活物質。 The positive electrode active material for a secondary battery according to claim 5, wherein the doping content ratio of Ti and Mg is 5: 5 to 9: 1 with respect to the weight. 前記リチウムニッケル系酸化物は、下記の化学式1で表され、
LiNi1-x-y-zCoM’2-w (化学式1)
前記化学式1中、
Mは、MnおよびAlからなる群より選択される少なくとも1種であり、
M’は、TiおよびMgからなる群より選択される少なくとも1種であり、
Aは、酸素置換型ハロゲンであり、
1.00≦a≦1.5、0<x<y、0.2≦x+y≦0.4、および0≦w≦0.001であり、前記zは、ドーピング元素により、請求項1に定義した含有量に応じて定められる、請求項1から6のいずれか一項に記載の二次電池用正極活物質。
The lithium nickel-based oxide is represented by the following chemical formula 1 and is represented by the following chemical formula 1.
Li a Ni 1-x-y-z Co x My M'z O 2-w A w (Chemical formula 1)
In the chemical formula 1,
M is at least one selected from the group consisting of Mn and Al.
M'is at least one selected from the group consisting of Ti and Mg.
A is an oxygen-substituted halogen and
1.00 ≦ a ≦ 1.5, 0 <x <y, 0.2 ≦ x + y ≦ 0.4, and 0 ≦ w ≦ 0.001, and z is defined in claim 1 by a doping element. The positive electrode active material for a secondary battery according to any one of claims 1 to 6, which is determined according to the content thereof.
前記リチウムニッケル系酸化物は、下記の化学式2で表され、
LiNi1-x-y-zCo(MnAlM’2-w (化学式2)
前記化学式2中、
M’は、TiおよびMgからなる群より選択される少なくとも1種であり、
Aは、酸素置換型ハロゲンであり、
1.00≦a≦1.5、0<x<y、0.2≦x+y≦0.4、0<s≦1、0≦t<1、および0≦w≦0.001であり、前記zは、ドーピング元素により、請求項1に定義した含有量に応じて定められる、請求項7に記載の二次電池用正極活物質。
The lithium nickel-based oxide is represented by the following chemical formula 2 and is represented by the following chemical formula 2.
Li a Ni 1-x-y-z Co x (Mn s Alt ) y M'z O 2-w A w (Chemical formula 2)
In the chemical formula 2,
M'is at least one selected from the group consisting of Ti and Mg.
A is an oxygen-substituted halogen and
1.00 ≦ a ≦ 1.5, 0 <x <y, 0.2 ≦ x + y ≦ 0.4, 0 <s ≦ 1, 0 ≦ t <1, and 0 ≦ w ≦ 0.001. The positive electrode active material for a secondary battery according to claim 7, wherein z is determined by a doping element according to the content defined in claim 1.
請求項1から8のいずれか一項に記載の二次電池用正極活物質を含む正極。 A positive electrode containing the positive electrode active material for a secondary battery according to any one of claims 1 to 8. 請求項9に記載の正極と、負極と、前記正極と前記負極との間に介在する分離膜とを含む電極組立体が電解液に含浸された状態で電池ケースに内蔵されている構造の二次電池。 2. The structure is such that the electrode assembly including the positive electrode, the negative electrode, and the separation film interposed between the positive electrode and the negative electrode according to claim 9 is impregnated in the electrolytic solution and is built in the battery case. Next battery.
JP2021542179A 2019-11-27 2020-09-22 Positive electrode active material containing lithium-nickel-based oxide doped with doping element, and secondary battery containing the same Active JP7258403B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20190154435 2019-11-27
KR10-2019-0154435 2019-11-27
KR1020200118542A KR20210065831A (en) 2019-11-27 2020-09-15 Positive Electrode Active Material Comprising Lithium Nickel-based Oxide Doped with Doping Element, and Secondary Battery Comprising the Same
KR10-2020-0118542 2020-09-15
PCT/KR2020/012792 WO2021107363A1 (en) 2019-11-27 2020-09-22 Positive electrode active material comprising lithium nickel-based oxide doped with doping element, and secondary battery comprising same

Publications (2)

Publication Number Publication Date
JP2022518480A true JP2022518480A (en) 2022-03-15
JP7258403B2 JP7258403B2 (en) 2023-04-17

Family

ID=76130315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021542179A Active JP7258403B2 (en) 2019-11-27 2020-09-22 Positive electrode active material containing lithium-nickel-based oxide doped with doping element, and secondary battery containing the same

Country Status (4)

Country Link
US (1) US20220149367A1 (en)
EP (1) EP3916859A4 (en)
JP (1) JP7258403B2 (en)
WO (1) WO2021107363A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217572A (en) * 2002-01-24 2003-07-31 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery
JP2012014851A (en) * 2010-06-29 2012-01-19 Hitachi Maxell Energy Ltd Electrode for electrochemical element, and nonaqueous secondary battery
WO2014061654A1 (en) * 2012-10-17 2014-04-24 戸田工業株式会社 Li-Ni COMPLEX OXIDE PARTICLE POWDER AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
CN106229489A (en) * 2016-08-29 2016-12-14 青海泰丰先行锂能科技有限公司 A kind of high voltage ternary lithium ion anode material of monocrystalline pattern and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100437340B1 (en) * 2002-05-13 2004-06-25 삼성에스디아이 주식회사 Method of preparing positive active material for rechargeable lithium battery
KR101534896B1 (en) * 2010-06-29 2015-07-08 유미코르 High density and high voltage stable cathode materials for secondary batteries
KR20140081472A (en) * 2012-12-21 2014-07-01 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
CN104701534A (en) * 2015-03-31 2015-06-10 南通瑞翔新材料有限公司 High-energy-density Ni-Co-based lithium ion positive electrode material and preparation method thereof
WO2018179936A1 (en) * 2017-03-31 2018-10-04 パナソニック株式会社 Cathode active material for secondary battery using non-aqueous electrolyte and production method thereof
KR102402388B1 (en) * 2017-04-28 2022-05-26 삼성에스디아이 주식회사 Positive active material, lithium secondary battery containing the material, and method of manufacturing the material
CN109524618B (en) * 2017-09-19 2020-09-18 宁德新能源科技有限公司 Positive electrode material and lithium ion battery
KR102398689B1 (en) * 2018-04-06 2022-05-17 주식회사 엘지에너지솔루션 Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
ES2858078T3 (en) * 2018-05-09 2021-09-29 Haldor Topsoe As Active material for doped lithium positive electrodes and process for making the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217572A (en) * 2002-01-24 2003-07-31 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery
JP2012014851A (en) * 2010-06-29 2012-01-19 Hitachi Maxell Energy Ltd Electrode for electrochemical element, and nonaqueous secondary battery
WO2014061654A1 (en) * 2012-10-17 2014-04-24 戸田工業株式会社 Li-Ni COMPLEX OXIDE PARTICLE POWDER AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
CN106229489A (en) * 2016-08-29 2016-12-14 青海泰丰先行锂能科技有限公司 A kind of high voltage ternary lithium ion anode material of monocrystalline pattern and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
G.LI, ET AL.: "Understanding the trace Ti surface doping on promoting the low temperature performance of Ni1/3Co1/3", JOURNAL OF POWER SOURCES, vol. 281, JPN6022030221, 2015, pages 69 - 76, XP029142642, ISSN: 0004831196, DOI: 10.1016/j.jpowsour.2015.01.173 *

Also Published As

Publication number Publication date
US20220149367A1 (en) 2022-05-12
JP7258403B2 (en) 2023-04-17
WO2021107363A1 (en) 2021-06-03
EP3916859A1 (en) 2021-12-01
EP3916859A4 (en) 2022-06-08

Similar Documents

Publication Publication Date Title
KR102325727B1 (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
JP7134550B2 (en) Method for manufacturing positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery containing the same, and lithium secondary battery
JP2020525993A (en) Positive electrode active material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery including the same, and lithium secondary battery
JP2023134475A (en) Positive electrode active material for lithium secondary battery, method of preparing the same, and positive electrode for lithium secondary battery and lithium secondary battery which include the positive electrode active material
JP2019522882A (en) Positive electrode active material for secondary battery, method for producing the same, and lithium secondary battery including the same
JP2020537298A (en) Positive electrode active material for secondary batteries, its manufacturing method and lithium secondary batteries containing it
JP2021508154A (en) Positive electrode active material for secondary batteries, manufacturing method thereof, and lithium secondary batteries containing them
JP7045598B2 (en) Positive electrode for lithium secondary battery, its manufacturing method and lithium secondary battery including it
JP7456671B2 (en) Positive electrode material for lithium secondary batteries, positive electrodes containing the same, and lithium secondary batteries
CN111344256B (en) Method for preparing positive electrode active material for secondary battery
JP7046410B2 (en) Manufacturing method of positive electrode active material for secondary battery, and secondary battery using this
JP2022521328A (en) Positive electrode for secondary battery containing scaly graphite and secondary battery containing this
JP2022159384A (en) Method for manufacturing positive electrode active material for lithium secondary battery
CN112204769A (en) Lithium cobalt-based positive electrode active material, method for preparing same, and positive electrode and secondary battery comprising same
JP2022548846A (en) Cathode material for secondary battery and lithium secondary battery containing the same
JP6884238B2 (en) A method for producing a positive electrode active material for a lithium secondary battery, a positive electrode active material produced thereby, a positive electrode for a lithium secondary battery containing the same, and a lithium secondary battery.
JP2024040214A (en) A positive electrode optimized for improved high-temperature life characteristics and a secondary battery containing the same
JP7357994B2 (en) Method for producing positive electrode active material for secondary batteries
CN115004414A (en) Positive electrode active material for secondary battery and lithium secondary battery comprising same
KR102569296B1 (en) Preparing method of positive electrode active material for lithium secondary battery, positive electrode active material thereby
JP7217072B2 (en) Irreversible additive contained in positive electrode material for secondary battery, positive electrode material containing same, and secondary battery containing positive electrode material
KR20210065831A (en) Positive Electrode Active Material Comprising Lithium Nickel-based Oxide Doped with Doping Element, and Secondary Battery Comprising the Same
KR20210058490A (en) Positive Electrode Active Material Comprising Lithium Cobalt-based Oxide With Coating Layer, Method of Manufacturing the Same, and Secondary Battery Comrising the Same
JP7258403B2 (en) Positive electrode active material containing lithium-nickel-based oxide doped with doping element, and secondary battery containing the same
JP7278652B2 (en) Positive electrode active material for secondary battery, method for producing the same, and lithium secondary battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230330

R150 Certificate of patent or registration of utility model

Ref document number: 7258403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150