JP2022516033A - 脳卒中検出センサ - Google Patents

脳卒中検出センサ Download PDF

Info

Publication number
JP2022516033A
JP2022516033A JP2021536388A JP2021536388A JP2022516033A JP 2022516033 A JP2022516033 A JP 2022516033A JP 2021536388 A JP2021536388 A JP 2021536388A JP 2021536388 A JP2021536388 A JP 2021536388A JP 2022516033 A JP2022516033 A JP 2022516033A
Authority
JP
Japan
Prior art keywords
stroke
user
data
probability
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021536388A
Other languages
English (en)
Other versions
JP7558172B2 (ja
Inventor
エリクソン、ペーター
ワシェリウス、ヨハン
オストロム、カール
バースィルッソン、リカルド
Original Assignee
ウマン センス アーベー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB1820892.6A external-priority patent/GB201820892D0/en
Application filed by ウマン センス アーベー filed Critical ウマン センス アーベー
Publication of JP2022516033A publication Critical patent/JP2022516033A/ja
Application granted granted Critical
Publication of JP7558172B2 publication Critical patent/JP7558172B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1124Determining motor skills
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/162Testing reaction times
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4058Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
    • A61B5/4064Evaluating the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4094Diagnosing or monitoring seizure diseases, e.g. epilepsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6824Arm or wrist
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6828Leg
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7282Event detection, e.g. detecting unique waveforms indicative of a medical condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7465Arrangements for interactive communication between patient and care services, e.g. by using a telephone network
    • A61B5/747Arrangements for interactive communication between patient and care services, e.g. by using a telephone network in case of emergency, i.e. alerting emergency services
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7475User input or interface means, e.g. keyboard, pointing device, joystick
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Psychiatry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Psychology (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Critical Care (AREA)
  • Emergency Medicine (AREA)
  • Nursing (AREA)
  • Social Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Educational Technology (AREA)
  • Developmental Disabilities (AREA)
  • Child & Adolescent Psychology (AREA)
  • General Business, Economics & Management (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

【課題】ユーザに脳卒中が生じていること又は最近に生じていることを決定する脳卒中検出装置を提供する。【解決手段】脳卒中検出装置は、プロセッサと、ユーザによって着用されるように構成され、かつ、ユーザの動作データをデータ処理デバイスに対して送信するように構成される少なくとも1つの着用可能センサとを含むデータ処理デバイスを含む。データ処理デバイスは、動作データを処理して、第1の期間にわたるユーザ脳卒中の第1の蓋然性及び第2の期間にわたるユーザ脳卒中の第2の蓋然性を決定するように構成される。次に、脳卒中検出シグナルは少なくとも第1の蓋然性及び第2の蓋然性に依存して生成される。【選択図】図3

Description

本発明は、患者における脳卒中を検出する装置及び方法に関連する。
脳卒中(ストローク・発作)は、脳への貧しい血流の結果として細胞死になる医学的状態である。脳卒中に関しては、2つの主たる原因がある。虚血性の脳卒中は、典型的には、脳へ血液を供給する動脈におけるブロックから結果として生じる脳の部分(複数)への血流を欠くことによって生じる。血液は、通常は脳へ酸素及び栄養素を運搬する。ブロックによって一度酸素及び栄養素がカットオフされると、脳細胞は十分なエネルギーを作ることができず、最終的には働きを停止するだろう。ブロックが除かれない場合(not cleared)には、脳細胞は最終的には死ぬだろう。出血性の脳卒中は、脳内での出血によって生じる。出血は、典型的にはダメージを受けた血管が血液を漏出することによって生じる。出血性の脳卒中は、脳動脈瘤破裂によっても生じ得る。両方のケースで、血液が周囲の脳組織へ広がり(spreads)、増加した圧力を生じること、脳細胞の働きを限定すること、及び最終的に脳組織へダメージを与えること、が生じる。
上記のタイプの脳卒中の両方において結果として生じる影響は、脳細胞が正確に機能することを停止することによる、脳の機能における変化である。この変化は、動けないこと、又は、身体の片側にしか感覚がないこと、会話上の問題、及び視力喪失などの身体的な兆候を通して観察することができる。これらの身体的な兆候は、しばしば、多かれ少なかれ、脳卒中が開始し始めた後にすぐに現れる。
歴史的には、脳卒中は処置することが非常に困難であった。患者の兆候が脳卒中と認識及び診断されたとしても、限定された処置が利用可能であった。脳卒中が虚血性の脳卒中として同定された場合に、薬剤が血塊へ到達してそれを十分に分解し、影響を受けた動脈を通って血流が再稼働するであろうことを期待して、組織プラスミノーゲン活性化因子などの血塊分解剤が静脈内的に患者に投与された。脳組織へのダメージを限定するためには、そのような処置が脳卒中の開始のわずか数時間以内に成功裏に適用される必要があろう。いくつかの研究は、血塊分解剤からの最良の結果を得るための時間窓が脳卒中の最初の(第1の)サイン(複数)から3時間であることを示唆する。脳卒中が成功裏に処置されなかった場合には、脳組織へのダメージは免れなくなり、頼り(recourse)は患者に対してケア及びリハビリテーショントレーニングを提供することのみである。
より最近には、虚血性脳卒中は、脳内のブロックされた血管の箇所へ血塊引抜デバイスを送達させることによって血塊が除去される、「機械的血栓除去」と称される血管内手法を介して成功裏に処置されている。このデバイスは血塊に取り付き(secures)、デバイスが取り出される際に血塊を血管から引き出す。同様に、出血性の脳卒中は、ダメージを受けた血管又は破裂した動脈瘤へ金属クリップを送達することによる血管内手法を介しても処置され得る。クリップは、血液のあふれ出しを制限して、更なる血液が周囲の血液組織へ漏れることを阻止するように固定される。血塊分解剤と併用した際に、脳卒中の最初の(第1の)サイン(複数)の数時間以内に処置が行われれば、顕著なダメージの緩和が達成され得る。
つまり、虚血性脳卒中に関して改善された処置オプションがあるので、脳卒中の兆候を認識及び特徴付けする(characterising)ことの重要性が増してきている。脳卒中を患う高いリスクを有する患者にとっては、コンスタントなモニタリングに対して、脳卒中の即時診断及びヘルスケアプロバイダへのエスカレーション(段階的拡大)を付与する方法が必要とされている。
患者における脳卒中の初期検出に関する、患者の身体上に着用したセンサの使用を採用する既知の技術がある。Villar. J R.の「A hybrid intelligent recognition system for the early detection of strokes」は、脳卒中が検出された時に警告アラームを生成し、かつ、e-ヘルスサービスに対して自動的に接続する着用可能(ウエアラブル)デバイスの使用を開示する。記載されるアプローチは、動作データをモニタする2つの着用可能デバイスを採用し、そして、脳卒中を決定するために遺伝学的ファジー有限状態マシーン(genetic fuzzy finite-state machines)及びタイムシリーズ(TS)解析を採用する。
米国特許出願US2018153477は、「生理学的なシグナル」を決定するために、いくつかのセンサを介して脳卒中に関して患者をモニタリングするデバイスを開示する。生理学的なシグナルは、心拍数シグナル、心房レートシグナル、心拍変動シグナル、血圧シグナル、血圧変動シグナル、心音シグナルなどを含み得る。
米国特許US7,981,058は、低コストの二軸運動センサを使用して患者をモニタリングするデバイスを開示する。第1のセンサは客観的な加速度データを捕え、第2の二軸センサは少なくとも第1の加速度計に対して相対的な主観的な加速データを捕える。加速度データは、次に、非線形パラメータを決定すること、及び少なくとも2つのレベルのモーター機能情報を生成することに使用される。
US2017281054は、患者の身体上の1か所以上の解剖学上の位置に配されて、患者の身体のある箇所の運動(モーション)に対応する複数の運動パラメータを検出するように構成される複数の運動センサを介して、脳卒中に関して患者をモニタリングするデバイスを開示する米国出願である。患者の身体のある箇所の動きは、その際、複数の所定の運動センテンス特徴(motion sentence features)に基づく。
US2015157252は、いくつかのセンサを介して患者をモニタリングするデバイスを開示する米国出願である。センサ間をスイッチングして患者の生理学的なシグナルステータスの最良の指標をどのセンサが提供するかを決定する技術が開示されている。
米国特許公報2018/153477号明細書 米国特許第7,981,058号明細書 米国特許公報2017/281054号明細書 米国特許公報2015/157252号明細書
しかしながら、上記のシステム(複数)に関連する問題点は、あまりに多くの虚偽ポジティブをトリガーせずに、患者の脳卒中を指し示す信頼できるシグナルを生成することに関する問題点を含む。必要とされるのは、最小限の虚偽ポジティブで脳卒中検出シグナルを生成することが可能なシステムであり、虚偽ポジティブがまさに生じた場合にシステムがユーザにとって過大な不便さ無しにそれらを優雅に取り扱うことができることである。
本発明の目的は、先行技術の上述の限定の1つ以上を少なくとも部分的に克服することである。
これらの目的の1つ以上、並びに下記の記載から明らかになり得る更なる目的は、データ処理のための方法、コンピュータ読み出し可能なメディア、データ処理のためのデバイス、及び独立請求項に記載の装置によって少なくとも部分的に達成され、それらの実施形態は従属請求項によって定義される。
明細書の1つの実施形態は、プロセッサと、ユーザによって着用されるように構成され、かつ、ユーザの動作データをデータ処理デバイスに対して送信するように構成される少なくとも1つの着用可能センサとを含むデータ処理デバイスを含み、データ処理デバイスが動作データを処理して第1の期間にわたるユーザ脳卒中の第1の蓋然性(possibility)及び第2の期間にわたるユーザ脳卒中の第2の蓋然性を決定し、そして、少なくとも第1の蓋然性及び第2の蓋然性に依存して脳卒中検出シグナルを生成するように構成される、脳卒中検出装置を記載する。
本明細書の他の実施形態は、ユーザによって着用されるように構成される少なくとも1つの着用可能センサデバイスを使用してユーザの動作データを生成すること、動作データを処理デバイスに対して送信すること、動作データを処理デバイスにおいて処理して第1の期間にわたるユーザ脳卒中の第1の蓋然性及び第2の期間にわたるユーザ脳卒中の第2の蓋然性を決定すること、少なくとも第1の蓋然性及び第2の蓋然性に依存して脳卒中検出シグナルを生成すること、を含む脳卒中検出シグナルを生成する方法を記載する。
本発明の実施形態は、付随の模式図を参照してより詳細に記載されるだろう。
図1は、患者が着用するマルチセンサ脳卒中検出装置を示す模式図である。 図2は、本出願の一実施形態による脳卒中検出装置の斜視図を示す。 図3は、本出願の一実施形態による脳卒中検出装置の模式図である。 図4a及び図4bは、着用可能センサ及びコントロールデバイスの各々の実行フローを示す処理フロー図である。 図5a及び図5bは、第1及び第2の着用可能センサデバイスとコントロールデバイスとの間のデータ送信順序を示すシーケンス図である。 図6は、コントロールデバイス30の実行フローを示す処理フロー図である。 図7は、コントロールデバイス30の実行フローを示す代わりの処理フロー図である。 図8a~8cは、脳卒中検出装置の運動センサシグナルグラフの例である。 図9は、コントロールデバイス30の実行フローを示す代わりの処理フロー図である。 図10は、脳卒中を検出する実施形態が、所与の特異的な構成の脳卒中を検出するのに要する時間を示す。
本発明は、着用可能(ウエアラブル)センサ及び患者の状態並びに必要とする患者の(罹患)状態のエスカレーション(段階的拡大)のモニタリング及び検出を提供するための技術の使用に関連する。明細書にわたって、同一の引用符号は、対応する要素を規定するように使用される。
図1は、複数の着用可能センサ20を含む脳卒中検出装置100を着用した患者10を示す模式図である。図1において、着用可能センサ20a、20bは、患者の手首に取り付けられる。他の実施形態では、着用可能センサは、手首の代わりに又は手首との組み合わせのいずれかで足首に着用することができる。着用可能センサが着用され得る他の位置は履物、かぶり物を含み、ズボン及び上着などの衣服に取り付けられ得る。
図2は、着用可能センサ20の一実施形態を示す。1つの実施形態において、着用可能センサ20は、着用可能センサ20を患者に固定するストラップ21、処理ボード25を収容するセンサボディ22を含む。処理ボードは、電源26、データ処理デバイス27及びセンサパッケージ28を含み得る。センサパッケージ28は、着用可能センサ20が取り付けられた患者の身体の部分の傾き、位置、向き及び/又は加速を測定するように構成される、いずれかの適切なセンサ構成要素を含み得る。センサパッケージ28は、力学的(メカニカル)な運動(モーション)を電気的なシグナルへ変換する、ピエゾ電気性の、ピエゾ抵抗性の及び/又は蓄電性の構成要素を含み得る。ピエゾセラミックス(例えば、ジルコニウム酸チタン酸鉛)又は単一結晶(例えば クォーツ、トルマリン)が使用され得る。好ましくは、低い周波数領域における優れたパフォーマンスに起因して、蓄電性の加速度計が採用される。
データ処理デバイス27は、ハードウェア処理装置(単数又は複数)などの汎用目的の又は専用目的のコンピューティングデバイスの1つ以上の上で稼働する専用目的のソフトウェア(又はファームウェア)によって実現され得る。そのようなコンピューティングデバイスの各「要素」又は「手段」は、方法ステップのコンセプト的な均等物を意味し、要素/手段とハードウェア又はソフトウェアルーチンの特定のピース(部分)との間に1対1の対応関係が常にあるわけではない。ハードウェアの1つのピースは、異なる手段/要素をしばしば含む。例えば、処理ユニットは、1つの指示を実行する際には1つの要素/手段としての役割を果たすが、他の指示を実行する際には他の要素/手段としての役割を果たす。更に、1つの要素/手段は、いくつかのケースにおいては1つの指示によって実行され得るが、いくつかの他のケースにおいては複数の指示によって実行され得る。そのようなソフトウェア-コントロールされたコンピューティングデバイスは、1つ以上の処理ユニット、例えば、CPU(「Central Processing Unit」)、DSP(「Digital Signal Processor」)、ASIC(「Application-Specific Integrated Circuit」)、別個のアナログ及び/又はデジタルな構成要素、又はFPGA(「Field Programmable Gate Array」)などのいくつかの他のプログラム可能な論理デバイス、を含み得る。データ処理デバイス27は、システムメモリ、及び処理ユニットに対するシステムメモリのカップル化を含む種々のシステム構成要素をカップル化するシステムバスを更に含み得る。システムバスは、種々のバス構造のいずれかを使用するメモリバス又はメモリコントローラ、ペリフェラルバス及びローカルバスを含む、いくつかのタイプのバス構造のいずれかであり得る。システムメモリは、リードオンリーメモリ(ROM)ランダムアクセスメモリ(RAM)及びフラッシュメモリなどの、揮発性及び/又は非揮発性のメモリの形態のコンピュータ記憶メディアを含み得る。専用目的ソフトウェアは、システムメモリ内、磁性メディア、光学メディア、フラッシュメモリカード、デジタルテープ、ソリッドステートRAM、ソリッドステートROM等などのコンピューティングデバイスに含まれるか又はアクセスし得る又は他のリムーバブルメディア/非リムーバブルな、揮発性/非揮発性のコンピュータ記憶メディア内に、記憶され得る。専用目的ソフトウェアは、レコードメディア及びリードオンリーメモリを含むいずれかの適切なコンピュータ読み出し可能なメディア上で、データ処理デバイス27に提供され得る。
データ処理デバイス27は、シリアルインターフェイス、USBインターフェイス、ワイヤレスインターフェイス等などの1つ以上のコミュニケーションインターフェイス、並びにA/Dコンバータなどの1つ以上のデータ取得デバイスを含む。1つの例において、データ処理デバイス27は、センサパッケージ28から受信してデータ処理デバイス27によって処理されたセンサデータを送信するように構成される送信構成要素及び/又は1つ以上のコミュニケーションインターフェイスにわたるA/Dコンバータを含み得る。1つの実施形態において、コミュニケーションインターフェイスはブルートゥース(登録商標)又はWiFiトランシーバ及びを介して提供され、処理されたセンサデータはコントロールデバイス30(後述)に対して送信される。処理されたセンサデータは、その代わりに、GSM、LTE又は類似のモバイルコミュニケーションインターフェイスを介して1以上のリモートデバイスに対して送信され得る。
電源26は、バッテリー、運動エネルギー源、又は他の着用可能デバイスに適した電源を含み得る。電源26は、処理ボード25のデータ処理デバイス27及びセンサパッケージ28にパワーを供するためのエネルギー源を提供するように配される。
着用可能センサ20は、カウンターパート構成要素24と固定されるように構成される留め構成要素(fastening component)23を更に含むことができ、デバイスが患者10の手足(limb)に対して固定されるようにする。1つの実施形態において、留め構成要素23は、着用可能センサ20のストラップ21が「オープンな」構成の状態にあるか、又は「固定された」構成の状態にあるかを決定するように構成されるセンサを含む。ストラップの「オープンな」構成の例は図2に示され、着用可能センサ20がいずれにも固定されていない。「クローズドな」構成の例は図1に示され、着用可能センサ20が患者に対して固定されている。同様に、「クローズドな」構成の例は図3に示され、留め構成要素23がカウンターパート構成要素24に対して留め付けられ、着用可能センサ20のストラップを固定されたループ状態にする。1つの実施形態において、留め構成要素23のセンサはデータ処理デバイス27が着用可能センサ20のストラップ21の構成を決定できるように、処理ボード25に対して電気的に接続される。
着用可能センサ20は、バイブレーションモーター又は均等な身体的アクチュエーター、光源、例えばLED、又は音源、例えばスピーカーの少なくとも1つを含むフィードバックメカニズムを更に含み得る。フィードバックメカニズムは、健康な患者の注目を引き付けることが可能なバイブレーションプロンプト、視覚プロンプト、聴覚プロンプトを生成するように構成され得る。
図3は、本出願の一実施形態によるワイヤレスネットワークの一例を示す。図3では、20a及び20bとして示される2つの着用可能センサ20が患者(図示されない)に着用され、そして各着用可能センサの各々のストラップ21が「クローズドな」構成の状態である。着用可能センサ20a、20bの各々は、患者からセンサデータを収集し、前記データを処理し、そしてワイヤレスネットワーキングインターフェイス34を介してコントロールデバイス30に対してデータを送信する。このプロセスは、後により詳細にかつ図4aを参照して記載される。コントロールデバイス30は、Apple(登録商標)、iPhone(登録商標)、iPad(登録商標)、Apple Watch(登録商標)、Android(登録商標)デバイス、Wear OS(登録商標)デバイス、ラップトップデバイス、又は類似の携帯電話デバイスであり得る。コントロールデバイス30は、着用可能センサからデータを受信し、それを処理して患者の状態を決定するとともに、適切なエスカレーションプロセスを実行する。このプロセスは、後により詳細にかつ図4bを参照して記載される。
図4aは、データ処理デバイス27に関する処理フローの一実施形態を示す。図4aに示される処理フローは、連続的なループで又は周期的に実行され得る。処理が周期的に実行される場合には、実行(複数)の間にバッテリー使用を最小化するようにエネルギーセービングモードが採用され得る。
ステップ410において、センサ出力は、センサパッケージ28からデータ処理デバイス27によって受信される。センサデータが例えばピエゾ電気性の構成要素によって生成される場合には、ピエゾ電気性の構成要素からの出力は所望のアナログシグナルが生成されようにするために前処理を必要とし得る。前処理ステップの一例は、アナログシグナルからピエゾ電気性の構成要素によって生成された高い周波数のノイズを減少させることであり得る。前処理ステップ420は、センサパッケージ28において又はデータ処理デバイス27上で生じ得る。
前処理ステップ420の後に、ステップ430においてアナログシグナルからデジタルシグナルへのシグナルの変換が実行される。このアナログからデジタルへの変換は、センサパッケージ28において又はデータ処理デバイス27上で生じ得る。
次に、ステップ440において、ノイズを減少させ、そしてセンサ読み取り値に対してタイムスタンプを付与するようにデジタルシグナルが処理される。ステップ440は、加速度計によって生成された加速ベクターを、加速ベクターの規格(norm)へ変換することを含み得る。すなわち、加速ベクターは、単一の方向の厳密に(strictly)ポジティブな(正の)長さへ変換される。このことは、ベクターデータを記憶するための記憶スペースの減少及び加速度計の向きに対する不変性を含む、いくつかの利点をもたらす。フィルタを通過した加速ベクターシグナルが重力又はセンサの配向(向き)に対して不変であるようにステップを確実にするために、上記のものと組み合わせて又は独立して他のフィルタが想定される。好ましい一実施形態において、先行するフィルタリングステップのいずれかが、着用可能センサに対して局所的に実行される。
ステップ440は、上述のものと組み合わせて又は独立して、加速度計に対する重力から結果的に生じる加速ベクターを除去するローパスフィルタを適用することを更に含み得る。このことは、加速ベクターの微分(differential)からスローな又は不変の加速ベクターを除去することによって達成され得る。このことは、重力から結果として生じるノイズの除去を有利に可能にする。
本出願のキーとなる理解は、ユーザの脳において脳卒中が生じる指標を含む傾向が最もあるシグナルを捕える必要があることである。この発症の指標であり得る他の生物学的なシグナルを検出することの困難性に起因して、本開示は、脳の働きにおける変化を示す、身体の中枢神経系からのシグナルの検出に焦点を当てている。このシグナルを捕えることに使用されるセンサが加速度計を含み、そのため加速ベクターが身体の動きを捕えたシグナルに基づく一実施形態において、脳からのシグナルからの直接的な帰着ではないヒトの身体の動きから結果的に生じるシグナルをフィルタに通すことが必要である。例えば、それら(脳からのシグナル)は筋肉に到着する電気的シグナルの間接的な結果物に過ぎない。フィルタに通され得る動きの例は、神経系からのシグナルからの間接的な結果物に過ぎない動きを含む。例えば、歩行の際に、電気的シグナルは、バランスを保つため前方及び後方へ振るように腕を刺激し得る。しかしながら、歩行の間の腕の下方への振りは、いずれかの筋肉の刺激というよりも重力及び身体のメカニクスの結果物であり得る。結論的には、可能な場合には、これらの動きは同定されて加速度計(単数又は複数)によって生成された加速ベクターから除去されるべきである。つまり、中枢神経系の活動の最もクリアなシグナルを提供するためにフィルタ(除去)されるべきシグナルは、受動的な手足のメカニクス、心臓の機能などの他の生物学的なシグナル、震え、又は他の無意識の筋肉の動き、環境のノイズ(例えばバスエンジン)を含み得る。
次に、センサデータは、ステップ445において、コントロールデバイス30に対して送信するために、定義されたデータ構造に従ってフォーマット化される。最終的には、ステップ450において、着用可能センサ20は、フォーマット化されたセンサデータをワイヤレスネットワーキングインターフェイス34を使用してコントロールデバイス30に対して送信する。
図4bは、コントロールデバイス30に関する処理フローの一実施形態を示す。図4bに示される処理フローは、連続的なループで又は周期的に実行され得る。プロセスが周期的に実行される場合には、エネルギーセービングモードが実行の間のバッテリー使用を最小化するために採用され得る。
ステップ460において、携帯端末デバイスは、フォーマット化されたセンサデータを着用可能センサ20から受信する。受信されたセンサデータは、次に、ステップ470において、着用可能センサ20並びにコントロールデバイス30に対してセンサデータを送信するいずれかの他の着用可能センサから事前に受信した既存データと統合整理(consolidated)される。1つの実施形態において、データは、コントロールデバイス30上に記憶されたローカルデータベースに記憶される。1つの実施形態において、システムはフォーマット化されたセンサデータの「チャンキング(chunking)」を実行し、データをチャンク(複数)へと破壊することを含み、各チャンクはいくつかのパラメータ(例えば記録したシグナルデータのタイムスタンプ、サイズなど)を示すヘッダを含む。このことは、各データチャンクが携帯端末デバイスを着用可能センサのクロックに対して再同期することを可能にする。
ステップ475において、コントロールデバイス30によってセンサデータのデータ解析が実行される。次に、現在進行中の脳卒中の状態などの患者の状態の決定が、データ解析475に依存して行われる。このことは、センサデータに基づく現状の患者の状態の蓋然性が決定的な閾値を超えていることの決定を含む。ステップ475及び480のプロセスは、後により詳細に及び図8及び図9を参照して記載される。患者の状態の決定の際に、エスカレーションプロセス490がトリガされる。エスカレーションプロセス490は、後に図6及び図7に関連して記載される。一度エスカレーションプロセス490が完了して、患者の状態のエスカレーションをキャンセルできていない場合に、コントロールデバイス30は、ステップ650においてネットワークインターフェイス34を介してネットワークポイント35にコンタクトし、患者の状態を取り扱う緊急サービスをリクエストする。1つの実施形態において、携帯端末デバイスは、患者の状態、携帯端末デバイスのGPS位置、患者ID、患者の医療歴、最近のセンサデータレポートなどの少なくとも1つをコミュニケーションすることができる。
ステップ475及びその後のステップが、ステップ460の直後のステップとして実行され得ることに注視すべきである。あるいは、ステップ475及びその後のステップは、例えば、周期的なタイミングの中断によって独立してトリガされる独立ループで実行され得る。
本明細書において、複数の着用可能センサがデータを収集することに使用される。図5aは、コントロールデバイス30において1つを上回る着用可能センサからデータを収集するためのフローを示す。ステップ510及び520において、身体の左側に位置する着用可能センサ20a及び身体の右側に位置する着用可能センサ20bから、センサデータが収集される。ステップ530において、着用可能センサ20b[sic, 20a]からのセンサデータがワイヤレスインターフェイス34を介して着用可能センサ20bに対して送信される。一度着用可能センサ20aからのセンサデータが着用可能センサ20bにおいて受信されると、着用可能センサ20aからのセンサデータが着用可能センサ20bからのセンサデータ(ステップ520において事前に収集した)と組み合わせられて、ステップ540においてコントロールデバイス30に対して送信される。
図5aに示すものについての代わりの実施形態において、図5bは、コントロールデバイス30において1つを上回る着用可能センサからデータを収集するための代わりのフローを示す。ステップ510及び520において、身体の左側に位置する着用可能センサ20a及び身体の右側に位置する着用可能センサ20bからのセンサデータが収集される。ステップ550において、コントロールデバイス30は、着用可能センサ20aにワイヤレスネットワークインターフェイス34を介して指示を行い、コントロールデバイス30に対して着用可能センサ20aによって収集されたセンサデータを送信させる。ステップ560において、着用可能センサ20aは、ワイヤレスネットワークインターフェイス34を介してコントロールデバイス30に対して収集したデータを送信する。ステップ570において、コントロールデバイス30は着用可能センサ20bにワイヤレスネットワークインターフェイス34を介して指示を行い、コントロールデバイス30に対して着用可能センサ20bによって収集されたセンサデータを送信させる。ステップ580において、着用可能センサ20bはワイヤレスネットワークインターフェイス34を介してコントロールデバイス30に対して収集したデータを送信する。
図6は、図4bに示すエスカレーションプロセス490の一実施形態を示す。一度現在の患者の状態の蓋然性に関する閾値が超過していると、本明細書の一実施形態は患者をテストするプロセスを提供して、患者が実際にその状態の兆候を罹患しているか、又はセンサデータが「虚偽ポジティブ」という結果になったに過ぎないかを決定する。エスカレーションプロセス490は、以下のステップを含む。
ステップ610において、コントロールデバイス30は、現状の患者の状態の蓋然性が超過している時に、エスカレーションプロセスを開始する。本発明の一実施形態において、ユーザの身体的な及びメンタル上の状態を決定するために、テストプロセスの間に1つ以上のユーザテストが採用されるだろう。用語「ユーザ」及び「患者」は、互換可能なようにユーザであり得る。
1つの実施形態において、テストプロセスは、コントロールデバイス30のディスプレイ上でユーザに対して提示されるカウントダウンアラート620を含む。カウントダウンアラート620は、コントロールデバイス30がステップ650に移行して医療サービスに対してアラートを発する前の数秒間のカウントダウンを示すシンプルなカウントダウンアラートを含み得る。ユーザは、いつでもカウントダウンをキャンセルするオプションを有する。ユーザがカウントダウンアラートに対する応答に失敗する場合には、コントロールデバイス30はステップ650へ直接的に移行して医療サービスに対してアラートを発するだろう。患者が必要とされるキャンセルタスク(例えば、キャンセルボタンを押す)を実行することによってカウントダウンをキャンセルする場合には、患者はエスカレーションプロセスをリセットするオプションの提示を受ける。あるいは、患者が何かが悪いままであると感じる場合には、ユーザは、ステップ650へ直接的に移行して医療サービスに対してアラートを発するオプションの提示を受けることもできる。1つの実施形態において、ユーザは、ユーザテストの全てが成功裏に完了するまで、カウントダウンアラートをキャンセルすることができない。1つの実施形態において、2パート式(ないし2ウェイ式)のカウントダウン(two part countdown)が使用される。カウントダウン1は短期間のカウントダウン(例えば60秒未満)であり、ユーザによってキャンセルされ得る。カウントダウン2はより長期間のカウントダウン(例えば60秒を上回る)であり、テストの全てを成功裏に完了することによってのみキャンセルされ得る。
1つの実施形態において、テストプロセスは、コントロールデバイス30のディスプレイ上でユーザに対して提示される基本的なユーザテスト630を含む。基本的なユーザテストは、1つ以上のフィジカルテストを含み得る。フィジカルテストは、患者が所定の様式で彼又は彼女の1以上の手足を動かすリクエスト、例えば、片手又は片足を動かす、順番に又は同時に反対の手又は足を動かす、手をたたく、立ち上がる、ジャンプする、患者の胸まで片ひざ又は両ひざを上げるなどを含み得る。フィジカルテストは、1つ以上のファンクションを実行することが意図される。運動センサデータが1以上の手足又は身体の片側・両側が限定された動きを表すことを示す場合には、フィジカルテストは、患者が麻痺のいずれかの形態を患っている蓋然性をディスカウント[discount,低下減少]することに使用することができるデータを提供することが意図し得る。例えば立ち上がる又は手を各々交互にウェーブさせる。あるいは、運動センサデータが患者の動きの中に普遍的な非対称性が存在することを示す場合には、フィジカルテストは、患者が提示する動きの対称性に関する明確なデータを提供することに使用され得るデータを提供することが意図し得る。例えば、患者が着用可能センサを各手首に着用している場合には、拍手は、患者が両腕に全範囲の動きを有する限り、各着用可能センサから明確な対称性シグナルを提供するだろう。図6の実施形態において、ユーザが基本的なユーザテスト630に失敗する場合には、コントロールデバイス30は患者に対して更なるテストを提示する。代わりの一実施形態において、ユーザが基本的なユーザテスト630に失敗する場合には、コントロールデバイス30は、ステップ650へ直接的に移行して、医療サービスへアラートを発するだろう。患者が基本的なユーザテスト630をパスする場合には、患者はエスカレーションプロセスをリセットするオプションが提示される。あるいは、患者が何かが悪いままであると感じる場合には、ユーザは更なるテストに進むか又はステップ650へ直接的に移行して医療サービスにアラートを発するかのオプションを提示され得る。本明細書に記載したユーザテストは、最も信頼できる結果を生み出すと見込まれるいずれかの組み合わせ又は順序でユーザに対して提示され得ることが理解されるべきである。
1つの実施形態において、テストプロセスは、コントロールデバイス30のディスプレイ上でユーザに対して提示されるアドバンスドユーザテスト640を含む。アドバンスドユーザテストは、1つ以上のメンタルテストを含み得る。メンタルテストは、例えば、メンタル計算テスト、言語上の推論(ないし理由付け、reasoning)テスト、顔画像又は一般的な画像の認識テスト、発声法テストなどの、ユーザが明確かつ合理的に考えることが可能であることの実証を意図する1つ以上のメンタルテストを患者が完了するリクエストを含む。基本的なユーザテスト630とともに使用する場合に、ユーザがアドバンスドユーザテスト640に失敗する場合に、コントロールデバイス30はステップ650へ移行する前に患者に対して更なるステップを提示することができる。代わりの一実施形態において、コントロールデバイス30は、患者がアドバンスドユーザテスト640に失敗すれば、直接的にステップ650へ移行して医療サービスに対してアラートを発するだろう。患者がアドバンスドユーザテスト640をパスする場合には、患者はエスカレーションプロセスをリセットするオプションが提示される。あるいは、ユーザは、更なるテストへ進むか、又は患者が何かが悪いままであると感じる場合には、ステップ650へ直接的に移行して医療のサービスに対してアラートを発するかのオプションが提示され得る。
図7は、図6に示されるユーザテストの代わりの一順序を示す。図7において、ステップ720は、彼又は彼女が患者の罹患状態が存在しないと未だに信じる場合に、患者に対してエスカレーションをキャンセルする機会を提供するカウントダウンアラートを含む。応答が受信されない場合には、アラートがすぐにエスカレートされる。1つの実施形態において、その後のテストの全てがパスされるまでカウントダウンが継続する。カウントダウンアラートの後に、ステップ730は、ユーザが彼又は彼女の手を3回たたく、基本的なユーザテストを含む。最終的には、ステップ740は、上述のようにアドバンスドユーザテストを含む。図7の実施形態において、アドバンスドユーザテストは患者のメンタル上の能力を評価するためのメンタル上の計算テストである。
1つの実施形態において、ユーザテストは、バイブレーションプロンプトのみを含み得る。このことは、ユーザが進行中の脳卒中に起因してバイブレーションを感知できないことを決定し得る。1つの実施形態において、フラッシュライトがバイブレーションテストに対するコントロールとして使用される。
図8a~cは、着用可能センサ20a及び20bが運動センサデータを生成する加速度計を含む場合の、本発明の装置からのセンサデータセットの一例を示す。図8aは、1時間にわたって患者の身体の左手(又は足)に固定された着用可能センサ20aによって生成された運動センサデータの例を示す。図8bは、図8aと同一の時間にわたって患者の身体の右手(又は足)に固定された着用可能センサ20bによって生成された運動センサデータの例を示す。図8cにおいて、図8aの運動センサデータと図8bの運動センサデータとの間の差が示される。着用可能センサ20a及び20bが患者の身体に対して対称的に固定される場合に、着用可能センサ20a及び20bの各々からの運動センサデータの間の差は、着用可能センサがそれぞれ固定された身体の左側の手足と身体の右側の手足との間で低い頻度での運動非対称を示し得る。図8a[sic, 図8c]において、患者の左側及び右側の手足の間で、時間経過とともに増大する非対称性が示される。
図9は、図4bの実施形態に続く実施形態を示す。図9の実施形態において、データ解析ステップ475は、順番に又は並行して実行され得る複数のデータ解析ステップ475a、475bなどへと分かれる。この実施形態において、コントロールデバイス30に記憶されるデータは、複数のデータ解析ステップの各々に関して異なる仕方で解析され得る。
図10は、異なる期間(ライン1010及び1020によって示される)にわたって運動センサデータを解析するように構成される複数のデータ解析ステップ475を使用する一実施形態の結果を示す。そのような実施形態において、短い期間(例えば ライン1010)にわたって運動センサデータを解析することは、脳卒中が生じた後即座にかつ相対的にすぐに脳卒中を発見する蓋然性をもたらす。しかしながら、誤ったアラームを最小化するためには、短い期間の解析は、狭い検出閾値を必要とする。例えば、より短い期間にわたる解析であるほど、虚偽ポジティブをトリガするかもしれないノイズの度合いを有する傾向が高い。従って、許容可能なポジティブな値の範囲は狭くする必要があり、脳卒中検出シグナルが生成される前に高い閾値が合わせられる(met)べきである。しかしながら、デバイスがより長い期間にわたって使用される時に、高い閾値は乏しい検出割合という結果になり得る。このことを補填するために、1つの実施形態は、より長い期間(例えばライン1010)にわたって運動センサデータを解析する短い期間の解析と並行して走るデータ解析ステップの使用を提供する。より長い期間にわたる運動センサデータを解析することは、より良い検出割合をもたらすが、脳卒中が検出され得る前により長い遅延を必然的に負う。運動センサデータが1時間にわたって解析される例においてはほぼ100%の検出割合という非常に高い検出割合が達成され得るが、検出に対して1時間の遅延が導入され、脳卒中被害者の見通し(victim’s outlook)に対して顕著な差を生じ得る。融合した方法(ライン1030によって示される)は、全ての方法の利益を得ることができる。
1つの実施形態において、脳卒中検出装置は、複数のモードで、フィデリティ(忠実度、fidelity)、データレート、分解能、又はデバイスに記憶される運動センサデータの次元の数を変えて作動することができる。2つの作動モードを含む一実施形態において、脳卒中検出装置は、脳卒中検出装置によって脳卒中を生じる蓋然性が第1の閾値未満であると決定される時に、第1のモードで作動するように構成され得る。第1のモードにおいて、運動センサデータは、第1のフィデリティで記憶される。すなわちサンプルレート、サンプルサイズ、ビットレート、次元の数、又は運動センサデータを記憶することに使用される均等物は、第1の値に設定される。脳卒中検出装置による進行中の脳卒中のリスクが第1の閾値を上回っていることの決定の際に、脳卒中検出装置は第2のモードで作動するように構成され得る。第2のモードでは、運動センサデータは第1のフィデリティよりも高い第2のフィデリティで記憶される。すなわち、サンプルレート、サンプルサイズ、ビットレート、次元の数、又は運動センサデータを記憶することに使用される均等物が第1の値より高い第2の値に設定される。このことは、患者の脳卒中リスクが高いと決定される時には、複数の期間にわたるより詳細かつより簡潔(concise)な患者の動きのモニタリングを可能にするが、その一方で、患者の脳卒中リスクが低いと決定される間は、改善された記憶及び/又はデバイスによるパワー消費の減少を可能にする。
[なお、図10の”Detection rat given 0.39062 false positives per day”は「1日当たりに0.39062の虚偽ポジティブが与えられる検出割合」と訳され得る。また、縦軸は、「バッチ長さを有する分散」と訳され得る。また、横軸は「アラームを発する時間(分)バッチ:102.A」と訳され得る。]
他の実施形態において、脳卒中検出装置は、第1のモード及び/又は第2のモード(上記のような)、並びに第3のモードで作動するように構成され得る。脳卒中検出装置は、脳卒中検出装置が特異的な動きに関してユーザをモニタリングしている時に、例えば、脳卒中検出装置がテストをパスするために特異的な動き又はジェスチャの実行をユーザに対して促した場合に、第3のモードで作動するように構成され得る。第3のモードにおいて、運動センサデータは、第1の及び/又は第2のフィデリティよりも高い第3のフィデリティで記憶される。すなわち、サンプルレート、サンプルサイズ、ビットレート、次元の数、又は運動センサデータを使用するために使用される均等物は第1の値及び/又は第2の値より高い第3の値に設定される。第3のモードは、脳卒中検出装置が短い期間で特定のジェスチャを捕えることが可能な十分なフィデリティでユーザの動きを正確に捕えることを可能にする。いくつかの実施形態において、第1のモード及び/又は第2のモードは単一の次元のみで運動センサデータを記憶するが、その一方で第3のモードは複数の次元で運動センサデータを記憶する。このことは、患者の特定の動きのより明確な決定を可能にし得る。
1つの実施形態において、上記の装置は、脳卒中検出という意味合い(文脈、context)よりも、リハビリテーションという意味合いで使用される。上述のような脳卒中の検出と同様の様式で患者の神経系シグナルを間接的にモニタリングすることによって、脳卒中からの患者のリカバリを追跡することができ、そしてリハビリテーションガイダンスを提供することができる。脳卒中リハビリテーションは、脳卒中によってダメージを受けた機能の可能な限りに多くを患者が取り戻すことを可能にする、そして機能的な独立(自立)
の可能な限りに多くを脳卒中被害者が得ることを助けるように努めるものである。脳卒中リハビリテーションは、脳卒中の後の最終の機能的な結果、及び脳卒中後の長期間の身体障害に関連する負担(cost)に関して必要不可欠である。1つの構成において、本発明の装置は、1)期間の経過にわたるリハビリテーション進行度をモニタ及び定量化する、2)リハビリテーションにわたって脳卒中被害者に対して積極的な(active)サポートを提供する、ように構成される。
リハビリテーションの進行をモニタリング及び定量化するプロセスは、着用可能センサからの加速度計データ(すなわち、患者の動きデータ)と、リハビリテーションの前後の腕の機能に関する理学療法士による評価との間の相関関係を報告することを含み得る。着用可能センサからの加速度計データ及び対応する関連動作データが、患者のためそしてプロフェッショナルなリハビリテーションチームのため、アプリケーション(app)において提示される。
リハビリテーションにわたって脳卒中被害者に対して積極的なサポートを提供するプロセスは、着用可能センサからの加速度計データに依存して、患者に関するエクササイズ指示を生成することを含み得る。1つの実施形態において、エクササイズ指示の困難さ、期間、及びタイミングは、患者の動作データに依存する。すなわち、リハビリテーションの推奨に比べて患者が一定期間にわたって限定的な身体の動きを行っていたと証明される場合には、本発明のシステムはユーザに対してより規則的(regular)でかつより激しい動きのエクササイズを行うよう指示するように構成される。

Claims (12)

  1. プロセッサと、ユーザによって着用されるように構成され、かつ、ユーザの動作データをデータ処理デバイスに対して送信するように構成される少なくとも1つの着用可能センサとを含むデータ処理デバイスを含み、
    データ処理デバイスは、動作データを処理して第1の期間にわたるユーザ脳卒中の第1の蓋然性及び第2の期間にわたるユーザ脳卒中の第2の蓋然性を決定し、そして、少なくとも第1の蓋然性及び第2の蓋然性に依存して脳卒中検出シグナルを生成するように構成される、
    脳卒中検出装置。
  2. 処理デバイスがユーザインターフェイスを含み、ユーザインターフェイスにおいて1以上のユーザテストを生成することを更に含み、ユーザテスト(単数又は複数)がユーザ脳卒中の第3の蓋然性を決定するように構成される、
    請求項1に記載の脳卒中検出装置。
  3. ユーザテストが、応答時間テスト、計算テスト、読解力及び/又は理解力テスト、記憶力テスト、及びユーザ応答テストの少なくとも1つを含む、請求項2に記載の脳卒中検出装置。
  4. 脳卒中検出装置が脳卒中検出シグナルに依存して1つ以上のユーザテストを生成するように構成される、請求項3に記載の脳卒中検出装置。
  5. 脳卒中検出装置が、ユーザが1つ以上のユーザテストに失敗する場合に脳卒中エスカレーションシグナルを生成するように構成される、請求項4に記載の脳卒中検出装置。
  6. 脳卒中エスカレーションシグナルに依存して、自動化された緊急サービスリクエストが生成される、請求項5に記載の脳卒中検出装置。
  7. ユーザによって着用されるように構成される少なくとも1つの着用可能センサデバイスを使用して、ユーザの動作データを生成すること、
    動作データを処理デバイスに対して送信すること、
    動作データを処理デバイスにおいて処理して、第1の期間にわたるユーザ脳卒中の第1の蓋然性及び第2の期間にわたるユーザ脳卒中の第2の蓋然性を決定すること、
    少なくとも第1の蓋然性及び第2の蓋然性に依存して脳卒中検出シグナルを生成すること、
    を含む脳卒中検出シグナルを生成する方法。
  8. ユーザによって着用されるように構成される少なくとも1つの着用可能センサを含む脳卒中検出装置を使用して脳卒中を検出する方法であって、
    着用可能センサからユーザの動作データを受信すること、
    動作データを処理して、第1の期間にわたるユーザ脳卒中の第1の蓋然性及び第2の期間にわたるユーザ脳卒中の第2の蓋然性を決定すること、及び、
    少なくとも第1の蓋然性及び第2の蓋然性に依存して脳卒中検出シグナルを生成すること、
    を含む方法。
  9. ユーザによって着用されるように構成され、かつ、ユーザの動作データを生成するように構成される少なくとも1つの着用可能センサと、
    動作データを受信し、動作データをあるフィデリティで記憶し、そして、記憶された動作データを処理してユーザ脳卒中の蓋然性を決定するように構成されるデータ処理デバイスとを含み、
    データ処理デバイスが、ユーザ脳卒中の蓋然性に依存したフィデリティで動作データを記憶するように構成される、
    脳卒中検出装置。
  10. 記憶された動作データのフィデリティが、サンプルレート、サンプルサイズ、ビットレート及び動作データの次元数の少なくとも1つを含む、
    請求項9に記載の脳卒中検出装置。
  11. ユーザ脳卒中の蓋然性が第1の閾値を下回ると決定された場合には第1のフィデリティで動作データを記憶し、そして、ユーザ脳卒中の蓋然性が第1の閾値を上回ると決定された場合には第2のフィデリティで動作データを記憶し、ここで第2のフィデリティが第1のフィデリティより高い、
    請求項9又は10に記載の脳卒中検出装置。
  12. ユーザによって着用されるように構成され、かつ、ユーザの動作データを生成するように構成される少なくとも1つの着用可能センサと、
    動作データを処理するように構成されるデータ処理デバイスと、を含む脳卒中検出装置であって、
    脳卒中検出装置は、処理された動作データが単一の次元に限定される場合には第1のモードで作動するように構成され、
    脳卒中検出装置は、処理された動作データがマルチ次元である場合には第2のモードで作動するように構成され、そして、
    第1のモードに従って処理された動作データに依存してユーザ脳卒中の蓋然性を決定し、かつ、第2のモードに従って処理された動作データに依存してユーザジェスチャを決定する、
    脳卒中検出装置。
JP2021536388A 2018-12-20 2019-12-19 脳卒中検出センサ Active JP7558172B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GBGB1820892.6A GB201820892D0 (en) 2018-12-20 2018-12-20 Stroke Detection Sensor
GB1820892.6 2018-12-20
SE1930370 2019-11-12
SE1930370-0 2019-11-12
PCT/SE2019/051322 WO2020130924A1 (en) 2018-12-20 2019-12-19 Stroke detection sensor

Publications (2)

Publication Number Publication Date
JP2022516033A true JP2022516033A (ja) 2022-02-24
JP7558172B2 JP7558172B2 (ja) 2024-09-30

Family

ID=71101529

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021536388A Active JP7558172B2 (ja) 2018-12-20 2019-12-19 脳卒中検出センサ
JP2021536392A Active JP7461952B2 (ja) 2018-12-20 2019-12-19 患者における脳卒中を検出する装置及び方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021536392A Active JP7461952B2 (ja) 2018-12-20 2019-12-19 患者における脳卒中を検出する装置及び方法

Country Status (5)

Country Link
US (2) US20220031193A1 (ja)
EP (2) EP3897383A4 (ja)
JP (2) JP7558172B2 (ja)
KR (2) KR20210104692A (ja)
WO (2) WO2020130924A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3157362A1 (en) 2019-10-15 2021-04-22 Imperative Care, Inc. Systems and methods for multivariate stroke detection
US11906540B1 (en) * 2020-10-30 2024-02-20 Bby Solutions, Inc. Automatic detection of falls using hybrid data processing approaches
KR20240137388A (ko) 2023-03-08 2024-09-20 한림대학교 산학협력단 뇌졸중 예후예측을 수행하는 인공지능 모델을 포함하는 전자 장치, 제어 방법, 및 컴퓨터 프로그램

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170007167A1 (en) * 2015-07-07 2017-01-12 Stryker Corporation Systems and methods for stroke detection
US20180249967A1 (en) * 2015-09-25 2018-09-06 Intel Corporation Devices, systems, and associated methods for evaluating a potential stroke condition in a subject

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0512192D0 (en) * 2005-06-15 2005-07-20 Greater Glasgow Nhs Board Seizure detection apparatus
US8213678B2 (en) 2005-08-19 2012-07-03 Koninklijke Philips Electronics N.V. System and method of analyzing the movement of a user
WO2007034476A2 (en) * 2005-09-19 2007-03-29 Biolert Ltd A device and method for detecting an epileptic event
WO2007102134A2 (en) 2006-03-08 2007-09-13 Philips Intellectual Property & Standards Gmbh Method and system for monitoring the functional use of limbs
US7558622B2 (en) * 2006-05-24 2009-07-07 Bao Tran Mesh network stroke monitoring appliance
US8075499B2 (en) * 2007-05-18 2011-12-13 Vaidhi Nathan Abnormal motion detector and monitor
WO2011020504A1 (fr) * 2009-08-19 2011-02-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Systeme et procede de detection de crise d'epilepsie d'une personne epileptique allongee
JP2011087866A (ja) 2009-10-26 2011-05-06 Tomoki Nakamizo 破綻したプラーク上に形成された血栓に起因する塞栓症の再発日を算出する脳梗塞再発算出方法および急性冠症候群再発算出方法
US9717439B2 (en) * 2010-03-31 2017-08-01 Medtronic, Inc. Patient data display
GB2494356B (en) * 2010-07-09 2017-05-31 Univ California System comprised of sensors, communications, processing and inference on servers and other devices
WO2012118998A2 (en) * 2011-03-02 2012-09-07 The Regents Of The University Of California Apparatus, system, and method for detecting activities and anomalies in time series data
US10631760B2 (en) * 2011-09-02 2020-04-28 Jeffrey Albert Dracup Method for prediction, detection, monitoring, analysis and alerting of seizures and other potentially injurious or life-threatening states
EP2765906A1 (en) * 2011-10-14 2014-08-20 Flint Hills Scientific, L.L.C. Apparatus and systems for event detection using probabilistic measures
US8779918B2 (en) * 2011-12-16 2014-07-15 Richard Housley Convulsive seizure detection and notification system
US20130171596A1 (en) 2012-01-04 2013-07-04 Barry J. French Augmented reality neurological evaluation method
US20150164377A1 (en) * 2013-03-13 2015-06-18 Vaidhi Nathan System and method of body motion analytics recognition and alerting
US9788779B2 (en) * 2013-03-14 2017-10-17 Flint Hills Scientific, L.L.C. Seizure detection based on work level excursion
DK178081B9 (en) * 2013-06-21 2015-05-11 Ictalcare As Method of indicating the probability of psychogenic non-epileptic seizures
US20150018723A1 (en) * 2013-07-09 2015-01-15 Industry-Academic Cooperation Foundation, Kyungpook National University Apparatus for early detection of paralysis based on motion sensing
US20170188895A1 (en) * 2014-03-12 2017-07-06 Smart Monitor Corp System and method of body motion analytics recognition and alerting
WO2016172557A1 (en) * 2015-04-22 2016-10-27 Sahin Nedim T Systems, environment and methods for identification and analysis of recurring transitory physiological states and events using a wearable data collection device
US10537262B2 (en) * 2015-05-14 2020-01-21 Elwha Llc Systems and methods for detecting strokes
KR102449869B1 (ko) * 2015-05-28 2022-10-04 삼성전자주식회사 뇌파 센서 유닛 및 이를 이용한 뇌파 측정 장치
KR102045366B1 (ko) * 2015-10-28 2019-12-05 경북대학교 산학협력단 수면 중 뇌졸중 판단 장치
US9892310B2 (en) * 2015-12-31 2018-02-13 Cerner Innovation, Inc. Methods and systems for detecting prohibited objects in a patient room
WO2017123725A1 (en) * 2016-01-12 2017-07-20 Yale University System and method for diagnosis and notification regarding the onset of a stroke
CN109152557A (zh) * 2016-05-23 2019-01-04 皇家飞利浦有限公司 用于短暂性脑缺血发作的早期检测的系统和方法
JP6888095B2 (ja) 2016-09-14 2021-06-16 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト 認知および動作の疾患もしくは障害についてのデジタルバイオマーカー
WO2018101886A1 (en) * 2016-11-30 2018-06-07 Agency For Science, Technology And Research A computer system for alerting emergency services
WO2018102579A1 (en) * 2016-12-02 2018-06-07 Cardiac Pacemakers, Inc. Multi-sensor stroke detection
US11139079B2 (en) * 2017-03-06 2021-10-05 International Business Machines Corporation Cognitive stroke detection and notification
KR101970481B1 (ko) * 2017-03-31 2019-04-22 한국표준과학연구원 뇌졸중 모니터링 시스템

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170007167A1 (en) * 2015-07-07 2017-01-12 Stryker Corporation Systems and methods for stroke detection
US20180249967A1 (en) * 2015-09-25 2018-09-06 Intel Corporation Devices, systems, and associated methods for evaluating a potential stroke condition in a subject

Also Published As

Publication number Publication date
EP3897383A4 (en) 2022-10-26
EP3897384A4 (en) 2022-08-31
EP3897383A1 (en) 2021-10-27
CN113226175A (zh) 2021-08-06
KR20210104691A (ko) 2021-08-25
KR20210104692A (ko) 2021-08-25
WO2020130923A1 (en) 2020-06-25
US20220031193A1 (en) 2022-02-03
JP7558172B2 (ja) 2024-09-30
JP7461952B2 (ja) 2024-04-04
CN113226176A (zh) 2021-08-06
WO2020130924A1 (en) 2020-06-25
JP2022516035A (ja) 2022-02-24
US20220061738A1 (en) 2022-03-03
EP3897384A1 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
US9655532B2 (en) Wearable physiological monitoring and notification system based on real-time heart rate variability analysis
US10980469B2 (en) Method and apparatus for detecting and classifying seizure activity
Gay et al. A health monitoring system using smart phones and wearable sensors
US10631760B2 (en) Method for prediction, detection, monitoring, analysis and alerting of seizures and other potentially injurious or life-threatening states
US20170340270A1 (en) Method and apparatus to predict, report, and prevent episodes of emotional and physical responses to physiological and environmental conditions
EP3402405B1 (en) System for diagnosis and notification regarding the onset of a stroke
JP7558172B2 (ja) 脳卒中検出センサ
US20060252999A1 (en) Method and system for wearable vital signs and physiology, activity, and environmental monitoring
AU2006242132A1 (en) Method and system for wearable vital signs and physiology, activity, and environmental monitoring
WO2007033194A2 (en) Method and system for proactive telemonitor with real-time activity and physiology classification and diary feature
JP2020516407A (ja) 発作をモニタリングするための方法および装置
US10143415B2 (en) Method of monitoring a patient for seizure activity and evaluating seizure risk
Leijdekkers et al. Personal heart monitoring system using smart phones to detect life threatening arrhythmias
CN105007808A (zh) 访问持续时间控制系统和方法
CN111358449A (zh) 一种脑卒中监护及早发现预警的家用设备
Salem et al. Nocturnal epileptic seizures detection using inertial and muscular sensors
WO2019193160A1 (en) Method and apparatus for monitoring a subject
CN113226176B (zh) 中风检测传感器
Gay et al. Around the clock personalized heart monitoring using smart phones
CN113226175B (zh) 用于检测患者中风的设备和方法
KR102578089B1 (ko) 뇌전증 모니터링 장치 및 이를 포함하는 뇌전증 모니터링 플랫폼
Vishwakarma et al. IOT-BEAT: an intelligent nurse for the cardiac patient with music therapy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240917

R150 Certificate of patent or registration of utility model

Ref document number: 7558172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150