JP2022515493A - Mask posture monitoring method, device and mask particle size detection device - Google Patents

Mask posture monitoring method, device and mask particle size detection device Download PDF

Info

Publication number
JP2022515493A
JP2022515493A JP2021537801A JP2021537801A JP2022515493A JP 2022515493 A JP2022515493 A JP 2022515493A JP 2021537801 A JP2021537801 A JP 2021537801A JP 2021537801 A JP2021537801 A JP 2021537801A JP 2022515493 A JP2022515493 A JP 2022515493A
Authority
JP
Japan
Prior art keywords
along
distance
mask
point
detection point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021537801A
Other languages
Japanese (ja)
Other versions
JP7216828B2 (en
Inventor
一志 ▲張▼
▲暁▼青 ▲楊▼
Original Assignee
シャンハイ マイクロ エレクトロニクス イクイプメント(グループ)カンパニー リミティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャンハイ マイクロ エレクトロニクス イクイプメント(グループ)カンパニー リミティド filed Critical シャンハイ マイクロ エレクトロニクス イクイプメント(グループ)カンパニー リミティド
Publication of JP2022515493A publication Critical patent/JP2022515493A/en
Application granted granted Critical
Publication of JP7216828B2 publication Critical patent/JP7216828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C1/00Measuring angles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

マスク姿勢監視方法、装置及びマスク粒度検出機器であって、監視方法は、少なくとも1つの標定点から基準面(A)までの第1方向(Z)に沿った距離(H1、H2)を取得すること(S11)と、少なくとも1つの標定点から測定対象であるマスク(200)上の第1検出点(a1)までの第1方向(Z)に沿った距離(H1’)、少なくとも1つの標定点から測定対象であるマスク(200)上の第2検出点(a2)までの第1方向(Z)に沿った距離(H2’)、及び少なくとも1つの標定点から測定対象であるマスク(200)上の第3検出点(a3)までの第1方向(Z)に沿った距離をそれぞれ取得すること(S12)と、取得されたデータにより、基準面(A)に対する測定対象であるマスク(200)の第2方向(X)回りの偏向角度及び第3方向(Y)回りの偏向角度を算出すること(S13)と、を含む。【選択図】図1A mask posture monitoring method, device, and mask particle size detection device, wherein the monitoring method acquires a distance (H1, H2) along a first direction (Z) from at least one control point to a reference plane (A). That (S11) and the distance (H1') along the first direction (Z) from at least one control point to the first detection point (a1) on the mask (200) to be measured, at least one mark. The distance (H2') along the first direction (Z) from the fixed point to the second detection point (a2) on the mask (200) to be measured, and the mask (200) to be measured from at least one control point. ) Acquire the distances along the first direction (Z) to the third detection point (a3) on the above (S12), and the mask (A) to be measured with respect to the reference plane (A) based on the acquired data. 200) includes calculating the deflection angle around the second direction (X) and the deflection angle around the third direction (Y) (S13). [Selection diagram] Fig. 1

Description

本出願は、出願日2018年12月28日で、出願番号が201811630079.0である中国特許出願の優先権を主張するものであり、該出願のすべての内容が引用により本出願に援用される。 This application claims the priority of a Chinese patent application with filing date December 28, 2018 and application number 201811630079.0, the entire contents of which are incorporated herein by reference. ..

本出願の実施例は、半導体リソグラフィの技術分野に関し、例えば、マスク姿勢監視方法、装置及びマスク粒度検出機器に関する。 Examples of the present application relate to the technical field of semiconductor lithography, for example, a mask attitude monitoring method, an apparatus, and a mask particle size detecting apparatus.

マスクは、挟持、搬送、貯蔵及び露光などの過程において汚染されてその表面に粒子、擦れ目、ピンホールなどの欠陥が生じる可能性がある。露光過程において、上記の欠陥の存在は、リソグラフィ機の画像性能および収率に直接に影響を及ぼし、厳しい場合、収率はゼロに下がる可能性がある。 Masks can become contaminated during processes such as pinching, transporting, storage and exposure, resulting in defects such as particles, rubs, and pinholes on their surface. During the exposure process, the presence of the above defects directly affects the image performance and yield of the lithography machine, and in severe cases the yield can drop to zero.

マスク粒度検出システムは、リソグラフィ機マスク搬送サブシステムの主な部品の1つとして、マスク表面上の欠陥の大きさや位置を検出することができる。検出結果により、リソグラフィ機操作システムまたは操作者は、このマスクが後続の露光過程に使用されることができるかを判定することができる。検出結果はマスクの欠陥を除去する際の入力データとすることができる。 The mask particle size detection system can detect the size and position of defects on the mask surface as one of the main components of the lithography machine mask transfer subsystem. The detection result allows the lithography machine operating system or operator to determine if this mask can be used in subsequent exposure processes. The detection result can be input data for removing the defect of the mask.

照明および撮像システムに制約され、マスクがスキャンテストを行う前に、マスクに対して焦点調節および水平姿勢(X軸回りの偏向RxおよびY軸回りの偏向Ry)の検出を行うことが必要である。現在、特別設計のマスクを使用して、Rx/Ryを測定し、特別設計のマスク上には特定構造の回折マークが設計され、レーザーが特定の角度に沿って入射すると、リニア(linear)電荷結合素子(Charge Coupled Device、CCD)は回折マークの散乱光の強度を受信でき、光スポットのリニアCCDカメラでの位置及び偏向により、マスクのRx/Ryを測定する。しかし、この方法はマスク粒度を検出する前の調整にしか適用できないが、具体的な作業工程において、ロボットハンドは往復運動において偏向が発生する可能性があるため、常に水平状態を維持することができなく、これにより、マスクも偏向が発生し、粒度の検出結果の異常をもたらす。現在、Rx/Ryをオンラインで直接に監視することが困難であり、コストが高く効率が低い。 Constrained by the lighting and imaging system, it is necessary to perform accommodation and horizontal posture (deflection Rx around the X-axis and deflection Ry around the Y-axis) for the mask before the mask performs a scan test. .. Currently, a specially designed mask is used to measure Rx / Ry, and a diffraction mark of a specific structure is designed on the specially designed mask, and when the laser is incident along a specific angle, the linear charge is applied. The coupling element (Charge Coupled Device, CCD) can receive the intensity of the scattered light of the diffraction mark, and measures the Rx / Ry of the mask by the position and deflection of the light spot in the linear CCD camera. However, although this method can only be applied to adjustment before detecting the mask particle size, in a specific work process, the robot hand may be deflected in reciprocating motion, so it is always possible to maintain a horizontal state. This is not possible, which also causes the mask to be deflected, resulting in anomalous grain size detection results. Currently, it is difficult to directly monitor Rx / Ry online, which is costly and inefficient.

本出願は、マスク粒度の検出過程において、マスクの姿勢をオンラインで監視し、監視機器を簡略化し、監視の効率を向上させるマスク姿勢監視方法、装置及びマスク粒度検出機器を提供する。 The present application provides a mask attitude monitoring method, an apparatus and a mask particle size detection device for monitoring the posture of the mask online in the process of detecting the mask particle size, simplifying the monitoring device, and improving the efficiency of monitoring.

第1方面において、本出願の実施例は、少なくとも1つの標定点から基準面までの第1方向に沿った距離を取得することと、少なくとも1つの標定点から測定対象であるマスクの第1検出点までの第1方向に沿った距離、少なくとも1つの標定点から測定対象であるマスクの第2検出点までの第1方向に沿った距離、及び少なくとも1つの標定点から測定対象であるマスクの第3検出点までの第1方向に沿った距離をそれぞれ取得し、ここで、第1検出点と第2検出点の基準面内での投影が第2方向に沿って配列され、第1検出点と第3検出点の基準面内での投影が第3方向に沿って配列され、第1方向と、第2方向と、第3方向とはお互いに垂直であり、基準面が第1方向に垂直であることと、第1検出点から対応する標定点までの第1方向に沿った距離、第1検出点に対応する標定点から基準面までの第1方向に沿った距離、第2検出点から対応する標定点までの第1方向に沿った距離、第2検出点に対応する標定点から基準面までの第1方向に沿った距離及び第1検出点と第2検出点の第2方向に沿った距離により、基準面に対する測定対象であるマスクの第3方向回りの偏向角度を算出することと、第1検出点から対応する標定点までの第1方向に沿った距離、第1検出点に対応する標定点から基準面までの第1方向に沿った距離、第3検出点から対応する標定点までの第1方向に沿った距離、第3検出点に対応する標定点から基準面までの第1方向に沿った距離及び第1検出点と第3検出点の第3方向に沿った距離により、基準面に対する測定対象であるマスクの第2方向回りの偏向角度を算出することと、を含む、マスク姿勢監視方法を提供する。 In the first direction, the embodiments of the present application are to obtain a distance along a first direction from at least one control point to a reference plane, and to first detect a mask to be measured from at least one control point. The distance along the first direction to the point, the distance along the first direction from at least one control point to the second detection point of the mask to be measured, and the distance from at least one control point to the mask to be measured. The distances to the third detection points along the first direction are acquired respectively, and here, the projections of the first detection point and the second detection point in the reference plane are arranged along the second direction, and the first detection is performed. The projections of the points and the third detection point in the reference plane are arranged along the third direction, the first direction, the second direction, and the third direction are perpendicular to each other, and the reference plane is the first direction. The distance along the first direction from the first detection point to the corresponding control point, the distance along the first direction from the control point corresponding to the first detection point to the reference plane, the second The distance along the first direction from the detection point to the corresponding control point, the distance along the first direction from the control point corresponding to the second detection point to the reference plane, and the first and second detection points. From the distances along the two directions, the deflection angle around the third direction of the mask to be measured with respect to the reference plane is calculated, and the distance from the first detection point to the corresponding control point along the first direction, the first. From the distance along the first direction from the control point corresponding to one detection point to the reference plane, the distance along the first direction from the third detection point to the corresponding control point, and the control point corresponding to the third detection point. The deflection angle around the second direction of the mask to be measured with respect to the reference plane is calculated from the distance along the first direction to the reference plane and the distance along the third direction of the first detection point and the third detection point. It also provides mask posture monitoring methods, including.

第2方面において、本出願の実施例は、測定対象であるマスクの上方に設けられ、少なくとも1つの標定点から基準面までの第1方向に沿った距離を取得し、及び、少なくとも1つの標定点から測定対象であるマスク上の第1検出点までの第1方向に沿った距離、少なくとも1つの標定点から測定対象であるマスク上の第2検出点までの第1方向に沿った距離、及び少なくとも1つの標定点から測定対象であるマスク上の第3検出点までの第1方向に沿った距離をそれぞれ取得し、ここで、第1方向と、第2方向と、第3方向とはお互いに垂直であり、基準面が第1方向に垂直であり、第1検出点と第2検出点の基準面内での投影が第2方向に沿って配列され、第1検出点と第3検出点の基準面内での投影が第3方向に沿って配列される、ように構成される少なくとも1つの距離センサと、測定対象であるマスクを第2方向及び/又は第3方向に沿って移動するように駆動するように構成される移動機構と、第1検出点から対応する標定点までの第1方向に沿った距離、第1検出点に対応する標定点から基準面までの第1方向に沿った距離、第2検出点から対応する標定点までの第1方向に沿った距離、第2検出点に対応する標定点から基準面までの第1方向に沿った距離及び第1検出点と第2検出点の第2方向に沿った距離により、基準面に対する測定対象であるマスクの第3方向回りの偏向角度を算出し、及び、第1検出点から対応する標定点までの第1方向に沿った距離、第1検出点に対応する標定点から基準面までの第1方向に沿った距離、第3検出点から対応する標定点までの第1方向に沿った距離、第3検出点に対応する標定点から基準面までの第1方向に沿った距離及び第1検出点と第3検出点の第3方向に沿った距離により、基準面に対する測定対象であるマスクの第2方向回りの偏向角度を算出するように構成される制御算出ユニットと、を含む、マスク姿勢監視装置をさらに提供する。 In the second direction, the embodiments of the present application are provided above the mask to be measured, obtain the distance along the first direction from at least one control point to the reference plane, and at least one mark. The distance along the first direction from the fixed point to the first detection point on the mask to be measured, the distance along the first direction from at least one control point to the second detection point on the mask to be measured, And the distances along the first direction from at least one control point to the third detection point on the mask to be measured are obtained, and here, the first direction, the second direction, and the third direction are used. It is perpendicular to each other, the reference plane is perpendicular to the first direction, and the projections of the first detection point and the second detection point in the reference plane are arranged along the second direction, and the first detection point and the third detection point are arranged. At least one distance sensor configured such that projections of detection points in the reference plane are arranged along a third direction and a mask to be measured along the second and / or third direction. A moving mechanism configured to move, a distance along the first direction from the first detection point to the corresponding control point, and a first from the control point corresponding to the first detection point to the reference plane. Distance along the direction, distance along the first direction from the second detection point to the corresponding control point, distance along the first direction from the control point corresponding to the second detection point to the reference plane, and the first detection. From the distance between the point and the second detection point along the second direction, the deflection angle around the third direction of the mask to be measured with respect to the reference plane is calculated, and the first from the first detection point to the corresponding control point. Distance along one direction, distance along the first direction from the control point corresponding to the first detection point to the reference plane, distance along the first direction from the third detection point to the corresponding control point, third. The second of the masks to be measured with respect to the reference plane is based on the distance from the control point corresponding to the detection point to the reference plane along the first direction and the distance between the first detection point and the third detection point along the third direction. Further provided is a mask posture monitoring device, including a control calculation unit configured to calculate the deflection angle around the direction.

第3方面において、本出願の実施例は、本出願の第2方面のいずれかに記載のマスク姿勢監視装置を含む、マスク粒度検出機器をさらに提供する。 In the third aspect, the embodiments of the present application further provide a mask particle size detecting device including the mask attitude monitoring device according to any one of the second aspects of the present application.

本出願の実施例が提供するマスク姿勢監視方法である。This is a mask posture monitoring method provided by an embodiment of the present application. 本出願の実施例に係る測定対象であるマスクの偏向角度を算出する原理図である。It is a principle diagram which calculates the deflection angle of the mask which is the object of measurement which concerns on Example of this application. 本出願の実施例に係る測定対象であるマスクの各検出点の分布模式図である。It is a distribution schematic diagram of each detection point of the mask which is the object of measurement which concerns on Example of this application. 本出願の実施例に係る測定対象であるマスクの偏向角度を算出する他の原理図である。It is another principle diagram which calculates the deflection angle of the mask which is the object of measurement which concerns on Example of this application. 本出願の実施例が提供するマスク姿勢監視装置の第3方向に沿った模式図である。It is a schematic diagram along the third direction of the mask posture monitoring device provided by the embodiment of this application. 図5におけるマスク姿勢監視装置の第2方向に沿った模式図である。It is a schematic view along the 2nd direction of the mask posture monitoring device in FIG. 本出願の実施例が提供するマスク姿勢監視装置の第3方向に沿った模式図である。It is a schematic diagram along the third direction of the mask posture monitoring device provided by the embodiment of this application. 本出願の実施例が提供するマスク粒度検出機器の検出原理図である。It is a detection principle figure of the mask particle size detection apparatus provided in the Example of this application.

以下、本出願の実施例の技術方案について図面を参照しながらさらに詳しく説明する。明らかに、説明される実施例は、全ての実施例ではなく、本出願の一部の実施例に過ぎない。本出願における実施例に基づいて、当業者が創造的な労働がなされていない前提として取得した他のすべての実施例は、本出願の保護範囲に属する。 Hereinafter, the technical plan of the embodiment of the present application will be described in more detail with reference to the drawings. Obviously, the examples described are not all examples, but only some of the examples in this application. All other examples obtained by one of ordinary skill in the art on the premise that no creative labor has been done based on the examples in this application fall within the scope of protection of this application.

本出願の説明において、特に明確な規定と限定がない限り、用語「接する」、「接続」、「固定」は広義の理解をすべきであり、例えば、固定接続であってもよいし、取り外し可能な接続であってもよいし、又は一体になってもよく、機械的な接続であってもよいし、電気的な接続であってもよく、直接的に接してもよいし、中間媒体により間接的に接してもよいし、2つの素子の内部の連通又は2つの素子のお互いの作用関係であってもよい。当業者は、具体的な状況に応じて上記用語の本出願における具体的な意味を理解することができる。 Unless otherwise specified and limited in the description of this application, the terms "contact", "connection" and "fixed" should be understood in a broad sense, for example, may be a fixed connection or may be removed. It may be a possible connection, or it may be integrated, it may be a mechanical connection, it may be an electrical connection, it may be in direct contact, or it may be an intermediate medium. It may be indirectly contacted with each other, or it may be an internal communication between the two elements or an action relationship between the two elements. Those skilled in the art can understand the specific meanings of the above terms in the present application depending on the specific circumstances.

本出願において、特に明確な規定と限定がない限り、第1特徴が第2特徴の「上」又はその「下」にあることは、第1特徴と第2特徴が直接に接触することを含んでもよく、第1特徴と第2特徴が直接に接触することではなく、それらの間の他の特徴を介して接触することも含んでもよい。さらに、第1特徴が第2特徴の「上」、「上方」及び「上面」にあることは、第1特徴が第2特徴の直上及び斜め上方にあることを含み、又は単に第1特徴の水平高さが第2特徴より高いことを表すことである。第1特徴が第2特徴の「下」、「下方」及び「下面」にあることは、第1特徴が第2特徴の直下及び斜め下方にあることを含み、又は単に第1特徴の水平高さが第2特徴より小さいことを表すことである。 In this application, unless otherwise specified and limited, the fact that the first feature is "above" or "below" the second feature includes direct contact between the first feature and the second feature. However, it may be included that the first feature and the second feature do not come into direct contact with each other, but come into contact with each other through other features between them. Further, the fact that the first feature is "above", "above" and "upper surface" of the second feature includes that the first feature is directly above and diagonally above the second feature, or simply the first feature. It means that the horizontal height is higher than the second feature. The fact that the first feature is "below", "below" and "bottom surface" of the second feature includes that the first feature is directly below and diagonally below the second feature, or simply the horizontal height of the first feature. Is smaller than the second feature.

本出願の実施例は、マスク姿勢監視方法を提供し、図1は、本出願の実施例が提供するマスク姿勢監視方法であり、図1に示すように、該マスク姿勢監視方法は、ステップS11~ステップS13を含む。 An embodiment of the present application provides a mask posture monitoring method, FIG. 1 is a mask posture monitoring method provided by an embodiment of the present application, and as shown in FIG. 1, the mask posture monitoring method is step S11. -Including step S13.

ステップS11において、少なくとも1つの標定点から基準面までの第1方向に沿った距離を取得する。 In step S11, the distance along the first direction from at least one control point to the reference plane is acquired.

ここで、基準面が第1方向Zに垂直な平面である。例示的に、少なくとも1つの標定点が3つの標定点であってもよく、3つの標定点から基準面までの第1方向に沿った距離を取得する。なお、3つの標定点が位置する平面は基準面と平行であってもよく、この場合、そのうちの1つの標定点から基準面までの第1方向に沿った距離を取得すればよい。 Here, the reference plane is a plane perpendicular to the first direction Z. Illustratively, at least one control point may be three control points, and the distance from the three control points to the reference plane along the first direction is acquired. The plane on which the three control points are located may be parallel to the reference plane. In this case, the distance from one of the control points to the reference plane along the first direction may be acquired.

ステップS12において、少なくとも1つの標定点から測定対象であるマスク上の第1検出点、第2検出点及び第3検出点までの第1方向に沿った距離を取得する。 In step S12, the distances along the first direction from at least one control point to the first detection point, the second detection point, and the third detection point on the mask to be measured are acquired.

ここで、第1検出点、第2検出点及び第3検出点が測定対象であるマスク上に位置し、3つの標定点と一対一に対応し、第1検出点と第2検出点の基準面内での投影が第2方向Xに沿って配列され、第1検出点と第3検出点の基準面内での投影が第3方向Yに沿って配列され、第1方向と、第2方向と、第3方向とはお互いに垂直である。少なくとも1つの標定点から測定対象であるマスク上の第1検出点、第2検出点及び第3検出点までの第1方向に沿った距離を取得することは、各検出点から対応する標定点までの第1方向に沿った距離を取得することを含む。 Here, the first detection point, the second detection point, and the third detection point are located on the mask to be measured, and have a one-to-one correspondence with the three control points, and are the reference of the first detection point and the second detection point. The in-plane projections are arranged along the second direction X, the projections of the first and third detection points in the reference plane are arranged along the third direction Y, the first direction and the second. The direction and the third direction are perpendicular to each other. Acquiring the distance along the first direction from at least one control point to the first detection point, the second detection point, and the third detection point on the mask to be measured is the corresponding control point from each detection point. Includes obtaining the distance along the first direction to.

ステップS13において、取得されたデータにより、基準面に対する測定対象であるマスクの第2方向回りの偏向角度及び第3方向回りの偏向角度を算出する。 In step S13, the deflection angle around the second direction and the deflection angle around the third direction of the mask to be measured with respect to the reference plane are calculated from the acquired data.

図2は、本出願の実施例に係る測定対象であるマスクの偏向角度を算出する原理図であり、図3は、本出願の実施例に係る測定対象であるマスク上の各検出点の分布模式図である。なお、各検出点は、測定対象であるマスク上に固定された点ではなく、検出のニーズに応じて配置されるものであり、第1検出点と第2検出点の基準面内での投影が第2方向Xに沿って配列され、第1検出点と第3検出点の基準面内での投影が第3方向Yに沿って配列されることを満たせばよい。基準面に対する測定対象であるマスクの第3方向回りの偏向角度を算出することを例として、図2に示すように、一実施例において、第1検出点a1から対応する標定点までの第1方向Zに沿った距離H1’、第1検出点a1に対応する標定点から基準面Aまでの第1方向Zに沿った距離H1、第2検出点a2から対応する標定点までの第1方向Zに沿った距離H2’、第2検出点a2に対応する標定点から基準面Aまでの第1方向Zに沿った距離H2、及び第1検出点a1と第2検出点a2の第2方向Xに沿った距離L1により、基準面Aに対する測定対象であるマスク200の第3方向Y回りの偏向角度θ1を算出する。ここで、第1検出点a1と第2検出点a2の第2方向Xに沿った距離L1は、対応する2つの標定点の第2方向Xに沿った距離である。一実施例において、計算式は以下の通りである。

Figure 2022515493000002
FIG. 2 is a principle diagram for calculating the deflection angle of the mask to be measured according to the embodiment of the present application, and FIG. 3 is a distribution of each detection point on the mask to be measured according to the embodiment of the present application. It is a schematic diagram. It should be noted that each detection point is not a fixed point on the mask to be measured, but is arranged according to the needs of detection, and the projection of the first detection point and the second detection point in the reference plane. Are arranged along the second direction X, and it is sufficient that the projections of the first detection point and the third detection point in the reference plane are arranged along the third direction Y. As an example of calculating the deflection angle of the mask to be measured with respect to the reference plane in the third direction, as shown in FIG. 2, in one embodiment, the first detection point a1 to the corresponding control point is the first. Distance H1'along the direction Z, distance H1 along the first direction Z from the control point corresponding to the first detection point a1 to the reference plane A, the first direction from the second detection point a2 to the corresponding control point. The distance H2'along Z, the distance H2 along the first direction Z from the control point corresponding to the second detection point a2 to the reference plane A, and the second direction of the first detection point a1 and the second detection point a2. From the distance L1 along X, the deflection angle θ1 around the third direction Y of the mask 200 to be measured with respect to the reference plane A is calculated. Here, the distance L1 between the first detection point a1 and the second detection point a2 along the second direction X is the distance along the second direction X of the corresponding two control points. In one embodiment, the calculation formula is as follows.
Figure 2022515493000002

基準面Aに対する測定対象であるマスク200の第2方向X回りの偏向角度の算出原理は、測定対象であるマスク200の第3方向Y回りの偏向角度の算出原理と類似し、一実施例において、第1検出点a1から対応する標定点までの第1方向Zに沿った距離H1’、第1検出点a1に対応する標定点から基準面Aまでの第1方向Zに沿った距離H1、第3検出点a3から対応する標定点までの第1方向Zに沿った距離H3’、第3検出点a3に対応する標定点から基準面Aまでの第1方向Zに沿った距離H3、及び第1検出点a1と第3検出点a3の第3方向Yに沿った距離L2により、基準面Aに対する測定対象であるマスク200の第2方向X回りの偏向角度θ2を算出する。ここで、第1検出点a1と第3検出点a3の第3方向Yに沿った距離L2は、対応する2つの標定点の第3方向Yに沿った距離である。一実施例において、計算式は以下の通りである。

Figure 2022515493000003
The calculation principle of the deflection angle around the second direction X of the mask 200 to be measured with respect to the reference plane A is similar to the calculation principle of the deflection angle around the third direction Y of the mask 200 to be measured, and in one embodiment. , Distance H1'along the first direction Z from the first detection point a1 to the corresponding control point, distance H1 along the first direction Z from the control point corresponding to the first detection point a1 to the reference plane A, The distance H3'along the first direction Z from the third detection point a3 to the corresponding control point, the distance H3 along the first direction Z from the control point corresponding to the third detection point a3 to the reference plane A, and From the distance L2 along the third direction Y of the first detection point a1 and the third detection point a3, the deflection angle θ2 around the second direction X of the mask 200 to be measured with respect to the reference plane A is calculated. Here, the distance L2 between the first detection point a1 and the third detection point a3 along the third direction Y is the distance along the third direction Y of the two corresponding control points. In one embodiment, the calculation formula is as follows.
Figure 2022515493000003

本出願の実施例は、少なくとも1つの標定点から基準面までの第1方向に沿った距離、及び少なくとも1つの標定点から測定対象であるマスク上の第1検出点、第2検出点及び第3検出点までの第1方向に沿った距離を取得し、取得されたデータから、測定対象であるマスクの第2方向回りの偏向角度及び第3方向回りの偏向角度を算出することにより、測定対象であるマスクの偏向角度をオンラインで監視することが実現でき、監視の過程が簡単で、監視の効率が高く、且つ特別設計のマスク及びリニアCCDカメラが必要ではなくて監視のコストが低い。 In the embodiments of the present application, the distance from at least one control point to the reference plane along the first direction, and the first detection point, the second detection point, and the second detection point on the mask to be measured from at least one control point. 3 Measurement by acquiring the distance along the first direction to the detection point and calculating the deflection angle around the second direction and the deflection angle around the third direction of the mask to be measured from the acquired data. It is possible to monitor the deflection angle of the target mask online, the monitoring process is simple, the monitoring efficiency is high, and the monitoring cost is low because no specially designed mask and linear CCD camera are required.

一実施例において、少なくとも1つの標定点から基準面までの第1方向に沿った距離を取得する前に、標定マスクをレベリングすることにより、標定マスクが第1方向に垂直で、標定マスクの表面が基準面であるようにすることをさらに含む。 In one embodiment, by leveling the orientation mask before obtaining the distance along the first direction from at least one reference point to the reference plane, the orientation mask is perpendicular to the first direction and the surface of the orientation mask. Further includes making it a reference plane.

一実施例において、オフラインの状態で、標定マスクをレベリングする。標定マスクは、測定対象であるマスク200と同じパラメータ及び設計を有するマスクであってもよく、標定マスクが第1方向Zに垂直にして、標定マスクの上面及び下面が基準面とすることができ、標定マスクが特別に設計される必要がない。 In one embodiment, the orientation mask is leveled offline. The control mask may be a mask having the same parameters and design as the mask 200 to be measured, and the control mask can be perpendicular to the first direction Z and the upper surface and the lower surface of the control mask can be used as reference planes. , The orientation mask does not need to be specially designed.

一実施例において、図2を参照し続け、本出願の他の実施例において、少なくとも1つの標定点が2つの標定点であってもよく、それぞれに第1標定点及び第2標定点であり、第1標定点及び第2標定点が第2方向Xに沿って配列され、少なくとも1つの標定点から測定対象であるマスク上の第1検出点、第2検出点及び第3検出点までの第1方向に沿った距離を取得することは、第1標定点から第1検出点a1までの第1方向Zに沿った距離H1’、及び第2標定点から第2検出点a2までの第1方向Zに沿った距離H2’を取得することと、第3方向Yに沿って測定対象であるマスク200を移動し、第1標定点から第3検出点a3までの第1方向Zに沿った距離を取得し、該距離を第3検出点a3から対応する標定点までの第1方向Zに沿った距離H3’とし、ここで、測定対象であるマスク200の第3方向Yに沿って移動する距離は、第1検出点a1と第3検出点a3の第3方向Yに沿った距離L2であることと、を含む。 In one embodiment, reference to FIG. 2 continues, and in the other embodiments of the present application, at least one control point may be two control points, the first control point and the second control point, respectively. , 1st and 2nd control points are arranged along the 2nd direction X, from at least one control point to the 1st detection point, the 2nd detection point and the 3rd detection point on the mask to be measured. Acquiring the distance along the first direction means the distance H1'along the first direction Z from the first control point to the first detection point a1, and the second from the second control point to the second detection point a2. Acquiring the distance H2'along the 1st direction Z and moving the mask 200 to be measured along the 3rd direction Y, along the 1st direction Z from the 1st control point to the 3rd detection point a3. The distance is obtained, and the distance is set as the distance H3'along the first direction Z from the third detection point a3 to the corresponding control point, and here, along the third direction Y of the mask 200 to be measured. The moving distance includes the distance L2 along the third direction Y of the first detection point a1 and the third detection point a3.

本出願の実施例は、標定点の数を減少し、監視装置の構造を簡略化することができ、関連技術におけるマスク移動機構を用いて測定対象であるマスクを移動することができて、監視のコストを下げる。 In the embodiments of the present application, the number of control points can be reduced, the structure of the monitoring device can be simplified, and the mask to be measured can be moved by using the mask moving mechanism in the related technology, and monitoring can be performed. Reduce the cost of.

一実施例において、図2に示すように、第1標定点及び第2標定点が測定対象であるマスク200の同側に位置する。図4は本出願の実施例に係る他の測定対象であるマスクの偏向角度を算出する原理図であり、図4に示すように、第1標定点及び第2標定点が測定対象であるマスク200の異側に位置してもよい。 In one embodiment, as shown in FIG. 2, the first control point and the second control point are located on the same side of the mask 200 to be measured. FIG. 4 is a principle diagram for calculating the deflection angle of the mask which is another measurement target according to the embodiment of the present application, and as shown in FIG. 4, the mask whose first control point and second control point are measurement targets. It may be located on the other side of 200.

本出願の他の実施例において、少なくとも1つの標定点が2つの標定点であってもよく、それぞれに第3標定点及び第4標定点であり、第3標定点及び第4標定点が第3方向Yに沿って配列され、少なくとも1つの標定点から測定対象であるマスク上の第1検出点、第2検出点及び第3検出点までの第1方向Zに沿った距離を取得することは、第3標定点から第1検出点a1までの第1方向Zに沿った距離を取得し、該距離を第1検出点a1から対応する標定点までの第1方向Zに沿った距離H1’とし、及び第4標定点から第3検出点a3までの第1方向に沿った距離を取得し、該距離を第3検出点a3から対応する標定点までの第1方向Zに沿った距離H3’とすることと、第2方向Xに沿って測定対象であるマスク200を移動し、第3標定点から第2検出点a2までの第1方向Zに沿った距離を取得し、該距離を第2検出点a2から対応する標定点までの第1方向Zに沿った距離H2’とし、ここで、測定対象であるマスク200の第2方向Xに沿って移動する距離は第1検出点a1と第2検出点a2の第2方向Xに沿った距離L1であることとを含む。 In other embodiments of the present application, at least one control point may be two control points, the third and fourth control points, respectively, with the third and fourth control points being the first. Obtaining the distance along the first direction Z from at least one control point to the first detection point, the second detection point, and the third detection point on the mask to be measured, which are arranged along the three directions Y. Acquires the distance along the first direction Z from the third control point a1 to the first detection point a1, and sets the distance as the distance H1 along the first direction Z from the first detection point a1 to the corresponding control point. 'And, the distance along the first direction from the fourth control point a3 to the third detection point a3 is acquired, and the distance is set as the distance along the first direction Z from the third detection point a3 to the corresponding control point. H3', the mask 200 to be measured is moved along the second direction X, the distance along the first direction Z from the third control point to the second detection point a2 is acquired, and the distance is obtained. Is the distance H2'along the first direction Z from the second detection point a2 to the corresponding control point, and here, the distance moving along the second direction X of the mask 200 to be measured is the first detection point. The distance L1 along the second direction X between a1 and the second detection point a2 is included.

一実施例において、第3標定点及び第4標定点が測定対象であるマスクの同側又は異側に位置する。 In one embodiment, the third and fourth control points are located on the same side or different side of the mask to be measured.

本出願の他の実施例において、標定点が第5標定点を含み、少なくとも1つの標定点から測定対象であるマスク上の第1検出点、第2検出点及び第3検出点までの第1方向Zに沿った距離を取得することは、第2方向X及び/又は第3方向Yに沿って測定対象であるマスク200を移動し、第5標定点から第1検出点a1までの第1方向Zに沿った距離、第5標定点から第2検出点a2までの第1方向Zに沿った距離、及び第5標定点から第3検出点a3までの第1方向Zに沿った距離を取得し、それぞれに各検出点から対応する標定点までの第1方向Zに沿った距離H1’、H2’及びH3’とし、ここで、測定対象であるマスク200の第2方向Xに沿って移動する距離は第1検出点a1と第2検出点a2の第2方向Xに沿った距離であり、測定対象であるマスク200の第3方向Yに沿って移動する距離は第1検出点a1と第3検出点a3の第3方向Yに沿った距離であることを含む。 In another embodiment of the present application, the control point includes the fifth control point, and the first detection point from at least one control point to the first detection point, the second detection point, and the third detection point on the mask to be measured. To acquire the distance along the direction Z, the mask 200 to be measured is moved along the second direction X and / or the third direction Y, and the first from the fifth control point to the first detection point a1. The distance along the direction Z, the distance along the first direction Z from the fifth control point to the second detection point a2, and the distance along the first direction Z from the fifth control point to the third detection point a3. Obtained and set the distances H1', H2', and H3'along the first direction Z from each detection point to the corresponding control point, respectively, and here, along the second direction X of the mask 200 to be measured. The moving distance is the distance along the second direction X of the first detection point a1 and the second detection point a2, and the moving distance along the third direction Y of the mask 200 to be measured is the first detection point a1. And the distance along the third direction Y of the third detection point a3.

本出願の実施例は、標定点の数をさらに減少し、1つの標定点を採用すれば監視過程を完成でき、監視装置の構造を簡略化し、関連技術におけるマスク移動機構を用いて測定対象であるマスクを移動することができて、監視コストを下げる。 In the embodiment of the present application, the number of control points is further reduced, the monitoring process can be completed by adopting one control point, the structure of the monitoring device is simplified, and the measurement target is measured by using the mask movement mechanism in the related technology. A mask can be moved, reducing monitoring costs.

本出願の実施例はマスク姿勢監視装置をさらに提供し、図5は本出願の実施例が提供するマスク姿勢監視装置の第3方向に沿った模式図であり、図6は図5におけるマスク姿勢監視装置の第2方向に沿った模式図であり、図5及び図6に示すように、マスク姿勢監視装置は、測定対象であるマスク200の上方に設けられ、取付枠300上に固定される少なくとも1つの距離センサ101を含み、例示的に、少なくとも1つの距離センサは3つの距離センサ101であってもよく、3つの標定点から基準面Aまでの第1方向Zに沿った距離を取得し、及び、測定対象であるマスク200上の第1検出点a1、第2検出点a2及び第3検出点a3から対応する標定点までの第1方向Zに沿った距離を取得するように構成され、ここで、第1方向Zと、第2方向Xと、第3方向Yとはお互いに垂直であり、基準面Aは第1方向Zに垂直であり、第1検出点a1と第2検出点a2の基準面A内での投影が第2方向Xに沿って配列され、第1検出点a1と第3検出点a3の基準面A内での投影が第3方向Yに沿って配列され、距離センサは検出点と一対一に対応して設けられる。ここで、基準面Aは、オフラインの状態で、標定マスクをレベリングした後、標定マスクの上面及び下面であり、標定マスクは測定対象であるマスク200と同じパラメータ及び設計を有するマスクであってもよく、標定マスクをレベリングすることにより、標定マスクは第1方向Zに垂直であるようにする。 The embodiments of the present application further provide a mask posture monitoring device, FIG. 5 is a schematic view of the mask posture monitoring device provided by the embodiments of the present application along a third direction, and FIG. 6 is a schematic view of the mask posture in FIG. It is a schematic view along the second direction of the monitoring device, and as shown in FIGS. 5 and 6, the mask posture monitoring device is provided above the mask 200 to be measured and fixed on the mounting frame 300. Including at least one distance sensor 101, exemplaryly at least one distance sensor may be three distance sensors 101 to obtain the distance along the first direction Z from the three control points to the reference plane A. And, it is configured to acquire the distance along the first direction Z from the first detection point a1, the second detection point a2, and the third detection point a3 on the mask 200 to be measured to the corresponding control point. Here, the first direction Z, the second direction X, and the third direction Y are perpendicular to each other, the reference plane A is perpendicular to the first direction Z, and the first detection points a1 and the second are The projections of the detection point a2 in the reference plane A are arranged along the second direction X, and the projections of the first detection point a1 and the third detection point a3 in the reference plane A are arranged along the third direction Y. The distance sensor is provided one-to-one with the detection point. Here, the reference surface A is the upper surface and the lower surface of the standardization mask after leveling the standardization mask in the offline state, and the standardization mask may be a mask having the same parameters and design as the mask 200 to be measured. Often, by leveling the orientation mask, the orientation mask is made perpendicular to the first direction Z.

移動機構400は、測定対象であるマスク200を第2方向X及び/又は第3方向Yに沿って移動するように駆動するように構成される。移動機構400はロボットハンドであってもよく、ロボットハンドの自由端にはマスクフォーク(中国語:版叉)が設けられ、測定対象であるマスク200を載置するように構成される。 The moving mechanism 400 is configured to drive the mask 200 to be measured so as to move along the second direction X and / or the third direction Y. The moving mechanism 400 may be a robot hand, and a mask fork (Chinese: plate fork) is provided at the free end of the robot hand so as to place the mask 200 to be measured.

制御算出ユニット(図示しない)は、距離センサ101が取得したデータにより、基準面Aに対する測定対象であるマスク200の第2方向X回りの偏向角度及び第3方向Y回りの偏向角度を算出するように構成される。 The control calculation unit (not shown) calculates the deflection angle around the second direction X and the deflection angle around the third direction Y of the mask 200 to be measured with respect to the reference plane A from the data acquired by the distance sensor 101. It is composed of.

一実施例において、第1検出点a1から対応する標定点までの第1方向Zに沿った距離H1’、第1検出点a1に対応する標定点から基準面Aまでの第1方向Zに沿った距離H1、第2検出点a2から対応する標定点までの第1方向Zに沿った距離H2’、第2検出点a2に対応する標定点から基準面Aまでの第1方向Zに沿った距離H2及び第1検出点a1と第2検出点a2の第2方向Xに沿った距離L1により、基準面Aに対する測定対象であるマスク200の第3方向Y回りの偏向角度θ1を算出する。ここで、第1検出点a1と第2検出点a2の第2方向Xに沿った距離L1は、対応する2つの距離センサ101の第2方向Xに沿った距離である。一実施例において、計算式は以下の通りである。

Figure 2022515493000004
In one embodiment, the distance H1'along the first direction Z from the first detection point a1 to the corresponding control point, along the first direction Z from the control point corresponding to the first detection point a1 to the reference plane A. Distance H1, distance H2'along the first direction Z from the second detection point a2 to the corresponding control point, along the first direction Z from the control point corresponding to the second detection point a2 to the reference plane A. From the distance H2 and the distance L1 along the second direction X of the first detection point a1 and the second detection point a2, the deflection angle θ1 around the third direction Y of the mask 200 to be measured with respect to the reference plane A is calculated. Here, the distance L1 between the first detection point a1 and the second detection point a2 along the second direction X is the distance along the second direction X of the corresponding two distance sensors 101. In one embodiment, the calculation formula is as follows.
Figure 2022515493000004

基準面Aに対する測定対象であるマスク200の第2方向X回りの偏向角度の算出原理は、測定対象であるマスク200の第3方向Y回りの偏向角度の算出原理と類似し、一実施例において、第1検出点a1から対応する標定点までの第1方向Zに沿った距離H1’、第1検出点a1に対応する標定点から基準面Aまでの第1方向Zに沿った距離H1、第3検出点a3から対応する標定点までの第1方向Zに沿った距離H3’、第3検出点a3に対応する標定点から基準面Aまでの第1方向Zに沿った距離H3、及び第1検出点a1と第3検出点a3の第3方向Yに沿った距離L2により、基準面Aに対する測定対象であるマスク200の第2方向X回りの偏向角度θ2を算出する。ここで、第1検出点a1と第3検出点a3の第3方向Yに沿った距離L2は、対応する2つの距離センサ101の第3方向Yに沿った距離である。一実施例において、計算式は以下の通りである。

Figure 2022515493000005
The calculation principle of the deflection angle around the second direction X of the mask 200 to be measured with respect to the reference plane A is similar to the calculation principle of the deflection angle around the third direction Y of the mask 200 to be measured, and in one embodiment. , Distance H1'along the first direction Z from the first detection point a1 to the corresponding control point, distance H1 along the first direction Z from the control point corresponding to the first detection point a1 to the reference plane A, The distance H3'along the first direction Z from the third detection point a3 to the corresponding control point, the distance H3 along the first direction Z from the control point corresponding to the third detection point a3 to the reference plane A, and From the distance L2 along the third direction Y of the first detection point a1 and the third detection point a3, the deflection angle θ2 around the second direction X of the mask 200 to be measured with respect to the reference plane A is calculated. Here, the distance L2 between the first detection point a1 and the third detection point a3 along the third direction Y is the distance along the third direction Y of the corresponding two distance sensors 101. In one embodiment, the calculation formula is as follows.
Figure 2022515493000005

本出願の実施例は、少なくとも1つの距離センサが少なくとも1つの標定点から基準面までの第1方向に沿った距離、及び少なくとも1つの標定点から測定対象であるマスク上の第1検出点、第2検出点及び第3検出点までの第1方向に沿った距離を取得し、制御算出ユニットは、取得されたデータにより、測定対象であるマスクの第2方向回りの偏向角度及び第3方向回りの偏向角度を算出することにより、測定対象であるマスクの偏向角度をオンラインで監視することが実現でき、監視の過程が簡単で、監視の効率が高く、且つ特別設計のマスク及びリニアCCDカメラが必要ではなくて監視のコストが低い。 In the embodiments of the present application, a distance along a first direction from at least one control point to a reference plane by at least one distance sensor, and a first detection point on a mask from at least one control point to be measured. The distance along the first direction to the second detection point and the third detection point is acquired, and the control calculation unit uses the acquired data to determine the deflection angle and the third direction of the mask to be measured in the second direction. By calculating the deflection angle around, it is possible to monitor the deflection angle of the mask to be measured online, the monitoring process is simple, the monitoring efficiency is high, and the specially designed mask and linear CCD camera. Is not necessary and the cost of monitoring is low.

本出願の他の実施例において、図5を参照し、マスク姿勢監視装置は、第2方向Xに沿って配列され、それぞれに第1標定点及び第2標定点に対応する2つの距離センサ101を含む。2つの距離センサ101は、まず、第1標定点から第1検出点a1までの第1方向Zに沿った距離H1’、及び第2標定点から第2検出点a2までの第1方向Zに沿った距離H2’を取得する。そして、制御算出ユニットは、移動機構400が測定対象であるマスク200を連れて第3方向Yに沿って移動するように制御され、対応する距離センサ101は、第1標定点から第3検出点a3までの第1方向Zに沿った距離を取得し、該距離を第3検出点a3から対応する標定点までの第1方向Zに沿った距離H3’とし、ここで、測定対象であるマスク200の第3方向Yに沿って移動する距離は、第1検出点a1と第3検出点a3の第3方向Yに沿った距離L2である。 In another embodiment of the present application, with reference to FIG. 5, the mask posture monitoring devices are arranged along the second direction X, and two distance sensors 101 corresponding to the first control point and the second control point, respectively. including. The two distance sensors 101 first move to the distance H1'along the first direction Z from the first control point to the first detection point a1 and the first direction Z from the second control point to the second detection point a2. Obtain the distance H2'along. Then, the control calculation unit is controlled so that the movement mechanism 400 moves along the third direction Y with the mask 200 as the measurement target, and the corresponding distance sensor 101 moves from the first reference point to the third detection point. The distance along the first direction Z to a3 is acquired, and the distance is set as the distance H3'along the first direction Z from the third detection point a3 to the corresponding control point, and here, the mask to be measured. The distance moving along the third direction Y of 200 is the distance L2 along the third direction Y of the first detection point a1 and the third detection point a3.

図6を参照し、本出願の他の実施例において、マスク姿勢監視装置は、第3方向Yに沿って配列され、それぞれに第3標定点及び第4標定点に対応する2つの距離センサ101を含む。2つの距離センサ101は、まず、第3標定点から第1検出点a1までの第1方向Zに沿った距離H1’、及び第4標定点から第3検出点a3までの第1方向Zに沿った距離H3’を取得する。そして、制御算出ユニットは、移動機構が測定対象であるマスク200を連れて第2方向Xに沿って移動するように制御され、対応する距離センサ101は、第3標定点から第2検出点a2までの第1方向Zに沿った距離を取得し、該距離を第2検出点a2から対応する標定点までの第1方向Zに沿った距離H2’とし、ここで、測定対象であるマスク200の第2方向Xに沿って移動する距離は、第1検出点a1と第2検出点a2の第2方向Xに沿った距離L2である。 With reference to FIG. 6, in another embodiment of the present application, the mask posture monitoring devices are arranged along the third direction Y, and two distance sensors 101 corresponding to the third control point and the fourth control point, respectively. including. The two distance sensors 101 first move to the distance H1'along the first direction Z from the third control point to the first detection point a1 and the first direction Z from the fourth control point to the third detection point a3. Obtain the distance H3'along. Then, the control calculation unit is controlled so that the moving mechanism moves along the second direction X with the mask 200 as the measurement target, and the corresponding distance sensor 101 moves from the third reference point to the second detection point a2. The distance along the first direction Z up to is obtained, and the distance is set as the distance H2'along the first direction Z from the second detection point a2 to the corresponding control point, and here, the mask 200 to be measured The distance moved along the second direction X is the distance L2 along the second direction X of the first detection point a1 and the second detection point a2.

図7は本出願の実施例が提供するマスク姿勢監視装置の第3方向に沿った模式図であり、一実施例において、図5、6又は7を参照し、2つの距離センサ101は測定対象であるマスク200の同側又は異側に位置する。 FIG. 7 is a schematic view of the mask posture monitoring device provided by the embodiment of the present application along the third direction. In one embodiment, reference to FIGS. 5, 6 or 7, and the two distance sensors 101 are measurement targets. It is located on the same side or the opposite side of the mask 200.

本出願の実施例は、距離センサの数を減少し、監視装置の構造を簡略化することができ、関連技術におけるマスク移動機構を用いて測定対象であるマスクを移動することができて、監視のコストを下げる。 In the embodiments of the present application, the number of distance sensors can be reduced, the structure of the monitoring device can be simplified, and the mask to be measured can be moved by using the mask moving mechanism in the related technology, and monitoring can be performed. Reduce the cost of.

本出願の他の実施例において、マスク姿勢監視装置は第5標定点に対応する1つの距離センサ101を含む。一実施例において、移動機構400は第2方向X及び/又は第3方向Yに沿って測定対象であるマスク200を移動し、距離センサ101は第5標定点から第1検出点a1までの第1方向Zに沿った距離、第5標定点から第2検出点a2までの第1方向Zに沿った距離、及び第5標定点から第3検出点a3までの第1方向Zに沿った距離を取得し、それぞれに各検出点から対応する標定点までの第1方向Zに沿った距離H1’、H2’及びH3’とし、ここで、測定対象であるマスク200の第2方向Xに沿って移動する距離は、第1検出点a1と第2検出点a2の第2方向Xに沿った距離L1であり、測定対象であるマスク200の第3方向Yに沿って移動する距離は、第1検出点a1と第3検出点a3の第3方向Yに沿った距離L2である。 In another embodiment of the present application, the mask attitude monitoring device includes one distance sensor 101 corresponding to a fifth control point. In one embodiment, the moving mechanism 400 moves the mask 200 to be measured along the second direction X and / or the third direction Y, and the distance sensor 101 moves from the fifth control point to the first detection point a1. The distance along the 1st direction Z, the distance along the 1st direction Z from the 5th control point to the 2nd detection point a2, and the distance along the 1st direction Z from the 5th control point to the 3rd detection point a3. Are obtained, and the distances H1', H2', and H3'along the distances H1', H2', and H3' from each detection point to the corresponding control point Z are set, and here, along the second direction X of the mask 200 to be measured. The moving distance is the distance L1 along the second direction X of the first detection point a1 and the second detection point a2, and the moving distance along the third direction Y of the mask 200 to be measured is the first. It is a distance L2 along the third direction Y of the first detection point a1 and the third detection point a3.

本出願の実施例は、距離センサの数をさらに減少し、1つの距離センサを採用して監視過程を完成でき、監視装置の構造を簡略化し、関連技術におけるマスク移動機構を用いて測定対象であるマスクを移動することができて、監視のコストを下げる。 In the examples of this application, the number of distance sensors can be further reduced, one distance sensor can be adopted to complete the monitoring process, the structure of the monitoring device can be simplified, and the measurement target can be measured using the mask movement mechanism in the related technology. A mask can be moved, reducing the cost of monitoring.

本出願の実施例は、本出願のいずれかの上記した実施例に記載のマスク姿勢監視装置を含む、マスク粒度検出機器をさらに提供する。 The embodiments of the present application further provide a mask particle size detection device including the mask attitude monitoring device according to any of the above-described embodiments of the present application.

マスク粒度検出機器は、リソグラフィ機マスク搬送サブシステムの主な部材の1つとして、マスクのペリクル(pellicle)面及びベース(glass)面上の汚染粒子の大きさや位置を検出することができる。検出結果により、リソグラフィ機操作システム又は操作者は、該マスクが後続の露光過程に使用されることができるかを判定できる。検出結果はマスク上の汚染粒子を除去する際の入力データとすることができる。 The mask particle size detection device can detect the size and position of contaminated particles on the pellicle surface and the glass surface of the mask as one of the main members of the mask transfer subsystem of the lithography machine. From the detection result, the lithography machine operation system or the operator can determine whether the mask can be used in the subsequent exposure process. The detection result can be input data for removing contaminated particles on the mask.

図8は、本出願の実施例が提供するマスク粒度検出機器の検出原理図であり、図8に示すように、マスクのペリクル201及びベース202の表面には、それぞれに1セットの照明及び検知ユニットが配置される。粒子に対する検知感度を向上させるために、マスク粒度検出は、画素サイズ未満の粒子を検知可能な散乱暗視野測定技術を採用する。 FIG. 8 is a detection principle diagram of the mask particle size detection device provided by the embodiment of the present application, and as shown in FIG. 8, one set of illumination and detection are provided on the surfaces of the pellicle 201 and the base 202 of the mask, respectively. Units are placed. In order to improve the detection sensitivity for particles, mask particle size detection employs a scattering dark field measurement technique that can detect particles smaller than the pixel size.

光源601が生じた光は、照明システム602を介してコリメートされ、ビーム拡大され、均一化された後、一定の傾きでpellicle面(又はglass面)に入射し、pellicle面には一本の高輝度の線形光スポットを形成し、該光スポットは検知領域であり、検知領域は第3方向Yに沿って分布され、検知領域に汚染粒子がない場合、光束は正反射方向に沿って吸収装置603に入り、この時、検知ユニット604は光信号を検出できない。検知領域に汚染粒子がある場合、部分の光束が粒子により散乱されて検知ユニット604に入り、検出した光強度の値により粒子サイズを確定する。移動機構がマスクを載置して第2方向Xに沿って移動し、検知領域は、マスクの表面全体を走査する。 The light generated by the light source 601 is collimated through the lighting system 602, the beam is magnified, and after being homogenized, the light is incident on the mirror surface (or glass surface) at a constant inclination, and one height is applied to the particle surface. A linear light spot of luminance is formed, the light spot is a detection region, the detection region is distributed along the third direction Y, and when there are no contaminated particles in the detection region, the light flux is absorbed along the specular reflection direction. Entering 603, at this time, the detection unit 604 cannot detect the optical signal. When there are contaminated particles in the detection area, the light flux of the portion is scattered by the particles and enters the detection unit 604, and the particle size is determined by the value of the detected light intensity. The moving mechanism mounts the mask and moves along the second direction X, and the detection area scans the entire surface of the mask.

用語「上」などの方位又は位置関係は、図面に示された方位又は位置関係に基づくものであり、単に説明しやすくし操作を簡略化するためのものであり、指定された装置又は素子が必ず特定の方位を有し、特定の方位で構成及び操作されることを指示又は示唆するものではないことを理解する必要があり、よって、本出願を限定するものと理解すべきではない。 Orientations or positional relationships, such as the term "above", are based on the orientation or positional relationships shown in the drawings, merely for ease of explanation and simplification of operation, by the designated device or element. It should be understood that it does not necessarily indicate or suggest that it has a particular orientation and that it is configured and operated in a particular orientation and therefore should not be understood as limiting this application.

本明細書の説明において、参照用語「一実施例」などの説明は、該実施例と結び付ける特徴、構造、材料、または特色が、本出願の少なくとも1つの実施例または例示に含まれることを意味する。本明細書において、上述した用語の模式的な表現は必ずしも同じ実施例を指すものではない。 In the description of the present specification, the description such as the reference term "one example" means that the features, structures, materials, or features associated with the embodiment are included in at least one example or example of the present application. do. As used herein, the schematic representations of the terms described above do not necessarily refer to the same embodiment.

また、本明細書は実施形態に従って説明されているが、各実施形態には1つの独立した技術方案のみが含まれるわけではなく、明細書のような説明方式は、デバイスを明確にするためだけであり、当業者は説明書を全体として、各実施例における技術方案も適切に組み合わせられて当業者が理解可能な他の実施形態を形成するということを理解すべきである。 Also, although the specification is described according to embodiments, each embodiment does not include only one independent technical proposal, and the description scheme as described herein is only for clarifying the device. It should be understood that those skilled in the art, as a whole, will also appropriately combine the technical ideas in each embodiment to form other embodiments that will be understood by those skilled in the art.

Claims (14)

少なくとも1つの標定点から基準面までの第1方向に沿った距離を取得することと、
前記少なくとも1つの標定点から測定対象であるマスク上の第1検出点までの前記第1方向に沿った距離、前記少なくとも1つの標定点から測定対象であるマスク上の第2検出点までの前記第1方向に沿った距離、及び前記少なくとも1つの標定点から測定対象であるマスク上の第3検出点までの前記第1方向に沿った距離をそれぞれ取得し、ここで、前記第1検出点と前記第2検出点の前記基準面内での投影が第2方向に沿って配列され、前記第1検出点と前記第3検出点の前記基準面内での投影が第3方向に沿って配列され、前記第1方向と、第2方向と、第3方向とは互いに垂直であり、前記基準面が前記第1方向に垂直であることと、
前記第1検出点から対応する標定点までの前記第1方向に沿った距離、前記第1検出点に対応する標定点から前記基準面までの前記第1方向に沿った距離、前記第2検出点から対応する標定点までの前記第1方向に沿った距離、前記第2検出点に対応する標定点から前記基準面までの前記第1方向に沿った距離、及び前記第1検出点と前記第2検出点の前記第2方向に沿った距離により、前記基準面に対する前記測定対象であるマスクの前記第3方向回りの偏向角度を算出することと、
前記第1検出点から対応する標定点までの前記第1方向に沿った距離、前記第1検出点に対応する標定点から前記基準面までの前記第1方向に沿った距離、前記第3検出点から対応する標定点までの前記第1方向に沿った距離、前記第3検出点に対応する標定点から前記基準面までの前記第1方向に沿った距離、及び前記第1検出点と前記第3検出点の前記第3方向に沿った距離により、前記基準面に対する前記測定対象であるマスクの前記第2方向回りの偏向角度を算出することと、を含む、マスク姿勢監視方法。
To obtain the distance along the first direction from at least one control point to the reference plane,
The distance along the first direction from the at least one control point to the first detection point on the mask to be measured, and the distance from the at least one control point to the second detection point on the mask to be measured. The distance along the first direction and the distance along the first direction from at least one control point to the third detection point on the mask to be measured are acquired, and here, the first detection point is obtained. And the projections of the second detection point in the reference plane are arranged along the second direction, and the projections of the first detection point and the third detection point in the reference plane are along the third direction. Arranged, the first direction, the second direction, and the third direction are perpendicular to each other, and the reference plane is perpendicular to the first direction.
The distance from the first detection point to the corresponding control point along the first direction, the distance from the control point corresponding to the first detection point to the reference plane along the first direction, the second detection. The distance from the point to the corresponding control point along the first direction, the distance from the control point corresponding to the second detection point to the reference plane along the first direction, and the first detection point and the above. From the distance of the second detection point along the second direction, the deflection angle of the mask to be measured with respect to the reference plane in the third direction is calculated.
The distance from the first detection point to the corresponding control point along the first direction, the distance from the control point corresponding to the first detection point to the reference plane along the first direction, the third detection. The distance from the point to the corresponding control point along the first direction, the distance from the control point corresponding to the third detection point to the reference plane along the first direction, and the first detection point and the above. A mask posture monitoring method comprising calculating the deflection angle of the mask to be measured with respect to the reference plane in the second direction from the distance of the third detection point along the third direction.
前記少なくとも1つの標定点から基準面までの第1方向に沿った距離を取得する前に、
標定マスクをレベリングすることにより、前記標定マスクが前記第1方向に垂直で、前記標定マスクの表面が前記基準面であるようにすることをさらに含む、請求項1に記載のマスク姿勢監視方法。
Before acquiring the distance along the first direction from the at least one control point to the reference plane,
The mask posture monitoring method according to claim 1, further comprising leveling the orientation mask so that the orientation mask is perpendicular to the first direction and the surface of the orientation mask is the reference plane.
前記標定点が第1標定点及び第2標定点を含み、前記第1標定点及び第2標定点が前記第2方向に沿って配列され、前記少なくとも1つの標定点から測定対象であるマスク上の第1検出点までの前記第1方向に沿った距離、前記少なくとも1つの標定点から測定対象であるマスク上の第2検出点までの前記第1方向に沿った距離、及び前記少なくとも1つの標定点から測定対象であるマスク上の第3検出点までの前記第1方向に沿った距離をそれぞれ取得することは、
前記第1標定点から前記第1検出点までの前記第1方向に沿った距離、及び前記第2標定点から前記第2検出点までの前記第1方向に沿った距離を取得することと、
前記第3方向に沿って前記測定対象であるマスクを移動し、前記第1標定点から前記第3検出点までの前記第1方向に沿った距離を取得し、ここで、前記測定対象であるマスクの前記第3方向に沿って移動する距離が前記第1検出点と第3検出点の前記第3方向に沿った距離であることと、を含む、請求項1に記載のマスク姿勢監視方法。
The control point includes a first control point and a second control point, and the first control point and the second control point are arranged along the second direction, and the measurement target is measured from at least one control point. The distance along the first direction to the first detection point of the above, the distance along the first direction from the at least one control point to the second detection point on the mask to be measured, and the at least one. Acquiring the distances along the first direction from the control point to the third detection point on the mask to be measured can be obtained.
Acquiring the distance along the first direction from the first control point to the first detection point and the distance along the first direction from the second control point to the second detection point.
The mask to be measured is moved along the third direction, and the distance from the first control point to the third detection point along the first direction is acquired, and here, the measurement target is obtained. The mask posture monitoring method according to claim 1, wherein the distance of the mask moving along the third direction is the distance between the first detection point and the third detection point along the third direction. ..
前記第1標定点及び前記第2標定点が前記測定対象であるマスクの同側又は異側に位置する、請求項3に記載のマスク姿勢監視方法。 The mask posture monitoring method according to claim 3, wherein the first control point and the second control point are located on the same side or a different side of the mask to be measured. 前記標定点が第3標定点及び第4標定点を含み、前記第3標定点及び第4標定点が前記第3方向に沿って配列され、前記少なくとも1つの標定点から測定対象であるマスク上の第1検出点までの前記第1方向に沿った距離、前記少なくとも1つの標定点から測定対象であるマスク上の第2検出点までの前記第1方向に沿った距離、及び前記少なくとも1つの標定点から測定対象であるマスク上の第3検出点までの前記第1方向に沿った距離をそれぞれ取得することは、
前記第3標定点から前記第1検出点までの前記第1方向に沿った距離、及び前記第4標定点から前記第3検出点までの前記第1方向に沿った距離を取得することと、
前記第2方向に沿って前記測定対象であるマスクを移動し、前記第3標定点から前記第2検出点までの前記第1方向に沿った距離を取得し、ここで、前記測定対象であるマスクの前記第2方向に沿って移動する距離が前記第1検出点と前記第2検出点の前記第2方向に沿った距離であることと、を含む、請求項1に記載のマスク姿勢監視方法。
The control point includes a third control point and a fourth control point, and the third control point and the fourth control point are arranged along the third direction, and the measurement target is measured from at least one control point. The distance along the first direction to the first detection point of the above, the distance along the first direction from the at least one control point to the second detection point on the mask to be measured, and the at least one. Acquiring the distances along the first direction from the control point to the third detection point on the mask to be measured can be obtained.
Acquiring the distance along the first direction from the third control point to the first detection point and the distance along the first direction from the fourth control point to the third detection point.
The mask to be measured is moved along the second direction, and the distance from the third control point to the second detection point along the first direction is acquired, and here, the measurement target is obtained. The mask posture monitoring according to claim 1, wherein the distance of the mask moving along the second direction is the distance between the first detection point and the second detection point along the second direction. Method.
前記第3標定点及び前記第4標定点が前記測定対象であるマスクの同側又は異側に位置する、請求項5に記載のマスク姿勢監視方法。 The mask posture monitoring method according to claim 5, wherein the third control point and the fourth control point are located on the same side or a different side of the mask to be measured. 前記標定点が第5標定点を含み、前記少なくとも1つの標定点から測定対象であるマスク上の第1検出点までの前記第1方向に沿った距離、前記少なくとも1つの標定点から測定対象であるマスク上の第2検出点までの前記第1方向に沿った距離、及び前記少なくとも1つの標定点から測定対象であるマスク上の第3検出点までの前記第1方向に沿った距離をそれぞれ取得することは、
前記第2方向及び第3方向のうちの少なくとも1つの方向に沿って前記測定対象であるマスクを移動し、前記第5標定点から前記第1検出点までの前記第1方向に沿った距離、前記第5標定点から前記第2検出点までの前記第1方向に沿った距離、及び前記第5標定点から前記第3検出点までの前記第1方向に沿った距離をそれぞれ取得し、ここで、前記測定対象であるマスクの前記第2方向に沿って移動する距離が前記第1検出点と前記第2検出点の前記第2方向に沿った距離であり、前記測定対象であるマスクの前記第3方向に沿って移動する距離が前記第1検出点と前記第3検出点の前記第3方向に沿った距離であることを含む、請求項1に記載のマスク姿勢監視方法。
The control point includes the fifth control point, the distance along the first direction from the at least one control point to the first detection point on the mask to be measured, from the at least one control point to the measurement target. The distance along the first direction to the second detection point on a mask and the distance along the first direction from at least one control point to the third detection point on the mask to be measured, respectively. To get is
The distance along the first direction from the fifth control point to the first detection point by moving the mask to be measured along at least one of the second direction and the third direction. The distance along the first direction from the fifth control point to the second detection point and the distance along the first direction from the fifth control point to the third detection point are acquired, respectively. The distance that the mask to be measured moves along the second direction is the distance between the first detection point and the second detection point along the second direction, and the measurement target mask. The mask posture monitoring method according to claim 1, wherein the distance moving along the third direction is a distance between the first detection point and the third detection point along the third direction.
前記基準面に対する前記測定対象であるマスクの前記第3方向回りの偏向角度を算出することは、
以下の式により、前記基準面に対する前記測定対象であるマスクの前記第3方向回りの偏向角度を算出し、
Figure 2022515493000006
ここで、θ1が前記基準面に対する前記測定対象であるマスクの前記第3方向回りの偏向角度であり、H1’が前記第1検出点から対応する標定点までの前記第1方向に沿った距離であり、H1が前記第1検出点に対応する標定点から前記基準面までの前記第1方向に沿った距離であり、H2’が前記第2検出点から対応する標定点までの前記第1方向に沿った距離であり、H2が前記第2検出点に対応する標定点から前記基準面までの前記第1方向に沿った距離であり、L1が前記第1検出点と第2検出点の前記第2方向に沿った距離であることを含む、請求項1に記載のマスク姿勢監視方法。
To calculate the deflection angle of the mask to be measured with respect to the reference plane in the third direction is possible.
The deflection angle of the mask to be measured with respect to the reference plane in the third direction is calculated by the following formula.
Figure 2022515493000006
Here, θ1 is the deflection angle of the mask to be measured with respect to the reference plane in the third direction, and H1'is the distance from the first detection point to the corresponding control point along the first direction. H1 is the distance from the control point corresponding to the first detection point to the reference plane along the first direction, and H2'is the first distance from the second detection point to the corresponding control point. The distance along the direction, H2 is the distance along the first direction from the control point corresponding to the second detection point to the reference plane, and L1 is the distance between the first detection point and the second detection point. The mask posture monitoring method according to claim 1, wherein the distance is along the second direction.
前記基準面に対する前記測定対象であるマスクの前記第2方向回りの偏向角度を算出することは、
以下の式により、前記基準面に対する前記測定対象であるマスクの前記第2方向回りの偏向角度を算出し、
Figure 2022515493000007
ここで、θ2が前記基準面に対する前記測定対象であるマスクの前記第2方向回りの偏向角度であり、H1’が前記第1検出点から対応する標定点までの前記第1方向に沿った距離であり、H1が前記第1検出点に対応する標定点から前記基準面までの前記第1方向に沿った距離であり、H3’が前記第3検出点から対応する標定点までの前記第1方向に沿った距離であり、H3が前記第3検出点に対応する標定点から前記基準面までの前記第1方向に沿った距離であり、L2が前記第1検出点と第3検出点の前記第3方向に沿った距離であることを含む、請求項1に記載のマスク姿勢監視方法。
To calculate the deflection angle of the mask to be measured with respect to the reference plane in the second direction is possible.
The deflection angle of the mask to be measured with respect to the reference plane in the second direction is calculated by the following formula.
Figure 2022515493000007
Here, θ2 is the deflection angle of the mask to be measured with respect to the reference plane in the second direction, and H1'is the distance from the first detection point to the corresponding control point along the first direction. H1 is the distance from the control point corresponding to the first detection point to the reference plane along the first direction, and H3'is the first distance from the third detection point to the corresponding control point. The distance along the direction, H3 is the distance along the first direction from the control point corresponding to the third detection point to the reference plane, and L2 is the distance between the first detection point and the third detection point. The mask posture monitoring method according to claim 1, wherein the distance is along the third direction.
測定対象であるマスクの上方に設けられ、少なくとも1つの標定点から基準面までの第1方向に沿った距離を取得し、及び、前記少なくとも1つの標定点から測定対象であるマスク上の第1検出点までの前記第1方向に沿った距離、前記少なくとも1つの標定点から測定対象であるマスク上の第2検出点までの前記第1方向に沿った距離、及び前記少なくとも1つの標定点から測定対象であるマスク上の第3検出点までの前記第1方向に沿った距離をそれぞれ取得し、ここで、前記第1方向と、第2方向と、第3方向とは互いに垂直であり、前記基準面が前記第1方向に垂直であり、前記第1検出点と前記第2検出点の前記基準面内での投影が前記第2方向に沿って配列され、前記第1検出点と前記第3検出点の前記基準面内での投影が前記第3方向に沿って配列される、ように構成される少なくとも1つの距離センサと、
前記測定対象であるマスクを前記第2方向及び前記第3方向のうちの少なくとも1つの方向に沿って移動するように駆動するように構成される移動機構と、
前記第1検出点から対応する標定点までの前記第1方向に沿った距離、前記第1検出点に対応する標定点から前記基準面までの前記第1方向に沿った距離、前記第2検出点から対応する標定点までの前記第1方向に沿った距離、前記第2検出点に対応する標定点から前記基準面までの前記第1方向に沿った距離、及び第1検出点と前記第2検出点の前記第2方向に沿った距離により、前記基準面に対する前記測定対象であるマスクの前記第3方向回りの偏向角度を算出し、及び、
前記第1検出点から対応する標定点までの前記第1方向に沿った距離、前記第1検出点に対応する標定点から前記基準面までの前記第1方向に沿った距離、前記第3検出点から対応する標定点までの前記第1方向に沿った距離、前記第3検出点に対応する標定点から前記基準面までの前記第1方向に沿った距離、及び第1検出点と前記第3検出点の前記第3方向に沿った距離により、前記基準面に対する前記測定対象であるマスクの前記第2方向回りの偏向角度を算出する、ように構成される制御算出ユニットと、を含む、マスク姿勢監視装置。
A first distance on the mask to be measured, which is provided above the mask to be measured, obtains a distance along a first direction from at least one control point to a reference plane, and is from the at least one control point. The distance along the first direction to the detection point, the distance along the first direction from at least one control point to the second detection point on the mask to be measured, and from the at least one control point. The distances along the first direction to the third detection point on the mask to be measured are acquired, and here, the first direction, the second direction, and the third direction are perpendicular to each other. The reference plane is perpendicular to the first direction, and projections of the first detection point and the second detection point in the reference plane are arranged along the second direction, and the first detection point and the second detection point are arranged. With at least one distance sensor configured such that projections of the third detection point in the reference plane are arranged along the third direction.
A movement mechanism configured to drive the mask to be measured so as to move along at least one of the second direction and the third direction.
The distance from the first detection point to the corresponding control point along the first direction, the distance from the control point corresponding to the first detection point to the reference plane along the first direction, the second detection. The distance from the point to the corresponding control point along the first direction, the distance from the control point corresponding to the second detection point to the reference plane along the first direction, and the first detection point and the first detection point. 2 The deviation angle of the mask to be measured with respect to the reference plane in the third direction is calculated from the distance of the detection point along the second direction, and
The distance from the first detection point to the corresponding control point along the first direction, the distance from the control point corresponding to the first detection point to the reference plane along the first direction, the third detection. The distance from the point to the corresponding control point along the first direction, the distance from the control point corresponding to the third detection point to the reference plane along the first direction, and the first detection point and the first detection point. 3. A control calculation unit configured to calculate the deflection angle of the mask to be measured with respect to the reference plane in the second direction by the distance of the detection point along the third direction. Mask posture monitoring device.
前記マスク姿勢監視装置が、前記第2方向に沿って配列される2つの距離センサを含む、請求項10に記載のマスク姿勢監視装置。 The mask posture monitoring device according to claim 10, wherein the mask posture monitoring device includes two distance sensors arranged along the second direction. 前記マスク姿勢監視装置が、前記第3方向に沿って配列される2つの距離センサを含む、請求項10に記載のマスク姿勢監視装置。 The mask posture monitoring device according to claim 10, wherein the mask posture monitoring device includes two distance sensors arranged along the third direction. 前記2つの距離センサが、前記測定対象であるマスクの同側又は異側に位置する、請求項11又は12に記載のマスク姿勢監視装置。 The mask posture monitoring device according to claim 11 or 12, wherein the two distance sensors are located on the same side or the opposite side of the mask to be measured. 請求項10~13のいずれか一項に記載のマスク姿勢監視装置を含む、マスク粒度検出機器。 A mask particle size detecting device including the mask posture monitoring device according to any one of claims 10 to 13.
JP2021537801A 2018-12-28 2019-12-26 Mask posture monitoring method, device and mask particle size detector Active JP7216828B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201811630079.0 2018-12-28
CN201811630079.0A CN111380509B (en) 2018-12-28 2018-12-28 Mask posture monitoring method and device and mask granularity detection equipment
PCT/CN2019/128600 WO2020135557A1 (en) 2018-12-28 2019-12-26 Mask attitude monitoring method and apparatus and mask particle size measurement device

Publications (2)

Publication Number Publication Date
JP2022515493A true JP2022515493A (en) 2022-02-18
JP7216828B2 JP7216828B2 (en) 2023-02-01

Family

ID=71129140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021537801A Active JP7216828B2 (en) 2018-12-28 2019-12-26 Mask posture monitoring method, device and mask particle size detector

Country Status (5)

Country Link
JP (1) JP7216828B2 (en)
KR (1) KR20210104893A (en)
CN (1) CN111380509B (en)
TW (1) TWI769423B (en)
WO (1) WO2020135557A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114445402B (en) * 2022-04-02 2022-06-24 深圳市龙图光电有限公司 Mask plate film pasting precision detection method and detection device for semiconductor chip

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331924A (en) * 1999-05-25 2000-11-30 Sumitomo Heavy Ind Ltd Measurement method for leveling mask or wafer in aligner and measurement controller
JP2005026667A (en) * 2003-06-13 2005-01-27 Dainippon Screen Mfg Co Ltd Apparatus and method for detecting substrate, for conveying substrate, and for processing substrate
JP2006201092A (en) * 2005-01-21 2006-08-03 Yaskawa Electric Corp Method and instrument for measuring position/attitude of 6-degree-of-freedom moving object
JP2009031169A (en) * 2007-07-28 2009-02-12 Nikon Corp Position detection apparatus, exposure apparatus, and manufacturing method for device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2676933B2 (en) * 1988-09-05 1997-11-17 キヤノン株式会社 Position detection device
US6020964A (en) * 1997-12-02 2000-02-01 Asm Lithography B.V. Interferometer system and lithograph apparatus including an interferometer system
JP2003197502A (en) * 2001-12-26 2003-07-11 Nikon Corp Measuring method and exposing method, aligner, and method for manufacturing device
CN100535586C (en) * 2007-12-28 2009-09-02 上海微电子装备有限公司 High precision six-axis laser measurement device and measurement method
CN101221375A (en) * 2008-01-25 2008-07-16 上海微电子装备有限公司 Machine vision system used for step photo-etching machine alignment system and its calibration method
CN101975560B (en) * 2010-11-03 2012-02-08 中国科学院长春光学精密机械与物理研究所 Optical detection method for parallelism of planar array CCD target surface and installation locating surface
CN103869627B (en) * 2012-12-11 2016-03-09 上海微电子装备有限公司 For the focusing and leveling method of projection mask aligner
CN103021898B (en) * 2012-12-17 2016-03-02 华中科技大学 Measure chip and substrate relative inclination method of measurement and system
JP6598421B2 (en) * 2013-02-22 2019-10-30 キヤノン株式会社 Mask pattern determination method, program, and information processing apparatus
CN104007622B (en) * 2013-03-18 2015-12-09 哈尔滨工业大学 A kind of measuring method of mask platform vertical motion component
CN104460235B (en) * 2013-09-18 2017-01-04 上海微电子装备有限公司 The measuring method of focusing levelling light spot horizontal position
JP2016021008A (en) * 2014-07-15 2016-02-04 凸版印刷株式会社 Pattern evaluation method and pattern evaluation device for multi-patterning mask
CN107290943B (en) * 2016-03-31 2019-01-29 上海微电子装备(集团)股份有限公司 Coaxial mask alignment equipment, lithographic equipment and alignment methods
CN106502058B (en) * 2016-11-25 2018-07-27 天津津芯微电子科技有限公司 Scaling method and caliberating device
CN206282833U (en) * 2016-12-28 2017-06-27 上海天马微电子有限公司 A kind of mask plate alignment system
CN107234618A (en) * 2017-08-08 2017-10-10 广东工业大学 A kind of two degrees of freedom mechanical arm control method and its device
CN107957659B (en) * 2017-12-06 2021-01-19 江苏维普光电科技有限公司 Mask and wafer defect detection orthogonality compensation method
CN108227402A (en) * 2017-12-29 2018-06-29 信利(惠州)智能显示有限公司 A kind of method of adjustment of mask plate exposure stage and mask plate
CN108489423B (en) * 2018-03-19 2020-04-10 苏州华兴源创科技股份有限公司 Method and system for measuring horizontal inclination angle of product surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331924A (en) * 1999-05-25 2000-11-30 Sumitomo Heavy Ind Ltd Measurement method for leveling mask or wafer in aligner and measurement controller
JP2005026667A (en) * 2003-06-13 2005-01-27 Dainippon Screen Mfg Co Ltd Apparatus and method for detecting substrate, for conveying substrate, and for processing substrate
JP2006201092A (en) * 2005-01-21 2006-08-03 Yaskawa Electric Corp Method and instrument for measuring position/attitude of 6-degree-of-freedom moving object
JP2009031169A (en) * 2007-07-28 2009-02-12 Nikon Corp Position detection apparatus, exposure apparatus, and manufacturing method for device

Also Published As

Publication number Publication date
CN111380509A (en) 2020-07-07
WO2020135557A1 (en) 2020-07-02
JP7216828B2 (en) 2023-02-01
TW202026772A (en) 2020-07-16
TWI769423B (en) 2022-07-01
CN111380509B (en) 2022-04-01
KR20210104893A (en) 2021-08-25

Similar Documents

Publication Publication Date Title
KR101735403B1 (en) Inspection method, templet substrate and focus offset method
CN110006905B (en) Large-caliber ultra-clean smooth surface defect detection device combined with linear area array camera
US8107719B2 (en) Machine vision system for three-dimensional metrology and inspection in the semiconductor industry
KR101273094B1 (en) The measurement method of PCB bump height by using three dimensional shape detector using optical triangulation method
KR101808388B1 (en) Probe apparatus and probe method
JP5109633B2 (en) Measuring method and inspection method, measuring device and inspection device
JP2011512539A (en) Vision inspection system and inspection method for inspection object using the same
KR102119492B1 (en) Surface defect inspection apparatus
KR101219782B1 (en) Mobile Camera Lens Inspection System
JP6903268B2 (en) Electronic component transfer device and electronic component inspection device
KR100785420B1 (en) Denting inspecting apparatus
US20150192528A1 (en) Method and apparatus for determining coplanarity in integrated circuit packages
CN209992407U (en) Large-caliber ultra-clean smooth surface defect detection device combined with linear array camera
TW201911463A (en) Electronic component transport apparatus and electronic component inspection apparatus
JP2007085912A (en) Position measurement method, position measuring device and position measuring system
JP2008196974A (en) Device and method for measuring height of projection object
JP2022515493A (en) Mask posture monitoring method, device and mask particle size detection device
KR20220044741A (en) Wafer appearance inspection apparatus and method
KR20120049826A (en) Position alignment device, position alignment method, and computer readable recording medium having position alignment program recorded thereon
JP2019219357A (en) Imaging apparatus, imaging method, and imaging program
US8355122B2 (en) Non-contacting aligning method for planes in three-dimensional environment
JP2007327903A (en) Visual inspection system
KR101533826B1 (en) Surface defect inspection apparatus
CN115436376A (en) Detection system and detection method
JP2012026816A (en) Dimension measuring method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230120

R150 Certificate of patent or registration of utility model

Ref document number: 7216828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150