JP2022513552A - How to determine the grindstone trajectory by polishing the complicated tip pocket of the tool - Google Patents
How to determine the grindstone trajectory by polishing the complicated tip pocket of the tool Download PDFInfo
- Publication number
- JP2022513552A JP2022513552A JP2021504215A JP2021504215A JP2022513552A JP 2022513552 A JP2022513552 A JP 2022513552A JP 2021504215 A JP2021504215 A JP 2021504215A JP 2021504215 A JP2021504215 A JP 2021504215A JP 2022513552 A JP2022513552 A JP 2022513552A
- Authority
- JP
- Japan
- Prior art keywords
- grindstone
- line
- time
- polishing
- tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 37
- 238000013178 mathematical model Methods 0.000 claims abstract description 5
- 229910003460 diamond Inorganic materials 0.000 claims description 3
- 239000010432 diamond Substances 0.000 claims description 3
- 238000007517 polishing process Methods 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 abstract description 2
- 238000003801 milling Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
- Numerical Control (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
本発明は、工具の複雑なチップポケット研磨による砥石軌跡の決定方法を開示する。当該方法は、砥石の型番、サイズ及び目的工具径DTを決定するステップ(1)と、チップポケット数学モデルrsiを確立するステップ(2)と、砥石半径拘束方程式fcon1を確立するステップ(3)と、時刻tにおける砥石の位置・姿勢の求解目的関数を確立するステップ(4)と、ステップ(4)の目的関数、ステップ(3)の砥石半径拘束方程式fcon1から、時刻tにおける砥石の位置・姿勢を解くステップ(5)と、時刻tの値を変えてステップ(3)~ステップ(5)を繰り返し、複雑なチップポケットの砥石軌跡を解くステップ(6)と、を含む。当該方法は、工具の複雑なチップポケット研磨工程に適用可能であり、工具の複雑なチップポケット研磨工程の決定の技術及び方法の面からサポートし、精度が高く、信頼性に優れる。【選択図】図1The present invention discloses a method for determining a grindstone trajectory by polishing a complicated tip pocket of a tool. The method includes a step (1) for determining the model number, size and target tool diameter DT of the grindstone, a step (2) for establishing the chip pocket mathematical model rsi, and a step (3) for establishing the grindstone radius constraint equation fcon1. , The position / orientation of the grindstone at time t from the step (4) for establishing the objective function for solving the position / orientation of the grindstone at time t, the objective function of step (4), and the grindstone radius constraint equation fcon1 in step (3). The step (5) of solving the above step (5) and the step (6) of solving the grindstone trajectory of the complicated tip pocket by repeating steps (3) to (5) by changing the value at time t are included. This method is applicable to the complicated tip pocket polishing process of the tool, supports in terms of the technique and method of determining the complicated tip pocket polishing process of the tool, and has high accuracy and excellent reliability. [Selection diagram] Fig. 1
Description
本発明は、砥石軌跡の決定方法に関し、より具体的には、工具の複雑なチップポケット研磨による砥石軌跡の決定方法に関する。 The present invention relates to a method for determining a grindstone trajectory, and more specifically, to a method for determining a grindstone trajectory by polishing a complicated tip pocket of a tool.
工具の複雑なチップポケットは、すくい角、コア径、溝幅、螺旋角などの構造パラメータが工具軸線に沿って変化することで、工具の剛性、強度、切削性能を効果的に向上させることができ、高性能超硬エンドミルに広く応用されている。しかし、複雑なチップポケット研磨は、いくつかの難点に直面している。第1に、複雑なチップポケットの幾何構造は、砥石形状及び運動軌跡の両方で決められ、工程の求解に係る変数及び拘束条件が多く、「チップポケット構造パラメータ」と「砥石形状+運動軌跡」との関数関係を直接確立することができない。第2に、従来のチップポケット幾何成形の理論基礎である空間単一パラメータ曲面族包絡理論は、接触線を橋掛けとして砥石と溝の形状との間の関係を確立し、研磨中に接触線が一定である。しかし、接触線が変化し続ける複雑なチップポケット研磨に適用できず、複雑なチップポケット研磨成形の理論基礎に欠ける。従って、従来の包絡理論又は試行錯誤方法に基づいてチップポケット研磨における砥石運動軌跡を求める方法は、複雑な形状のチップポケットに適用できず、複雑なチップポケット製造過程では、砥石軌跡の求解が難しいというネックに直面している。 Complex tip pockets for tools can effectively improve tool rigidity, strength and cutting performance by changing structural parameters such as rake angle, core diameter, groove width and spiral angle along the tool axis. It can be used and is widely applied to high-performance carbide end mills. However, complex chip pocket polishing faces some drawbacks. First, the complex geometric structure of the chip pocket is determined by both the grindstone shape and the motion locus, and there are many variables and constraint conditions related to the solution of the process, "chip pocket structure parameter" and "grindstone shape + motion locus". It is not possible to directly establish a functional relationship with. Second, the spatial single-parameter curved surface group envelope theory, which is the basis of the conventional theory of chip pocket geometry, establishes the relationship between the grindstone and the shape of the groove by bridging the contact line, and the contact line during polishing. Is constant. However, it cannot be applied to complicated chip pocket polishing in which the contact line keeps changing, and lacks the theoretical basis of complicated chip pocket polishing molding. Therefore, the method of obtaining the grindstone motion trajectory in chip pocket polishing based on the conventional envelope theory or trial and error method cannot be applied to a chip pocket having a complicated shape, and it is difficult to solve the grindstone trajectory in a complicated chip pocket manufacturing process. I am facing the neck.
本発明の目的は、工具の複雑なチップポケット研磨工程に適用可能であり、且つ高精度及び信頼性を有する工具を用いた複雑なチップポケット研磨による砥石軌跡の決定方法を提供することである。 An object of the present invention is to provide a method for determining a grindstone trajectory by complicated tip pocket polishing using a tool which is applicable to a complicated tip pocket polishing process of a tool and has high accuracy and reliability.
本発明は、工具の複雑なチップポケット研磨による砥石軌跡の決定方法を提供し、砥石の型番、サイズ及び目的工具径DTを決定するステップ(1)と、チップポケット数学モデルrsiを確立するステップ(2)と、砥石半径拘束方程式fcon1を確立するステップ(3)と、時刻tにおける砥石の位置・姿勢の求解目的関数を確立するステップ(4)と、ステップ(4)の目的関数、ステップ(3)の砥石半径拘束方程式fcon1から、時刻tにおける砥石の位置・姿勢を解くステップ(5)と、時刻tの値を変えてステップ(3)~ステップ(5)を繰り返し、複雑なチップポケットの砥石軌跡を解くステップ(6)とを含む。 The present invention provides a method for determining a grindstone trajectory by polishing a complicated tip pocket of a tool, a step (1) for determining a model number, a size and a target tool diameter DT of the grindstone, and a step for establishing a tip pocket mathematical model r si . (2), the step (3) for establishing the grindstone radius constraint equation f con1 , the step (4) for establishing the objective function for solving the position and orientation of the grindstone at time t, and the objective function and step of step (4). From the grindstone radius constraint equation f con1 of (3), the step (5) for solving the position and orientation of the grindstone at time t and the steps (3) to (5) for changing the value at time t are repeated to make a complicated chip. This includes step (6) of solving the grindstone trajectory of the pocket.
ステップ(2)において、
rsi=[xsi,ysi,zsi]=[xsi(θi),ysi(θi),zsi(θi)]
i=1、2、3、4は、それぞれ、複雑なチップポケットを表現するためのエッジ曲線、すくい角線、コア径線、背面線を示し、xsi、ysi、zsiは、それぞれ、エッジ曲線、すくい角線、コア径線、背面線の工具座標系における座標値であり、θiは、エッジ曲線、すくい角線、コア径線、背面線のパラメータ方程式を表現する変数である。rs2とrs1との距離は、0.05DT未満であり、rs3から工具軸線までの距離は、rs1、rs2又はrs4から工具軸線までの距離よりも小さい。
In step (2)
r si = [x si , y si , z si ] = [x si (θ i ), y si (θ i ), z si (θ i )]
i = 1, 2, 3, 4 indicate an edge curve, a rake angle line, a core diameter line, and a back line for expressing a complicated chip pocket, respectively, and x si , y si , and z si are, respectively. It is a coordinate value in the tool coordinate system of the edge curve, the rake angle line, the core diameter line, and the back line, and θ i is a variable expressing the parameter equation of the edge curve, the rake angle line, the core diameter line, and the back line. The distance between r s2 and r s1 is less than 0.05 DT, and the distance from r s3 to the tool axis is less than the distance from r s1 , r s2 or r s4 to the tool axis.
ステップ(3)で砥石半径拘束方程式fcon1を確立するステップは、
(a)任意の時刻tでエッジ曲線、すくい角線、コア径線と同時に交わる円の円心座標rowを解く。
row=[xow,yow,zow]=[xow(θ1_t,θ2,θ3),yow(θ1_t,θ2,θ3),zow(θ1_t,θ2,θ3)]
xow、yow、zowは、それぞれ、時刻tでエッジ曲線、すくい角線、コア径線と同時に交わる円の円心の工具座標系における座標値であり、θ1_tは、時刻tにおける研磨加工砥石のエッジ曲線上の一点のパラメータ値であり、θ2,θ3は、それぞれ、すくい角線、コア径線パラメータ方程式の変数。
(b)任意の時刻tでエッジ曲線、すくい角線、コア径線と同時に交わる円の半径を解く。
Rwc=Rwc(θ1_t,θ2,θ3)
Rwcは、時刻tでエッジ曲線、すくい角線、コア径線と同時に交わる円の半径。
(c)任意の時刻tでエッジ曲線、すくい角線、コア径線と同時に交わる円の軸線ベクトルnwを解く。
nw=[xnw,ynw,znw]=[xnw(θ1_t,θ2,θ3),ynw(θ1_t,θ2,θ3),znw(θ1_t,θ2,θ3)]
xnw、ynw、znwは、それぞれ、時刻tでエッジ曲線、すくい角線、コア径線と同時に交わる円の軸線ベクトルの工具座標系における座標値。
(d)砥石大端円半径拘束方程式を確立する。
fcon1=Rcw(θ1_t,θ2,θ3)-Rw=0
Rwは、砥石大端円半径であり、Rw≧15DT、である。
The step of establishing the grindstone radius constraint equation fcon1 in step (3) is
(A) Solve the center coordinates row of a circle that intersects at the same time as the edge curve, rake angle line, and core diameter line at an arbitrary time t.
r ow = [x ow , y ow , z ow ] = [x ow (θ 1_t , θ 2 , θ 3 ), y ow (θ 1_t , θ 2 , θ 3 ), z ow (θ 1_t , θ 2 ), θ 3 )]
x ow , you ow , and z ow are the coordinate values in the tool coordinate system of the center of the circle that intersects at the same time as the edge curve, the rake angle line, and the core diameter line at time t, respectively, and θ 1_t is the polishing at time t. It is a parameter value of one point on the edge curve of the machined grindstone, and θ 2 and θ 3 are variables of the rake angle line and the core diameter line parameter equation, respectively.
(B) Solve the radius of the circle that intersects at the same time as the edge curve, rake angle line, and core diameter line at an arbitrary time t.
R wc = R wc (θ 1_t , θ 2 , θ 3 )
R wc is the radius of the circle that intersects at the same time as the edge curve, rake angle line, and core diameter line at time t.
(C) Solve the axis vector nw of the circle that intersects at the same time as the edge curve, the rake angle line, and the core diameter line at an arbitrary time t.
n w = [x nw , y nw , z nw ] = [x nw (θ 1_t , θ 2 , θ 3 ), y nw (θ 1_t , θ 2 , θ 3 ), z nw (θ 1_t , θ 2 ), θ 3 )]
x nw , y nw , and z nw are coordinate values in the tool coordinate system of the axis vector of the circle that intersects at the same time as the edge curve, the rake angle line, and the core diameter line at time t, respectively.
(D) Establish the grindstone large end circular radius constraint equation.
f con1 = R cw (θ 1_t , θ 2 , θ 3 ) -R w = 0
R w is the radius of the large end circle of the grindstone, and R w ≧ 15DT.
ステップ(4)で時刻tにおける砥石の位置・姿勢の求解目的関数を確立するステップは、
(a)背面線と砥石軸線との間の距離方程式を確立する。
daxis=daxis(θ1_t,θ2,θ3,θ4)
(b)背面線と砥石底面との間の距離方程式を確立する。
dplane=dplane(θ1_t,θ2,θ3,θ4)
(c)背面線と砥石回転面との間の距離方程式を確立する。
dGW=daxis-dplane/tan(θw)
θwは、砥石円錐角である。π/2≧θw>π/6である。
(d)砥石の位置・姿勢の求解目的関数を確立する。
fobj=min(dGW(θ1_t,θ2,θ3,θ4))
(A) Establish a distance equation between the back line and the grindstone axis.
d axis = d axis (θ 1_t , θ 2 , θ 3 , θ 4 )
(B) Establish a distance equation between the back line and the bottom of the grindstone.
d plane = d plane (θ 1_t , θ 2 , θ 3 , θ 4 )
(C) Establish a distance equation between the back line and the surface of revolution of the grindstone.
d GW = d axis -d plane / tan (θ w )
θ w is a grindstone cone angle. π / 2 ≧ θ w > π / 6.
(D) Establish a function for solving the position and orientation of the grindstone.
f obj = min (d GW (θ 1_t , θ 2 , θ 3 , θ 4 ))
ステップ(5)で時刻tにおける砥石の位置・姿勢を解くステップとして、ステップ(3)の方程式fcon1とステップ(4)の砥石の位置・姿勢の求解目的関数から、時刻tに対応するエッジ曲線、すくい角線、コア径線及び背面線パラメータθ1_t、θ2_t、θ3_t、θ4_tを解き、θ1_t、θ2_t、θ3_tをステップ(3)の砥石半径方程式fcon1に代入して時刻tにおける砥石の位置・姿勢を解く。時刻tに対応するθ1_t、θ2_t、θ3_t、θ4_tなどのパラメータ値は、直前時刻に対応するパラメータ値以上である。 As a step to solve the position / orientation of the grindstone at time t in step (5), the edge curve corresponding to time t is obtained from the equation f con1 of step (3) and the solution objective function of the position / orientation of the grindstone in step (4). , Scoop angle line, core diameter line and back line parameters θ 1_t , θ 2_t , θ 3_t , θ 4_t are solved, and θ 1_t , θ 2_t , θ 3_t are substituted into the grindstone radius equation f con1 in step (3). Solve the position and posture of the grindstone at t. The parameter values such as θ 1_t , θ 2_t , θ 3_t , and θ 4_t corresponding to the time t are equal to or higher than the parameter values corresponding to the immediately preceding time.
ここで、砥石に1A1又は1V1型のダイヤモンド砥石を採用し、砥石の径は、100mm~200mmである。 Here, a 1A1 or 1V1 type diamond grindstone is used as the grindstone, and the diameter of the grindstone is 100 mm to 200 mm.
1.工具の複雑なチップポケット研磨工程に適用可能であり、工具の複雑なチップポケット研磨工程の決定技術及び方法の面からサポートする。2.精度が高い。3.信頼性に優れる。 1. 1. It can be applied to the complicated tip pocket polishing process of the tool, and supports the determination technique and method of the complicated tip pocket polishing process of the tool. 2. 2. High accuracy. 3. 3. Excellent reliability.
砥石運動軌跡の全体的な求解フローは、図1に示すように、以下のステップを含む。
(1)1V1型の標準砥石を採用し、図2に示すように、砥石の厚さBwは、12mmであり、砥石円錐角θw=1.2217radであり、砥石大端円径DW=116mmであり、フライスリードPT=60mmであり、フライス径DT=20mmである。
The overall solution flow of the grindstone motion locus includes the following steps, as shown in FIG.
(1) A 1V1 type standard grindstone is adopted, and as shown in FIG. 2, the grindstone thickness B w is 12 mm, the grindstone cone angle θ w = 1.2217 rad, and the grindstone large end circular diameter D W. = 116 mm, milling lead PT = 60 mm, and milling diameter DT = 20 mm.
(2)チップポケット数学モデルrsiを確立する。
(3)砥石半径拘束方程式fcon1を確立するステップは、具体的に以下を含む。
(a)任意の時刻tでエッジ曲線、すくい角線、コア径線と同時に交わる円の円心座標rowを解く。
row=[xow,yow,zow]=[xow(θ1_t,θ2,θ3),yow(θ1_t,θ2,θ3),zow(θ1_t,θ2,θ3)]
ここで、xow、yow、zowは、それぞれ、時刻tでエッジ曲線、すくい角線、コア径線と同時に交わる円の円心の工具座標系における座標値であり、θ1_tは、時刻tにおける研磨加工砥石のエッジ曲線上の一点のパラメータ値である。
(b)任意の時刻tでエッジ曲線、すくい角線、コア径線と同時に交わる円の半径を解く。
Rwc=Rwc(θ1_t,θ2,θ3)
ここで、Rwcは、時刻tでエッジ曲線、すくい角線、コア径線と同時に交わる円の半径である。
(c)任意の時刻tでエッジ曲線、すくい角線、コア径線と同時に交わる円の軸線ベクトルnwを解く。
nw=[xnw,ynw,znw]=[xnw(θ1_t,θ2,θ3),ynw(θ1_t,θ2,θ3),znw(θ1_t,θ2,θ3)]
ここで、xnw、ynw、znwは、それぞれ、時刻tでエッジ曲線、すくい角線、コア径線と同時に交わる円の軸線ベクトルの工具座標系における座標値である。
(d)砥石大端円半径拘束方程式を確立する。
fcon1=Rcw(θ1_t,θ2,θ3)-Rw=0
ここで、Rwは、砥石大端円半径である。
(3) The step of establishing the grindstone radius constraint equation f con1 specifically includes the following.
(A) Solve the center coordinates row of a circle that intersects at the same time as the edge curve, rake angle line, and core diameter line at an arbitrary time t.
r ow = [x ow , y ow , z ow ] = [x ow (θ 1_t , θ 2 , θ 3 ), y ow (θ 1_t , θ 2 , θ 3 ), z ow (θ 1_t , θ 2 ), θ 3 )]
Here, x ow , y ow , and z ow are coordinate values in the tool coordinate system of the center of the circle that intersects at the same time as the edge curve, the rake angle line, and the core diameter line at time t, respectively, and θ 1_t is the time. It is a parameter value of one point on the edge curve of the polished grindstone at t.
(B) Solve the radius of the circle that intersects at the same time as the edge curve, rake angle line, and core diameter line at an arbitrary time t.
R wc = R wc (θ 1_t , θ 2 , θ 3 )
Here, R wc is the radius of a circle that intersects at the same time as the edge curve, the rake angle line, and the core diameter line at time t.
(C) Solve the axis vector nw of the circle that intersects at the same time as the edge curve, the rake angle line, and the core diameter line at an arbitrary time t.
n w = [x nw , y nw , z nw ] = [x nw (θ 1_t , θ 2 , θ 3 ), y nw (θ 1_t , θ 2 , θ 3 ), z nw (θ 1_t , θ 2 ), θ 3 )]
Here, x nw , y nw , and z nw are coordinate values in the tool coordinate system of the axis vector of the circle that intersects at the same time as the edge curve, the rake angle line, and the core diameter line at time t, respectively.
(D) Establish the grindstone large end circular radius constraint equation.
f con1 = R cw (θ 1_t , θ 2 , θ 3 ) -R w = 0
Here, R w is the radius of the large end circle of the grindstone.
(4)時刻tにおける砥石の位置・姿勢の求解目的関数を確立する。
(a)背面線と砥石軸線との間の距離方程式を確立する。
daxis=daxis(θ1_t,θ2,θ3,θ4)
(b)背面線と砥石底面との間の距離方程式を確立する。
dplane=dplane(θ1_t,θ2,θ3,θ4)
(c)背面線と砥石回転面との間の距離方程式を確立する。
dGW=daxis-dplane/tan(θw)
ここで、θwは、砥石円錐角である。
(d)砥石の位置・姿勢の求解目的関数を確立する。
fobj=min(dGW(θ1_t,θ2,θ3,θ4))
(A) Establish a distance equation between the back line and the grindstone axis.
d axis = d axis (θ 1_t , θ 2 , θ 3 , θ 4 )
(B) Establish a distance equation between the back line and the bottom of the grindstone.
d plane = d plane (θ 1_t , θ 2 , θ 3 , θ 4 )
(C) Establish a distance equation between the back line and the surface of revolution of the grindstone.
d GW = d axis -d plane / tan (θ w )
Here, θ w is a grindstone cone angle.
(D) Establish a function for solving the position and orientation of the grindstone.
f obj = min (d GW (θ 1_t , θ 2 , θ 3 , θ 4 ))
(5)ステップ(3)の方程式fcon1とステップ(4)の方程式fobj、fcon2、fcon3、fcon4から、時刻tに対応するパラメータθ1_t、θ2_t、θ3_t、θ4_tを解き、θ1_t、θ2_t、θ3_tをステップ(3)の式rowとnwに代入して、図3に示す時刻tにおける砥石の位置・姿勢を解く。 (5) Solving the parameters θ 1_t , θ 2_t , θ 3_t , and θ 4_t corresponding to the time t from the equations f con1 in step (3) and the equations f obj , f con2 , f con3 , and f con4 in step (4). , Θ 1_t , θ 2_t , and θ 3_t are substituted into the equations row and n w in step (3), and the position and orientation of the grindstone at time t shown in FIG. 3 are solved.
(6)時刻tの値を変えてステップ(3)~ステップ(5)を繰り返し、複雑なチップポケットの砥石運動軌跡を解く。
上記の解いた軌跡を採用し、複雑なチップポケット研磨結果が得られる。図4に示すように、rs1、rs2、rs3、rs4は、それぞれ工具のエッジ、すくい角、コア径、溝幅を制御する曲線である。図4、図5によると、刃先から5mm、10mm、15mmの3か所で、工具軸線に垂直な平面でチップポケット形状を切り出し、工具軸線に沿ってすくい角及び溝幅が一定であり、コア径が変化し続けるチップポケットを得る。 By adopting the above-solved trajectory, a complicated chip pocket polishing result can be obtained. As shown in FIG. 4, r s1 , r s2 , r s3 , and r s4 are curves that control the edge, rake angle, core diameter, and groove width of the tool, respectively. According to FIGS. 4 and 5, the tip pocket shape is cut out in a plane perpendicular to the tool axis at three points of 5 mm, 10 mm, and 15 mm from the cutting edge, the rake angle and the groove width are constant along the tool axis, and the core. Get a tip pocket whose diameter keeps changing.
(付記)
(付記1)
工具の複雑なチップポケット研磨による砥石軌跡の決定方法であって、
砥石の型番、サイズ及び目的工具径DTを決定するステップ(1)と、
チップポケット数学モデルrsiを確立するステップ(2)と、
砥石半径拘束方程式fcon1を確立するステップ(3)と、
時刻tにおける砥石の位置・姿勢の求解目的関数を確立するステップ(4)と、
ステップ(4)の目的関数、ステップ(3)の砥石半径拘束方程式fcon1から、時刻tにおける砥石の位置・姿勢を解くステップ(5)と、
時刻tの値を変えてステップ(3)~ステップ(5)を繰り返し、複雑なチップポケットの砥石軌跡を解くステップ(6)と、を含むことを特徴とする、
工具の複雑なチップポケット研磨による砥石軌跡の決定方法。
(Additional note)
(Appendix 1)
It is a method of determining the grindstone trajectory by polishing the complicated tip pocket of the tool.
Step (1) to determine the model number, size and target tool diameter DT of the grindstone,
Step (2) to establish the chip pocket mathematical model r si ,
Step (3) to establish the grindstone radius constraint equation f con1 and
Step (4) to establish the solution objective function of the position and orientation of the grindstone at time t, and
From the objective function of step (4) and the grindstone radius constraint equation f con1 of step (3), the step (5) of solving the position and orientation of the grindstone at time t and
It is characterized by including a step (6) of solving a grindstone locus of a complicated chip pocket by repeating steps (3) to (5) by changing the value of time t.
A method for determining the grindstone trajectory by polishing a complicated tip pocket of a tool.
(付記2)
前記ステップ(2)において、
rsi=[xsi,ysi,zsi]=[xsi(θi),ysi(θi),zsi(θi)]
i=1、2、3、4は、それぞれ、複雑なチップポケットを表現するためのエッジ曲線、すくい角線、コア径線、背面線を示し、xsi、ysi、zsiは、それぞれ、エッジ曲線、すくい角線、コア径線、背面線の工具座標系における座標値であり、θiは、エッジ曲線、すくい角線、コア径線、背面線のパラメータ方程式を表現する変数、であることを特徴とする、
付記1に記載の工具の複雑なチップポケット研磨による砥石軌跡の決定方法。
(Appendix 2)
In the step (2),
r si = [x si , y si , z si ] = [x si (θ i ), y si (θ i ), z si (θ i )]
i = 1, 2, 3, 4 indicate an edge curve, a rake angle line, a core diameter line, and a back line for expressing a complicated chip pocket, respectively, and x si , y si , and z si are, respectively. It is a coordinate value in the tool coordinate system of the edge curve, the rake angle line, the core diameter line, and the back line, and θ i is a variable expressing the parameter equation of the edge curve, the rake angle line, the core diameter line, and the back line. Characterized by that,
A method for determining a grindstone trajectory by polishing a complicated tip pocket of the tool according to Appendix 1.
(付記3)
前記ステップ(2)におけるrs2とrs1との距離は、0.05DT未満であり、rs3から工具軸線までの距離は、rs1、rs2又はrs4から工具軸線までの距離よりも小さいことを特徴とする、
付記2に記載の工具の複雑なチップポケット研磨による砥石軌跡の決定方法。
(Appendix 3)
The distance between r s2 and r s1 in step (2) is less than 0.05 DT, and the distance from r s3 to the tool axis is smaller than the distance from r s1 , r s2 or r s4 to the tool axis. Characterized by that,
A method for determining a grindstone trajectory by polishing a complicated tip pocket of the tool according to Appendix 2.
(付記4)
前記ステップ(3)で砥石半径拘束方程式fcon1を確立するステップは、
(a)任意の時刻tでエッジ曲線、すくい角線、コア径線と同時に交わる円の円心座標rowを解く、
row=[xow,yow,zow]=[xow(θ1_t,θ2,θ3),yow(θ1_t,θ2,θ3),zow(θ1_t,θ2,θ3)]
xow、yow、zowは、それぞれ、時刻tでエッジ曲線、すくい角線、コア径線と同時に交わる円の円心の工具座標系における座標値であり、θ1_tは、時刻tにおける研磨加工砥石のエッジ曲線上の一点のパラメータ値であり、θ2、θ3は、それぞれ、すくい角線、コア径線パラメータ方程式の変数、
(b)任意の時刻tでエッジ曲線、すくい角線、コア径線と同時に交わる円の半径を解く、
Rwc=Rwc(θ1_t,θ2,θ3)
Rwcは、時刻tでエッジ曲線、すくい角線、コア径線と同時に交わる円の半径、
(c)任意の時刻tでエッジ曲線、すくい角線、コア径線と同時に交わる円の軸線ベクトルnwを解く、
nw=[xnw,ynw,znw]=[xnw(θ1_t,θ2,θ3),ynw(θ1_t,θ2,θ3),znw(θ1_t,θ2,θ3)]
xnw、ynw、znwは、それぞれ、時刻tでエッジ曲線、すくい角線、コア径線と同時に交わる円の軸線ベクトルの工具座標系における座標値、
(d)砥石大端円半径拘束方程式を確立する、
fcon1=Rcw(θ1_t,θ2,θ3)-Rw=0
Rwは、砥石大端円半径、であることを特徴とする、
付記1に記載の工具の複雑なチップポケット研磨による砥石軌跡の決定方法。
(Appendix 4)
The step of establishing the grindstone radius constraint equation f con1 in step (3) is
(A) Solve the center coordinates row of the circles that intersect at the same time as the edge curve, rake angle line, and core diameter line at any time t.
r ow = [x ow , y ow , z ow ] = [x ow (θ 1_t , θ 2 , θ 3 ), y ow (θ 1_t , θ 2 , θ 3 ), z ow (θ 1_t , θ 2 ), θ 3 )]
x ow , you ow , and z ow are the coordinate values in the tool coordinate system of the center of the circle that intersects at the same time as the edge curve, the rake angle line, and the core diameter line at time t, respectively, and θ 1_t is the polishing at time t. It is a parameter value of one point on the edge curve of the machined grindstone, and θ 2 and θ 3 are the rake angle line and the variable of the core diameter line parameter equation, respectively.
(B) Solve the radius of the circle that intersects at the same time as the edge curve, rake angle line, and core diameter line at any time t.
R wc = R wc (θ 1_t , θ 2 , θ 3 )
R wc is the radius of the circle that intersects at the same time as the edge curve, rake angle line, and core diameter line at time t.
(C) Solve the axis vector nw of the circle that intersects at the same time as the edge curve, rake angle line, and core diameter line at an arbitrary time t.
n w = [x nw , y nw , z nw ] = [x nw (θ 1_t , θ 2 , θ 3 ), y nw (θ 1_t , θ 2 , θ 3 ), z nw (θ 1_t , θ 2 ), θ 3 )]
x nw , y nw , and z nw are the coordinate values in the tool coordinate system of the axis vector of the circle that intersects at the same time as the edge curve, the rake angle line, and the core diameter line at time t, respectively.
(D) Establish the grindstone large end circle radius constraint equation,
f con1 = R cw (θ 1_t , θ 2 , θ 3 ) -R w = 0
R w is a grindstone large end circular radius.
A method for determining a grindstone trajectory by polishing a complicated tip pocket of the tool according to Appendix 1.
(付記5)
前記ステップ(3)でRw≧15DTであることを特徴とする、
付記4に記載の工具の複雑なチップポケット研磨による砥石軌跡の決定方法。
(Appendix 5)
It is characterized in that R w ≧ 15DT in the step (3).
A method for determining a grindstone trajectory by polishing a complicated tip pocket of the tool according to Appendix 4.
(付記6)
前記ステップ(4)で時刻tにおける砥石の位置・姿勢の求解目的関数を確立するステップは、
(a)背面線と砥石軸線との間の距離方程式を確立する、
daxis=daxis(θ1_t,θ2,θ3,θ4)
(b)背面線と砥石底面との間の距離方程式を確立する、
dplane=dplane(θ1_t,θ2,θ3,θ4)
(c)背面線と砥石回転面との間の距離方程式を確立する、
dGW=daxis-dplane/tan(θw)
θwは、砥石円錐角、
(d)砥石の位置・姿勢の求解目的関数を確立する、
fobj=min(dGW(θ1_t,θ2,θ3,θ4))
付記1に記載の工具の複雑なチップポケット研磨による砥石軌跡の決定方法。
(Appendix 6)
In step (4), the step of establishing the solution objective function of the position / orientation of the grindstone at time t is
(A) Establish a distance equation between the back line and the grindstone axis,
d axis = d axis (θ 1_t , θ 2 , θ 3 , θ 4 )
(B) Establish a distance equation between the back line and the bottom of the grindstone,
d plane = d plane (θ 1_t , θ 2 , θ 3 , θ 4 )
(C) Establish a distance equation between the back line and the surface of revolution of the grindstone,
d GW = d axis -d plane / tan (θ w )
θw is the grindstone cone angle,
(D) Establish a solution objective function for the position and orientation of the grindstone,
f obj = min (d GW (θ 1_t , θ 2 , θ 3 , θ 4 ))
A method for determining a grindstone trajectory by polishing a complicated tip pocket of the tool according to Appendix 1.
(付記7)
前記ステップ(4)でπ/2≧θw>π/6であることを特徴とする、
付記6に記載の工具の複雑なチップポケット研磨による砥石軌跡の決定方法。
(Appendix 7)
It is characterized in that π / 2 ≧ θ w > π / 6 in the step (4).
A method for determining a grindstone trajectory by polishing a complicated tip pocket of the tool according to Appendix 6.
(付記8)
前記ステップ(5)で時刻tにおける砥石の位置・姿勢を解くステップは、
ステップ(3)の方程式fcon1とステップ(4)の砥石の位置・姿勢の求解目的関数から、時刻tに対応するエッジ曲線、すくい角線、コア径線及び背面線パラメータθ1_t、θ2_t、θ3_t、θ4_tを解き、θ1_t、θ2_t、θ3_tをステップ(3)の砥石半径方程式fcon1に代入して時刻tにおける砥石の位置・姿勢を解くことを特徴とする、
付記6に記載の工具の複雑なチップポケット研磨による砥石軌跡の決定方法。
(Appendix 8)
In step (5), the step of solving the position / posture of the grindstone at time t is
From the equation f con1 in step (3) and the objective function for solving the position / orientation of the grindstone in step (4), the edge curve, rake angle line, core diameter line and back line parameters θ 1_t , θ 2_t , corresponding to time t, It is characterized in that θ 3_t and θ 4_t are solved, and θ 1_t , θ 2_t and θ 3_t are substituted into the grindstone radius equation f con1 in step (3) to solve the position and posture of the grindstone at time t.
A method for determining a grindstone trajectory by polishing a complicated tip pocket of the tool according to Appendix 6.
(付記9)
前記ステップ(5)で時刻tに対応するθ1_t、θ2_t、θ3_t、θ4_tのパラメータ値は、直前時刻に対応するパラメータ値以上であることを特徴とする、
付記8に記載の工具の複雑なチップポケット研磨による砥石軌跡の決定方法。
(Appendix 9)
The parameter values of θ 1_t , θ 2_t , θ 3_t , and θ 4_t corresponding to the time t in the step (5) are equal to or greater than the parameter values corresponding to the immediately preceding time.
A method for determining a grindstone trajectory by polishing a complicated tip pocket of the tool according to Appendix 8.
(付記10)
前記ステップ(1)で砥石に1A1又は1V1型のダイヤモンド砥石を採用し、砥石の径は、100mm~200mmであることを特徴とする、
付記1に記載の工具の複雑なチップポケット研磨による砥石軌跡の決定方法。
(Appendix 10)
A 1A1 or 1V1 type diamond grindstone is adopted as the grindstone in the step (1), and the diameter of the grindstone is 100 mm to 200 mm.
A method for determining a grindstone trajectory by polishing a complicated tip pocket of the tool according to Appendix 1.
Claims (10)
砥石の型番、サイズ及び目的工具径DTを決定するステップ(1)と、
チップポケット数学モデルrsiを確立するステップ(2)と、
砥石半径拘束方程式fcon1を確立するステップ(3)と、
時刻tにおける砥石の位置・姿勢の求解目的関数を確立するステップ(4)と、
ステップ(4)の目的関数、ステップ(3)の砥石半径拘束方程式fcon1から、時刻tにおける砥石の位置・姿勢を解くステップ(5)と、
時刻tの値を変えてステップ(3)~ステップ(5)を繰り返し、複雑なチップポケットの砥石軌跡を解くステップ(6)と、を含むことを特徴とする、
工具の複雑なチップポケット研磨による砥石軌跡の決定方法。 It is a method of determining the grindstone trajectory by polishing the complicated tip pocket of the tool.
Step (1) to determine the model number, size and target tool diameter DT of the grindstone,
Step (2) to establish the chip pocket mathematical model r si ,
Step (3) to establish the grindstone radius constraint equation f con1 and
Step (4) to establish the solution objective function of the position and orientation of the grindstone at time t, and
From the objective function of step (4) and the grindstone radius constraint equation f con1 of step (3), the step (5) of solving the position and orientation of the grindstone at time t and
It is characterized by including a step (6) of solving a grindstone locus of a complicated chip pocket by repeating steps (3) to (5) by changing the value of time t.
A method for determining the grindstone trajectory by polishing a complicated tip pocket of a tool.
rsi=[xsi,ysi,zsi]=[xsi(θi),ysi(θi),zsi(θi)]
i=1、2、3、4は、それぞれ、複雑なチップポケットを表現するためのエッジ曲線、すくい角線、コア径線、背面線を示し、xsi、ysi、zsiは、それぞれ、エッジ曲線、すくい角線、コア径線、背面線の工具座標系における座標値であり、θiは、エッジ曲線、すくい角線、コア径線、背面線のパラメータ方程式を表現する変数、であることを特徴とする、
請求項1に記載の工具の複雑なチップポケット研磨による砥石軌跡の決定方法。 In the step (2),
r si = [x si , y si , z si ] = [x si (θ i ), y si (θ i ), z si (θ i )]
i = 1, 2, 3, 4 indicate an edge curve, a rake angle line, a core diameter line, and a back line for expressing a complicated chip pocket, respectively, and x si , y si , and z si are, respectively. It is a coordinate value in the tool coordinate system of the edge curve, the rake angle line, the core diameter line, and the back line, and θ i is a variable expressing the parameter equation of the edge curve, the rake angle line, the core diameter line, and the back line. Characterized by that,
The method for determining a grindstone trajectory by polishing a complicated tip pocket of the tool according to claim 1.
請求項2に記載の工具の複雑なチップポケット研磨による砥石軌跡の決定方法。 The distance between r s2 and r s1 in step (2) is less than 0.05 DT, and the distance from r s3 to the tool axis is smaller than the distance from r s1 , r s2 or r s4 to the tool axis. Characterized by that,
The method for determining a grindstone trajectory by polishing a complicated tip pocket of the tool according to claim 2.
(a)任意の時刻tでエッジ曲線、すくい角線、コア径線と同時に交わる円の円心座標rowを解く、
row=[xow,yow,zow]=[xow(θ1_t,θ2,θ3),yow(θ1_t,θ2,θ3),zow(θ1_t,θ2,θ3)]
xow、yow、zowは、それぞれ、時刻tでエッジ曲線、すくい角線、コア径線と同時に交わる円の円心の工具座標系における座標値であり、θ1_tは、時刻tにおける研磨加工砥石のエッジ曲線上の一点のパラメータ値であり、θ2、θ3は、それぞれ、すくい角線、コア径線パラメータ方程式の変数、
(b)任意の時刻tでエッジ曲線、すくい角線、コア径線と同時に交わる円の半径を解く、
Rwc=Rwc(θ1_t,θ2,θ3)
Rwcは、時刻tでエッジ曲線、すくい角線、コア径線と同時に交わる円の半径、
(c)任意の時刻tでエッジ曲線、すくい角線、コア径線と同時に交わる円の軸線ベクトルnwを解く、
nw=[xnw,ynw,znw]=[xnw(θ1_t,θ2,θ3),ynw(θ1_t,θ2,θ3),znw(θ1_t,θ2,θ3)]
xnw、ynw、znwは、それぞれ、時刻tでエッジ曲線、すくい角線、コア径線と同時に交わる円の軸線ベクトルの工具座標系における座標値、
(d)砥石大端円半径拘束方程式を確立する、
fcon1=Rcw(θ1_t,θ2,θ3)-Rw=0
Rwは、砥石大端円半径、であることを特徴とする、
請求項1に記載の工具の複雑なチップポケット研磨による砥石軌跡の決定方法。 The step of establishing the grindstone radius constraint equation f con1 in step (3) is
(A) Solve the center coordinates row of the circles that intersect at the same time as the edge curve, rake angle line, and core diameter line at any time t.
r ow = [x ow , y ow , z ow ] = [x ow (θ 1_t , θ 2 , θ 3 ), y ow (θ 1_t , θ 2 , θ 3 ), z ow (θ 1_t , θ 2 ), θ 3 )]
x ow , you ow , and z ow are the coordinate values in the tool coordinate system of the center of the circle that intersects at the same time as the edge curve, the rake angle line, and the core diameter line at time t, respectively, and θ 1_t is the polishing at time t. It is a parameter value of one point on the edge curve of the machined grindstone, and θ 2 and θ 3 are the rake angle line and the variable of the core diameter line parameter equation, respectively.
(B) Solve the radius of the circle that intersects at the same time as the edge curve, rake angle line, and core diameter line at any time t.
R wc = R wc (θ 1_t , θ 2 , θ 3 )
R wc is the radius of the circle that intersects at the same time as the edge curve, rake angle line, and core diameter line at time t.
(C) Solve the axis vector nw of the circle that intersects at the same time as the edge curve, rake angle line, and core diameter line at an arbitrary time t.
n w = [x nw , y nw , z nw ] = [x nw (θ 1_t , θ 2 , θ 3 ), y nw (θ 1_t , θ 2 , θ 3 ), z nw (θ 1_t , θ 2 ), θ 3 )]
x nw , y nw , and z nw are the coordinate values in the tool coordinate system of the axis vector of the circle that intersects at the same time as the edge curve, the rake angle line, and the core diameter line at time t, respectively.
(D) Establish the grindstone large end circle radius constraint equation,
f con1 = R cw (θ 1_t , θ 2 , θ 3 ) -R w = 0
R w is a grindstone large end circular radius.
The method for determining a grindstone trajectory by polishing a complicated tip pocket of the tool according to claim 1.
請求項4に記載の工具の複雑なチップポケット研磨による砥石軌跡の決定方法。 It is characterized in that R w ≧ 15DT in the step (3).
The method for determining a grindstone trajectory by polishing a complicated tip pocket of the tool according to claim 4.
(a)背面線と砥石軸線との間の距離方程式を確立する、
daxis=daxis(θ1_t,θ2,θ3,θ4)
(b)背面線と砥石底面との間の距離方程式を確立する、
dplane=dplane(θ1_t,θ2,θ3,θ4)
(c)背面線と砥石回転面との間の距離方程式を確立する、
dGW=daxis-dplane/tan(θw)
θwは、砥石円錐角、
(d)砥石の位置・姿勢の求解目的関数を確立する、
fobj=min(dGW(θ1_t,θ2,θ3,θ4))
請求項1に記載の工具の複雑なチップポケット研磨による砥石軌跡の決定方法。 In step (4), the step of establishing the solution objective function of the position / orientation of the grindstone at time t is
(A) Establish a distance equation between the back line and the grindstone axis,
d axis = d axis (θ 1_t , θ 2 , θ 3 , θ 4 )
(B) Establish a distance equation between the back line and the bottom of the grindstone,
d plane = d plane (θ 1_t , θ 2 , θ 3 , θ 4 )
(C) Establish a distance equation between the back line and the surface of revolution of the grindstone,
d GW = d axis -d plane / tan (θ w )
θw is the grindstone cone angle,
(D) Establish a solution objective function for the position and orientation of the grindstone,
f obj = min (d GW (θ 1_t , θ 2 , θ 3 , θ 4 ))
The method for determining a grindstone trajectory by polishing a complicated tip pocket of the tool according to claim 1.
請求項6に記載の工具の複雑なチップポケット研磨による砥石軌跡の決定方法。 It is characterized in that π / 2 ≧ θ w > π / 6 in the step (4).
The method for determining a grindstone trajectory by polishing a complicated tip pocket of the tool according to claim 6.
ステップ(3)の方程式fcon1とステップ(4)の砥石の位置・姿勢の求解目的関数から、時刻tに対応するエッジ曲線、すくい角線、コア径線及び背面線パラメータθ1_t、θ2_t、θ3_t、θ4_tを解き、θ1_t、θ2_t、θ3_tをステップ(3)の砥石半径方程式fcon1に代入して時刻tにおける砥石の位置・姿勢を解くことを特徴とする、
請求項6に記載の工具の複雑なチップポケット研磨による砥石軌跡の決定方法。 In step (5), the step of solving the position / posture of the grindstone at time t is
From the equation f con1 in step (3) and the objective function for solving the position / orientation of the grindstone in step (4), the edge curve, rake angle line, core diameter line and back line parameters θ 1_t , θ 2_t , corresponding to time t, It is characterized in that θ 3_t and θ 4_t are solved, and θ 1_t , θ 2_t and θ 3_t are substituted into the grindstone radius equation f con1 in step (3) to solve the position and posture of the grindstone at time t.
The method for determining a grindstone trajectory by polishing a complicated tip pocket of the tool according to claim 6.
請求項8に記載の工具の複雑なチップポケット研磨による砥石軌跡の決定方法。 The parameter values of θ 1_t , θ 2_t , θ 3_t , and θ 4_t corresponding to the time t in the step (5) are equal to or greater than the parameter values corresponding to the immediately preceding time.
The method for determining a grindstone trajectory by polishing a complicated tip pocket of the tool according to claim 8.
請求項1に記載の工具の複雑なチップポケット研磨による砥石軌跡の決定方法。 A 1A1 or 1V1 type diamond grindstone is adopted as the grindstone in the step (1), and the diameter of the grindstone is 100 mm to 200 mm.
The method for determining a grindstone trajectory by polishing a complicated tip pocket of the tool according to claim 1.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911085911.8A CN110990966B (en) | 2019-11-08 | 2019-11-08 | Method for determining grinding wheel track of complex chip pocket grinding of cutter |
CN201911085911.8 | 2019-11-08 | ||
PCT/CN2020/071727 WO2021088249A1 (en) | 2019-11-08 | 2020-01-13 | Method for determining trajectory of complex cutter chip pocket grinding wheel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022513552A true JP2022513552A (en) | 2022-02-09 |
JP7089134B2 JP7089134B2 (en) | 2022-06-22 |
Family
ID=70083568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021504215A Active JP7089134B2 (en) | 2019-11-08 | 2020-01-13 | How to determine the grindstone trajectory by polishing the complicated tip pocket of the tool |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7089134B2 (en) |
CN (1) | CN110990966B (en) |
WO (1) | WO2021088249A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113664626B (en) * | 2021-09-09 | 2023-06-09 | 大连交通大学 | Method for establishing spiral groove grinding process system based on discrete point cloud principle |
CN113962040B (en) * | 2021-10-22 | 2024-06-07 | 西南交通大学 | Grinding track calculation method for end mill peripheral tooth chip dividing groove grinding wheel |
CN114036661B (en) * | 2021-10-29 | 2024-06-04 | 哈尔滨工业大学 | Ball head grinding wheel spindle inclination angle and rotation angle optimization method based on grinding motion analysis and spiral theory |
CN114036682B (en) * | 2021-11-22 | 2024-06-21 | 江苏科技大学 | Modeling simulation analysis method for microscopic morphology of swing grinding surface of camshaft |
CN115032945B (en) * | 2022-04-28 | 2023-04-11 | 大连理工大学 | Slow-tool servo grinding tool path planning method for complex curved surface part |
CN115229568B (en) * | 2022-07-29 | 2024-04-16 | 深圳数马电子技术有限公司 | Grinding wheel grinding method and device for gun drill tool face, numerical control machine and storage medium |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10309614A (en) * | 1997-05-12 | 1998-11-24 | Daishowa Seiki Co Ltd | Throw away type rotary cutting tool |
CN103777568A (en) * | 2014-02-24 | 2014-05-07 | 山东大学 | Method for modeling of integrated end mill chip pocket on basis of cutter sharpening process |
CN104625193A (en) * | 2015-01-13 | 2015-05-20 | 东方电气集团东方汽轮机有限公司 | Processing method of complex slot-type milling cutter chip breaker groove |
CN106826417A (en) * | 2017-02-06 | 2017-06-13 | 成都天佑创软科技有限公司 | A kind of slotting cutter grinding process X-Y scheme emulation mode |
CN106991241A (en) * | 2017-04-11 | 2017-07-28 | 江苏科技大学 | A kind of cutter chip pocket sharpening interference Forecasting Methodology |
CN107169186A (en) * | 2017-05-09 | 2017-09-15 | 江苏科技大学 | A kind of solid tool chip pocket Shape Prediction method with strong robustness |
CN109189001A (en) * | 2018-11-16 | 2019-01-11 | 厦门大学 | The method that gear box of tractor is obtained and demarcated with the section shape image scanning of slotting cutter end |
CN109976254A (en) * | 2019-03-29 | 2019-07-05 | 西安交通大学 | A kind of modeling method of gradual change core thickness slotting cutter chip pocket normal section |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014051665A1 (en) * | 2012-09-26 | 2014-04-03 | United Technologies Corporation | Method of modifying gear profiles |
CN106294986B (en) * | 2016-08-04 | 2020-04-07 | 重庆大学 | Screw grinding force prediction method |
CN107045578B (en) * | 2017-04-25 | 2018-12-21 | 江苏科技大学 | A kind of chip pocket processing grinding wheel pose method for solving based on NPSO algorithm |
CN108971588B (en) * | 2018-08-22 | 2020-03-27 | 周永情 | Spiral groove machining blade, manufacturing method and milling cutter using same |
CN109299514B (en) * | 2018-08-28 | 2023-06-16 | 天津大学 | Grinding wheel path generation method for grinding free curved surface by inclined shaft |
CN109614740B (en) * | 2018-12-25 | 2022-12-09 | 株洲钻石切削刀具股份有限公司 | Method and system for solving helical curved surface grinding contact line based on three-dimensional design software |
CN109702567B (en) * | 2019-01-29 | 2021-01-29 | 西南交通大学 | Grinding track solving method for front cutter face of arc edge of arc-head end mill |
-
2019
- 2019-11-08 CN CN201911085911.8A patent/CN110990966B/en active Active
-
2020
- 2020-01-13 WO PCT/CN2020/071727 patent/WO2021088249A1/en active Application Filing
- 2020-01-13 JP JP2021504215A patent/JP7089134B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10309614A (en) * | 1997-05-12 | 1998-11-24 | Daishowa Seiki Co Ltd | Throw away type rotary cutting tool |
CN103777568A (en) * | 2014-02-24 | 2014-05-07 | 山东大学 | Method for modeling of integrated end mill chip pocket on basis of cutter sharpening process |
CN104625193A (en) * | 2015-01-13 | 2015-05-20 | 东方电气集团东方汽轮机有限公司 | Processing method of complex slot-type milling cutter chip breaker groove |
CN106826417A (en) * | 2017-02-06 | 2017-06-13 | 成都天佑创软科技有限公司 | A kind of slotting cutter grinding process X-Y scheme emulation mode |
CN106991241A (en) * | 2017-04-11 | 2017-07-28 | 江苏科技大学 | A kind of cutter chip pocket sharpening interference Forecasting Methodology |
CN107169186A (en) * | 2017-05-09 | 2017-09-15 | 江苏科技大学 | A kind of solid tool chip pocket Shape Prediction method with strong robustness |
CN109189001A (en) * | 2018-11-16 | 2019-01-11 | 厦门大学 | The method that gear box of tractor is obtained and demarcated with the section shape image scanning of slotting cutter end |
CN109976254A (en) * | 2019-03-29 | 2019-07-05 | 西安交通大学 | A kind of modeling method of gradual change core thickness slotting cutter chip pocket normal section |
Also Published As
Publication number | Publication date |
---|---|
WO2021088249A1 (en) | 2021-05-14 |
JP7089134B2 (en) | 2022-06-22 |
CN110990966A (en) | 2020-04-10 |
CN110990966B (en) | 2023-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7089134B2 (en) | How to determine the grindstone trajectory by polishing the complicated tip pocket of the tool | |
KR102445605B1 (en) | Track calculation program, machining equipment, track calculation method, tools and workpieces | |
US9573202B2 (en) | Workpiece machining method, machine tool, tool path-generating device and tool path-generating program | |
JPWO2016043127A1 (en) | Cutting insert and manufacturing method thereof | |
JP6191839B2 (en) | Diamond sintered ball end mill and manufacturing method thereof | |
CN107081488B (en) | Simulation device and method for tooth profile of gear and blade surface of machining tool | |
CN110280984A (en) | 3-dimensional object formation | |
WO2006017661A1 (en) | Raster cutting technology for ophthalmic lenses | |
CN109910180B (en) | Sawing method for rough machining of three-dimensional special-shaped stone by using circular saw | |
JP2014512978A (en) | Insert with wiper cutting edge that thins chips at the front edge | |
TW201321103A (en) | A five axis flank milling system for machining curved surface and a tool-path planning method thereof | |
Han et al. | Optimal CNC plunge cutter selection and tool path generation for multi-axis roughing free-form surface impeller channel | |
CN103862346A (en) | Non-instantaneous-pole envelope grinding method of spiral curved surface of superfine milling cutter | |
US7234899B2 (en) | Cutting tool having a wiper nose corner | |
CN109514181A (en) | For manufacturing the method and machinery equipment of cutting element | |
CN101866164A (en) | Enveloping sphere curved surface numerical control processing method | |
CN110497727B (en) | Optimal processing space selection method for three-dimensional stone carving processing | |
US8096215B2 (en) | Method for cutting freeform surfaces, cutting tool and use of the cutting tool | |
Rabiey et al. | Simulation of workpiece surface roughness after flat grinding by electroplated wheel | |
CN109153088A (en) | The tooth top surface chamfer of gear | |
CN108778579A (en) | Method for manufacture machine component, the equipment for manufacture machine component, the method for processing rotationally symmetrical surf, recording medium and program | |
CN108526492B (en) | A kind of tool changing processing method based on CCD camera on-position measure | |
Sekine et al. | Remarkable Characteristics of a Novel Path Interval Determination in Filleted End Milling. | |
JP3925504B2 (en) | Machining path generation method, machining path generation program, and storage medium | |
Hatna et al. | Cartesian machining versus parametric machining: a comparative study |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210122 |
|
TRDD | Decision of grant or rejection written | ||
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220307 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220308 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220317 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20220309 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220307 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7089134 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |