JP2022188752A - Light source device - Google Patents

Light source device Download PDF

Info

Publication number
JP2022188752A
JP2022188752A JP2022081961A JP2022081961A JP2022188752A JP 2022188752 A JP2022188752 A JP 2022188752A JP 2022081961 A JP2022081961 A JP 2022081961A JP 2022081961 A JP2022081961 A JP 2022081961A JP 2022188752 A JP2022188752 A JP 2022188752A
Authority
JP
Japan
Prior art keywords
light
light source
microstructures
source device
guide plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022081961A
Other languages
Japanese (ja)
Inventor
信宏 李
Hsin-Hung Lee
中豪 ▲呉▼
Jhong-Hao Wu
俊謙 廖
Chun-Chien Liao
勁谷 劉
Chin-Ku Liu
偉哲 簡
Wei-Jhe Chien
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Champ Vision Display Inc
Original Assignee
Champ Vision Display Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Champ Vision Display Inc filed Critical Champ Vision Display Inc
Publication of JP2022188752A publication Critical patent/JP2022188752A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V2200/00Use of light guides, e.g. fibre optic devices, in lighting devices or systems
    • F21V2200/20Use of light guides, e.g. fibre optic devices, in lighting devices or systems of light guides of a generally planar shape

Abstract

To provide a light source device including a light source and a light guide plate.SOLUTION: A light source provides multiple luminous fluxes. A light guide plate guides the multiple luminous fluxes and includes multiple microstructures. The light guide plate has a light incidence surface and a first surface. The light incidence surface is connected to the first surface. The light source is installed in one side of the light incidence surface. Multiple microstructures are installed on the first surface. Respective microstructures of the multiple microstructures have a light reception surface directed toward the light source. The respective microstructures of the multiple microstructures satisfy a condition of θ'=arctan((▵x-sin(arctan(x/▵y))*a)/▵y). A light source device can generate a relatively accurate pattern.SELECTED DRAWING: Figure 1

Description

本発明は光学装置に関し、特に光源装置に関する。 The present invention relates to an optical device, and more particularly to a light source device.

現在の発光ライトパネル製品は依然としてアクリル材料を採用し、射出またはプレス方法を用いて、アクリル板の背面に微構造を形成したものである。そして、アクリル板の一側に配置された光源を用いて、光がアクリル板の中に伝達され、微構造に当たった時に全反射されて、正面(鑑賞面)から出光する。この導光板の原理を利用して、微構造をパターンに配置し、ライトパネルが非点灯時に透明になり、点灯後に浮き上がった画面を生成するようにする。微構造の受光角度と光源に面する方向、距離に基づいて、一層工夫することにより、遠近感、キラキラ感、動画等の特殊効果まで実現できる。 The current luminous light panel products still use acrylic materials, and use injection or pressing methods to form microstructures on the back of the acrylic plate. Then, using a light source placed on one side of the acrylic plate, light is transmitted into the acrylic plate, is totally reflected when it hits the microstructure, and emerges from the front (viewing surface). Using the principle of this light guide plate, microstructures are arranged in a pattern so that the light panel becomes transparent when not lit and creates a floating screen when lit. By further devising based on the light receiving angle of the microstructure and the direction and distance facing the light source, it is possible to realize special effects such as a sense of perspective, glitter, and moving images.

ライトパネルを用いて動態効果を実現するには、微構造の受光面を正面から光源に合わせて、かつ、異なる光源をそれぞれ一組の微構造に対応させて異なるパターンを生成する。しかし、使用上は観賞者に直視されない微構造が依然として設計上に非対応の光源の光を観賞者まで反射することがあり、観賞者に誤ったまたは歪んだパターンが見えることが分かった。 To achieve a dynamic effect with a light panel, the light receiving surface of the microstructures is aligned face-on with the light source, and different light sources are associated with each set of microstructures to produce different patterns. However, it has been found that microstructures that are not in direct view of the viewer in use can still reflect light from non-compliant light sources back to the viewer by design, causing the viewer to see erroneous or distorted patterns.

本発明は、観賞者に比較的に正確なパターンを見せることができる光源装置を提供する。 The present invention provides a light source device that allows viewers to see relatively accurate patterns.

本発明の一実施例は、光源及び導光板を含む光源装置を提供する。光源は複数の光束を提供する。導光板は複数の光束を誘導するものであり、かつ、複数の微構造を含む。導光板は入光面及び第1表面を有する。入光面は第1表面に接続される。光源は入光面の一側に設置される。複数の微構造は第1表面に設置される。各微構造は光源に向けられた受光面を有する。各微構造はθ’=arctan((△x-sin(arctan(x/△y))*a)/△y)の条件を満たし、θ’は受光面の法線ベクトルの延長線と第1方向との間の夾角であり、△xは受光面と光源が入光面における投影点が第2方向に沿った距離であり、△yは受光面と投影点が第1方向に沿った距離であり、xは受光面と観賞者が第2方向に沿った距離であり、aは補正係数であり、第1方向は入光面に垂直な方向であり、第2方向は第1表面に平行で、かつ第1方向に垂直な方向である。 One embodiment of the present invention provides a light source device including a light source and a light guide plate. A light source provides a plurality of luminous fluxes. The light guide plate guides multiple light beams and includes multiple microstructures. The light guide plate has a light entrance surface and a first surface. A light input surface is connected to the first surface. A light source is installed on one side of the light incident surface. A plurality of microstructures are disposed on the first surface. Each microstructure has a light receiving surface facing the light source. Each microstructure satisfies the condition θ′=arctan((Δx−sin(arctan(x/Δy))*a)/Δy), and θ′ is the extension of the normal vector of the light receiving surface and the first Δx is the distance along the second direction between the light-receiving surface and the projected point on the incident surface of the light source, and Δy is the distance along the first direction between the light-receiving surface and the projected point , where x is the distance between the light-receiving surface and the viewer along the second direction, a is the correction coefficient, the first direction is the direction perpendicular to the light-receiving surface, and the second direction is the first surface. A direction that is parallel and perpendicular to the first direction.

以上により、本発明の一実施例において、光源装置の微構造がθ’=arctan((Δx-sin(arctan(x/△y))*a)/△y)の条件を満たす場合、光源装置は比較的に正確なパターンを生成できる。 As described above, in one embodiment of the present invention, when the microstructure of the light source device satisfies the condition θ′=arctan((Δx-sin(arctan(x/Δy))*a)/Δy), the light source device can generate relatively accurate patterns.

本発明の一実施例に基づく光源装置の立体概略図。3 is a schematic three-dimensional view of a light source device according to one embodiment of the present invention; FIG. 本発明の一実施例の光源装置の第1表面に微構造が設置された概略図。FIG. 3 is a schematic view of a light source device having a microstructure on the first surface thereof according to an embodiment of the present invention; 図2Aの正面図。FIG. 2B is a front view of FIG. 2A; 図2Bの微構造が垂直線L’に沿った断面概略図。FIG. 2B is a schematic cross-sectional view of the microstructure of FIG. 2B along vertical line L';

図1は本発明の一実施例に基づく光源装置の立体概略図である。図1を参照すると、本発明の実施例の光源装置10は光源モジュール210、220及び導光板100を含む。光源モジュール210、220はそれぞれ導光板100の入光面SI1、SI2の一側に設置されている。図1では2つの光源モジュール210、220が示さている。しかし、本発明はこれに限定されず、光源装置10の光源モジュールの数は設計ニーズによって決める。 FIG. 1 is a three-dimensional schematic diagram of a light source device according to one embodiment of the present invention. Referring to FIG. 1 , a light source device 10 according to an embodiment of the present invention includes light source modules 210 and 220 and a light guide plate 100 . The light source modules 210 and 220 are installed on one side of the light incident surfaces SI1 and SI2 of the light guide plate 100, respectively. Two light source modules 210, 220 are shown in FIG. However, the present invention is not limited to this, and the number of light source modules of the light source device 10 is determined according to design needs.

詳しく言う、本実施において、光源モジュール210、220は複数の光源LEのライトバーを含み、光源LEが複数の光束を提供し、光源LEが例えば発光ダイオード(light emitting diode,LED)素子または他種の発光素子であってもよい。 Specifically, in the present embodiment, the light source modules 210 and 220 include a light bar with multiple light sources LE, the light sources LE providing multiple luminous fluxes, and the light sources LE include, for example, light emitting diode (LED) elements or other types of light emitting diodes. may be a light emitting element.

図2Aは本発明の一実施例の光源装置の第1表面に微構造が設置された概略図であり、図2Aにおいて第2表面S2が示されていない。図2Bは図2Aの正面図である。図2Cは図2Bの微構造が垂直線L’に沿った断面概略図である。図1、図2Aないし図2Cを同時に参照すると、本実施において、導光板100は光束を誘導するものであり、かつ、導光板100はパターンを表示する複数の微構造102を有する。導光板100は入光面SI1、SI2、第1表面S1及び第2表面S2を有する。入光面SI1、SI2は第1表面S1及第2表面S2に接続される。複数の微構造102は第1表面S1に設置されている。また、光源LEが発した光束Bは微構造102の反射によって、導光板100の第2表面S2から出光し、観賞者EYがそれを受ける。 FIG. 2A is a schematic view of a light source device according to an embodiment of the present invention, in which microstructures are installed on the first surface, and the second surface S2 is not shown in FIG. 2A. FIG. 2B is a front view of FIG. 2A. FIG. 2C is a schematic cross-sectional view of the microstructure of FIG. 2B along vertical line L'. 1, 2A-2C, in this embodiment, the light guide plate 100 guides the light flux, and the light guide plate 100 has a plurality of microstructures 102 displaying patterns. The light guide plate 100 has light incident surfaces SI1 and SI2, a first surface S1 and a second surface S2. The light incident surfaces SI1, SI2 are connected to the first surface S1 and the second surface S2. A plurality of microstructures 102 are located on the first surface S1. Also, the luminous flux B emitted by the light source LE is reflected by the microstructure 102 and is emitted from the second surface S2 of the light guide plate 100, which is received by the viewer EY.

本実施において、異なる光源LEはそれぞれ一組の複数の微構造に対応する。図2Aと図2Bの光源LE1及びその対応する一つの微構造102を例にすると、微構造102は光源LE1に向けられた受光面102Sを有する。なお、微構造102の受光面102Sは光源LE1に向けられているが、受光面102Sを正面から仮想光源LE1’に向けるように設計することが好ましい。詳しく言う、各微構造102はθ’=arctan((△x-sin(arctan(x/△y))*a)/△y)の条件を満たし、θ’は受光面102Sの法線ベクトルの延長線L’と第1方向D1との間の夾角であり、Δxは受光面102Sと光源LE1が入光面SI2における投影点P1が第2方向D2に沿った距離であり、Δyは受光面102Sと投影点P1が第1方向D1に沿った距離であり、xは受光面102Sと観賞者EYが第2方向D2に沿った距離であり、aは補正係数であり、第1方向D1は入光面SI2に垂直な方向であり、第2方向D2は第1表面S1に平行であり、かつ第1方向D1に垂直な方向である。 In this implementation, each different light source LE corresponds to a set of microstructures. Taking the light source LE1 and its corresponding single microstructure 102 of FIGS. 2A and 2B as an example, the microstructure 102 has a light receiving surface 102S directed toward the light source LE1. Although the light receiving surface 102S of the microstructure 102 faces the light source LE1, it is preferable to design the light receiving surface 102S to face the virtual light source LE1' from the front. Specifically, each microstructure 102 satisfies the condition θ′=arctan((Δx-sin(arctan(x/Δy))*a)/Δy), where θ′ is the normal vector of the light receiving surface 102S. Δx is the included angle between the extension line L′ and the first direction D1, Δx is the distance along the second direction D2 between the light receiving surface 102S and the light source LE1 projected on the light incident surface SI2, and Δy is the distance along the second direction D2. 102S and the projection point P1 are the distance along the first direction D1, x is the distance between the light receiving surface 102S and the viewer EY along the second direction D2, a is the correction coefficient, and the first direction D1 is It is a direction perpendicular to the light incident surface SI2, and the second direction D2 is a direction parallel to the first surface S1 and perpendicular to the first direction D1.

その他、図2Bにおいて夾角θとθ’の間の差を示しているが、夾角θは微構造102が正面から光源LE1に向けられた設計の場合、微構造102の受光面102Sの法線ベクトルの延長線Lと第1方向D1との間の夾角である。 In addition, although FIG. 2B shows the difference between the included angles θ and θ′, the included angle θ is the normal vector is an included angle between the extension line L of and the first direction D1.

本実施において、補正係数aは複数の変数の関数である。複数の変数は微構造102の形状、導光板100と観賞者EYが第3方向D3に沿った距離、及び導光板100の屈折率を含み、第3方向D3は第1方向D1及び第2方向D2に垂直であり、かつ、微構造102の形状は微構造102が光束を反射した後の出光角度を影響し得るすべての要素を含み、例えば、図2Cの受光角αを含む。 In this implementation, the correction factor a is a function of multiple variables. The multiple variables include the shape of the microstructure 102, the distance between the light guide plate 100 and the viewer EY along the third direction D3, and the refractive index of the light guide plate 100, where the third direction D3 is the first direction D1 and the second direction Perpendicular to D2, the shape of the microstructure 102 includes all factors that can affect the exit angle after the microstructure 102 reflects the light flux, including, for example, the acceptance angle α in FIG. 2C.

本実施において、光源装置10はさらにs=-sin(arctan(x/△y))*aの条件を満たし、△x’=△x+sであい、△x’は受光面102Sと入光面SI2に位置する仮想位置P1’が第2方向D2に沿った距離であり、かつ、仮想位置P1’は受光面102Sの法線ベクトルの延長線L’と入光面SI2の延長表面の交差点であり、sは投影点P1と仮想位置P1’が第2方向D2に沿った距離である。 In this embodiment, the light source device 10 further satisfies the condition s=−sin(arctan(x/Δy))*a, where Δx′=Δx+s, where Δx′ is between the light receiving surface 102S and the light incident surface SI2. The virtual position P1' is the distance along the second direction D2, and the virtual position P1' is the intersection of the extension line L' of the normal vector of the light receiving surface 102S and the extended surface of the light incident surface SI2, s is the distance between the projection point P1 and the virtual position P1' along the second direction D2.

本実施において、微構造102はプリズム構造であってもよい。かつ、図2Cが示すように、微構造102の受光面102Sと第1表面S1との間に受光角αを有し、かつ、受光角αの角度が0より大きく、かつ90度より小さい。 In this implementation, the microstructures 102 may be prismatic structures. Moreover, as shown in FIG. 2C, there is a light receiving angle α between the light receiving surface 102S of the microstructure 102 and the first surface S1, and the light receiving angle α is greater than 0 and less than 90 degrees.

Figure 2022188752000002
Figure 2022188752000003
Figure 2022188752000002
Figure 2022188752000003

Figure 2022188752000004
Figure 2022188752000005
Figure 2022188752000004
Figure 2022188752000005

Figure 2022188752000006
Figure 2022188752000007
Figure 2022188752000006
Figure 2022188752000007

Figure 2022188752000008
Figure 2022188752000009

前記の表1ないし表4は本発明の実施例に基づく光源装置10中の微構造102が導光板100の第1表面S1上に設置される各位置の夾角θ’の好ましい設計値を示している。表1ないし表4の各関連パラメータは以下の通りである。導光板100の屈折率は1.49であり、微構造102の受光角αは52度であり、導光板100と観賞者EYが第3方向D3に沿った距離は500ミリメートルであり、補正係数aは46.67であり、光源LE1と観賞者EYが第2方向D2に沿った距離は70ミリメートルであり、及び、第2方向において観賞者EYが光源LE1の第2方向D2の正方向の位置にある。表1ないし表4において、横軸は微構造102と観賞者EYが第2方向D2に沿った距離であり(即ち、図2Aの距離x)、横軸の単位はミリメートル(millimeter)であり、かつ、マイナス値は微構造102が観賞者EYの第2方向D2の反対側に位置することを意味する。縦軸はΔyであり、かつ、マイナス値は微構造102が入光面SI2よりも第1方向D1寄りの位置にあることを意味する。
Figure 2022188752000008
Figure 2022188752000009

Tables 1 to 4 above show preferred design values of the included angle θ' at each position where the microstructure 102 in the light source device 10 according to the embodiment of the present invention is placed on the first surface S1 of the light guide plate 100. there is Each relevant parameter in Tables 1 to 4 is as follows. The refractive index of the light guide plate 100 is 1.49, the light receiving angle α of the microstructure 102 is 52 degrees, the distance between the light guide plate 100 and the viewer EY along the third direction D3 is 500 mm, and the correction coefficient a is 46.67, the distance between the light source LE1 and the viewer EY along the second direction D2 is 70 millimeters, and in the second direction the viewer EY is in the positive direction of the second direction D2 of the light source LE1. in position. In Tables 1 to 4, the horizontal axis is the distance between the microstructure 102 and the viewer EY along the second direction D2 (i.e., the distance x in FIG. 2A), the unit of the horizontal axis is millimeters, Also, a negative value means that the microstructure 102 is located on the opposite side of the viewer EY in the second direction D2. The vertical axis is Δy, and a negative value means that the microstructure 102 is positioned closer to the first direction D1 than the light incident surface SI2.

以上を纏めると、本発明の一実施例において、光源装置の導光板の第1表面において複数の微構造が設置されている。微構造がθ’=arctan((Δx-sin(arctan(x/Δy))*a)/Δy)の条件を満たす場合、異なる位置の微構造の発光視角が補正されるため、光源装置が発するパターンの観賞有効範囲が拡大される。また、異なる光源が異なる時間順で点灯される場合、これらの異なる光源が提供するパターンの間の干渉問題が提言され、光源装置の動態効果をさらに改善できる。また、異なる光源が異なる色の光束を提供するように設計し、光源装置のフルカラー効果を達成することができる。 In summary, in one embodiment of the present invention, a plurality of microstructures are placed on the first surface of the light guide plate of the light source device. If the microstructure satisfies the condition θ′=arctan((Δx−sin(arctan(x/Δy))*a)/Δy), the emission viewing angles of the microstructures at different positions are corrected, so that the light source device emits The viewing effective range of the pattern is expanded. Also, if different light sources are turned on in different time sequences, the interference problem between the patterns provided by these different light sources can be addressed, further improving the dynamic effect of the light source device. In addition, different light sources can be designed to provide different colored luminous fluxes to achieve the full color effect of the light source device.

10 光源装置
100 導光板
102 微構造
102S 受光面
210、220 光源モジュール
B 光束
D1 第1方向
D2 第2方向
D3 第3方向
EY 観賞者
L、L’ 延長線
LE1 光源
LE1’ 仮想光源
P1 投影点
P1’ 仮想位置
s、Δx、Δx’、Δy 距離
S1 第1表面
S2 第2表面
SI1、SI2 入光面
x 距離
α 受光角
θ、θ’ 夾角
10 Light source device 100 Light guide plate 102 Microstructure 102S Light receiving surface 210, 220 Light source module B Luminous flux D1 First direction D2 Second direction D3 Third direction EY Viewers L, L' Extension line LE1 Light source LE1' Virtual light source P1 Projection point P1 ' virtual position s, Δx, Δx', Δy distance S1 first surface S2 second surfaces SI1, SI2 light incident surface x distance α light receiving angle θ, θ' included angle

Claims (5)

光源装置であって、
前記光源装置は光源と導光板を含み、
前記光源は複数の光束を提供し、
前記導光板は前記複数の光束を誘導するものであり、かつ、複数の微構造を有し、
前記導光板は入光面及び第1表面を有し、前記入光面は前記第1表面に接続され、
前記光源は前記入光面の一側に設置され、
前記複数の微構造は前記第1表面に設置され、前記複数の微構造中の各微構造が前記光源に向けられた受光面を有し、
前記複数の微構造中の各微構造が以下の条件を満たし、
θ’=arctan((△x-sin(arctan(x/△y))*a)/△y)、
θ’は前記受光面の法線ベクトルの延長線と第1方向との間の夾角であり、△xは前記受光面と前記光源が前記入光面における投影点が第2方向に沿った距離であり、△yは前記受光面と前記投影点が前記第1方向に沿った距離であり、xは前記受光面と観賞者が前記第2方向に沿った距離であり、aは補正係数であり、前記第1方向は前記入光面に垂直な方向であり、前記第2方向は前記第1表面に平行で、かつ前記第1方向に垂直な方向であることを特徴とする、光源装置。
A light source device,
the light source device includes a light source and a light guide plate;
the light source provides a plurality of luminous fluxes;
the light guide plate guides the plurality of light beams and has a plurality of microstructures;
the light guide plate has a light incident surface and a first surface, the light incident surface is connected to the first surface;
The light source is installed on one side of the light incident surface,
said plurality of microstructures disposed on said first surface, each microstructure in said plurality of microstructures having a light receiving surface directed toward said light source;
Each microstructure in the plurality of microstructures satisfies the following conditions,
θ′=arctan((Δx−sin(arctan(x/Δy))*a)/Δy),
θ′ is the included angle between the extension of the normal vector of the light receiving surface and the first direction, and Δx is the distance along the second direction between the light receiving surface and the projection point of the light source on the light incident surface. where Δy is the distance between the light receiving surface and the projection point along the first direction, x is the distance between the light receiving surface and the viewer along the second direction, and a is a correction coefficient. wherein the first direction is a direction perpendicular to the light incident surface, and the second direction is a direction parallel to the first surface and perpendicular to the first direction. .
前記複数の微構造がプリズム微構造であることを特徴とする、請求項1に記載の光源装置。 2. The light source device of claim 1, wherein said plurality of microstructures are prismatic microstructures. 前記受光面と前記第1表面との間に受光角を有し、
前記受光角の角度が0度より大きく、かつ90度より小さいことを特徴とする、請求項1に記載の光源装置。
having an acceptance angle between the light-receiving surface and the first surface;
2. The light source device according to claim 1, wherein said light receiving angle is greater than 0 degrees and less than 90 degrees.
前記補正係数aは複数の変数の関数であり、
前記複数の変数は、前記複数の微構造の形状、前記導光板と前記観賞者とが第3方向に沿った距離、及び前記導光板の屈折率を含み、
前記第3方向は前記第1方向及び前記第2方向に垂直であることを特徴とする、請求項1に記載の光源装置。
The correction factor a is a function of multiple variables,
the plurality of variables include shapes of the plurality of microstructures, a distance between the light guide plate and the viewer along a third direction, and a refractive index of the light guide plate;
The light source device of claim 1, wherein the third direction is perpendicular to the first direction and the second direction.
前記光源装置はさらに、
s=-sin(arctan(x/Δy))*aの条件を満たし、
Δx’=Δx+sであり、Δx’は前記受光面と前記入光面に位置する仮想位置が前記第2方向に沿った距離であり、sは前記光源が前記入光面における前記投影点と前記仮想位置が前記第2方向に沿った距離であり、かつ、前記仮想位置は前記受光面の前記法線ベクトルの前記延長線と前記入光面の延長表面の交差点であることを特徴とする、請求項1に記載の光源装置。
The light source device further
satisfies the condition of s = -sin (arctan (x / Δy)) * a,
Δx′=Δx+s, where Δx′ is the distance along the second direction between the virtual positions of the light receiving surface and the light incident surface, and s is the distance between the projected point on the light incident surface and the The virtual position is the distance along the second direction, and the virtual position is the intersection of the extension line of the normal vector of the light receiving surface and the extended surface of the light incident surface, The light source device according to claim 1.
JP2022081961A 2021-06-09 2022-05-19 Light source device Pending JP2022188752A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110640417.4A CN115451354A (en) 2021-06-09 2021-06-09 Light source device
CN202110640417.4 2021-06-09

Publications (1)

Publication Number Publication Date
JP2022188752A true JP2022188752A (en) 2022-12-21

Family

ID=84295149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022081961A Pending JP2022188752A (en) 2021-06-09 2022-05-19 Light source device

Country Status (2)

Country Link
JP (1) JP2022188752A (en)
CN (1) CN115451354A (en)

Also Published As

Publication number Publication date
CN115451354A (en) 2022-12-09

Similar Documents

Publication Publication Date Title
US11061181B2 (en) Wide angle imaging directional backlights
JP6584008B2 (en) Directional backlight
TWI615659B (en) Prism sheet and light source module using the same
US9864128B2 (en) Light guide body, light emitting apparatus, and amusement machine
TWI448737B (en) Optical strip and backlight module and lcd device having the optical strip
JP3956351B2 (en) Light guide plate
TWM538172U (en) Light source module
WO2017061185A1 (en) Optical device and optical system
TW201634986A (en) Backlight module
JP2022188752A (en) Light source device
WO2017002725A1 (en) Light-emitting device, surface light source device and display device
JP2017016995A (en) Light-emitting device, surface light source device and display device
TWI758196B (en) Light source device
JP6604284B2 (en) Display device
JP4112197B2 (en) Flat lighting device
TW201809833A (en) Backlight module and display device
JP2007134344A (en) Light guide plate
KR20140052133A (en) Backlight unit
CN113534451A (en) Imaging module and imaging method
TWI755864B (en) Light source module
TW202036938A (en) Surface light source apparatus and liquid crystal display device
TWM564730U (en) Light source module and light guide plate
JP2006331958A (en) Backlight
TWI622835B (en) Backlight module and display device
TW201812413A (en) Front light plate and memory LCD thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231129