JP2022187378A - Integrated composite of metal and resin and manufacturing method of the same - Google Patents

Integrated composite of metal and resin and manufacturing method of the same Download PDF

Info

Publication number
JP2022187378A
JP2022187378A JP2021095385A JP2021095385A JP2022187378A JP 2022187378 A JP2022187378 A JP 2022187378A JP 2021095385 A JP2021095385 A JP 2021095385A JP 2021095385 A JP2021095385 A JP 2021095385A JP 2022187378 A JP2022187378 A JP 2022187378A
Authority
JP
Japan
Prior art keywords
resin
metal
injection
integrated composite
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021095385A
Other languages
Japanese (ja)
Inventor
直樹 安藤
Naoki Ando
嘉寛 山口
Yoshinori Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Purasu Co Ltd
Original Assignee
Taisei Purasu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Purasu Co Ltd filed Critical Taisei Purasu Co Ltd
Priority to JP2021095385A priority Critical patent/JP2022187378A/en
Publication of JP2022187378A publication Critical patent/JP2022187378A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

To provide a composite made by ejection bonding of a non-aluminum metal piece such as steel material, SUS steel, and titanium alloy, and a high crystallinity thermoplastic resin, where bonding force between a metal part and a resin molded product part is sufficiently large.SOLUTION: An integrated composite of metal and resin is made by bonding a surface of a metal material and a crystalline thermoplastic resin composition through ejection molding operation. The metal material is one kind selected from steel material, stainless steel, titanium alloy, etc. The crystalline thermoplastic resin composition has heat resistance against a melting point of 200°C or higher. The ejection bonding is performed in a state in which a water-soluble high molecular weight amine-based compound is adsorbed on a surface before the ejection bonding. A bonded part of the integrated composite has shearing bond strength of about 39 MPa or more. The high molecular weight amine-based compound is triethanolamine or tetra-sodium salt of EDTA.SELECTED DRAWING: Figure 1

Description

本発明は、金属と樹脂の一体化複合体とその製造方法に関する。更に詳しくは、鋼材、Ti合金等の非アルミ金属材と耐熱性がある熱可塑性樹脂組成物とを射出接合により製造したものであり、機械、設備等の部品、構造材として使用可能な、金属と樹脂の一体化複合体とその製造方法に関する。 TECHNICAL FIELD The present invention relates to an integrated composite of metal and resin and a method for producing the same. More specifically, it is manufactured by injection joining non-aluminum metal materials such as steel and Ti alloys with heat-resistant thermoplastic resin compositions, and can be used as parts and structural materials for machines and equipment. and a resin integrated composite and a method for producing the same.

金属と合成樹脂を強く接合する接合技術は、自動車、家電品、産業機器等の部品製造業だけでなく広い産業分野で求められ、このために多くの接着剤が開発されている。このような接着等の接合技術は、あらゆる製造業において基幹となる技術である。接着剤を使用しない接合方法に関しても、従来から研究され種々提案されている。その中で、本発明の発明者等(以下、「本発明者等」という。)が開発し提案し、命名した「NMT(Nano Molding Technologyの略)」と「新NMT(New Nano Molding Technologyの略)」がある。NMTは、化成処理された表面を有するAl合金片と、結晶性熱可塑性樹脂が主成分である樹脂組成物との接合技術である。この接合は、予め射出成形金型内にインサートしていたAl合金片に、溶融した結晶性熱可塑性樹脂を射出して、樹脂部分を成形すると同時に、その樹脂成形品とAl合金片とを接合して一体化する複合体の製造技術である。また、これを改良した新NMTは、Al合金片だけではなく全金属種に広げた接合技術であり、NMTと異なるのは射出成形金型にインサート前に行う金属類への表面処理法の基本理論が異なる。このように射出成形により、金属材等の固形物と熱可塑性樹脂を接合すること、及びその技術を関係する技術は、本発明者等は「射出接合」又は「射出接合技術」と呼称している。 Joining techniques for strongly joining metals and synthetic resins are required not only in the parts manufacturing industry for automobiles, home appliances, industrial equipment, etc., but also in a wide range of industrial fields, and many adhesives have been developed for this purpose. Such joining technology such as adhesion is a basic technology in all manufacturing industries. There have also been conventional researches and various proposals for bonding methods that do not use an adhesive. Among them, the inventors of the present invention (hereinafter referred to as "the inventors") developed, proposed, and named "NMT (abbreviation for Nano Molding Technology)" and "New NMT (New Nano Molding Technology). abbreviated)”. NMT is a technology for bonding aluminum alloy flakes having chemically treated surfaces with a resin composition whose main component is a crystalline thermoplastic resin. This joining is performed by injecting a molten crystalline thermoplastic resin into an Al alloy piece that has been inserted into an injection mold in advance, molding the resin part, and simultaneously joining the resin molded product and the Al alloy piece. It is a composite manufacturing technology that integrates by In addition, the new NMT, which has improved this, is a bonding technology that extends not only to aluminum alloy pieces but also to all metal types.The difference from NMT is the basic surface treatment method for metals before inserting into the injection mold. Different theory. The technique of joining a solid material such as a metal material and a thermoplastic resin by injection molding, and the technique related to the technique, are called "injection joining" or "injection joining technology" by the present inventors. there is

このNMTと新NMTを基本技術として使用し、作成した射出接合物(一体化複合体)の中で、アルミ合金材と特定のPPS系樹脂組成物から製造された射出接合物は、その金属・樹脂間の接合力が約40MPaと高い。この射出接合物の接合力は、85℃温度、85%湿度下に、8千時間晒しても殆どその接合強度は低下しない。しかも、この射出接合物に特定の形状構造を採用すれば、-50℃/+150℃の温度衝撃3千サイクル試験にも耐えうることが判明した(特許文献4、5)。そしてその後の研究、開発において、新たにアルミ合金材と特定のポリアミド系樹脂組成物との射出接合物で、次のことが判明した。即ち、この射出接合物は、金属・樹脂間の接合力が約50~55MPaと非常に強い上に、その射出接合物に油剤塗布、錆止め塗料等による塗装をしておけば、その金属・樹脂間の接合力は、85℃温度で85%湿度下に千時間晒されても、殆どその接合強度は低下しない。しかも、その射出接合物の樹脂構造を適正な形状構造にすれば、-50℃/+150℃の温度衝撃3千サイクル試験にも耐えることが判明した(特許文献13)。このようにアルミ合金材とエンプラ(エンジニアリングプラスチック)、スーパーエンプラ等と呼ばれている耐熱性がある結晶性熱可塑性樹脂を使用した、射出接合物は、高湿度環境、温度変化、温度衝撃数千サイクル等の環境下でも、十分に実用的に使用できるものを既に作成可能である。 Among the injection-bonded products (integrated composites) created using this NMT and new NMT as the basic technology, injection-bonded products manufactured from aluminum alloy materials and specific PPS-based resin compositions are Bonding force between resins is as high as about 40 MPa. The bonding strength of this injection-bonded product hardly deteriorates even after being exposed to a temperature of 85° C. and a humidity of 85% for 8,000 hours. Moreover, it has been found that if a specific shape structure is adopted for this injection-bonded product, it can withstand temperature impact tests of -50°C/+150°C for 3,000 cycles (Patent Documents 4 and 5). In subsequent research and development, the following facts were found regarding new injection-bonded products of an aluminum alloy material and a specific polyamide-based resin composition. That is, this injection-bonded product has a very strong bonding force of about 50 to 55 MPa between metal and resin. The bonding strength between them hardly deteriorates even after being exposed to a temperature of 85° C. and a humidity of 85% for 1,000 hours. Moreover, it has been found that if the resin structure of the injection-bonded product has an appropriate shape structure, it can withstand a temperature shock test of -50°C/+150°C for 3,000 cycles (Patent Document 13). In this way, injection joints using aluminum alloy materials and heat-resistant crystalline thermoplastic resins called engineering plastics, super engineering plastics, etc. are subject to high humidity environments, temperature changes, and temperature shocks thousands of times. It is already possible to create something that can be used practically enough even in an environment such as a cycle.

一方、非アルミ金属材と結晶性熱可塑性樹脂の射出接合した複合体に関しては、次のような結果を得ている。即ち、この複合体の樹脂材をPPS系樹脂として「SGX120(東ソー株式会社(本社:日本国東京都)製)、商品名:サスティール」を使用し、非アルミ金属材として、AZ31Mg合金、C1100銅、SUS304ステンレス鋼、SUS430ステンレス鋼、SPCC(冷間圧延鋼板)、64Ti合金等を使用した場合、この射出接合物の接合強度がどうなるかである。その各々の非アルミ金属材に、前述した新NMT処理をしたものと上記PPS系樹脂を接合した射出接合物(図1に示す試験片)の場合、その金属・樹脂間のせん断接合強度は、約40MPaの接合強度がえられる。要するに、樹脂材として上記PPS系樹脂「SGX120」を使用し、本発明者等が提案した化成処理であるNMT、又は新NMTという射出接合技術を使用すれば、その樹脂部と金属片間の接合力は、金属種がAl合金材であろうと、非アルミ金属材であろうと約40MPaにすることが出来ることが既に判明し、これらは既によく使用され実用化されている。 On the other hand, the following results were obtained for the injection-bonded composite of non-aluminum metal material and crystalline thermoplastic resin. That is, as the resin material of this composite, "SGX120 (manufactured by Tosoh Corporation (head office: Tokyo, Japan), product name: Susteel" is used as the PPS resin, and AZ31Mg alloy, C1100 is used as the non-aluminum metal material. What happens to the joint strength of this injection joint when copper, SUS304 stainless steel, SUS430 stainless steel, SPCC (cold rolled steel plate), 64Ti alloy, etc. are used. In the case of an injection-bonded product (test piece shown in FIG. 1) in which the above-described new NMT-treated material and the above PPS resin are bonded to each of the non-aluminum metal materials, the shear bonding strength between the metal and the resin is A bonding strength of about 40 MPa is obtained. In short, if the above PPS-based resin "SGX120" is used as the resin material, and the chemical conversion treatment proposed by the present inventors, NMT, or new NMT injection joining technology is used, the joining between the resin portion and the metal piece can be achieved. It has already been found that the force can be about 40 MPa regardless of whether the metal is an Al alloy material or a non-aluminum metal material, and these have already been used and put into practical use.

そして、上記樹脂材をPPS系樹脂「SGX120」に代えて、ポリアミド系樹脂とした場合、その樹脂材に「CM3506G50(東レ株式会社(本社:日本国東京都)製)」を使用すると、金属材にAl合金を使用した場合には得られた射出接合物(図1の試験片)のせん断接合強度は、50~55MPaと非常に高くなる(特許文献12)。しかしながら、非アルミ金属材では、本発明者等の知見では約40MPa台が最高値になると推定され、その接合強度はAl合金材に比して明らかに弱い。なお、Al合金との射出接合物において、前記の約50MPaを越すような高接合力が生じた理由は、射出接合用樹脂材として、半芳香族型ポリアミド樹脂と脂肪族型ポリアミド樹脂の混合比を最適化する等、樹脂側の組成構成比を試行錯誤して試験し、最適な樹脂組成物を探し出した結果であった。それ故この時点では、ポリアミド系樹脂である上記の「CM3506G50」が、射出接合用としてポリアミド系樹脂として最も優れた素材であるとの選択に至った。それ故、本発明者等は、射出接合として市販されているポリアミド系樹脂として、上記「CM3506G50」が現時点では最適な樹脂組成物であると本発明者等は見なし、この樹脂と前述の新NMT処理をした各種の非アルミ金属類とを射出接合した。しかしながら、得られた各種射出接合物のせん断接合強度は全く低い値であった。 If the resin material is a polyamide-based resin instead of the PPS-based resin "SGX120", using "CM3506G50 (manufactured by Toray Industries, Inc. (headquartered in Tokyo, Japan))" as the resin material, metal material When an Al alloy is used for the injection-bonded product (the test piece in FIG. 1), the resulting injection-bonded product has a very high shear bond strength of 50 to 55 MPa (Patent Document 12). However, according to the findings of the present inventors, the non-aluminum metal material is estimated to have a maximum value of about 40 MPa, and the bonding strength is clearly weaker than that of the Al alloy material. The reason why the above-mentioned high bonding strength exceeding about 50 MPa was generated in the injection-bonded product with the Al alloy is that the mixture ratio of the semi-aromatic polyamide resin and the aliphatic polyamide resin as the injection-bonding resin material This was the result of searching for the optimum resin composition through trial and error testing of the compositional ratio of the resin side, such as optimizing . Therefore, at this time, the above-mentioned "CM3506G50", which is a polyamide-based resin, was selected as the most excellent material for injection joining as a polyamide-based resin. Therefore, the present inventors consider that the above "CM3506G50" is the optimum resin composition at present as a polyamide resin commercially available for injection joining, and this resin and the above-mentioned new NMT Injection bonded with various non-aluminum metals treated. However, the shear bond strengths of the various injection-bonded products obtained were quite low.

この点について、更に分かり易く説明する。即ち、新NMT処理法により、非アルミ金属であるSUS304ステンレス鋼、SUS430ステンレス鋼、SPCC(冷間圧延鋼板)、64Ti合金等を化成処理した後、上記PPS系樹脂「SGX120」との射出接合操作に接合させた。この接合で得られた射出接合物のせん断接合強度は、全て約40MPaを示したので、各々の金属片への化成処理方法である新NMT処理法は、よく改良された化成処理法であると判断した。即ち、具体的には、後述する「新NMT」理論に従って忠実に表面の化成処理をした場合には、1~5μm周期の微細凹凸面を有し、かつ10~100nm周期の超微細凹凸面を有するという条件だけである。しかし、実験では、この時点では更に大きな20~50μm周期の粗面、即ち、この粗面である艶消し面まで加えるという操作を加えていた。この改良操作を加えたことで金属・樹脂間の接合力が大きくなり、上述のせん断接合強度約40MPaが得られていたのである。要するに、艶消し面という大きな粗面上に、微細凹凸面を形成し、更にこの微細凹凸面上に超微細凹凸面を形成したので、この形状の要である10~100nm周期の超微細凹凸面の存在(形成)密度(表面積)を上げることができた。このような最も改良された表面形状を形成する新NMT処理を、各種の非アルミ金属種に対して行った上で、上記ポリアミド系樹脂「CM3506G50」と射出接合させた。 This point will be explained in a more comprehensible manner. That is, by the new NMT treatment method, non-aluminum metals such as SUS304 stainless steel, SUS430 stainless steel, SPCC (cold rolled steel plate), 64Ti alloy, etc. are chemically treated, and then injection-bonded with the above PPS resin "SGX120". was joined to The shear bond strength of the injection-bonded products obtained by this bonding was all about 40 MPa, so the new NMT treatment method, which is a chemical conversion treatment method for each metal piece, is a well-improved chemical conversion treatment method. It was judged. That is, specifically, when the surface is chemically treated faithfully according to the "new NMT" theory described later, it has a fine uneven surface with a period of 1 to 5 μm and an ultrafine uneven surface with a period of 10 to 100 nm. The only requirement is to have However, in the experiment, at this time, an operation was added to add a larger rough surface with a period of 20 to 50 μm, that is, a matte surface, which is this rough surface. By adding this improvement operation, the bonding strength between the metal and the resin increased, and the aforementioned shear bonding strength of about 40 MPa was obtained. In short, a fine uneven surface is formed on a matte surface, which is a large rough surface, and an ultrafine uneven surface is formed on this fine uneven surface. It was possible to increase the existence (formation) density (surface area) of Various non-aluminum metal species were subjected to the new NMT treatment for forming the most improved surface shape, and then injection-bonded with the polyamide resin "CM3506G50".

しかしながら、この射出接合において、最もせん断接合強度の高いものでも64Ti合金の45MPa程度であった。しかも、この射出接合物は、複数個を同時に射出接合して得られた射出接合物を引張り破断させた場合、この接合強度を測定すると個体により、約20~45MPaと大きなバラつきがあった。要するに、これらの実験結果からポリアミド系樹脂を使用した場合、高い射出接合力の確保は、PPS系樹脂を使用ときよりも遥かに困難であることが分かる。このようなことはNMT処理するAl合金片の使用時にはなかった故、別の表現をすれば「新NMT処理品は、NMT処理品よりも基本的に射出接合力が劣るはず」という本発明者等自身が立てた推論を再認識させた(NMTと新NMTの違いについての詳細は後述する。)。上記ポリアミド系樹脂「CM3506G50」を使用した射出接合技術と、よく似た事例がポリエーテルエーテルケトン樹脂(以下「PEEK」という。)、ポリアリールエーテルケトン樹脂(以下「PAEK」という。)でも生じていた。即ち、PEEK、PAEK系樹脂組成物を射出樹脂として使用し、金属材として改良したNMT型処理(例えば、NMT7、NMT8処理等)をしたAl合金を使用した場合、その射出接合物(図1に示す試験片)のせん断接合強度は、全て約50MPa以上に達し、更に55~57MPaに達するものまであった。 However, in this injection bonding, even the highest shear bonding strength was about 45 MPa for 64Ti alloy. Moreover, when a plurality of injection-bonded products were simultaneously injection-bonded and the injection-bonded products were fractured under tension, the bonding strength was measured and varied widely from about 20 to 45 MPa depending on the individual. In short, it can be seen from these experimental results that it is much more difficult to secure a high injection joining strength when using a polyamide-based resin than when using a PPS-based resin. This was not the case when using NMT-treated Al alloy pieces. I was reminded of the inferences made by myself (the details of the difference between NMT and the new NMT will be described later). Similar cases to the injection joining technology using the above polyamide resin "CM3506G50" have also occurred with polyetheretherketone resin (hereinafter referred to as "PEEK") and polyaryletherketone resin (hereinafter referred to as "PAEK"). rice field. That is, when a PEEK or PAEK-based resin composition is used as an injection resin, and an improved NMT type treatment (for example, NMT7, NMT8 treatment, etc.) Al alloy is used as a metal material, the injection-bonded product (see FIG. 1 The shear bonding strength of all the specimens shown) reached about 50 MPa or more, and even reached 55 to 57 MPa.

他方、非アルミ金属を用いて射出接合物を作成すると、最もせん断接合強度の高いもので64Ti合金の20~50MPaとなり、高い接合力値も示す試験片もあったが、大きなばらつきがあり、SUS304等のステンレス鋼では、10MPa台と接合力はかなり低い。要するに、高い接合力を有する射出接合物の製造が容易な順に樹脂の種類を列挙すれば、概略でいうとPBT系、PPS系、ポリアミド系、そしてPEEK含むPAEK系と推定される。以上のような前提により、本発明者等の経験と知見では、PBT系、PPS系は既に完成域に達し、最高度の接合力がえられているが、ポリアミド系はAl合金で完成域に達したものの非アルミ金属種では未完成、PAEK系ではAl合金は完成域に達したものの非アルミ金属に関してはまだまだ遠い、というレベルであると判断した。別の言い方で、NMT型の表面の化成処理が使えるAl合金では、汎用で実用に供されている高強度樹脂類の中で、樹脂として耐熱性が最高位のPEEK、PAEK系樹脂まで達する。新NMT型表面処理を使う非アルミ金属種に関しては、PPS系樹脂までは完成したが、上記の順位のトリアミド系樹脂以降はまだ改良の余地があり、PAEK系樹脂に至っては、全く道は遠いという結果だった。 On the other hand, when injection-bonded products were created using non-aluminum metals, the highest shear bonding strength was 20 to 50 MPa for 64Ti alloy. , etc., the joining force is considerably low, on the order of 10 MPa. In short, if the types of resins are listed in order of ease of production of injection bonded products having high bonding strength, roughly speaking, PBT, PPS, polyamide, and PAEK including PEEK are presumed. Based on the above premises, in the experience and knowledge of the present inventors, the PBT and PPS systems have already reached the level of perfection, and the highest level of bonding strength has been obtained, but the polyamide system has reached the level of perfection with Al alloys. Although it has reached the level of non-aluminum metals, it is still incomplete, and although Al alloys have reached the level of completion in the PAEK system, non-aluminum metals are still far away. In other words, in Al alloys that can be subjected to NMT-type surface chemical conversion treatment, PEEK and PAEK resins, which have the highest heat resistance among general-purpose and practically used high-strength resins, can be used. Regarding non-aluminum metals that use the new NMT type surface treatment, PPS resin has been completed, but there is still room for improvement after triamide resin in the above order, and PAEK resin is a long way off. That was the result.

以下、本発明者等が提案し、本発明でいう上記NMT、NMT2、NMT5~NMT8の概要を説明する。
(NMT(Nano molding technologyの略))
Al合金使用の射出接合技術である前述したNMTは、本発明者等はその成立の必要条件として以下の4又は5条件を規定した。まず、Al合金側に関しては、以下条件(1)及び(2)が必要条件である。なお、この2点を満足するようAl合金表面を化学処理することを「NMT処理」と命名した。
(1)20~50nm径の超微細凹部で全表面が覆われていること。
(2)そして、その表面層に水溶性アミン系化合物が化学吸着していること。
次に、射出する樹脂組成物側に関して、以下の2点又は3点が必要条件である。
(3)使用する樹脂組成物は、高結晶性熱可塑性樹脂を主成分とする樹脂組成物である。
(4)その高結晶性熱可塑性樹脂は、高温下でアミン系分子と化学反応すること。
(5)その樹脂組成物は、従成分樹脂として、主成分樹脂に相溶し得る樹脂、又は主成分樹脂に相溶しない樹脂であっても、第3成分樹脂を加えることで主成分樹脂への相溶や部分的相溶が可能となる樹脂を含むこと。
上記(1)~(4)が必須の必要条件であり、上記(5)の条件が加われば射出接合力がより強くなる。上記(1)~(5)の条件を満たし、かつ、上記(2)のアミン系化合物として、水和ヒドラジンを選択したものが実用化されたNMTだった。
The outlines of NMT, NMT2, NMT5 to NMT8 proposed by the present inventors and referred to in the present invention will be described below.
(NMT (abbreviation for Nano molding technology))
The inventors defined the following 4 or 5 conditions as necessary conditions for establishing the aforementioned NMT, which is an injection joining technique using an Al alloy. First, regarding the Al alloy side, the following conditions (1) and (2) are necessary conditions. Chemically treating the Al alloy surface so as to satisfy these two points is named "NMT treatment".
(1) The entire surface is covered with ultrafine recesses with a diameter of 20 to 50 nm.
(2) A water-soluble amine compound is chemically adsorbed on the surface layer.
Next, the following two or three points are necessary conditions for the injection resin composition side.
(3) The resin composition to be used is a resin composition containing a highly crystalline thermoplastic resin as a main component.
(4) The highly crystalline thermoplastic resin chemically reacts with amine-based molecules at high temperatures.
(5) Even if the resin composition is a subcomponent resin that is compatible with the main component resin or a resin that is not compatible with the main component resin, it can be transformed into the main component resin by adding the third component resin. Contains a resin that can be compatible or partially compatible with
The above (1) to (4) are essential requirements, and if the above condition (5) is added, the injection joining force becomes stronger. The practical NMT satisfies the above conditions (1) to (5) and selects hydrazine hydrate as the above (2) amine compound.

(NMT2、NMT5~NMT8)
NMT処理したAl合金に対し、ポリブチレンテレフタレート(以下「PBT」という。)系樹脂組成物が、射出接合で接合力が強い複合体をえられることを本発明者等らは発見した。そしてその後、特許文献1で開示したが、NMT処理したAl合金に対し、PPS系樹脂組成物も射出接合できることを本発明者等は発見した。次に特許文献2では、NMT処理したAl合金に対し、ポリアミド系樹脂組成物を射出接合させる技術を開示した。そして、特許文献3には、Al合金の表面処理法を改良して「NMT2」処理法を開発し、この処理物と前記したPBT系樹脂、PPS系樹脂、そしてポリアミド系樹脂との射出接合力が向上することを発見した。特に、PPS系樹脂使用物ではそのせん断接合強度が約40MPaとなり、その射出接合物を85℃温度で、85%湿度下に、6千~8千時間以上置いてもせん断接合強度が約37~40MPaを保ち、最高度の耐湿熱性ある金属・樹脂一体化物が得られることを初めて示した。本発明者等はこの技術をNMT2と命名した。
(NMT2, NMT5-NMT8)
The present inventors discovered that a polybutylene terephthalate (hereinafter referred to as "PBT")-based resin composition can provide a composite with strong bonding strength by injection bonding to an NMT-treated Al alloy. After that, as disclosed in Patent Document 1, the present inventors discovered that a PPS-based resin composition can also be injection-bonded to an NMT-treated Al alloy. Next, Patent Document 2 discloses a technique of injection joining a polyamide-based resin composition to an NMT-treated Al alloy. Then, in Patent Document 3, the surface treatment method of Al alloy was improved to develop the "NMT2" treatment method, and the injection joining strength between this treated product and the above-mentioned PBT-based resin, PPS-based resin, and polyamide-based resin found to improve. In particular, the PPS-based resin used product has a shear bond strength of about 40 MPa, and even if the injection-bonded product is placed at a temperature of 85 ° C. and a humidity of 85% for 6,000 to 8,000 hours or more, the shear bond strength is about 37 to 37. It was shown for the first time that a metal/resin integrated product with the highest heat and humidity resistance can be obtained while maintaining a pressure of 40 MPa. The inventors named this technology NMT2.

NMT2は、Al合金とPPS系樹脂との射出接合技術で最高度のものと認識していたが、その後の試験、実験で未だ問題点のあることが分かった。即ち、Al合金をNMT2処理してから10日以上保管して、PPS系樹脂の射出接合工程を行うと、せん断接合強度の耐湿熱性が低下方向に向かうことである。NMT2が最も大規模に使用されたのは、スマートフォンのAl合金製の筐体の製造であった。この実際の生産で要求される生産数が急増し、それに応じて生産したとき、射出成形機を多数備えて射出接合工程でも対応したものの、NMT2処理工程を終えて、全ての処理物を10日以内に次工程で片づけるのが困難になった。その対策でNMT2処理法を改善し、各種Al材に対するNMT5、NMT7、NMT8処理法等と命名した化成処理方法を開発し提案した。これら新処理法に使用すると、前記した有効保管日数は夏場でも4週間以上でも有効となる(特許文献4)。加えて、特許文献4に記載のNMT型処理をしたAl合金と、PPS系樹脂の射出接合物の形状について本発明者等は検討し、樹脂を特定形状にした場合、その接合力には-50℃/+150℃の温度衝撃3千サイクル試験を経ても、その接合構造に何ら悪影響を与えない形状を見出し、これを開示した(特許文献5)。 Although NMT2 was recognized as the highest level of injection joining technology for Al alloy and PPS resin, subsequent tests and experiments revealed that there were still problems. That is, if the aluminum alloy is stored for 10 days or more after being treated with NMT2 and then the PPS-based resin injection bonding process is performed, the wet heat resistance of the shear bonding strength tends to decrease. The most extensive use of NMT2 was in the production of aluminum alloy housings for smartphones. The number of production required in this actual production increased rapidly, and when we produced accordingly, we had a large number of injection molding machines and responded to the injection bonding process, but after finishing the NMT2 treatment process, all processed products were processed in 10 days. It became difficult to clean up in the next process within. As a countermeasure, the NMT2 treatment method was improved, and chemical conversion treatment methods named NMT5, NMT7, NMT8 treatment methods, etc. for various Al materials were developed and proposed. When used in these new treatment methods, the effective storage days described above are effective even in summer for four weeks or longer (Patent Document 4). In addition, the present inventors have studied the shape of the injection bonded product of the NMT-type treated Al alloy described in Patent Document 4 and the PPS resin, and when the resin is made into a specific shape, the bonding strength is - We have found and disclosed a shape that does not have any adverse effect on the joint structure even after a 3,000-cycle temperature shock test at 50° C./+150° C. (Patent Document 5).

(新NMT(New Nano molding technologyの略))
NMT及びその後のNMT型の射出接合技術において、前述したようにその表面処理の最終工程には、アミン系分子を化学吸着させる工程がある。Al合金材は、アミン系分子を強く化学吸着するので、このNMT的な化学処理が有効であり、それがNMT、NMT2~NMT8の射出接合技術のキー技術となっている。即ち、アルミ合金材以外の金属材は、アミン系分子が化学吸着しないか又は吸着が弱く、それ故にNMT処理してもその効果を発揮しない。ただし、NMTでの射出接合力向上の研究から、使用する樹脂組成物の研究開発が進み、改良された射出接合用の樹脂組成物を使用すれば、アミン系分子の化学吸着物が不在でも、各種金属材の表面形状に対して、各々適切な微細凹凸面を形成するための化成処理のみで射出接合が可能になった。即ち、アミン系分子吸着物不在の表面処理物でも、各種金属材と樹脂組成物を射出接合させることができる技術である新NMTを、本発明者等は発明し開示した(特許文献6~10)。要するに新NMTは、Mg合金、Al合金、銅や銅合金、ステンレス鋼、一般鋼材、特殊鋼板等の言わば市場に供給されている実用金属のほぼ全種に対応する射出接合技術であり、使用する高結晶性熱可塑性樹脂は、NMT用の射出接合用樹脂と同じである。
(New NMT (abbreviation of New Nano molding technology))
In NMT and subsequent NMT-type injection joining techniques, as described above, the final step of surface treatment includes a step of chemically adsorbing amine-based molecules. Since the Al alloy material strongly chemisorbs amine-based molecules, this NMT-like chemical treatment is effective, and it is the key technology for the injection joining technology of NMT, NMT2 to NMT8. That is, metal materials other than aluminum alloy materials do not chemically adsorb amine-based molecules or adsorb them weakly, and therefore the NMT treatment does not exhibit its effect. However, research and development of the resin composition to be used has progressed from research on improving the injection bonding strength in NMT, and if an improved resin composition for injection bonding is used, even if there is no chemisorbed amine molecule, Injection bonding has become possible only by chemical conversion treatment for forming an appropriate fine uneven surface for each surface shape of various metal materials. That is, the present inventors have invented and disclosed a new NMT, which is a technique that enables injection bonding of various metal materials and resin compositions even on surface-treated materials that do not contain amine-based molecular adsorbates (Patent Documents 6 to 10). ). In short, the new NMT is an injection joining technology that can be used for almost all types of practical metals supplied to the market, such as Mg alloys, Al alloys, copper and copper alloys, stainless steel, general steel materials, and special steel plates. The highly crystalline thermoplastic resin is the same as the injection bonding resin for NMT.

ここでいう「新NMT」の成立条件は、本発明者等の定義では次の5点を必要条件としている。そのうち使用金属材に関して、以下の3点が必要条件となる。そしてこの3点(以下(1)~(3))を満足するように化学処理することを「新NMT処理」と言う。即ち、
(1)金属材は0.8~10μm周期の粗面を有していること、
(2)その粗面上に5~300nm(好ましくは、50~100nm)周期の微細凹凸面形状を有すること、及び、
(3)前記表面層は金属酸化物、金属リン酸化物のような硬質のセラミック質の薄層で覆われていること、
そして、射出される樹脂側には以下2点が必要条件となる。即ち、
(4)高結晶性熱可塑性樹脂を主成分とする樹脂組成物を使用すること、
(5)前記樹脂組成物には、主成分である高結晶性熱可塑性樹脂以外に従成分樹脂として、主成分樹脂に相溶し得る樹脂か、又は、主成分樹脂に相溶せぬ樹脂であっても、更に第3成分樹脂として主成分樹脂への部分的にでも相溶を進める樹脂を含むこと、である。
According to the definitions of the present inventors, the following five points are necessary conditions for establishing the "new NMT". Of these, the following three points are necessary conditions for the metal materials used. Chemical treatment that satisfies these three points ((1) to (3) below) is called "new NMT treatment". Namely
(1) The metal material has a rough surface with a period of 0.8 to 10 μm,
(2) having a fine uneven surface shape with a period of 5 to 300 nm (preferably 50 to 100 nm) on the rough surface;
(3) the surface layer is covered with a hard ceramic thin layer such as a metal oxide or metal phosphate;
The following two points are necessary conditions for the resin to be injected. Namely
(4) using a resin composition containing a highly crystalline thermoplastic resin as a main component;
(5) In the resin composition, a resin compatible with the main component resin or a resin incompatible with the main component resin is used as a secondary component resin other than the highly crystalline thermoplastic resin that is the main component. Even if there is, it further contains a resin that promotes even partial compatibility with the main component resin as a third component resin.

新NMTは、全金属種に対して開発されたが、最も技術的成果が発揮されたのはAl合金に関してであった。即ち、本発明者等は、Al合金表面処理である陽極酸化処理を含むものに対して、本発明者等が命名したNMT5-Ano、NMT7-Ano処理法であり、更に、これに過酸化水素水処理を最終段に含むNMT5-Oxy,NMT7-Oxy処理法等を開発し、提案した。これらではPPS系樹脂との射出接合物は、その金属・樹脂間の接合力の耐湿熱性が非常に高く、かつ、表面処理してから射出接合するまでの中間材保管時間が4週間以上であり、数か月、1年が経過しても、問題なく良品が得られた(特許文献4)。又、チタン合金、ステンレス鋼、一般鋼材に関しては、それら各々に対する新NMT処理法が改善され、PBT、PPS系樹脂使用の射出接合では、高いせん断接合強度が得られるようになった。 New NMTs have been developed for all metal species, but the most technological achievements have been for Al alloys. That is, the present inventors have named NMT5-Ano and NMT7-Ano treatment methods named by the present inventors for those including anodizing treatment, which is an Al alloy surface treatment, and further hydrogen peroxide We have developed and proposed NMT5-Oxy and NMT7-Oxy treatment methods including water treatment in the final stage. Among these, injection-bonded products with PPS resin have extremely high resistance to moist heat in the bonding strength between the metal and resin, and the intermediate material storage time from surface treatment to injection bonding is 4 weeks or more. A good product was obtained without any problem even after several months and one year (Patent Document 4). In addition, with respect to titanium alloys, stainless steels, and general steels, the new NMT processing method for each of them has been improved, and high shear bonding strength can be obtained in injection bonding using PBT and PPS resins.

WO2004/041532WO2004/041532 特開2007-182071JP 2007-182071 WO2012/070654WO2012/070654 特開2019-188651JP 2019-188651 特開2019-217704JP 2019-217704 WO2008/069252WO2008/069252 WO2008/081933WO2008/081933 WO2008/047811WO2008/047811 WO2008/078714WO2008/078714 WO2009/011398WO2009/011398 特開2006-315398JP 2006-315398 特願2020-176274Patent application 2020-176274 特開2018-111277JP 2018-111277 特開2019-217704JP 2019-217704

本発明は、上記のような背景技術において、非アルミ材と樹脂の複合体で、非アルミ材と樹脂の間の接合強度をどのような手段で高めるかを開発したものである。前述したように、金属側の表面形状については、新NMT処理法による方法で形成された表面形状が、本発明者等は最適な表面形状の提案であると考えている。ポリアミド系樹脂に関して、非アルミ金属との間の射出接合力に関しては、現時点ではあるが、樹脂側では市販の上記ポリアミド系樹脂「CM3506G50」という射出接合に最適なものを見出している以上、今後改良すべき課題は、金属側の表面処理法の抜本的な改良しかない。即ち、各種の非アルミ金属材に関して、射出接合用の新NMT処理法の改良は、既に多くの努力が払われており、数十μm周期の粗面化と、数μm周期の微細凹凸面化、そして10~100nm周期の超微細凹凸面化という、実表面積の拡大処理が既になされていたからである。それ故に本発明としてなすべきは、NMT処理と新NMT処理法の差異を埋めることであり、新NMT処理品にアミン系分子の吸着操作を加算することしか残されていないと判断した。要するになすべき「革新的なアイデア」とは、アミン系分子に対して明確な化学吸着力を有しない非アルミ金属材に対し、何とか強引にアミン系分子、アミン系化合物を大量吸着させることである。具体的には、金属表面に大量に物理吸着させ、結果的にNMT処理品と似た現象が生じるような金属処理片にすることである。 In the background art as described above, the present invention is a composite of a non-aluminum material and a resin, and has been developed by what means to increase the bonding strength between the non-aluminum material and the resin. As described above, with respect to the surface shape of the metal side, the present inventors believe that the surface shape formed by the new NMT treatment method is the most suitable surface shape proposal. Regarding polyamide resins, the strength of injection bonding between non-aluminum metals is currently limited, but on the resin side, the commercially available polyamide resin "CM3506G50" has been found to be the most suitable for injection bonding, so improvements will be made in the future. The only issue to be addressed is the drastic improvement of the metal surface treatment method. That is, with regard to various non-aluminum metal materials, many efforts have already been made to improve the new NMT treatment method for injection joining. , and a process for enlarging the actual surface area, which is called ultra-fine unevenness with a period of 10 to 100 nm, has already been performed. Therefore, it was determined that what the present invention should do is to eliminate the difference between the NMT treatment and the new NMT treatment method, and that the only thing left is to add the adsorption operation of the amine-based molecule to the new NMT treated product. In short, the "innovative idea" that should be done is to forcibly adsorb a large amount of amine molecules and amine compounds to non-aluminum metal materials that do not have a clear chemical adsorption power for amine molecules. . Specifically, a large amount of the metal is physically adsorbed on the metal surface, and as a result, a metal-treated piece is produced in which a phenomenon similar to that of the NMT-treated product occurs.

そこで吸着量の拡大方法であるが、勿論、射出接合する金属材が非アルミ金属類であれば、強い化学吸着は期待できないので、物理吸着的な操作で対処する方法が考えられる。即ち、物理吸着させる物は、水溶性のアミン系分子というNMTで本発明者等が定義を拡大解釈し、それは水溶性のアミン系分子でもアミン系化合物でも良いと範囲を拡げた。その上で、可能な限り重い物、即ち、分子量、質量が大きい化合物であり、一般論で言えば高沸点の分子ほど物理吸着量が大きいという探索を当初は試みた。その後、一般に沸点の測定が不能なNa石鹸、若しくはアミノ酸のNa塩のような物も含めることにした。そうして選択されたものの中で、ある程度の吸着量が常温下で得られれば、射出接合工程で射出接合用金型にインサートされたとき、金属片が受ける150℃程度の高温下にも耐えられるのではないかと推測した。又、射出接合用樹脂としてPEEK系樹脂、PAEK系樹脂等を使用するとき、その金型温度は180~190℃になる。このような高温下において、非アルミ金属片に物理吸着したアミン系分子、アミン系化合物等が置かれていると、射出接合操作が始まる前に分解脱離する、又は熱脱離する可能性がある。ただ、正確に探索すれば上述のような高温に耐えられるアミン系分子やアミン系化合物が存在すると予測した。なお、NMTでは、その水溶性のアミン系分子として水和ヒドラジン(N・HO:分子量50)を使い、これをAl合金片に化学吸着させており、そのAl合金片とPEEK系樹脂とを射出接合して、50MPa以上のせん断接合強度を容易に得ているのである。 Therefore, as a method for increasing the amount of adsorption, of course, if the metal materials to be injection-joined are non-aluminum metals, strong chemical adsorption cannot be expected, so a method of coping with a physical adsorption operation is conceivable. That is, the present inventors expanded the definition of NMT, which refers to water-soluble amine-based molecules, and expanded the scope to include water-soluble amine-based molecules and amine-based compounds. On that basis, we initially attempted to search for compounds that are as heavy as possible, that is, compounds with large molecular weights and masses, and generally speaking, molecules with higher boiling points have larger physical adsorption amounts. After that, it was decided to include things such as Na soaps or Na salts of amino acids whose boiling points cannot generally be measured. Among those selected, if a certain amount of adsorption can be obtained at normal temperature, it can withstand a high temperature of about 150°C to which a metal piece is subjected when it is inserted into an injection joining mold in the injection joining process. I guessed that it might be possible. Also, when PEEK-based resin, PAEK-based resin, or the like is used as the resin for injection joining, the mold temperature is 180 to 190°C. If amine-based molecules, amine-based compounds, etc. that are physically adsorbed on non-aluminum metal pieces are placed under such high temperatures, they may decompose or desorb before the injection joining operation begins. be. However, it was predicted that amine-based molecules and amine-based compounds that can withstand the above-mentioned high temperatures would exist if they were searched accurately. In addition, in NMT, hydrazine hydrate (N 2 H 4 ·H 2 O: molecular weight 50) is used as the water-soluble amine-based molecule, and this is chemically adsorbed on the Al alloy piece, and the Al alloy piece and PEEK A shear bond strength of 50 MPa or more is easily obtained by injection bonding with the system resin.

本発明者等が提案した先行発明において、Al合金とアミン系分子とは強く化学吸着することが判明しており、このときの金型温度は180~190℃である。従って、吸着力が強ければ、アミン系分子でも200℃近くになっても簡単に脱離するわけではない。それ故、重量級のアミン系化合物を選び、その化学吸着力がごく弱くとも質量に比例するファンデルワールス力(分子間引力)に期待したのである。要するに、このように物理吸着的な現象を利用した射出接合技術を考えた。この新技術を本発明者等は、新型NMT、即ち、本発明でいう「SNMT(Special Nano molding technologyの略)」と名付けた(詳しくは、後述する。)。 In the prior invention proposed by the present inventors, it has been found that Al alloy and amine-based molecules strongly chemisorb, and the mold temperature at this time is 180 to 190°C. Therefore, if the adsorptive power is strong, even amine-based molecules are not easily desorbed even at temperatures approaching 200°C. Therefore, we selected a heavy-weight amine-based compound and expected van der Waals force (intermolecular attractive force) proportional to mass even if its chemical adsorption force is very weak. In short, we considered an injection joining technology that utilizes such a physical adsorption phenomenon. The inventors of the present invention have named this new technology a new type of NMT, that is, "SNMT (abbreviation for Special Nano Molding Technology)" in the present invention (details will be described later).

本発明は、得られた金属・樹脂製の射出接合物(複合体)が、自動車等の移動機械の車体、部品部材として役立つだけでなく、あらゆる機械や設備に使用可能な物となり役立つことである。一方、前述したPPS系樹脂とAl合金の射出接合物(特許文献4、5)は、自動車等の移動機械に採用されることを目論んでいた。何故なら、これらの射出接合物(複合体)は、軽量でありかつAl合金と樹脂成形物との接合力が約40MPaと高く、その接合は耐湿熱性を有し、数千サイクルの温度衝撃試験にも耐える長期耐久性を有していたからである。故に、このPPS系樹脂とAl合金を使用した射出接合物の発明が、そのまま自動車用の複合体として使用できればそれで十分満足だとの思いで、本発明者等は上記の特許文献4、5で提案した発明に至って、その研究、開発を完結させ終了する考えだった。移動機械の部品部材として、最も重要なことは高強度軽量化であり、それ故にAl合金の使用物に全力を投入したからであり、その最高のものが特許文献4に記載の技術だったからである。しかしながら、最も重要と見ていた自動車製造業の当業者からは予期したような関心は得られなかった。 The metal/resin injection-bonded product (composite) obtained according to the present invention is not only useful as a vehicle body or component member for mobile machines such as automobiles, but also useful as a product that can be used in all kinds of machines and equipment. be. On the other hand, the aforementioned injection-bonded products of PPS-based resin and Al alloy (Patent Documents 4 and 5) were intended to be used in mobile machines such as automobiles. This is because these injection joints (composites) are lightweight and have a high joint strength of about 40 MPa between the Al alloy and the resin molding, and the joint has resistance to heat and humidity, and can withstand several thousand cycles of temperature impact tests. This is because it has a long-term durability that can withstand even Therefore, in the belief that the invention of injection-bonded products using this PPS-based resin and Al alloy can be used as it is as a composite for automobiles, the present inventors have proposed the above-mentioned Patent Documents 4 and 5. The idea was to complete and terminate the research and development of the proposed invention. This is because the most important thing for moving machine parts is high strength and light weight. be. However, it did not receive the expected interest from those skilled in the art of automotive manufacturing, which they viewed as most important.

特許文献4、5記載のPPS系樹脂を使用した複合体は、自動車メーカー等から採用されることはなかった。この理由の一つは、自動車事故等で生じる火災事故である。ポリアミド系樹脂、バンパー、樹脂製ガソリンタンク等に使用されているポリオレフィン系樹脂、その双方は有毒ガスを出さずに燃焼する。これに対して、PPSは亜硫酸ガスを生じ、又、塩ビ樹脂は塩酸ガスを生じる。火災車中に残された運転手と乗客は、有毒ガスを吸うことになる。本発明者等は、ほぼ完成しているPPS系樹脂と金属の複合体ではなく、汎用的に使用されている樹脂材をポリアミド系樹脂等に変更した。本発明は、以上のような背景で発明されたものであり、以下の目的を達成するものである。
本発明の目的は、鋼、ステンレス鋼、チタン材等の非アルミ金属材と結晶性熱可塑性樹脂との一体化複合体が、約39MPa以上のせん断接合強度で接合した、金属と樹脂の一体化複合体とその製造方法を提供することにある。
本発明の他の目的は、鋼、ステンレス鋼、チタン材等の非アルミ金属材と、結晶性熱可塑性樹脂とを強固に接合するために、金属材の接合面に吸着させる最適な化合物を見出した、金属と樹脂の一体化複合体とその製造方法を提供することにある。
本発明の更に他の目的は、鋼、ステンレス鋼、チタン材等の非アルミ金属材と結晶性熱可塑性樹脂との一体化複合体が、-50℃/+150℃の温度衝撃3千サイクル試験にも耐え得る、金属と樹脂の一体化複合体とその製造方法を提供することにある。
The composites using the PPS-based resins described in Patent Documents 4 and 5 have not been adopted by automobile manufacturers and the like. One of the reasons for this is fire accidents that occur in automobile accidents and the like. Polyamide resins, bumpers, polyolefin resins used in plastic gasoline tanks, etc., both burn without emitting toxic gases. In contrast, PPS produces sulfurous acid gas, and PVC resin produces hydrochloric acid gas. Drivers and passengers left in the burning car will breathe toxic fumes. The present inventors changed the generally used resin material to a polyamide resin or the like, instead of the almost complete composite of PPS resin and metal. The present invention was invented against the above background, and achieves the following objects.
An object of the present invention is to integrate a metal and a resin in which an integrated composite of a non-aluminum metal material such as steel, stainless steel, and titanium and a crystalline thermoplastic resin is bonded with a shear bonding strength of about 39 MPa or more. An object of the present invention is to provide a composite and a manufacturing method thereof.
Another object of the present invention is to find an optimum compound to be adsorbed on the joint surface of metal materials in order to strongly bond non-aluminum metal materials such as steel, stainless steel and titanium to crystalline thermoplastic resins. Another object of the present invention is to provide an integrated composite of metal and resin and a method for producing the same.
Still another object of the present invention is to provide an integrated composite of steel, stainless steel, titanium, and other non-aluminum metal materials and a crystalline thermoplastic resin that can withstand -50°C/+150°C temperature shock 3,000 cycle tests. An object of the present invention is to provide an integrated composite of a metal and a resin that can withstand even a high temperature, and to provide a method for producing the same.

本発明は、前記課題を解決するために次の手段を採る。
本発明1の金属と樹脂の一体化複合体は、
表面処理された表面を有する金属材と、前記表面と結晶性熱可塑性樹脂組成物とが、射出成形操作により接合された金属と樹脂の一体化複合体において、
前記金属材は、鋼材、チタン合金、及びステンレス鋼から選択される一種で、かつ、前記表面が化成処理されたものであり、
前記化成処理後の前記表面は、千倍電子顕微鏡観察で20~50μm周期の粗面が形成され、前記粗面上に1万倍電子顕微鏡観察で0.5~5μm周期の微細凹凸面を有し、かつ、10万倍電子顕微鏡観察で10~100nm周期の超微細凹凸面を有した微細凹凸周期を有するものであり、
前記結晶性熱可塑性樹脂組成物は、融点200℃以上の耐熱性があり、
前記表面に水溶性の高分子量アミン系化合物が吸着された状態で、前記結晶性熱可塑性樹脂組成物を前記射出成形により一体化した、前記一体化複合体の接合部は、せん断接合強度が39MPa以上を有するものであることを特徴とする。
The present invention employs the following means to solve the above problems.
The integrated composite of metal and resin of the present invention 1 is
An integrated composite of metal and resin, in which a metal material having a surface-treated surface and the surface and a crystalline thermoplastic resin composition are joined by an injection molding operation,
The metal material is one selected from steel, titanium alloy, and stainless steel, and the surface is chemically treated,
On the surface after the chemical conversion treatment, a rough surface with a period of 20 to 50 μm is formed when observed with an electron microscope at a magnification of 1000, and a fine uneven surface with a period of 0.5 to 5 μm is formed on the rough surface when observed with an electron microscope at a magnification of 10,000. And, it has a fine irregularity period with an ultrafine uneven surface with a period of 10 to 100 nm when observed with an electron microscope at 100,000 times,
The crystalline thermoplastic resin composition has heat resistance of a melting point of 200° C. or higher,
The joint of the integrated composite obtained by integrating the crystalline thermoplastic resin composition by the injection molding with the water-soluble high molecular weight amine compound adsorbed on the surface has a shear joint strength of 39 MPa. It is characterized by having the above.

本発明2の金属と樹脂の一体化複合体は、本発明1の金属と樹脂の一体化複合体において、前記高分子量アミン系化合物は、トリエタノールアミン、又は、EDTA誘導体であることを特徴とする。
本発明3の金属と樹脂の一体化複合体は、本発明1又は2の金属と樹脂の一体化複合体において、前記鋼材は、一般鋼であり、前記ステンレス鋼は、オーステナイト系ステンレス鋼とフェライト系ステンレス鋼含む特殊鋼であることを特徴とする。
The metal-resin integrated composite of Invention 2 is characterized in that, in the metal-resin integrated composite of Invention 1, the high-molecular-weight amine-based compound is triethanolamine or an EDTA derivative. do.
The metal-resin integrated composite of Invention 3 is the metal-resin integrated composite of Invention 1 or 2, wherein the steel is general steel, and the stainless steel is austenitic stainless steel and ferrite. It is characterized by being a special steel containing stainless steel.

本発明4の金属と樹脂の一体化複合体は、本発明1ないし3の金属と樹脂の一体化複合体において、前記結晶性熱可塑性樹脂組成物は、ポリフェニレンサルファイドを樹脂分中に70重量%以上、変性ポリオレフィン樹脂を30重量%以下、第3成分樹脂を5重量%以下含む樹脂組成であり、かつ、ガラス短繊維を全体の15~25重量%含む組成物であり、前記せん断接合強度は、39~43MPaを有するものであることを特徴とする。 The metal-resin integrated composite of Invention 4 is the metal-resin integrated composite of Inventions 1 to 3, wherein the crystalline thermoplastic resin composition contains 70% by weight of polyphenylene sulfide in the resin content. As described above, the resin composition contains 30% by weight or less of the modified polyolefin resin and 5% by weight or less of the third component resin, and the composition contains 15 to 25% by weight of the short glass fibers, and the shear bonding strength is , 39 to 43 MPa.

本発明5の金属と樹脂の一体化複合体は、本発明1ないし3の金属と樹脂の一体化複合体において、前記結晶性熱可塑性樹脂組成物は、半芳香族ポリアミドを樹脂分中に10重量%以上、脂肪族ポリアミドを90重量%以下含む樹脂組成であり、かつ、ガラス短繊維を全体の25重量%以上占める組成物であり、前記せん断接合強度は、45~65MPaを有するものであることを特徴とする。 The metal-resin integrated composite of Invention 5 is the metal-resin integrated composite of Inventions 1 to 3, wherein the crystalline thermoplastic resin composition contains 10 semi-aromatic polyamides in the resin content. The resin composition contains an aliphatic polyamide in an amount of 90% by weight or more and an aliphatic polyamide in an amount of 25% by weight or more, and the shear bonding strength is 45 to 65 MPa. It is characterized by

本発明6の金属と樹脂の一体化複合体は、本発明1ないし3の金属と樹脂の一体化複合体において、前記結晶性熱可塑性樹脂組成物は、ポリエーテルエーテルケトンを樹脂分中に80~100重量%、ポリエーテルイミドを0~20重量%含む樹脂組成であり、前記せん断接合強度値は、50MPa以上を有するものであることを特徴とする。 The metal-resin integrated composite of Invention 6 is the metal-resin integrated composite of Inventions 1 to 3, wherein the crystalline thermoplastic resin composition contains 80 polyether ether ketone in the resin content. It is a resin composition containing up to 100% by weight and 0 to 20% by weight of polyetherimide, and is characterized by having a shear bonding strength value of 50 MPa or more.

本発明1の金属と樹脂の一体化複合体の製造方法は、本発明1ないし6の金属と樹脂の一体化複合体の製造方法であって、
前記表面の前記化成処理後は、
前記金属材に酸塩基水溶液、若しくは酸化性還元性水溶液に、順次浸漬処理することにより、前記粗面、前記微細凹凸面、及び前記超微細凹凸面を形成し、又は、
最初にショットブラスト処理による物理的粗面化処理により、前記粗面及び前記微細凹凸面を形成した後、前記超微細凹凸面を化学的処理により形成した後、
前記表面は、0.1~0.5%濃度のトリエタノールアミン水溶液に1~60分浸漬し、更に、純水、又は、5~50PPM濃度の超希釈トリエタノールアミン水溶液で洗浄した後、乾燥させて射出接合用の前記金属材とすることを特徴とする。
The method for producing an integrated composite of metal and resin of the first invention is a method for producing an integrated composite of metal and resin of the inventions 1 to 6,
After the chemical conversion treatment of the surface,
The rough surface, the fine uneven surface, and the ultra-fine uneven surface are formed by sequentially immersing the metal material in an acid-base aqueous solution or an oxidizing-reductive aqueous solution, or
First, after forming the rough surface and the fine uneven surface by physical roughening treatment by shot blasting, after forming the ultrafine uneven surface by chemical treatment,
The surface is immersed in a triethanolamine aqueous solution with a concentration of 0.1-0.5% for 1-60 minutes, further washed with pure water or an ultra-diluted triethanolamine aqueous solution with a concentration of 5-50 PPM, and then dried. and the metal material for injection joining.

本発明2の金属と樹脂の一体化複合体の製造方法は、本発明1ないし6の金属と樹脂の一体化複合体の製造方法であって、
前記表面の前記化成処理後は、
前記金属材に酸塩基水溶液、若しくは酸化性還元性水溶液に、順次浸漬処理することにより、前記粗面、前記微細凹凸面、及び前記超微細凹凸面を形成し又は、
最初にショットブラスト処理による物理的粗面化処理により、前記粗面及び前記微細凹凸面を形成した後、前記超微細凹凸面を化学的処理により形成した後、
前記表面は、0.1~0.5%濃度のEDTAの4Na塩の水溶液に1~60分浸漬し、更に、純水若しくは0.05~0.5%濃度の酢酸水溶液、又は、5~50PPM濃度の超希釈EDTAの4Naの水溶液で洗浄した後、乾燥させて射出接合用の前記金属材とすることを特徴とする。
The method for producing an integrated composite of metal and resin according to the second aspect of the present invention is the method for producing an integrated composite of a metal and a resin according to the first to sixth aspects of the present invention,
After the chemical conversion treatment of the surface,
The rough surface, the fine uneven surface, and the ultra-fine uneven surface are formed by sequentially immersing the metal material in an acid-base aqueous solution or an oxidizing-reductive aqueous solution, or
First, after forming the rough surface and the fine uneven surface by physical roughening treatment by shot blasting, after forming the ultrafine uneven surface by chemical treatment,
The surface is immersed in an aqueous solution of 4Na salt of EDTA with a concentration of 0.1 to 0.5% for 1 to 60 minutes, and then pure water or an acetic acid aqueous solution with a concentration of 0.05 to 0.5%, or After washing with an aqueous solution of 4Na of ultra-diluted EDTA with a concentration of 50 PPM, it is dried to obtain the metal material for injection joining.

以下、上記した本発明について、各構成、その技術背景等について具体的に説明する。
[本発明の「SNMT(Special Nano mold technologyの略)」について]
本発明で提案する新たな射出接合技術である「新型NMT」、即ち本発明でいう「SNMT」について、説明する。このSNMTは、端的に言えば、射出接合用の非アルミニウムの金属材処理法であり、金属表面の化成処理方法である。金属と樹脂を射出成形により、接合するための表面処理方法は、本発明者等の見解では、アミン系分子の強い化学吸着が明確に確認されるのはAl合金だけであり、それ故に前述したNMT処理法はAl合金に対してのみ有効である。非アルミの金属材では、本発明者等は、前述した新NMT処理法のみが射出接合技術に使えるとの認識であったが、その接合力は理想的な強度まで至らなかった。これを打破するため、本発明では、金属表面に吸着させる吸着物は、弱すぎて不存在に近い化学吸着力、即ち、化学的な親和力に拘るのでなく、物理吸着、若しくは弱い化学吸着力よりも分子量や式量を大きくして、物理吸着力の拡大策を試す戦略を取った。そしてこの戦略は成功した。この物理的な吸着力の拡大策は、この項で述べる「新型NMT」又は「SNMT」と命名した化成処理方法であり、金属表面、使用樹脂等の必要条件である。
Hereinafter, each configuration, technical background, etc. of the above-described present invention will be specifically described.
[About "SNMT (abbreviation of Special Nano mold technology)" of the present invention]
The new injection joining technology proposed by the present invention, ie, the "new type NMT", that is, the "SNMT" of the present invention will be described. SNMT is simply a method of treating non-aluminum metal materials for injection joining and a chemical conversion treatment method of metal surfaces. As for the surface treatment method for joining metal and resin by injection molding, in the opinion of the present inventors, strong chemical adsorption of amine-based molecules is clearly confirmed only in Al alloys, and therefore the above-mentioned The NMT treatment method is effective only for Al alloys. For non-aluminum metal materials, the present inventors recognized that only the new NMT treatment method described above could be used for injection joining technology, but the joining force did not reach the ideal strength. In order to overcome this, in the present invention, the adsorbate to be adsorbed on the metal surface has a chemical adsorption force that is too weak and almost non-existent, that is, rather than being bound by chemical affinity, physical adsorption or weak chemical adsorption force. We also adopted a strategy of increasing the molecular weight and formula weight to test measures to expand the physical adsorption force. And this strategy worked. This physical adsorption force expansion measure is a chemical conversion treatment method named "New NMT" or "SNMT" described in this section, and is a necessary condition such as the metal surface and the resin used.

本発明でいう「SNMT」の成立条件は、以下6点を必要条件とした。その中で使用金属材に関して、以下4点が必要条件となる。そしてこの4点(以下の要件(a)~(d))を満足するように化成処理することを「SNMT処理」と言う。即ち、
(a)金属材は、20~50μm周期の粗面、言い換えると「艶消し面」となっていること、
(b)その粗面上に、0.8~5μm周期の微細凹凸を有すること、
(c)その微細凹凸面上に、10~100nm周期の超微細凹凸面を有すること、及び、
(d)前記表面層は金属酸化物、金属リン酸化物のような硬質のセラミック質の薄層で覆われており、更に高沸点、又は複数の極性基を有する分子量大のアミン系分子又はアミン系化合物が吸着していること、
そして射出樹脂側には以下2点が必要条件となる。即ち、
(e)使用する樹脂組成物は、高結晶性熱可塑性樹脂を主成分とする樹脂組成物であること、及び
(f)前記樹脂組成物には、主成分である高結晶性熱可塑性樹脂以外に従成分樹脂として、主成分樹脂に相溶し得る樹脂、又は、主成分樹脂に相溶せぬ樹脂であっても、更に第3成分樹脂として主成分樹脂への部分的にでも相溶を進める樹脂を含むこと、である。
The following six points are necessary conditions for establishing the "SNMT" according to the present invention. Among them, the following four points are necessary conditions for the metal materials used. Chemical conversion treatment that satisfies these four points (requirements (a) to (d) below) is called "SNMT treatment". Namely
(a) The metal material has a rough surface with a period of 20 to 50 μm, in other words, a “matte surface”;
(b) having fine irregularities with a period of 0.8 to 5 μm on the rough surface;
(c) having an ultra-fine uneven surface with a period of 10 to 100 nm on the fine uneven surface;
(d) The surface layer is covered with a hard ceramic thin layer such as a metal oxide or metal phosphate, and furthermore has a high boiling point or a large molecular weight amine molecule or amine having a plurality of polar groups. that the system compound is adsorbed,
On the injection resin side, the following two points are necessary conditions. Namely
(e) the resin composition to be used is a resin composition containing a highly crystalline thermoplastic resin as a main component; As a secondary component resin, a resin that is compatible with the main component resin, or a resin that is incompatible with the main component resin, and further a third component resin that is partially compatible with the main component resin. containing resin to advance.

上記の3要件(a、b、及びc)は、前述した新NMT処理の(1)及び(2)に加えて、艶消し面とする粗面化処理(要件a)が加わっている。ただ、各種金属に対する現行の新NMT処理物は、射出接合力の完璧度を上げるために、Al合金であれ非アルミの金属種であれ、艶消し面化を進めているので、それを確認し、追認したに過ぎない。又上記要件(d)は、新NMT処理の要件(3)は金属材表面層のセラッミックス質の薄層を要求していたのに加え、更に分子量大のアミン系分子、化合物の吸着状態を求めており、それがこの処理法の最大の特徴である。この高分子量アミン系分子や高式量アミン系化合物として有効性を確認した物に2種類あり、軽量級はトリエタノールアミン(triethanolamine)であり、もう1種は重量級のEDTA(エチレンジアミン4酢酸)の誘導体、具体的にはEDTA・4Na、EDTA・2Na(2Na)、又は、EDTA(4Na)と表示される4Na塩である。本発明の高分子量のアミン系分子やアミン系化合物として、具体的には上記以外にも各種アミノ酸も多数考えられる。実際には、非アルミ金属片を使用した射出接合用のポリアミド系樹脂組成物やPEEK系樹脂組成物を使った射出接合試験で、その性能を確認すれば良く、実用可能な物が1種でもあれば商業化できる。 The above three requirements (a, b, and c) include the above-mentioned new NMT treatment (1) and (2), as well as a roughening treatment (requirement a) for a matte surface. However, the current new NMT processed products for various metals, whether they are aluminum alloys or non-aluminum metals, are being made matte in order to increase the perfection of injection joining strength, so please check it. , only confirmed. In addition to requirement (d) above, requirement (3) for the new NMT treatment requires a ceramic thin layer on the surface layer of the metal material, and in addition, the adsorption state of amine-based molecules and compounds with a large molecular weight is required. and that is the biggest feature of this processing method. There are two types of substances that have been confirmed to be effective as high-molecular-weight amine-based molecules and high-formula-weight amine-based compounds. The lightweight class is triethanolamine, and the other is heavy-weight EDTA (ethylenediaminetetraacetic acid). specifically EDTA.4Na, EDTA.2Na (2Na), or a 4Na salt denoted as EDTA(4Na). As the high-molecular-weight amine-based molecule or amine-based compound of the present invention, specifically, various amino acids other than those mentioned above can be conceived. In fact, it is sufficient to confirm the performance of injection bonding tests using polyamide resin compositions and PEEK resin compositions for injection bonding using non-aluminum metal pieces. It can be commercialized.

即ち、本発明者として最も獲得したかった射出接合物(試験片)は、チタン合金とPEEK系樹脂による射出接合物であったが、これはトリエタノールアミンの使用では成功せず、初めてEDTA・4Naの使用で成功した。それも得た射出接合力は、約60MPa越す強い接合力を示した。同様のことは、金属材をチタン合金片から鋼材片に変えると生じなかった。又、EDTA・4Naに代えて、EDTAやEDTA・2Naを使用した場合には強い接合力は得られなかった。分子量や式量が大きいアミン系化合物は、その立体性が多種多様になり、物理吸着したとしてもその化合物のどの箇所で金属片に付いているかで変わるためと推定される。分子量や式量が大きければよい、というだけで良結果が出るとは限らないのは当然である。要するに、本発明者がSNMT理論の中で述べている条件は、必要条件であって十分条件ではない。但し、必要条件を考え出す思考工程そのものは最高に重要なことである。必要条件が固まればそれに合う物が10個でも100個でも思いつく。それらを次々と実験試験して、当業者であれば作業、環境の安全面、生産性等の観点から実用化可能なものを1個でも見出せばよく、これらの化合物の選定は上記の技術思想で探索すれば容易である。 That is, the injection-bonded product (specimen) that the inventor most wanted to acquire was an injection-bonded product using titanium alloy and PEEK resin, but this was not successful with the use of triethanolamine. The use of 4Na was successful. The injection joining force it also obtained showed a strong joining force in excess of about 60 MPa. The same thing did not occur when the metal material was changed from the titanium alloy piece to the steel piece. Also, when EDTA or EDTA.2Na was used instead of EDTA.4Na, no strong bonding strength was obtained. It is presumed that amine compounds with large molecular weights and formula weights have a wide variety of steric properties, and even if they are physically adsorbed, they change depending on which part of the compound is attached to the metal piece. It goes without saying that good results are not necessarily obtained simply by saying that a large molecular weight or formula weight is sufficient. In short, the conditions we state in our SNMT theory are necessary, not sufficient. However, the thought process itself that comes up with the necessary conditions is of utmost importance. Once the necessary conditions are fixed, I can come up with 10 or 100 items that match it. A person skilled in the art can find even one compound that can be put into practical use from the viewpoint of work, environmental safety, productivity, etc. by experimentally testing them one after another, and the selection of these compounds is based on the above technical idea. It is easy to search with

又、樹脂側の条件の要件(e)と要件(f)は、これがNMT条件での要件(3)及び要件(5)、前述した新NMT条件での要件(3)と要件(4)と実質的に同一であり、NMT、新NMT及びSNMTも同じ樹脂組成物が有効であることを定義している。ただ、正確に言えば、NMT条件の要件(4)は、樹脂種として親水性を全く有しないポリオレフィン系樹脂、弗素系樹脂等は使えないことを意味する。新NMTもSNMTも、その記載は省略したが使用する樹脂組成物中の主成分樹脂としてポリオレフィン系樹脂が使えないのは同一である。その理由は、金属材自体その表面の大部分は自然酸化層等の金属酸化物薄膜層が形成されており親水性である。一方のポリオレフィン系樹脂以外の高強度結晶性熱可塑性樹脂は全て親水性であり親油性ではない。親水性物質同士はそれなりの化学的親和性を有しており、それ故に本発明でいうSNMTの要件(a~c)条件を満たす金属片において、数nm周期の超微細凹凸面部自体の存在は非常に大きくその表面積は、実表面積値を見かけ面積で除した数値は3桁か4桁以上と推定されるが非常に大きい。 In addition, the requirements (e) and (f) of the conditions on the resin side are the requirements (3) and (5) under the NMT conditions, and the requirements (3) and (4) under the new NMT conditions described above. Substantially identical, NMT, New NMT and SNMT also define that the same resin compositions are effective. Strictly speaking, however, requirement (4) of the NMT conditions means that non-hydrophilic polyolefin-based resins, fluorine-based resins, and the like cannot be used as resin species. Although the description is omitted, both the new NMT and SNMT are the same in that the polyolefin resin cannot be used as the main component resin in the resin composition used. The reason for this is that most of the surface of the metal material itself is hydrophilic because a metal oxide thin film layer such as a natural oxide layer is formed thereon. All high-strength crystalline thermoplastic resins other than one polyolefin resin are hydrophilic and not lipophilic. Hydrophilic substances have a certain degree of chemical affinity with each other, and therefore, in a metal piece that satisfies the requirements (a to c) of the SNMT referred to in the present invention, the existence of the ultrafine uneven surface itself with a period of several nanometers is unlikely. The surface area is very large, and the numerical value obtained by dividing the actual surface area value by the apparent area is estimated to be 3 or 4 digits or more, but it is very large.

要するに、金属片表面を2重3重の複雑な超微細凹凸面の表面形状にすることが出来れば、酸化物であり(要件d)親水性の超微細凹凸面上の超微細凹部の奥底まで侵入し、結晶化して固化する樹脂組成物であれば、最高度の接合力を示すはずというのが、本発明を含めた射出接合理論の概念でもある。NMT及びSNMTにおいて、金属材表面に吸着されたアミン系分子は、超微細凹部の奥底まで過冷却状態で、その液相を保持したまま、樹脂の流れを固化させることなく円滑に侵入させるのに役立つ。即ち、NMTでは水和ヒドラジンが、又、SNMTでは物理吸着性が期待できる質量が大きい水溶性アミン系物質が使用できる。実際に実験でその効果を確認したのは、トリエタノールアミン、EDTA誘導体である。しかしながら、本発明で使用できるものは、この物質に限定されるわけではなく、質量の大きいアミン系物質として化学的に探索すれば、その他にも多数の化学物質が使用可能である。 In short, if the surface of the metal piece can be made into a complex double-triple ultra-fine uneven surface shape, it is an oxide (requirement d) to the depth of the ultra-fine recesses on the hydrophilic ultra-fine uneven surface. The concept of injection joining theory, including the present invention, is that a resin composition that penetrates, crystallizes, and solidifies should exhibit the highest joining force. In NMT and SNMT, the amine molecules adsorbed on the surface of the metal material are in a supercooled state to the depths of the ultrafine recesses, and while maintaining the liquid phase, the resin flow smoothly penetrates without solidifying. Helpful. That is, hydrazine hydrate can be used in NMT, and a water-soluble amine-based substance with a large mass that can be expected to have physical adsorption properties can be used in SNMT. Triethanolamine and an EDTA derivative have actually been confirmed to have the effect in experiments. However, the substance that can be used in the present invention is not limited to this substance, and many other chemical substances can be used if chemically searched as an amine-based substance with a large mass.

[SNMTで使用する水溶性のアミン系化合物と吸着理論]
本発明でいうアミン系化合物とは、高分子量のアミン系化合物をいう。本発明で提唱するSNMTの開発過程で、最初に使用した水溶性アミン系分子はトリエタノールアミンであり、それ以前に開発したNMTではその水溶性アミン系分子は水和ヒドラジンであった。しかし、本発明のSNMTでは、そのアミン系分子として、水和ヒドラジンを使用していない。その理由は、水和ヒドラジン水溶液を浸漬液としてAl合金の化学エッチング物に使用すると、目論見通り理想的な強度ではないが、射出接合がPEEK含む全結晶性熱可塑性樹脂に関してそれなりの接合強度が得られた。しかし、非アルミ金属材に関して、水和ヒドラジン水溶液を吸着させてえた射出接合物では、接合強度は目標に達するものは全くなかった。要するに、Al合金と水和ヒドラジンは異常に強く化学吸着するのは確かであるが、本発明者等の推定では、化学吸着と言うよりは化学反応しているという見方が正しいとも言える。一方、非アルミ金属材に関しては、水和ヒドラジンとの化学吸着力が一般的なレベルか、若しくはアルミ合金材とで生じる状況に比較すれば格段に弱く、結果的に射出接合時の金型温度(殆どの樹脂種で140℃)まで昇温したら全吸着力(化学吸着力と物理吸着力の和)が低くなり、水和ヒドラジンが脱離すると考えられる。
[Water-soluble amine compounds used in SNMT and adsorption theory]
The amine-based compound referred to in the present invention refers to a high-molecular-weight amine-based compound. In the process of developing the SNMT proposed in the present invention, the first water-soluble amine-based molecule used was triethanolamine, and in the previously developed NMT, the water-soluble amine-based molecule was hydrazine hydrate. However, the SNMT of the present invention does not use hydrazine hydrate as its amine-based molecule. The reason for this is that when a hydrazine hydrate aqueous solution is used as an immersion liquid for chemically etched aluminum alloys, although the strength is not ideal as expected, injection bonding provides a reasonable bonding strength for a fully crystalline thermoplastic resin containing PEEK. was taken. However, with regard to non-aluminum metal materials, none of the injection-bonded products to which the hydrazine hydrate solution was adsorbed could achieve the target bonding strength. In short, although it is certain that Al alloy and hydrazine hydrate are abnormally strongly chemisorbed, it can be said that the present inventors' estimation is correct that they are chemically reacted rather than chemisorbed. On the other hand, with regard to non-aluminum metal materials, the chemical adsorption force with hydrazine hydrate is at a general level, or is much weaker than the situation that occurs with aluminum alloy materials, and as a result, the mold temperature during injection joining is It is thought that when the temperature is raised to (140° C. for most resin species), the total adsorptive power (the sum of the chemical adsorptive power and the physical adsorptive power) decreases and hydrazine hydrate is desorbed.

要するに、非アルミ金属材と言っても、その表面層は自然酸化層で覆われており、その殆どは親水性の金属酸化物であるから極性物である。これに付着する水溶性アミン系分子が水和ヒドラジン、トリエタノールアミン等という極性物であれば、両者間に生じる吸着力は、質量さえあれば生じる物理吸着力だけでなく化学吸着力も加わる。しかしながら、非アルミ金属材に関しては、化学吸着力そのものがAl合金使用時に較べれば明らかに弱く、物理吸着力に頼らざるを得ない。高温下に置かれたとき、化学吸着力は下がることも上昇することもあるのだが、ファンデルワールス力(分子間引力)に頼る物理吸着力は、分子質量に比例するだけで温度が上がれば脱離力が勝るので低下する。それ故に、これらに関しては物理吸着状態にしか見えないとした方が分かり易い。それ故に、物理吸着力の弱い水和ヒドラジンはSNMT処理では使えないが、トリエタノールアミンは使用できた。更に言えば、射出接合時の金型温度を180~200℃と高温にしなければ、射出接合反応が進まぬPEEK系樹脂組成物を射出樹脂にするSNMTでは、トリエタノールアミンではその機能は果たさないが、更に、分子量の大きいEDTA誘導体を使用すると適用できる金属種は、本発明の実験ではチタン合金のみであるが、その効果は突出した形で得られた。従って、チタン合金以外の各種鋼材等について、PEEK系樹脂との高い射出接合力が必要な場合、高分子量のアミノ酸類を使用してSNMT処理したものを適用すると良い。 In short, even non-aluminum metal materials are polar because their surface layers are covered with a natural oxide layer and most of them are hydrophilic metal oxides. If the water-soluble amine-based molecule adhering to this is a polar substance such as hydrazine hydrate or triethanolamine, the adsorptive force generated between them is not only the physical adsorptive force, but also the chemical adsorptive force, which is generated if there is mass. However, with regard to non-aluminum metal materials, the chemisorption power itself is obviously weaker than when using an Al alloy, and there is no choice but to rely on the physical adsorption power. When placed under high temperature, the chemisorption force can decrease or increase, but the physical adsorption force, which relies on van der Waals force (intermolecular attraction force), is only proportional to the molecular mass, and if the temperature rises, It decreases because the detachment force prevails. Therefore, it is easier to understand if these are seen only in a physically adsorbed state. Therefore, hydrazine hydrate, which has a weak physical adsorptive power, cannot be used in the SNMT treatment, but triethanolamine could be used. Furthermore, triethanolamine does not fulfill its function in SNMT, in which a PEEK-based resin composition is used as an injection resin for which the injection joining reaction does not proceed unless the mold temperature during injection joining is as high as 180 to 200°C. However, in the experiments of the present invention, titanium alloys were the only applicable metal species when an EDTA derivative having a large molecular weight was used, but the effect was obtained in a prominent manner. Therefore, when high injection joining strength with PEEK resin is required for various steel materials other than titanium alloys, it is preferable to apply those subjected to SNMT treatment using high-molecular-weight amino acids.

[新たな異材質間を射出接合による接合した複合体]
上記の実験結果、及び考察から、全ての実用的な結晶性熱可塑性樹脂と非アルミニウムの金属材を強固に接合できるので、接合技術として、以下の3種を予測できる。
(1)一つは、金属片と結晶性熱可塑性樹脂使用の射出接合技術として、SNMTを異部材間の接合技術として一般化し、高い硬度を持つ金属以外の個体の固形物同士を接合するための射出接合技術として、発展させることである。
(2)もう一つは、金属材を含むあらゆる固形物を接着したい2材として、これら双方を射出成形機の射出成形金型内に対峙させた対としてインサートし、そこの2材の隙間に、結晶性熱可塑性樹脂を射出して全3者の一体化物を製造する方法である。要するに、射出した結晶性熱可塑性樹脂に一種の接着剤としての機能を持たせた新しい接合構造である(後述する図8、9参照)。
(3)更にもう一つの予測は、SNMTの理論を少し緩めて、表面の凹凸面形状を20~50μm周期の粗面化(金属なら艶消し化)と、数μm周期の微細凹凸面化だけの条件にすると、即ち10~100nm周期の超微細凹凸面化の条件を省くと、射出接合の射出樹脂の対象である固体は、金属材でなくても容易に獲得できることである。
これらの(1)~(3)の要件は、最初に述べた「高い硬度持つ個体の固形物を金属片に代えて使用する射出接合技術」というものと同一である。本発明のSNMT条件を緩めることで、もう金属材のみならず、石、焼き物、ガラス等の無機物、そして有機物である木材、加えてプラスチック成形品であっても、射出接合技術のカバー範囲にするということである。本発明で提案するSNMTの応用は、このように雑貨、金継ぎのような文化財の修復等の分野において、新技術新分野に広がる可能性を与えることもできる。
[New Composite with Dissimilar Materials Joined by Injection Joining]
From the above experimental results and considerations, all practical crystalline thermoplastic resins and non-aluminum metal materials can be strongly bonded, so the following three types of bonding techniques can be predicted.
(1) One is to generalize SNMT as an injection joining technology using metal pieces and crystalline thermoplastic resin as a joining technology between dissimilar members, and to join solid objects other than metals with high hardness. It is to develop as a new injection joining technology.
(2) The other is to insert any solid material including metal materials as two materials to be bonded, insert them as a pair facing each other in the injection mold of the injection molding machine, and insert them into the gap between the two materials. , a method of injecting a crystalline thermoplastic resin to produce an integrated product of all three. In short, it is a new joint structure in which the injected crystalline thermoplastic resin functions as a kind of adhesive (see FIGS. 8 and 9, which will be described later).
(3) Yet another prediction is that the SNMT theory is slightly relaxed, and the uneven surface shape of the surface is roughened with a period of 20 to 50 μm (matte if it is a metal) and a fine uneven surface with a period of several μm. , that is, omitting the condition of forming an ultra-fine uneven surface with a period of 10 to 100 nm, the solid that is the object of injection resin for injection joining can be easily obtained even if it is not a metal material.
These requirements (1) to (3) are the same as the first-mentioned "injection joining technology in which a solid material having a high hardness is used instead of a metal piece". By relaxing the SNMT conditions of the present invention, injection joining technology can cover not only metal materials but also inorganic materials such as stone, pottery, and glass, organic materials such as wood, and even plastic molded products. That's what it means. The application of SNMT proposed by the present invention can also provide the possibility of expanding into new technology and new fields in such fields as miscellaneous goods and the restoration of cultural assets such as Kintsugi.

[本発明でいう金属材の範囲]
本発明でいう金属材(非アルミ材)は、鋼材、チタン合金、及びステンレス鋼から選択される一種である。この理由の説明として、本発明でいうSNMT処理により、SNMTでいう表面形状を再現できるか否かで決まる。前述したように、金属材を粗面化し、かつ、最も小さい凹凸面周期を10~100nm周期の超微細凹凸面を形成したとき、SNMTは確実に高い射出接合力を与えるのか否かである。即ち、全金属種のSNMT処理品を射出接合金型にインサートし、そこへPBT、PPS、ポリアミド系の射出接合用樹脂を射出し、そのSNMT処理で使用する水溶性アミン系化合物が、トリエタノールアミンであった場合、使用されている全ての金属種で最高度の射出接合力を示すのか、という点である。実験結果では必ずしも全てに適用できるものではない。それは、C1100銅に関するものであり、純銅系の金属材ではSNMT処理は適当ではなかった。純銅系で使えるのは新NMT処理品までであり、簡潔に言えば、PBT系、PPS系樹脂の場合は、新NMT処理品の使用でPBT系樹脂、PPS系樹脂の使用で最高レベルの射出接合物は得られた。しかしながら、ポリアミド系樹脂、PEEK系樹脂の高強度の射出接合物を得ることは出来ない。その理由は、銅材の粗面化処理の最終工程は、酸化促進液に浸漬する工程となっており、これによって10~100nm周期の超微細凹凸面を生じさせ、多数のウイスカを生じさせて超微細凹凸面化させている。その反応は結局のところ、その表面に酸化銅の微細形状物を作ることであり、射出接合用の表面処理としているので、全表面は酸化第二銅の黒色面化した物となる。
[Range of metal materials referred to in the present invention]
The metal material (non-aluminum material) referred to in the present invention is one selected from steel materials, titanium alloys, and stainless steels. The reason for this is determined by whether or not the SNMT process according to the present invention can reproduce the surface shape according to SNMT. As described above, the question is whether or not SNMT reliably provides a high injection joining force when the metal material is roughened and an ultra-fine uneven surface with a minimum uneven surface period of 10 to 100 nm is formed. That is, SNMT-treated products of all metal types are inserted into an injection-bonding mold, PBT, PPS, and polyamide-based injection-bonding resins are injected into the mold, and the water-soluble amine compound used in the SNMT treatment is triethanol. If it were an amine, would it give the highest injection bond strength of all the metals used? Experimental results are not necessarily applicable to all cases. It concerns C1100 copper, and the SNMT treatment was not suitable for pure copper-based metals. Pure copper-based products can be used up to the new NMT-treated products.To put it simply, in the case of PBT-based and PPS-based resins, the use of new NMT-treated products allows the use of PBT-based resins and PPS-based resins to achieve the highest level of injection. A conjugate was obtained. However, it is not possible to obtain a high-strength injection-bonded product of a polyamide-based resin or a PEEK-based resin. The reason for this is that the final step of the roughening treatment of the copper material is a step of immersion in an oxidation promoting liquid, which produces an ultrafine uneven surface with a period of 10 to 100 nm and a large number of whiskers. It has an ultra-fine uneven surface. After all, the reaction is to create fine features of copper oxide on the surface, and since the surface is treated for injection joining, the entire surface becomes a blackened product of cupric oxide.

この黒色の酸化銅薄層はかなり硬質であり、その超微細凹部の奥底まで樹脂が侵入し固化すれば、複合体は高いせん断接合強度を示す。それ故に、PPS系樹脂と銅材の射出接合構造は、LIB(リチウムイオン電池)の銅電極の封止部に完全封止材等として使われる。しかしながら、ポリアミド系樹脂、PEEK系樹脂との射出接合では、新NMT処理しただけのC1100銅では、樹脂が超微細凹部の奥底まで進む前に結晶化が始まり使用できない。そこで、トリエタノールアミンの0.2%水溶液等に浸漬して、これらを物理吸着させようとしたのだが、吸着どころか既に新NMT処理を終えていた銅片と、トリエタノールアミンは明確に反応してしまった。要するに、トリエタノールアミンは、酸化銅薄層を還元し色調が黒色からピンク色に変った(酸化第二銅が酸化第一銅に還元された)。そして、同じことがEDTA・4Naの水溶液に浸漬した時にも生じた。吸着させるはずのアミン系分子が消化された。銅は低温域で酸化還元し易い金属種であり、NMT理論やSNMT理論に向かず、新NMT理論に従う少ない金属種であった。以上の説明から理解されるように、本発明でいう金属材としては銅材を含まない。 This black copper oxide thin layer is quite hard, and if the resin penetrates deep into the ultrafine recesses and solidifies, the composite exhibits high shear bonding strength. Therefore, the injection-bonded structure of PPS-based resin and copper material is used as a complete encapsulant or the like for encapsulating copper electrodes of LIBs (lithium ion batteries). However, in injection joining with polyamide-based resin or PEEK-based resin, C1100 copper treated with the new NMT alone cannot be used because crystallization begins before the resin reaches the bottom of ultra-fine recesses. Therefore, we tried to physically adsorb these by immersing them in a 0.2% aqueous solution of triethanolamine. It's gone. Briefly, triethanolamine reduced a thin layer of copper oxide and changed the color from black to pink (cupric oxide was reduced to cuprous oxide). And the same thing happened when it was immersed in an aqueous solution of EDTA.4Na. Amine-based molecules that were supposed to be adsorbed were digested. Copper is a metal species that is easily oxidized and reduced in a low temperature range, and is not suitable for the NMT theory or the SNMT theory, and is a rare metal species that follows the new NMT theory. As can be understood from the above description, the metallic material referred to in the present invention does not include a copper material.

もう一つ、SPCC(冷間圧延鋼)について、考察する。SPCCと、PEEK、PEEK系樹脂等を射出接合させた場合、新NMTでは必ずしも高い接合強度で接合できない。SPCCと、前述したポリアミド系樹脂「CM3506G50」との射出接合は、トリエタノールアミンを使用したSNMTでは最適な接合力を示した。温度域が高くなるPEEK系樹脂使用の射出接合では、対応させたEDTA・4Naで、好適な結果を示したのはTi合金であり、やや結果が良かったのは、SUS304鋼であった。本発明者等の評価としては、SPCCだけでなく、SUS430も好適な結果ではない。塩(Na)構造は、必ずしもどの金属種でも好適な結果とはならない。しかしながら、本発明者等は、SNMTを発明し提案しても、射出接合力が最高値に近づけられるのは、現行のSNMTではAl合金類と64Ti合金のみしか成らないが、化学分野の当業者としては、十分な成果である。何故なら、PEEK、PAEK等を使用すべきという用途は、耐摩耗性、耐熱性、耐蝕性等を重視する領域であり、この領域で使用する金属種としてTi合金は最適な金属と思われるからである。ただPEEK、PAEK等を使用する射出接合物は、先々どのような金属種との複合体が求められるか不明であるが、前述したように全金属種に対応できる水溶性アミン系化合物を新たに探し出すことで対応できる。 Another consideration is SPCC (cold rolled steel). When SPCC is injection-bonded to PEEK, PEEK-based resin, or the like, the new NMT cannot necessarily bond with high bonding strength. Injection bonding between SPCC and the polyamide resin "CM3506G50" described above showed optimum bonding strength in SNMT using triethanolamine. In the case of injection joining using PEEK resin, which has a high temperature range, Ti alloy showed favorable results with corresponding EDTA/4Na, and SUS304 steel showed slightly better results. According to the evaluation of the present inventors, not only SPCC, but also SUS430 is not a favorable result. The salt (Na) structure does not necessarily give good results with any metal species. However, even if the present inventors invented and proposed SNMT, the injection joining force can approach the maximum value, although the current SNMT consists only of Al alloys and 64Ti alloys, but those skilled in the chemical field As such, it is a satisfactory result. This is because applications where PEEK, PAEK, etc. should be used are areas in which wear resistance, heat resistance, corrosion resistance, etc. are emphasized, and Ti alloys are thought to be the most suitable metals for use in these areas. is. However, it is unknown what kind of metal species will be required in the future for injection-bonded products that use PEEK, PAEK, etc. However, as mentioned above, we have developed a new water-soluble amine compound that can be used with all metal species. You can deal with it by looking for it.

[本発明の射出接合操作とアニール処理について]
本発明で用いる射出接合は、射出接合用の金型を作成し、開いた金型に表面処理済の金属片をインサートし、金型を閉めて樹脂を射出するものであり、この射出接合操作を行うものは公知技術であり、特別な技術ではない。敢えて言えば、金型温度と保圧時間である。金型温度は、樹脂メーカーが推奨している温度範囲で良いが、基本的には高めに設定すると良い。具体的には、前述したPPS系樹脂「SGX120」、ポリアミド系樹脂「CM3506G50」の使用時には金型温度として140℃付近が好ましい。又、PAEK系樹脂の場合は180~190℃とした。もう一つは射出前時間と保圧時間である。インサート物が例えば1kg以上ある大きい場合には、それをインサートして金型を閉めてから直ちに射出操作に移るのではなく、約30~90秒間待機し、インサート物の温度が金型温度にほぼ等しくなった頃に、溶融した樹脂組成物の射出操作に入る必要がある。その理由は、金型温度の設定と同じ理由である。そして、その後の保圧時間は、上記「CM3506G50」では、急冷時の結晶化速度がやや遅くなるようであり、射出開始から保圧終了までで30秒程度の時間を設定した。またPEEK系樹脂使用時の射出温度は、370~380℃温度とやや高い。即ち、樹脂の融点として、340℃温度付近とされるPEEKであるが、射出温度は370℃温度以上にしないと、実験では流動性が悪かった。
[Injection joining operation and annealing treatment of the present invention]
The injection joining used in the present invention involves creating a mold for injection joining, inserting a surface-treated metal piece into the opened mold, closing the mold, and injecting the resin. is a known technique, not a special technique. If I dare say it, it is the mold temperature and the holding pressure time. The mold temperature should be within the temperature range recommended by the resin manufacturer, but basically it is better to set it higher. Specifically, when using the PPS-based resin "SGX120" and the polyamide-based resin "CM3506G50", the mold temperature is preferably around 140°C. Also, in the case of PAEK resin, the temperature was set at 180 to 190°C. The other is pre-injection time and holding pressure time. If the insert is large, for example, 1 kg or more, instead of inserting it and closing the mold and immediately moving to the injection operation, wait about 30 to 90 seconds so that the temperature of the insert is almost the same as the mold temperature. At about the same time, it is necessary to start the injection operation of the molten resin composition. The reason is the same as the setting of the mold temperature. As for the subsequent holding pressure time, the crystallization speed during rapid cooling seems to be slightly slow in the above "CM3506G50", so the time from the start of injection to the end of holding pressure was set to about 30 seconds. Also, the injection temperature when PEEK resin is used is 370 to 380° C., which is rather high. That is, PEEK is said to have a melting point of around 340° C., but the fluidity was poor in experiments unless the injection temperature was 370° C. or higher.

PPS、ポリアミド、そしてPBT等の高結晶性熱可塑性樹脂とされる樹脂群は、その融点よりも10℃程度の高温であれば、溶融粘度が十分に低くても射出成形も射出接合も円滑だった。PEEKは、そのメーカー等の仕様から融点より30℃ほども高温の射出温度を必要とするようであり、やはり識者が言うようにPEEKは非晶性樹脂と、結晶性樹脂の双方の物性持つ半結晶性樹脂と考えたほうが良いかもしれない。勿論、得た射出接合物はそのまま放冷して最終品とするのではなく、数時間以内に、温度170~190℃で、約1時間の加熱処理(アニール処理)をして、樹脂結晶化を十分に進めた上で射出接合工程の全工程を終える。前項では樹脂射出から保圧終了までの時間を30秒近くにして射出接合物を得るべきとしたが、アニール処理をするのはそのようにした後の射出接合物である。 Highly crystalline thermoplastic resins such as PPS, polyamide, and PBT can be injection molded and joined smoothly at a temperature of about 10°C above their melting points, even if their melt viscosities are sufficiently low. rice field. According to the manufacturer's specifications, PEEK requires an injection temperature that is about 30°C higher than its melting point. It may be better to think of it as a crystalline resin. Of course, the obtained injection-bonded product is not allowed to cool as it is, but is heat-treated (annealed) at a temperature of 170 to 190° C. for about 1 hour within several hours to crystallize the resin. is sufficiently advanced, all steps of the injection joining process are finished. In the previous section, it was stated that the injection-bonded product should be obtained by setting the time from resin injection to the end of holding pressure to approximately 30 seconds, but the injection-bonded product after such an annealing treatment is subjected to the annealing treatment.

[温度衝撃3千サイクル試験の実施方法とその評価法]
本発明の金属と樹脂の一体化複合体(以下、「一体化複合体」又は、「射出接合物」ともいう。)とその製造方法の温度衝撃試験である。本発明の非アルミ金属材と、前述したPPS系樹脂「SGX120」の複合体において、このせん断接合強度の目標値を約40~42MPaとし、僅かであるがSNMT処理法を採用することにより高く設定した。そして非アルミ金属材と、前述したポリアミド系樹脂「CM3506G50」、及び、非アルミ金属材とPEEK系樹脂による本格的な射出接合技術の獲得に成功した。これら射出接合物の使用用途の例として、自動車の部品用であり、航空機や移動型ロボット、そしてドローン等を加えた全移動機械の部材部品の素材とするためである。即ち、屋内外で使用する一般機械の筐体、部品等に使えるものであり、このための金属・樹脂の複合材を提供できる。但し、自動車、航空機等の移動機械については、温度衝撃についても考慮する必要があり、過酷な温度衝撃に耐える必要がある。自動車に関しては、その使用場所が、仮に極寒のアラスカ、シベリアの場合、冬季は-50℃があり、また灼熱の砂漠地では車の外板部では+80℃になり、又、米デスバレー等では自動車室内でも無人放置されれば太陽光で+100℃にもなることもある。航空機の場合は、成層圏の-50℃の環境もある一方で、熱帯空港で待機中の航空機主翼では+100℃もある。要するに、自動車で言えば、アラスカ、シベリア等でのエンジンルーム廻り部品やメインランプ近くの部品のように、50℃/+150℃の温度衝撃3千サイクル試験が必要な物があるし、自動車、航空機の車体や翼構造部のように-50℃/+80℃温度衝撃3千サイクル試験が必要な部品もある。
[Method of implementing temperature shock 3,000 cycle test and its evaluation method]
It is a temperature shock test of the integrated composite of metal and resin of the present invention (hereinafter also referred to as “integrated composite” or “injection bonded product”) and its manufacturing method. In the composite of the non-aluminum metal material of the present invention and the above-mentioned PPS resin "SGX120", the target value of the shear bonding strength is set to about 40 to 42 MPa, which is slightly higher by adopting the SNMT treatment method. did. We have succeeded in acquiring full-fledged injection joining technology using non-aluminum metal materials, the above-mentioned polyamide resin "CM3506G50", and non-aluminum metal materials and PEEK resin. Examples of applications of these injection-bonded products are automobile parts, and they are used as materials for parts of all mobile machines including aircraft, mobile robots, and drones. That is, it can be used for housings, parts, etc. of general machines used indoors and outdoors, and a composite material of metal and resin for this purpose can be provided. However, for mobile machines such as automobiles and airplanes, it is necessary to consider temperature shocks, and it is necessary to withstand severe temperature shocks. As for automobiles, if the place of use is extreme cold Alaska or Siberia, the temperature will be -50°C in winter, and in the scorching desert, the outer plate of the car will be +80°C. Even indoors, if it is left unattended, it can reach +100°C in sunlight. In the case of aircraft, there is the -50°C environment in the stratosphere, while the wing of an aircraft waiting at a tropical airport can be +100°C. In short, in terms of automobiles, there are parts that require temperature shock 3,000 cycles of 50°C/+150°C, such as parts around the engine room and parts near the main lamp in Alaska, Siberia, etc., and automobiles and aircraft. -50°C/+80°C temperature shock 3,000 cycle test is required for some parts such as the body and wing structure of

前述したPPS系樹脂「SGX120」と、前述したNMT2~8処理したAl合金との射出接合物、即ち、図1に示す試験片のPPS系樹脂とAl合金とによるせん断接合強度は、約40MPaの強度を示した射出接合物を得た。このPPS系樹脂とAl合金とによる射出接合物の形状は、どのように構造設計すれば、その形状の射出接合物が-50℃/+150℃の温度衝撃3千サイクル試験に十分耐えられるかについても指針が必要である。このための構造例を構想し、これを本発明者等が提案し開示した(特許文献5)。本発明の複合体は、その対象の射出接合物が特許文献5に記載したAl合金と、上記ポリアミド系樹脂「CM3506G50」との射出接合物とは異なる。本発明の複合体は、SNMT処理した非アルミ金属と、上記PPS系樹脂「SGX120」、又は、SNMT処理した非アルミ金属と上記ポリアミド系樹脂「CM3506G50」、又は、SNMT処理した非アルミ金属とPEEK系樹脂、からなる射出接合物であり、これらは使用した射出接合物における使用素材が違うだけのことである。要するに、特許文献5に記載したものと全く同じ樹脂構造で、これらの射出接合物についても-50℃/+150℃の温度衝撃3千サイクル試験に耐えられうる。従って、特許文献5に記載したその試験手法をそのまま以下に記述する。 The injection-bonded product of the above-described PPS-based resin “SGX120” and the above-described NMT2-8-treated Al alloy, that is, the shear bond strength of the test piece shown in FIG. An injection joint that exhibited strength was obtained. Regarding the shape of this injection-bonded product made of PPS-based resin and Al alloy, how should the structure be designed so that the injection-bonded product with that shape can sufficiently withstand the -50°C/+150°C temperature shock 3,000-cycle test? also need guidance. The present inventors proposed and disclosed a structural example for this purpose (Patent Document 5). In the composite of the present invention, the target injection-bonded product is different from the injection-bonded product of the Al alloy described in Patent Document 5 and the polyamide-based resin "CM3506G50". The composite of the present invention is composed of SNMT-treated non-aluminum metal and the PPS resin "SGX120", or SNMT-treated non-aluminum metal and the polyamide-based resin "CM3506G50", or SNMT-treated non-aluminum metal and PEEK. It is an injection-bonded product made of a system resin, and these are different only in the materials used in the injection-bonded products used. In short, with the resin structure exactly the same as that described in Patent Document 5, these injection-bonded products can also withstand the -50°C/+150°C temperature shock 3,000-cycle test. Therefore, the test method described in Patent Document 5 will be described as it is below.

[温度衝撃試験と樹脂部の肉厚、組成等]
先ず、その射出接合物の種類を決める。例えば、SNMT処理したSUS304鋼と、上記ポリアミド系樹脂「CM3506G50」との射出接合物が温度衝撃3千サイクル試験を行うものというように目的物を決める。そして図1に示す試験片の射出接合物を十数個作る。その1/3となる数個を、切削加工機械であるルーターを使って図4に示す形状、即ち、3mm厚あった樹脂部の接合面の上面部を削り取り、樹脂部厚さを2mm厚の物とする。そして、同じく元の図1に示す試験片物の1/3となる数個を、ルーターを使って図5に示す形状に、即ち3mm厚あった樹脂部の接着面の上面部を削り取り、樹脂部厚さを1mm厚の物にする。この作業で、温度衝撃サイクル試験にかける十数個の試験対を用意した。即ち、基本形状は図1に示す試験片であるが、接合面裏の樹脂部厚さが、3mm厚の物、2mm厚の物、1mm厚の物の3種に加工した。これらを全て-50℃/+150℃の温度衝撃3千サイクル試験にかけた。
[Temperature shock test and resin part thickness, composition, etc.]
First, the type of injection joint is determined. For example, the object is determined such that an injection joint of SNMT-treated SUS304 steel and the polyamide resin "CM3506G50" is subjected to a temperature shock 3,000 cycle test. Then, more than ten injection-bonded specimens of the test piece shown in FIG. 1 are made. Using a router, which is a cutting machine, several pieces, which are 1/3 of that, were cut into the shape shown in FIG. be a thing Then, using a router, several pieces, which are 1/3 of the original test piece shown in FIG. 1, were scraped into the shape shown in FIG. Make the part thickness 1 mm thick. In this work, more than a dozen test pairs were prepared for temperature shock cycle testing. That is, although the basic shape is the test piece shown in FIG. 1, the thickness of the resin portion on the back of the bonding surface was processed into three types of 3 mm thick, 2 mm thick, and 1 mm thick. All of them were subjected to a -50°C/+150°C temperature shock 3,000 cycle test.

3千サイクル試験終了後まで一挙に進め、試験機から出して1日程度放置し、それから試験対を全て破壊して検査する。先ずは樹脂部厚が3mmの物であり、これは図1に示す試験片の物であるから引張試験機で破断してせん断接合強度を測り、かつ、金属側の接合面跡を観察する。なお、予備知識として、この金属部の線膨張率は、Ti合金だと0.8×10-5-1、一般鋼板やフェライト系ステンレス鋼だと1.1×10-5-1、オーステナイト系ステンレス鋼で、約1.6×10-5-1程度である。これに接合する一方の樹脂部は、上記「SGX120」の場合、約4.0×10-5-1、上記ポリアミド系樹脂「CM3506G50」の場合、約2.5×10-5-1、PEEKとPEIの95:5の混合物の場合、約8.0×10-5-1程度である。それ故、本発明の複合体の組み合わせ物の全てで金属側は、(0.8~1.6)×10-5-1、樹脂側は(2.5~8.0)×10-5-1となり、樹脂側より金属側の方が常に線膨張率は小となる。この中で最も線膨張率差が小さいのは、上記ポリアミド系樹脂「CM3506G50」とSUS304鋼の複合体であり、約0.9×10-5-1となる。この線膨張率差であれば、3千サイクル試験後の樹脂厚3mmの図1に示す試験片は、最初のせん断接合強度が約50MPaあったとしても、金属側接合面跡の4隅、及び、4箇所ある辺の2か所では樹脂付着がなく接合力30MPa以下に失わると推測される。 After the 3,000-cycle test is completed, the test piece is removed from the testing machine and left for about one day. First, the resin part thickness is 3 mm, which is the test piece shown in FIG. As preliminary knowledge, the linear expansion coefficient of this metal part is 0.8×10 −5 K −1 for Ti alloy, 1.1×10 −5 K −1 for general steel plate and ferritic stainless steel, It is about 1.6×10 −5 K −1 for austenitic stainless steel. One resin part joined to this is about 4.0 × 10 -5 K -1 in the case of the above "SGX120", and about 2.5 × 10 -5 K -1 in the case of the above polyamide resin "CM3506G50". , about 8.0×10 −5 K −1 for a 95:5 mixture of PEEK and PEI. Therefore, the metal side is (0.8-1.6)×10 -5 K -1 and the resin side is (2.5-8.0)×10 -1 for all of the composite combinations of the present invention. 5 K −1 , and the coefficient of linear expansion is always smaller on the metal side than on the resin side. Among them, the composite of the polyamide resin "CM3506G50" and SUS304 steel has the smallest linear expansion coefficient difference, which is about 0.9×10 −5 K −1 . With this linear expansion coefficient difference, even if the test piece shown in FIG. It is assumed that there is no resin adhesion at two of the four sides, and the bonding strength is lost to 30 MPa or less.

本発明者等は、-50℃/+150℃の温度衝撃3千サイクル試験を多種類で行ったのは、前発明(特許文献5)以前のAl合金とPPS系樹脂、Al合金とポリアミド系樹脂の射出接合物に対してであり、そのときの接合面の温度衝撃による剥離状態を図6に示す。図6は、金属板がAl合金板で射出樹脂は上記PPS系樹脂「SGX120」使用した射出接合物であり、これを-50℃/+150℃の温度衝撃3千サイクル試験した後、この接合部の状態を図式化したものである。図5に示す試験片である接合部の樹脂厚が1mmの射出接合物は、接合面に剥がれを全く生じなかった(図6(b)参照)。図4に示す試験片の樹脂が肉厚2mmの射出接合物では、接合面の1隅又は2隅に剥がれが観察されたことを示している(図6(d)参照)。本発明(SNMT処理)でえられた射出接合物、即ち、図1,図4、図5とその樹脂厚3mm、2mm、1mmの物を、上記温度衝撃3千サイクル試験と同様に、その数個単位を同時に温度衝撃試験機に投入した。この長期の温度衝撃サイクル試験では、樹脂部の肉厚1mmの物は剥離した部分が僅かに観察された。樹脂厚3mmの物の接合面は、4隅端部から剥がれが生じて広がり、遂には中央に円形の接合面が残ることになる。 The inventors of the present invention conducted temperature shock 3,000 cycle tests at -50 ° C./+150 ° C. with many kinds of Al alloys and PPS resins before the previous invention (Patent Document 5), Al alloys and polyamide resins. FIG. 6 shows the state of delamination due to temperature impact on the joint surface at that time. Fig. 6 shows an injection-bonded product in which the metal plate is an Al alloy plate and the injection resin is the above-mentioned PPS resin "SGX120". This is a diagrammatic representation of the state of The test piece shown in FIG. 5, which is an injection-bonded product having a resin thickness of 1 mm at the bonding portion, did not cause peeling at all on the bonding surface (see FIG. 6(b)). It is shown that peeling was observed at one corner or two corners of the joint surface of the injection-bonded product with the resin of the test piece shown in FIG. 4 having a thickness of 2 mm (see FIG. 6(d)). 1, 4 and 5 and their resin thicknesses of 3 mm, 2 mm and 1 mm were subjected to the same temperature shock 3,000 cycle test. The pieces were put into the temperature shock tester at the same time. In this long-term temperature shock cycle test, a slight peeling portion was observed in the resin portion having a thickness of 1 mm. The joint surface of the resin with a thickness of 3 mm is peeled off from the four corners and spreads, and finally a circular joint surface remains in the center.

本発明では金属材にAl合金を使用していないので、金属材と樹脂材の各線膨張率の差異を見れば、前発明(特許文献13)で示したAl合金と上記ポリアミド系樹脂「CM3506G0」による射出接合物よりも線膨張率差はかなり大きい。この試験結果から、長期間剥離しない本発明の射出接合物は、金属と接合する樹脂部の肉厚1mm以下の0.5~0.8mm厚の物が適当であると推定できる。これらの複合体の温度衝撃3千サイクル試験の結果は、射出接合力の高い物が必ずしも温度衝撃にも強いわけではない。一方、樹脂材自身の線膨張率と金属材の線膨張率の差異が大きいほど、接合面が疲労破壊により早期に剥がれが生じ易いのは材料力学的に当然である。そして、その対策として金属材の伸縮に追従するように、樹脂部を軟質にすることであり、樹脂部が硬質だと早期に剥がれが生じる。即ち、材料力学的に樹脂部の軟質性が高いと、金属材の伸縮に追従する樹脂部の伸び縮みが容易であり温度衝撃に強いと言える。更に言えることは、射出接合力のせん断接合強度は、実験では上記PPS系樹脂「SGX120」を使用したときは、約42MPaであるが、上記ポリアミド系樹脂「CM3506G50」を使用したときは、約64MPaになることである。 Since the Al alloy is not used as the metal material in the present invention, the difference in coefficient of linear expansion between the metal material and the resin material shows that the Al alloy shown in the previous invention (Patent Document 13) and the polyamide resin "CM3506G0" The linear expansion coefficient difference is considerably larger than that of the injection-bonded product. From this test result, it can be estimated that the injection-bonded article of the present invention, which does not peel off for a long period of time, has a thickness of 0.5 to 0.8 mm, which is 1 mm or less for the resin portion to be bonded to the metal. The results of the temperature shock 3,000 cycle test of these composites show that those with high injection joining strength are not necessarily resistant to temperature shock. On the other hand, the greater the difference between the coefficient of linear expansion of the resin material itself and the coefficient of linear expansion of the metal material, the more likely it is that the joint surface will peel off at an early stage due to fatigue fracture. As a countermeasure, the resin portion should be made soft so as to follow the expansion and contraction of the metal material. If the resin portion is hard, peeling will occur early. That is, it can be said that when the resin portion is highly flexible in material mechanics, the resin portion easily expands and contracts following the expansion and contraction of the metal material, and is resistant to temperature impact. Furthermore, it can be said that the shear bonding strength of the injection bonding force is about 42 MPa in the experiment when the above PPS resin "SGX120" is used, but when the above polyamide resin "CM3506G50" is used, it is about 64 MPa. is to become

この40MPaと64MPaの違いは、樹脂組成物中に含まれるGF含量に関係していることで、前者のGF含量は20%、後者では33.3%であり、その比率の1:1.6であること、そしてそのせん断接合強度は前者で42MPaであり、後者で64MPaであり、その比は1:1.5である。両比はよく符合しており、GF含量が多いと正に樹脂は強く丈夫になり射出接合力は上がる。だが接合部が強く丈夫になることは、材料力学的には素材が硬質になることであるが、温度衝撃試験では熱変形が最も大きい端部が剥がれ易くなる。即ち、射出接合力の強さがGF含量に依存するのであれば、その樹脂はより硬質になるので効果は相殺されあまり役に立たないと言える。それ故に温度衝撃試験に強いか弱いかは、殆ど金属材と樹脂材での線膨張率差が影響するのである。線膨張率差が明確に大きい本発明品の場合、図6で示したような剥離にはならず、より大きな変化をもたらすはずである。例えば、金属材に線膨張係数が低いTi合金を用いた場合、樹脂材に何を使用しても線膨張率差は大きい。このために、図5に示したように樹脂厚が1mmであっても、温度衝撃3千サイクル試験をすると、接合部の4隅の端部に剥がれが生じる。この樹脂厚を仮に、0.8mmにしても問題解消にはならぬかもしれない。但し、そこで、樹脂厚0.8mm品を作り、実証試験する以外確認する方法はない。 The difference between 40 MPa and 64 MPa is related to the GF content contained in the resin composition, the former having a GF content of 20% and the latter having a GF content of 33.3%. and its shear bond strength is 42 MPa for the former and 64 MPa for the latter, with a ratio of 1:1.5. Both ratios are in good agreement, and the higher the GF content, the stronger and tougher the resin, and the higher the injection joining strength. However, making the joint stronger and tougher means that the material becomes harder in terms of material mechanics, but in the temperature shock test, the edge with the greatest thermal deformation becomes easy to peel off. That is, if the strength of the injection joint strength depends on the GF content, the resin will become harder, so the effect will be offset and not very useful. Therefore, whether a material is strong or weak against a temperature shock test is mostly affected by the difference in coefficient of linear expansion between the metal material and the resin material. In the case of the product of the present invention, which clearly has a large difference in coefficient of linear expansion, peeling as shown in FIG. 6 should not occur, and a greater change should occur. For example, when a Ti alloy having a low linear expansion coefficient is used as the metal material, the linear expansion coefficient difference is large regardless of what resin material is used. For this reason, even if the resin thickness is 1 mm as shown in FIG. 5, peeling occurs at the ends of the four corners of the joint when subjected to a temperature shock test of 3,000 cycles. Even if this resin thickness is set to 0.8 mm, the problem may not be solved. However, there is no way to confirm this except by making a product with a resin thickness of 0.8 mm and conducting a verification test.

即ち、本発明の複合体の組み合わせにおいて、金属側(チタン材、Ti合金、一般鋼、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼)は、(0.8~1.6)×10-5-1であり、樹脂側は、(2.5~5)×10-5-1であり、樹脂側と金属側の線膨張率差は樹脂に何を使用しようと大きい。特に、金属材としてTi合金、一般鋼材、そしてフェライト系ステンレス鋼を使用した場合には、線膨張率の差が大きくなる。-50℃/+150℃の温度衝撃3千サイクル試験を行った場合に、図5に示す形状の試験片で、樹脂厚1mm厚の射出接合物でも4隅で剥がれが出そうになった。この場合、前記したように厚さ0.8mmの樹脂厚物まで作って確かめる理由は、射出成形で広いシート状物を量産製造するその限度が、肉厚が0.8mm程度というのが射出成形技術者の常識であるからである。肉厚が0.5mm厚のシート状物を作ること自体は、射出成形として出来ないことではない。しかし、射出接合用金型としては、溶融樹脂の流れの末端部での射出樹脂温が低くなる可能性があって(末端部で射出接合力が低くなる可能性もある。)現実的でなく、その樹脂厚を0.8mm限度としていることによる。 That is, in the combination of the composite of the present invention, the metal side (titanium material, Ti alloy, general steel, ferritic stainless steel, austenitic stainless steel) is (0.8 to 1.6) × 10 -5 K - 1 , and the resin side is (2.5 to 5)×10 −5 K −1 , and the difference in linear expansion coefficient between the resin side and the metal side is large regardless of what resin is used. In particular, when a Ti alloy, general steel, or ferritic stainless steel is used as the metal material, the difference in coefficient of linear expansion increases. When a temperature shock test of -50°C/+150°C was conducted for 3,000 cycles, the test piece having the shape shown in FIG. In this case, as mentioned above, the reason for making and checking resin thickness up to 0.8 mm is that the limit for mass production of wide sheet-like products by injection molding is about 0.8 mm in thickness. This is because it is the common sense of engineers. Making a sheet-like material with a thickness of 0.5 mm itself is not impossible with injection molding. However, as a mold for injection joining, there is a possibility that the injection resin temperature will be low at the end of the molten resin flow (the injection joining force may be low at the end), which is not realistic. , because the resin thickness is limited to 0.8 mm.

もう一つの理由は、前記温度衝撃サイクル試験の説明したように、樹脂厚1mmまで下げても3千サイクル試験での結果が良くないので、これを延長した樹脂厚を0.8mmに薄くしても温度衝撃に耐えることはできないと判断した。但し、この実験において、-50℃/+150℃での温度衝撃3千サイクル試験が前提での判断であり、実用的な実験条件としては厳し過ぎたかもしれない。この複合体の使用分野が、例えば自動車等のエンジンルーム、発光器等の高温を発する機器から離れた位置に置いてもよいものであれば問題は発生しない。自然環境が厳しいだけであれば、例え自動車に使用するものであっても-50℃/+80℃の温度衝撃で、3千時間であっても耐えられる。要は、その複合体が使用される用途により、その要求される仕様に耐えられる試験を行えば良い。 Another reason is that, as explained in the temperature shock cycle test, even if the resin thickness is reduced to 1 mm, the results in the 3,000 cycle test are not good. determined that it could not withstand the temperature shock. However, in this experiment, the judgment was based on the premise of a temperature shock test of 3,000 cycles at -50°C/+150°C, which may have been too severe for practical experimental conditions. If the field of use of this composite is, for example, the engine room of an automobile or the like, or it can be placed away from equipment that emits high temperatures, such as a light-emitting device, no problem will arise. If the natural environment is only severe, even if it is used in automobiles, it can withstand temperature shocks of -50°C/+80°C for 3,000 hours. In short, it is sufficient to conduct a test that can withstand the required specifications depending on the application in which the composite is used.

一方、金属・樹脂間の線膨張率が大きく相違する場合であっても、自然環境下による夏冬にかけての温度差が大きな場合、接合力で一体化している射出接合物(複合体)の接合面に、亀裂や剥がれが生じるということには必ずしもならない。即ち、緩やかな温度変化は、接合面に大きな負荷は発生しないか又は低い。しかしながら、人工的な負荷である温度衝撃試験では、その温度変化速度が速く、かつ、繰り返されるのでクリープ応力が生じない、又は低い環境なのである。この温度衝撃試験において、金属・樹脂間の接合面付近で、内部応力がゼロとなる温度範囲があるのか、否かを考察する。本来、温度衝撃数千サイクル試験を開始した数日後における、金属と樹脂の接合面部の付近で、生じる内部応力がゼロになる一瞬はどのような時なのかである。クリープ試験前で言えば、温度衝撃試験開始前の室温ということになるが、本発明者等が使用した温度衝撃サイクル試験機では、高温室、低温室内において、何れかに試験片が収納されたカゴがその室温に晒されて、留まっている時間は30分間である。 On the other hand, even if there is a large difference in the coefficient of linear expansion between metal and resin, if there is a large temperature difference between summer and winter due to the natural environment, it is possible to bond injection-bonded objects (composites) that are unified by bonding force. It does not necessarily mean that cracks or peeling occurs on the surface. That is, a moderate temperature change does not generate a large load or a low load on the joint surface. However, in the temperature shock test, which is an artificial load, the temperature change rate is fast and repeated, so the environment is such that creep stress does not occur or is low. In this temperature shock test, it is considered whether or not there is a temperature range in which the internal stress is zero near the joint surface between metal and resin. Essentially, what is the moment when the internal stress generated near the joint surface of metal and resin becomes zero several days after the start of the temperature shock several thousand cycle test? Before the creep test, it means the room temperature before the start of the temperature shock test. The time the cage remains exposed to its room temperature is 30 minutes.

そして、高温室、低温室の区画された室間を移動するとき、一旦、仕切りがなされた別室に入る。この別室内において、所定の高温、低温に収束する時間が約5分という繰り返しであり、結局、温度衝撃試験の1サイクルは約70分となる。温度衝撃試験が開始された後は、推定で温度変化の中心温度、例えば、-50℃/+150℃の温度衝撃試験なら+50℃あたり、-50℃/+80℃の温度衝撃試験なら+15℃付近が、入れた射出接合物の内部応力がゼロになる温度と思われる。この中心温度からの振れは前者で100℃、後者で65℃であるから、その温度変化は前者100%に対して65%であり、35%も減る。この後者条件(35%減の方のこと)なら、全ての本発明品の組み合わせ射出接合物(複合体)でも、樹脂厚を0.8~1.0mm厚にすれば接合面剥がれは生じないのではないと推定できる。何れにしても温度衝撃3千サイクルの上記した実験を行えば明確に分かる。 Then, when moving between the compartments of the high-temperature room and the low-temperature room, they once enter a separate room with a partition. In this separate room, the time required to converge to the predetermined high temperature and low temperature is repeated for about 5 minutes, and one cycle of the temperature shock test is about 70 minutes after all. After the temperature shock test starts, it is estimated that the center temperature of the temperature change, for example, around +50°C for the temperature shock test of -50°C/+150°C, and around +15°C for the temperature shock test of -50°C/+80°C. , is considered to be the temperature at which the internal stress of the injected joint is zero. Since the deviation from the central temperature is 100° C. for the former and 65° C. for the latter, the temperature change is 65% against the former 100%, which is a reduction of 35%. Under this latter condition (reduction of 35%), peeling of the joint surface does not occur if the resin thickness is set to 0.8 to 1.0 mm even for all combinations of injection-bonded products (composites) of the products of the present invention. It can be assumed that the In any case, it can be clearly seen by performing the above-described experiment of 3,000 cycles of temperature shock.

以上のような考察から、何れにしても、実際に求められる最高温度と最低温度を適切に設定して、温度衝撃試験3千サイクル試験をして、図5に示した試験片の樹脂厚1.0mmの射出接合物の接合面で、全く剥がれがないのであれば、樹脂厚1.0mmの射出接合物の接合面積は、無限大の大きさの物がその温度衝撃3千サイクル試験に耐え得ることを示す。樹脂厚1.0mm厚とした図5に示す試験片が、その温度衝撃3千サイクル試験に耐えられれば良いと判断した。その射出接合物(複合体)を、後述する図7、図8、及び図9で示した形状を採用した場合、同じ耐久性があると判断した。何れの形状、積層でも接合部の樹脂の肉厚を約1.0mm以下にする必要が鍵である。それ故に、樹脂厚0.8mmが限度であるときは、図7、8、及び9のような接合部の構造としたものとなる。それでも、樹脂厚が0.8mm以下でないと、温度衝撃3千サイクルに耐えられないと判断される場合には、温度衝撃試験での温度幅を下げた領域で使用すると良い。その条件の探索には、図5に示す試験片を温度衝撃試験で試験すると良い。他の試験方法も考えられるが、本発明の要旨ではないので言及しない。 From the above considerations, in any case, the maximum temperature and minimum temperature actually required are set appropriately, and the temperature shock test is performed for 3,000 cycles, and the resin thickness of the test piece shown in FIG. If there is no peeling on the joint surface of the injection joint of 0.0 mm, the joint area of the injection joint with a resin thickness of 1.0 mm can withstand the temperature shock 3,000 cycle test. Show that you get It was determined that the test piece shown in FIG. 5 with a resin thickness of 1.0 mm should be able to withstand the temperature shock 3,000 cycle test. It was determined that the same durability would be obtained if the shapes shown in later-described FIGS. Regardless of the shape and lamination, the key is that the thickness of the resin at the joint should be about 1.0 mm or less. Therefore, when the thickness of the resin is limited to 0.8 mm, the structures of the joints are as shown in FIGS. Even so, if it is determined that the resin cannot withstand 3,000 cycles of temperature shock unless the resin thickness is 0.8 mm or less, it is recommended to use it in a range in which the temperature range in the temperature shock test is lowered. In order to search for the conditions, it is preferable to test the test piece shown in FIG. 5 by a temperature shock test. Other test methods are also conceivable, but are not mentioned as they are not the subject of the present invention.

他方、温度衝撃に耐える樹脂材を改良する場合、前述したポリアミド系樹脂「CM3506G50」を使用する場合、そのGF含量を33.3%重量%品でなく、GF含量を25重量%、又は11重量%と下げる手法がある。図1に示す試験片を使用して、せん断接合強度を測定すると元の50~65MPaから40MPa、20MPa等の値に減るかもしれないが、例えば樹脂厚1.0mmの図8に示す形状物(積層体)にして、この形状物の左右両端を切断して、左右の金属片同士を引張り破断させて、せん断接合強度を測定すると、GF含量の低い上記ポリアミド系樹脂「CM3506G11」を使用したものでも、45MPa以上の強いせん断接合強度となる。この接合構造を採用すれば、上記「CM3506G50」に限ることなく、軟質の樹脂材を採用できる。図5、図7、図8、及び図9に示す形状物を採用すれば、温度衝撃3千サイクル試験に耐えることができる。 On the other hand, when improving the resin material resistant to temperature shock, when using the above-mentioned polyamide resin "CM3506G50", the GF content is not 33.3% by weight, but the GF content is 25% by weight or 11% by weight. There is a method to lower the percentage. When the test piece shown in FIG. 1 is used to measure the shear bond strength, it may decrease from the original 50 to 65 MPa to 40 MPa, 20 MPa, etc., but for example, the shape shown in FIG. 8 with a resin thickness of 1.0 mm ( Laminated product), the left and right ends of this shape were cut, the left and right metal pieces were pulled apart, and the shear bond strength was measured. However, it has a strong shear bonding strength of 45 MPa or more. If this joining structure is adopted, a soft resin material can be adopted without being limited to the above "CM3506G50". If the shapes shown in FIGS. 5, 7, 8, and 9 are adopted, the temperature shock 3,000 cycle test can be withstood.

[せん断接合強度の測定]
ISO19095には、射出接合物における金属部と樹脂成形物間のせん断接合強度(tensile lap-shear strength)、引張り接合強度(tensile strength)の測定法が規定されており、これによると図1に示す試験片を引張り試験機で引張り破断して、そのせん断接合強度を測定する手法、及び、図2に示す形状の試験片を引張り試験機で引張り破断させ、その引張り接合強度を測定する手法が規定されている。このせん断接合強度の測定法は、本発明者等が特許文献6~10で使用したものであり、一方の引張り接合強度の測定法は本発明者等が種々経過の上で2015年頃から使用し始めたものである。何れも従来の接着力や接合力の測定法とされたJISK6849、JISK6850に規定された手法では測定できず、新たに新規定を出願人(大成プラス株式会社)等が提案し、日本政府機関での検討、そしてISO関係の各国政府の関係機関の検討を経てISO19095として認められたものである。
[Measurement of shear bond strength]
ISO19095 defines methods for measuring the shear bond strength (tensile lap-shear strength) and tensile bond strength (tensile strength) between the metal part and the resin molding in injection-bonded products. A method of tensile breaking a test piece with a tensile tester and measuring the shear bond strength, and a method of tensile breaking a test piece with the shape shown in Fig. 2 with a tensile tester and measuring the tensile bond strength are stipulated. It is This shear bonding strength measurement method is the one used by the present inventors in Patent Documents 6 to 10, while the tensile bonding strength measurement method has been used by the present inventors since around 2015 after various developments. It started. None of them can be measured by the methods stipulated in JISK6849 and JISK6850, which are conventional methods for measuring adhesive strength and bonding strength. , and ISO-related national governmental organizations.

本発明の金属と樹脂の一体化複合体は、鋼、ステンレス鋼、チタン材等の非アルミ金属材と結晶性熱可塑性樹脂とのせん断接合強度が、約39MPa以上に強固に接合できた。また、本発明の金属と樹脂の一体化複合体の製造方法において、非アルミ金属材と結晶性熱可塑性樹脂とを射出接合するとき、接合強度を高めるために、金属材の接合面に吸着させることができる最適な化合物を見出した。更に、本発明の一体化複合体は、-50℃/+150℃の温度衝撃3千サイクル試験にも耐え得るものができた。 In the integrated composite of metal and resin of the present invention, the shear bonding strength between the non-aluminum metal material such as steel, stainless steel and titanium material and the crystalline thermoplastic resin could be firmly bonded to about 39 MPa or more. In addition, in the method for producing an integrated composite of metal and resin of the present invention, when the non-aluminum metal material and the crystalline thermoplastic resin are injection-joined, the non-aluminum metal material and the crystalline thermoplastic resin are adsorbed to the joint surface of the metal material in order to increase the joint strength. We have found the optimal compound that can Furthermore, the integrated composite of the present invention was able to withstand a temperature shock test of -50°C/+150°C for 3,000 cycles.

図1は、ISO19095に規定された金属と樹脂の一体化複合体における金属部と樹脂部間のせん断接合強度を測定する試験片の外観図である。FIG. 1 is an external view of a test piece for measuring shear bonding strength between a metal part and a resin part in an integrated composite of metal and resin specified in ISO19095. 図2は、ISO19095に規定された金属と樹脂の一体化複合体における金属部と樹脂部間の引張り接合強度を測定する試験片の外観図である。FIG. 2 is an external view of a test piece for measuring the tensile joint strength between a metal part and a resin part in an integrated composite of metal and resin specified in ISO19095. 図3は、ISO19095に規定された金属と樹脂との一体化複合体のせん断接合強度を測定するときに使用する補助治具の外観図である。FIG. 3 is an external view of an auxiliary jig used when measuring the shear bonding strength of an integrated composite of metal and resin specified in ISO19095. 図4は、図1に示した試験片の樹脂部の一部を削り取り、その接合部の肉厚を2.0mmとしたものの外観図である。FIG. 4 is an external view of the test piece shown in FIG. 1, in which a portion of the resin portion is scraped off and the joint portion has a thickness of 2.0 mm. 図5は、図1の試験片の接合部の樹脂部分の一部を削り取り、その肉厚さを1.0mmとしたものであり、その外観図である。FIG. 5 is an external view of the test piece of FIG. 1, in which a portion of the resin portion of the joint portion is scraped off to have a thickness of 1.0 mm. 図6は、NMT2処理したA5052Al合金片とPPS系樹脂「SGX120」による射出接合物から作成した図4、図5に示した試験片を、-50℃/+150℃の温度衝撃3000サイクル試験に投入した結果を示す 接合面の変化を示す図である。図6(a)は接合の肉厚が1.0mmであり、図6(b)は接合の肉厚が2.0mmである。Fig. 6 shows the test specimens shown in Figs. 4 and 5, which were prepared from an A5052Al alloy piece treated with NMT2 and an injection-bonded product made of PPS resin "SGX120", and subjected to a temperature shock test of -50°C/+150°C for 3000 cycles. FIG. 10 is a diagram showing a change in the joint surface as a result. In FIG. 6(a), the joint thickness is 1.0 mm, and in FIG. 6(b), the joint thickness is 2.0 mm. 図7は、本発明による一体化複合体の形状例の一つであり、剛性が高い金属厚板上に、大きなボスが立っている形状例である。図7(a)は平面図であり、図7(b)は正面図である。FIG. 7 shows one example of the shape of the integrated composite according to the present invention, in which a large boss stands on a thick metal plate with high rigidity. FIG. 7(a) is a plan view, and FIG. 7(b) is a front view. 図8は、本発明による一体化複合体の形状例の一つであり、2枚の金属板の間に樹脂部が接合させて積層した一体化複合体の例である。FIG. 8 shows one example of the shape of the integrated composite body according to the present invention, which is an example of an integrated composite body in which the resin portion is bonded between two metal plates and laminated. 図9は、図8の一体化複合体において、金属板間に熱伝導用のAl合金製のピンを配置した例である。FIG. 9 shows an example in which Al alloy pins for heat conduction are arranged between the metal plates in the integrated composite of FIG.

以下、本発明の実施の形態を具体的な射出接合物(金属と樹脂の一体化複合体)で説明する。図7は、本発明による射出接合物の形状例の一つであり、剛性が高い金属厚板上に、大きなボスが立っている形状の基本形となるものである。図7(a)は平面図であり、図7(b)は正面図である。射出接合物1は、非アルミ金属板製の射出路用孔付きの金属矩形板2 、及びこれと一体に接合された樹脂成形物の本体部3からなる。金属板2は、縦横100mmで厚さ3mmである。樹脂本体3は、中心が円柱部4であり、この外周面に等角度に4つのリブ5が円柱部4に沿って、立設されている。樹脂本体3の外周は、環状に厚さ2mmで、50mm矩形の中心台座6で支承されている。この中心台座6の外周を取り巻くように環状に、外周台座7が形成されている。外周台座7は、幅10mm、厚さ1mmで70mmの矩形に形成されている。即ち、金属と樹脂からなる射出接合物1は、樹脂中心部4、5と金属矩形板2との接合力を維持するために、中心台座6及びこれより薄肉の外周台座7が形成されている。この射出接合物1は、射出成形金型を製作し、この射出成形金型に化成処理した金属矩形板2をインサートして、前述したPPS系組成物「SGX120」を射出して作成した。 Hereinafter, embodiments of the present invention will be described using a specific injection-bonded article (an integrated composite of metal and resin). FIG. 7 shows one example of the shape of the injection-bonded product according to the present invention, which is a basic shape in which a large boss stands on a thick metal plate with high rigidity. FIG. 7(a) is a plan view, and FIG. 7(b) is a front view. The injection joint 1 consists of a metal rectangular plate 2 made of a non-aluminum metal plate and having an injection path hole, and a main body 3 of a resin molding integrally joined thereto. The metal plate 2 has a length and width of 100 mm and a thickness of 3 mm. The resin body 3 has a cylindrical portion 4 at its center, and four ribs 5 are erected along the cylindrical portion 4 at equal angles on the outer peripheral surface of the resin body 3 . The outer periphery of the resin body 3 is annularly supported by a central pedestal 6 having a thickness of 2 mm and a rectangular shape of 50 mm. A peripheral pedestal 7 is annularly formed so as to surround the outer circumference of the central pedestal 6 . The peripheral pedestal 7 is formed in a rectangular shape with a width of 10 mm, a thickness of 1 mm and a thickness of 70 mm. That is, the injection bonded product 1 made of metal and resin is formed with a central pedestal 6 and a thinner peripheral pedestal 7 in order to maintain the bonding strength between the resin central portions 4, 5 and the metal rectangular plate 2. . This injection joint 1 was prepared by manufacturing an injection mold, inserting a chemically treated rectangular metal plate 2 into this injection mold, and injecting the aforementioned PPS-based composition "SGX120".

金属矩形板2をインサートする前に、本発明でいう前述のSNMT処理されたものである。金属矩形板2上の円柱部4は、外周を薄肉の外周台座7、中心部を中心台座6で囲まれているので、熱膨張の差も吸収できる。ここで最も重要な数値は外周台座の厚さである1mmであり、これが図5で示す試験片の3千サイクル温度衝撃試験で、図6に示したように樹脂部の肉厚1mmで剥がれの生じない結果を、上記の薄肉の外周台座7薄肉の外周台座7としたものである。従って、前もって行う温度衝撃試験での結果が樹脂部厚1mm以下を求めるものであれば、図7で求める外周台座の肉厚は0.8~1.0mmとする一方で、且つ、温度衝撃試験の高温と低温間の上下の温度差を縮小して、図5の試験片又は樹脂厚0.8mmとした図5のような類似物を作成して、新温度条件とした3千サイクル温度衝撃試験を行って、可能なことを確認することから始めると良い。 Before the metal rectangular plate 2 is inserted, it is subjected to the aforementioned SNMT treatment according to the present invention. Since the cylindrical portion 4 on the metal rectangular plate 2 is surrounded by the thin outer peripheral pedestal 7 and the central pedestal 6 at the central portion, the difference in thermal expansion can be absorbed. The most important value here is the thickness of the outer peripheral base of 1 mm. The results that do not occur are referred to as the thin outer peripheral pedestal 7 described above. Therefore, if the result of the temperature shock test performed in advance is to obtain a thickness of the resin portion of 1 mm or less, the thickness of the outer peripheral pedestal obtained in FIG. By reducing the upper and lower temperature difference between the high temperature and the low temperature, the test piece of FIG. 5 or a similar one with a resin thickness of 0.8 mm as shown in FIG. A good place to start is to test and see what is possible.

図8は、本発明による射出接合物である積層体の例である。二枚のSUS304鋼板を、ポリアミド系樹脂で射出接合して接合した例である。この積層体の製造は、二枚のSNMT処理されたSUS304鋼板を射出成形金型に1.0mmの間隔を置いて、インサートし、この隙間にポリアミド系樹脂を射出し接合するものである。本例では、ポリアミド系樹脂として、前述した「CM3506G50」を使用した。図9は、図8の積層体と同様に二枚のSUS304鋼板をポリアミド系樹脂で射出接合した例である。二枚のSUS304鋼板に熱伝達、又は輻射熱により、温度差が生じるような部品、筐体の場合に用いた例である。二枚のSUS304鋼板の間を、Al合金製のピンで連結した射出接合物の例である。高い温度に加熱されたSUS304鋼板の熱が、低い温度のSUS304鋼板にAl合金製のピンを通って熱伝導し、平均化されるので、接合部の熱膨張による負荷を少なくすることができる。 FIG. 8 is an example of a laminate that is an injection-bonded article according to the present invention. This is an example in which two SUS304 steel plates are joined by injection joining with a polyamide resin. This laminate is manufactured by inserting two SNMT-treated SUS304 steel plates into an injection mold with a gap of 1.0 mm, and injecting a polyamide resin into the gap to join them. In this example, the aforementioned "CM3506G50" was used as the polyamide resin. FIG. 9 shows an example in which two SUS304 steel plates are injection-joined with a polyamide-based resin in the same manner as the laminate in FIG. This is an example of use in the case of a part or case where a temperature difference occurs between two SUS304 steel plates due to heat transfer or radiant heat. This is an example of an injection-bonded product in which two SUS304 steel plates are connected with an Al alloy pin. The heat of the SUS304 steel plate heated to a high temperature is conducted to the SUS304 steel plate of a low temperature through the Al alloy pin and is averaged, so that the load due to the thermal expansion of the joint can be reduced.

以下、本発明の実施例を実験例として詳記し、実験例より得られた一体化複合体(試験片)の評価・測定方法を示す。
(a)接合強度の測定
本発明では、引張り試験機で射出接合物(図1、図2)を引張り破断するときの破断力を、接合強度(せん断接合強度、引張り接合強度)の指標とした。但し、せん断接合強度の測定では図3に示した補助治具を使用した。使用した引張り試験機は、「AG-500N/1kN(株式会社島津製作所(本社:日本国京都府)製)」を使用し、引っ張り速度10mm/分で測定した。この測定法はISO19095に依る。
EXAMPLES Examples of the present invention will be described in detail below as experimental examples, and evaluation and measurement methods for integrated composites (test pieces) obtained from experimental examples will be described.
(a) Measurement of bonding strength In the present invention, the breaking strength when the injection-bonded product (FIGS. 1 and 2) is tensile-broken with a tensile tester is used as an index of bonding strength (shear bonding strength, tensile bonding strength). . However, the auxiliary jig shown in FIG. 3 was used in the measurement of the shear bond strength. As the tensile tester used, "AG-500N/1kN (manufactured by Shimadzu Corporation (head office: Kyoto, Japan))" was used, and the tensile strength was measured at a tensile speed of 10 mm/min. This measurement method is based on ISO19095.

[実験例A]金属材の表面処理方法
[実験例A1-1]ショットブラストしたSPCC(冷間圧延鋼板)の新NMT処理(参考例)
市販の1.6mm厚SPCC板から、18mm×45mm×1.6mm厚の長方形片を機械加工により多数作成した。これらSPCC片の端部に、白色アルミナ紛(「WA」の150番)によりショットブラストで、粗面化操作を行った。次に超音波振動端付きの水槽に、アルミ用脱脂剤「NA-6(メルテックス株式会社(本社:日本国東京都)製)」10.0%を含む水溶液を60℃とし、これら鋼片を5分間浸漬した後、これを公共水道水(群馬県太田市)で水洗(以下、水道水という。)した。次に別の槽に、60℃とした5.0%濃度の硫酸水溶液を用意し、これに前記鋼片を4分浸漬した後、これを純粋で水洗(以下、水洗という。)した。次に別の槽に、65℃とした5%濃度の1水素2弗化アンモン水溶液を用意し、これに前記鋼片を25分浸漬した後、水洗した。次に別の槽に、1.0%濃度のアンモニア水を用意し、これに前記鋼片を1分間浸漬した後、水洗した。次に別の槽に、45℃の2.0%濃度の過マンガン酸カリと1.0%濃度の酢酸と0.5%濃度の水和酢酸ソーダを含む水溶液を用意し、これに前記鋼片を20分浸漬した後、これを水洗した。次に超音波発振端をセットした水洗槽に、7分浸漬して水洗した。これら鋼片を80℃とした温風乾燥機に15分置いて乾燥し、アルミホイルで包んで保管した。
[Experimental example A] Metal material surface treatment method [Experimental example A1-1] New NMT treatment of shot-blasted SPCC (cold-rolled steel plate) (reference example)
A number of 18 mm x 45 mm x 1.6 mm thick rectangular pieces were machined from a commercially available 1.6 mm thick SPCC plate. The ends of these SPCC pieces were roughened by shot blasting with white alumina powder ("WA"#150). Next, an aqueous solution containing 10.0% aluminum degreasing agent "NA-6 (manufactured by Meltex Co., Ltd. (head office: Tokyo, Japan)" is placed in a water tank equipped with an ultrasonic vibrating tip and heated to 60°C. was immersed for 5 minutes, and then washed with public tap water (Ota City, Gunma Prefecture) (hereinafter referred to as tap water). Next, a 5.0% sulfuric acid aqueous solution adjusted to 60° C. was prepared in another tank, and after the steel slab was immersed in this for 4 minutes, it was washed with pure water (hereinafter referred to as water washing). Next, an aqueous solution of ammonium monohydrogen difluoride with a concentration of 5% at 65° C. was prepared in another tank, and the steel slabs were immersed in this for 25 minutes and then washed with water. Next, 1.0% concentration ammonia water was prepared in another tank, and the steel pieces were immersed in this for 1 minute and then washed with water. Next, in another tank, an aqueous solution containing 2.0% potassium permanganate, 1.0% acetic acid, and 0.5% sodium acetate hydrate at 45°C was prepared. After soaking the pieces for 20 minutes, they were washed with water. Next, it was immersed for 7 minutes in a water washing bath in which an ultrasonic oscillation end was set and washed with water. These steel slabs were placed in a hot air dryer set at 80° C. for 15 minutes to dry, wrapped in aluminum foil and stored.

[実験例A1-2]ショットブラストしたSPCCのSNMT処理
市販の1.6mm厚SPCC板から、18mm×45mm×1.6mm厚の長方形片を機械加工で多数作成した。これら鋼片の端部に、白色アルミナ紛(「WA」の150番)使用したショットブラスト機で粗面化操作を行った。次に超音波振動端付きの水槽に、上記アルミ用脱脂剤「NA-6」10.0%を含む水溶液を60℃とし、これら鋼片を5分間浸漬した後、これを水道水で水洗した。次に別の槽に、65℃とした5.0%濃度の酸性弗化アンモン水溶液を用意し、これに前記鋼片を1分浸漬した後、水洗した。次に別の槽に、1.0%濃度のアンモニア水を用意し、これに前記鋼片を1分間浸漬した後、水洗した。次に別の槽に、45℃の2.0%濃度の過マンガン酸カリと1.0%濃度の酢酸と0.5%濃度の水和酢酸ソーダを含む水溶液を用意し、これに前記鋼片を5分浸漬した後、これを水洗した。次に超音波発振端をセットした水洗槽に、7分浸漬して水洗した。次に別の槽に、1.0%濃度の過酸化水素水を用意し、前記鋼片を0.5分浸漬した後、これを水洗した。次に別の槽に、40℃とし0.2%濃度にしたトリエタノールアミン水溶液を用意し、前記鋼片を30分浸漬し、次に別の槽に、用意していたトリエタノールアミンを25PPM含む超希釈水に、前記鋼片を入れて上下させて洗浄した。超希釈水槽から引き上げて簡単な水切り操作を加え、67℃とした温風乾燥機に15分置いて乾燥し、アルミホイルで包んで保管した。
[Experimental Example A1-2] SNMT treatment of shot-blasted SPCC A large number of rectangular pieces of 18 mm x 45 mm x 1.6 mm thick were machined from a commercially available 1.6 mm thick SPCC plate. The ends of these billets were roughened by a shot blasting machine using white alumina powder ("WA"#150). Next, in a water tank equipped with an ultrasonic vibrating end, an aqueous solution containing 10.0% of the aluminum degreasing agent "NA-6" was heated to 60°C, and these steel pieces were immersed for 5 minutes and then washed with tap water. . Next, an acidic ammonium fluoride aqueous solution with a concentration of 5.0% at 65° C. was prepared in another tank, and the steel pieces were immersed in this for 1 minute and then washed with water. Next, 1.0% concentration ammonia water was prepared in another tank, and the steel pieces were immersed in this for 1 minute and then washed with water. Next, in another tank, an aqueous solution containing 2.0% potassium permanganate, 1.0% acetic acid, and 0.5% sodium acetate hydrate at 45°C was prepared. After soaking the pieces for 5 minutes, they were washed with water. Next, it was immersed for 7 minutes in a water washing bath in which an ultrasonic oscillation end was set and washed with water. Next, a 1.0% hydrogen peroxide solution was prepared in another tank, and the steel pieces were immersed in the water for 0.5 minutes and then washed with water. Next, in another tank, a triethanolamine aqueous solution having a concentration of 0.2% at 40° C. is prepared, the steel piece is immersed for 30 minutes, and then the prepared triethanolamine is added to 25 PPM in another tank. The steel billet was placed in ultra-diluted water containing the steel and moved up and down for washing. It was pulled out of the ultra-diluted water tank, subjected to a simple draining operation, placed in a hot air dryer set at 67° C. for 15 minutes to dry, wrapped in aluminum foil and stored.

[実験例A1-3]ショットブラストしたSPCCのSNMT2処理
市販の1.6mm厚SPCC板から、18mm×45mm×1.6mm厚の長方形片を機械加工で多数作成した。これら鋼片の端部に、白色アルミナ紛(「WA」の150番)使用したショットブラスト機で粗面化操作を行った。次に超音波振動端付きの水槽に、上記アルミ用脱脂剤「NA-6」10.0%を含む水溶液を60℃とし、これに鋼片を5分間浸漬した後、これを水道水で水洗した。次に別の槽に、65℃とした5.0%濃度の酸性弗化アンモン含む水溶液を用意し、これに前記鋼片を1分浸漬した。次に別の槽に、1.0%濃度のアンモニア水を用意し、これに前記鋼片を1分間浸漬したのち、これを水洗した。次に別の槽に、45℃の2.0%濃度の過マンガン酸カリと1.0%濃度の酢酸と0.5%濃度の水和酢酸ソーダを含む水溶液を用意し、これに前記鋼片を5分浸漬した後、これを水洗した。次に超音波発振端をセットした水洗槽に、7分浸漬した後、これを水洗した。次に別の槽に、40℃とし0.4%濃度にしたEDTA(4Na)の水溶液を用意し、前記鋼片を30分浸漬し、次に別の槽に、用意していた0.1%濃度の酢酸水溶液に、数回漬ける形で洗浄した。これらの処理が完了した鋼片を、67℃とした温風乾燥機に15分置いて乾燥し、アルミホイルで包んで保管した。
[Experimental Example A1-3] SNMT2 treatment of shot-blasted SPCC From a commercially available 1.6 mm thick SPCC plate, a large number of rectangular pieces of 18 mm x 45 mm x 1.6 mm thick were machined. The ends of these billets were roughened by a shot blasting machine using white alumina powder ("WA"#150). Next, an aqueous solution containing 10.0% of the degreasing agent for aluminum "NA-6" was heated to 60°C in a water tank equipped with an ultrasonic vibration end, and the steel slab was immersed in this for 5 minutes and then washed with tap water. did. Next, an aqueous solution containing acidic ammonium fluoride at a concentration of 5.0% at 65° C. was prepared in another tank, and the steel slab was immersed in this for 1 minute. Next, 1.0% concentration ammonia water was prepared in another tank, and the steel pieces were immersed in this for 1 minute and then washed with water. Next, in another tank, an aqueous solution containing 2.0% potassium permanganate, 1.0% acetic acid, and 0.5% sodium acetate hydrate at 45°C was prepared. After soaking the pieces for 5 minutes, they were washed with water. Next, it was immersed for 7 minutes in a washing bath in which an ultrasonic oscillation end was set, and then washed with water. Next, prepare an aqueous solution of EDTA (4Na) with a concentration of 0.4% at 40° C. in another tank, immerse the steel billet for 30 minutes, and then transfer the prepared 0.1 % concentration aqueous solution of acetic acid, and washed by immersing it several times. After these treatments were completed, the steel slab was placed in a warm air dryer set at 67° C. for 15 minutes to dry, wrapped in aluminum foil and stored.

[実験例A1-4]SPCCのSNMT2処理
市販の1.6mm厚SPCC板から、18mm×45mm×1.6mm厚の長方形片を機械加工で多数作成した。次に別の槽に、上記アルミ用脱脂剤「NA-6」10.0%を含む水溶液を60℃とし、これら鋼片を5分間浸漬した後、これを水道水で水洗した。その後の液処理は、実験例A1―3に記載の最後に近い部分、即ち、「別の槽に、45℃の2.0%濃度の過マンガン酸カリと1.0%濃度の酢酸と0.5%濃度の水和酢酸ソーダを含む水溶液を用意し、これに前記鋼片を20分浸漬した後、これを水洗した。次に、超音波発振端をセットした水洗槽に、7分浸漬して水洗した。」という部分まで同一で、それ以降は以下の処理とした。即ち、次に別の槽に、40℃とし0.4%濃度にしたEDTA(4Na)の水溶液を用意し、前記鋼片を30分浸漬し、次に別の槽に用意していた50ppm濃度のEDTA(4Na)水溶液に、数回漬けて洗浄した。67℃とした温風乾燥機に15分置いて乾燥し、アルミホイルで包んで保管した。
[Experimental Example A1-4] SNMT2 treatment of SPCC A number of rectangular pieces of 18 mm x 45 mm x 1.6 mm thick were machined from a commercially available 1.6 mm thick SPCC plate. Next, in another tank, an aqueous solution containing 10.0% of the degreasing agent for aluminum "NA-6" was heated to 60° C., and these steel slabs were immersed for 5 minutes and then washed with tap water. Subsequent liquid treatment was carried out in the part near the end described in Experimental Example A1-3, that is, "In another tank, 2.0% concentration of potassium permanganate at 45° C., 1.0% concentration of acetic acid and 0% An aqueous solution containing sodium acetate hydrate with a concentration of 5% was prepared, and after immersing the billet in this for 20 minutes, it was washed with water, and then immersed in a washing bath in which an ultrasonic oscillation end was set for 7 minutes. and washed with water.", and after that, the following treatment was performed. That is, next, an aqueous solution of EDTA (4Na) with a concentration of 0.4% at 40° C. was prepared in another tank, the steel billet was immersed for 30 minutes, and then the 50 ppm concentration prepared in another tank was prepared. EDTA (4Na) aqueous solution, and washed several times. It was placed in a hot air dryer at 67° C. for 15 minutes to dry, wrapped in aluminum foil and stored.

[実験例A1-5]SPCCのSNMT2処理(参考例)
市販の1.6mm厚SPCC板から、18mm×45mm×1.6mm厚の長方形片を機械加工で多数作成した。その後の液処理は、実験例A1―3に記載の最後に近い部分、即ち、「別の槽に45℃の2.0%濃度の過マンガン酸カリと1.0%濃度の酢酸と0.5%濃度の水和酢酸ソーダを含む水溶液を用意し、これに前記鋼片を20分浸漬した後、水洗した。次に超音波発振端をセットした水洗槽に、7分浸漬して水洗した。」という部分まで同じ処理であり、それ以降の処理は以下の通りである。即ち、別の槽に、40℃とし0.2%濃度にしたEDTA(2Na)の水溶液を用意し、前記鋼片を10分浸漬した後、これを水洗した。67℃とした温風乾燥機に15分置いて乾燥し、アルミホイルで包んで保管した。
[Experimental Example A1-5] SNMT2 treatment of SPCC (reference example)
A number of 18 mm x 45 mm x 1.6 mm thick rectangular pieces were machined from a commercially available 1.6 mm thick SPCC plate. Subsequent liquid treatment was performed near the end of Experimental Example A1-3, namely, "In a separate tank, 2.0% concentration of potassium permanganate, 1.0% concentration of acetic acid and 0.0% concentration of acetic acid at 45°C were added to another tank." An aqueous solution containing 5% sodium acetate hydrate was prepared, and the steel piece was immersed in this solution for 20 minutes, washed with water, and then immersed in a washing bath in which an ultrasonic oscillation end was set for 7 minutes and then washed with water. The processing is the same up to the part ".", and the processing after that is as follows. That is, in another tank, an aqueous solution of EDTA (2Na) having a concentration of 0.2% at 40° C. was prepared, and the steel billet was immersed in the water for 10 minutes and then washed with water. It was placed in a hot air dryer at 67° C. for 15 minutes to dry, wrapped in aluminum foil and stored.

[実験例A2-1]ショットブラストしたSUS430鋼の新NMT処理(参考例)
市販の1.5mm厚SUS430鋼板から、18mm×45mm×1.5mm厚の長方形片を機械加工で多数作成した。これら鋼片の端部に、白色アルミナ紛(業界で言われる「WA」の150番)使用のショットブラスト機で粗面化操作を行った。次に超音波振動端付きの水槽に、上記アルミ用脱脂剤「NA-6」10%を含む水溶液を60℃とし、これら鋼片を5分間浸漬した後、水道水で水洗した。次に別の槽に、50℃とした10%濃度の硫酸と1.0%濃度の酸性弗化アンモンを含む水溶液を用意し、これに前記鋼片を0.5分浸漬した後、これを水洗した。次に超音波発振端をセットした水洗槽に、7分浸漬して水洗した。次に別の槽に、50℃とした0.5%濃度の酸性弗化アンモンと5.0%濃度の硫酸を含む水溶液を用意し、これに前記鋼片を3分浸漬した後、水洗した。次に別の槽に、40℃とした3.0%濃度の硝酸水溶液を用意し、これに前記鋼片を3分間浸漬した後、これを水洗した。次に別の槽に、45℃の2.0%濃度の過マンガン酸カリと1.0%濃度の酢酸と0.5%濃度の水和酢酸ソーダを含む水溶液を用意し、これに前記鋼片を2分浸漬した後、これを水洗した。次に別の槽に、70℃とした2.0%濃度の過マンガン酸カリと3.0%濃度の苛性カリを含む水溶液を用意し、これに前記鋼片を15分浸漬し水洗した。次に別の槽に、1.0%濃度の過酸化水素含む水溶液を用意し、これに前記鋼片を0.5分浸漬した後、これを水洗した。67℃とした温風乾燥機に15分置いて乾燥し、アルミホイルで包んで保管した。
[Experimental example A2-1] New NMT treatment of shot-blasted SUS430 steel (reference example)
A large number of 18 mm×45 mm×1.5 mm thick rectangular pieces were machined from a commercially available 1.5 mm thick SUS430 steel plate. The ends of these billets were roughened by a shot blasting machine using white alumina powder (known in the industry as "WA" No. 150). Next, the steel billets were immersed in an aqueous solution containing 10% of the degreasing agent for aluminum "NA-6" at 60° C. for 5 minutes, and then washed with tap water. Next, an aqueous solution containing 10% sulfuric acid and 1.0% acidic ammonium fluoride at 50° C. was prepared in another tank, and the steel slab was immersed in this solution for 0.5 minutes and then washed with water. Next, it was immersed for 7 minutes in a water washing bath in which an ultrasonic oscillation end was set and washed with water. Next, an aqueous solution containing 0.5% acidic ammonium fluoride and 5.0% sulfuric acid at 50° C. was prepared in another tank, and the steel slab was immersed in this solution for 3 minutes and then washed with water. . Next, a 3.0% nitric acid aqueous solution at 40° C. was prepared in another bath, and the steel slabs were immersed in this for 3 minutes and then washed with water. Next, in another tank, an aqueous solution containing 2.0% potassium permanganate, 1.0% acetic acid, and 0.5% sodium acetate hydrate at 45°C was prepared. After soaking the pieces for 2 minutes, they were washed with water. Next, an aqueous solution containing 2.0% concentration of potassium permanganate and 3.0% concentration of caustic potassium at 70° C. was prepared in another tank, and the steel pieces were immersed in this for 15 minutes and washed with water. Next, an aqueous solution containing hydrogen peroxide at a concentration of 1.0% was prepared in another tank, the steel slab was immersed in this for 0.5 minutes, and then washed with water. It was placed in a hot air dryer at 67° C. for 15 minutes to dry, wrapped in aluminum foil and stored.

[実験例A2-2]ショットブラストしたSUS430鋼のSNMT処理
市販の1.5mm厚SUS430ステンレス鋼板から、18mm×45mm×1.5mm厚の長方形片を機械加工で多数作成した。これら鋼片の端部に、白色アルミナ紛(「WA」の150番)使用のショットブラスト機で粗面化操作を行った。その後の液処理は、実験例A2―1に記載の最終工程の処理に近い部分、即ち、「次に別の槽に、45℃の2.0%濃度の過マンガン酸カリと1.0%濃度の酢酸と0.5%濃度の水和酢酸ソーダを含む水溶液を用意し、これに前記鋼片を2分浸漬した後、これを水洗した。」という部分まで同一で、それ以降は以下の処理とした。即ち、次に別の槽に、1.0%濃度の過酸化水素水溶液を用意し、前記の鋼片を0.5分浸漬した後、これを水洗した。次に40℃にセットした水洗槽に、トリエタノールアミン0.2%含む水溶液を用意し、そこへ前記鋼板片を30分浸漬し、次に50ppm濃度のトリエタノールアミン含む水溶液で洗浄した。これらの処理を終了した後、67℃とした温風乾燥機に15分置いて乾燥し、アルミホイルで包んで保管した。
[Experimental Example A2-2] SNMT treatment of shot-blasted SUS430 steel A large number of rectangular pieces of 18 mm x 45 mm x 1.5 mm thick were machined from a commercially available 1.5 mm thick SUS430 stainless steel plate. The ends of these billets were subjected to a roughening operation with a shot blasting machine using white alumina powder ("WA" No. 150). The subsequent liquid treatment is a part close to the treatment of the final step described in Experimental Example A2-1, that is, "next, in another tank, 2.0% concentration of potassium permanganate at 45 ° C. and 1.0% potassium permanganate. An aqueous solution containing acetic acid at a concentration of 0.5% and sodium acetate hydrate at a concentration of 0.5% was prepared, and after the steel billet was immersed in this for 2 minutes, it was washed with water." treated. That is, next, a 1.0% hydrogen peroxide aqueous solution was prepared in another tank, and the steel slabs were immersed in the water for 0.5 minutes and then washed with water. Next, an aqueous solution containing 0.2% triethanolamine was prepared in a water washing bath set at 40° C., the steel plate pieces were immersed therein for 30 minutes, and then washed with an aqueous solution containing 50 ppm concentration of triethanolamine. After completion of these treatments, it was placed in a hot air dryer at 67° C. for 15 minutes to dry, wrapped in aluminum foil and stored.

[実験例A2-3]ショットブラストしたSUS430鋼のSNMT2処理
市販の1.5mm厚SUS430ステンレス鋼板から、18mm×45mm×1.5mm厚の長方形片を機械加工で多数作成した。これら鋼片の端部に、白色アルミナ紛(「WA」の150番)使用のショットブラスト機で粗面化操作を行った。その後の液処理は、実験例A2―2に記載の最終工程に近い部分、即ち、「次に別の槽に、45℃の2%濃度の過マンガン酸カリと1%濃度の酢酸と0.5%濃度の水和酢酸ソーダを含む水溶液を用意し、これに前記鋼片を2分浸漬した後、これを水洗した。」という部分まで同一で、それ以降の工程は以下とした。即ち、次に別の槽に、1.0%濃度の過酸化水素水溶液を用意し、前記の鋼片を0.5分浸漬し、水洗した。次に40℃にセットした水洗槽に、EDTA(4Na)0.4%含む水溶液を用意し、そこへ前記鋼板片を30分浸漬し、次に50ppm濃度のEDTA(4Na)含む水溶液で洗浄した。この洗浄後、鋼板片を67℃とした温風乾燥機に15分置いて乾燥し、アルミホイルで包んで保管した。
[Experimental Example A2-3] SNMT2 treatment of shot-blasted SUS430 steel A large number of 18 mm × 45 mm × 1.5 mm thick rectangular pieces were machined from a commercially available 1.5 mm thick SUS430 stainless steel plate. The ends of these billets were subjected to a roughening operation with a shot blasting machine using white alumina powder ("WA" No. 150). Subsequent liquid treatment is a portion close to the final step described in Experimental Example A2-2, that is, "next, in another tank, 2% concentration of potassium permanganate at 45° C., 1% concentration of acetic acid, and 0.5% concentration of acetic acid are added to another tank. An aqueous solution containing a 5% concentration of sodium acetate hydrate was prepared, and the steel billets were immersed in the solution for 2 minutes and then washed with water.", and the subsequent steps were as follows. That is, next, a 1.0% concentration hydrogen peroxide aqueous solution was prepared in another tank, and the steel slab was immersed for 0.5 minutes and washed with water. Next, an aqueous solution containing 0.4% EDTA (4Na) was prepared in a washing tank set at 40°C, the steel plate pieces were immersed therein for 30 minutes, and then washed with an aqueous solution containing 50 ppm concentration of EDTA (4Na). . After this washing, the steel plate pieces were placed in a warm air dryer set at 67° C. for 15 minutes to dry, wrapped in aluminum foil and stored.

[実験例A3-1]ショットブラストしたSUS304ステンレス鋼の新NMT処理(参考例)
市販の1.5mm厚SUS304ステンレス鋼板から、18mm×45mm×1.5mm厚の長方形片を機械加工で多数作成した。これら鋼片の端部に白色アルミナ紛(「WA」の150番)使用のショットブラスト機で粗面化操作を行った。次に超音波振動端付きの水槽に、上記アルミ用脱脂剤「NA-6」10%を含む水溶液を60℃とし、これら鋼片を5分間浸漬した後、水道水で水洗した。次いで、別の槽に65℃とした1%濃度の酸性弗化アンモンと10%濃度の硫酸を含む水溶液を用意し、これに前記鋼片を6分浸漬し水洗した。次いで、別の槽に50℃とした0.5%濃度の酸性弗化アンモンと5.0%濃度の硫酸を含む水溶液を用意し、これに前記鋼片を20分浸漬し水洗した。次に別の槽に、40℃とした3.0%濃度の硝酸水溶液を用意し、これに前記鋼片を3分間浸漬した後、これを水洗した。次に超音波発振端をセットした水洗槽に、7分浸漬して水洗した。次に別の槽に、55℃とした5.0%濃度の亜塩素酸ソーダと10.0%濃度の苛性ソーダを含む水溶液を用意し、前記鋼片を6分浸漬した後、これを水洗した。80℃とした温風乾燥機に15分置いて乾燥し、アルミホイルで包んで保管した。
[Experimental example A3-1] New NMT treatment of shot-blasted SUS304 stainless steel (reference example)
A large number of 18 mm×45 mm×1.5 mm thick rectangular pieces were machined from a commercially available 1.5 mm thick SUS304 stainless steel plate. The ends of these billets were roughened by a shot blasting machine using white alumina powder ("WA" No. 150). Next, the steel billets were immersed in an aqueous solution containing 10% of the degreasing agent for aluminum "NA-6" at 60° C. for 5 minutes, and then washed with tap water. Next, an aqueous solution containing 1% acidic ammonium fluoride and 10% sulfuric acid at 65° C. was prepared in another tank, and the steel slabs were immersed in this solution for 6 minutes and washed with water. Next, an aqueous solution containing 0.5% acidic ammonium fluoride and 5.0% sulfuric acid at 50° C. was prepared in another tank, and the steel slabs were immersed in this solution for 20 minutes and washed with water. Next, a 3.0% nitric acid aqueous solution at 40° C. was prepared in another bath, and the steel slabs were immersed in this for 3 minutes and then washed with water. Next, it was immersed for 7 minutes in a water washing bath in which an ultrasonic oscillation end was set and washed with water. Next, an aqueous solution containing 5.0% concentration of sodium chlorite and 10.0% concentration of caustic soda at 55° C. was prepared in another tank, and the steel slab was immersed for 6 minutes and then washed with water. . It was placed in a hot air dryer at 80° C. for 15 minutes to dry, wrapped in aluminum foil and stored.

[実験例A3-2]SUS304鋼のSNMT処理
市販の1.5mm厚SUS304ステンレス鋼板から、18mm×45mm×1.5mm厚の長方形片を機械加工で多数作成した。次に超音波振動端付きの水槽に、上記アルミ用脱脂剤「NA-6」10%を含む水溶液を60℃とし、これら鋼片を5分間浸漬した後、水道水で水洗した。その後は実験例A3-1と同一工程で「別の槽に、55℃とした5.0%濃度の亜塩素酸ソーダと10.0%濃度の苛性ソーダを含む水溶液を用意し前記鋼片を6分浸漬して水洗した。」まで同一工程であり、後工程は以下の工程である。即ち、次に別の槽に、1.0%濃度の過酸化水素水を用意し、前記鋼片を0.5分浸漬した。次に別の槽に、40℃とし0.2%濃度にしたトリエタノールアミン水溶液を用意し、前記鋼片を30分浸漬し、次に別の槽に、用意しておいたトリエタノールアミンを25PPM含むその超希釈水に、前記鋼片を入れて上下させて洗浄した。この洗浄後、槽から上げて水切り操作を加え、67℃とした温風乾燥機に15分置いて乾燥し、アルミホイルで包んで保管した。
[Experimental Example A3-2] SNMT Treatment of SUS304 Steel A large number of rectangular pieces of 18 mm×45 mm×1.5 mm thick were machined from a commercially available 1.5 mm thick SUS304 stainless steel plate. Next, the steel billets were immersed in an aqueous solution containing 10% of the degreasing agent for aluminum "NA-6" at 60° C. for 5 minutes, and then washed with tap water. After that, in the same process as in Experimental Example A3-1, "An aqueous solution containing sodium chlorite with a concentration of 5.0% and caustic soda with a concentration of 10.0% at 55°C was prepared in another tank, and the steel slab was It is the same process until it is immersed for a minute and washed with water.", and the post-process is the following process. That is, next, a 1.0% hydrogen peroxide solution was prepared in another tank, and the steel slab was immersed in it for 0.5 minutes. Next, in another tank, a triethanolamine aqueous solution with a concentration of 0.2% at 40° C. is prepared, the steel piece is immersed for 30 minutes, and then the prepared triethanolamine is added to another tank. The billet was placed in the ultra-diluted water containing 25 PPM and washed by moving it up and down. After this washing, it was lifted out of the tank, drained, placed in a hot air dryer set at 67° C. for 15 minutes to dry, wrapped in aluminum foil and stored.

[実験例A3-3]SUS304鋼のSNMT2処理
市販の1.5mm厚SUS304ステンレス鋼板から、18mm×45mm×1.5mm厚の長方形片を機械加工で多数作成した。次に超音波振動端付きの水槽に、上記アルミ用脱脂剤「NA-6」10%を含む水溶液を60℃とし、これら鋼片を5分間浸漬した後、これを水道水で水洗した。その後は実験例A3-2と同じで「別の槽に55℃とした5%濃度の亜塩素酸ソーダと10%濃度の苛性ソーダを含む水溶液を用意し前記鋼片を6分浸漬して水洗した。」まで同じで続き以下に繋ぐ。即ち、次に別の槽に、1.0%濃度の過酸化水素水を用意し、前記鋼片を0.5分浸漬した。次いで別の槽に40℃とし0.2%濃度にしたEDTA(4Na)の水溶液を用意し、前記鋼片を30分浸漬し、次いで別の槽に設けて於いた0.1%濃度の酢酸を含む水溶液に鋼片を入れて上下させ洗浄した。槽から上げて水切り操作を加え、67℃とした温風乾燥機に15分置いて乾燥し、アルミホイルで包んで保管した。
[Experimental Example A3-3] SNMT2 Treatment of SUS304 Steel A large number of 18 mm×45 mm×1.5 mm thick rectangular pieces were machined from a commercially available 1.5 mm thick SUS304 stainless steel plate. Next, the steel pieces were immersed in an aqueous solution containing 10% of the degreasing agent for aluminum "NA-6" at 60° C. for 5 minutes in a water tank equipped with an ultrasonic vibrator, and then washed with tap water. After that, in the same manner as in Experimental Example A3-2, "An aqueous solution containing 5% concentration of sodium chlorite and 10% concentration of caustic soda at 55°C was prepared in another tank, and the steel billet was immersed for 6 minutes and washed with water. .” and continue with the following. That is, next, a 1.0% hydrogen peroxide solution was prepared in another tank, and the steel slab was immersed in it for 0.5 minutes. Next, prepare an aqueous solution of EDTA (4Na) with a concentration of 0.2% at 40° C. in another tank, immerse the billet for 30 minutes, and then add acetic acid with a concentration of 0.1% in another tank. A steel piece was placed in an aqueous solution containing and washed by moving it up and down. It was removed from the tank, drained, placed in a hot air dryer at 67°C for 15 minutes to dry, wrapped in aluminum foil and stored.

[実験例A4-1]64Ti合金の新NMT処理(参考例)
64Ti合金から多数の18mm×45mm×1.5mmの長方形片を機械加工で作成した。槽に上記アルミ用脱脂剤「NA-6」10.0%を含む水溶液を60℃とし、合金片を5分間浸漬した後、これを水道水で水洗した。次いで、別の槽に65℃とした5%濃度の酸性弗化アンモン含む水溶液を用意し、これに合金片を3分間浸漬して水洗した。次いで、別の槽に65℃とした1%濃度の酸性弗化アンモンと10.0%濃度の硫酸を含む水溶液を用意し、これに前記鋼片を6分浸漬し水洗した。次いで別の槽に40℃とした3%濃度の硝酸水溶液を用意し、前記合金片を3分浸漬し水洗した。次に別の槽に、70℃の2.0%濃度の過マンガン酸カリと3.0%濃度の苛性カリを含む水溶液を用意し、これに前記合金片を30分浸漬し水洗した。次に別の槽に、55℃とした5.0%濃度の亜塩素酸ソーダと10.0%濃度の苛性ソーダを含む水溶液を用意し、これに前記鋼片を20分浸漬した後、これを水洗した。これを80℃に設定した温風乾燥機に15分間入れて乾燥し、アルミ箔で包んで保管した。
[Experimental example A4-1] New NMT treatment of 64Ti alloy (reference example)
A number of 18mm x 45mm x 1.5mm rectangular pieces were machined from 64Ti alloy. An aqueous solution containing 10.0% of the degreasing agent for aluminum "NA-6" was heated to 60° C. in a bath, and the alloy flakes were immersed for 5 minutes and then washed with tap water. Next, an aqueous solution containing 5% acidic ammonium fluoride at 65° C. was prepared in another bath, and the alloy flakes were immersed in this solution for 3 minutes and washed with water. Next, an aqueous solution containing 1% acidic ammonium fluoride and 10.0% sulfuric acid at 65° C. was prepared in another tank, and the steel slabs were immersed in this solution for 6 minutes and washed with water. Next, a 3% nitric acid aqueous solution adjusted to 40° C. was prepared in another bath, and the alloy flakes were immersed for 3 minutes and washed with water. Next, an aqueous solution containing 2.0% concentration of potassium permanganate and 3.0% concentration of caustic potassium at 70° C. was prepared in another tank, and the alloy flakes were immersed in this for 30 minutes and washed with water. Next, an aqueous solution containing sodium chlorite with a concentration of 5.0% and caustic soda with a concentration of 10.0% at 55° C. was prepared in another tank, and the steel slab was immersed in this solution for 20 minutes and then immersed. washed with water. This was placed in a warm air dryer set at 80° C. for 15 minutes to dry, wrapped in aluminum foil and stored.

[実験例A4-2]64Ti合金のSNMT
64Ti合金から多数の18mm×45mm×1.5mmの長方形片を機械加工で作成した。槽に上記アルミ用脱脂剤「NA-6」10.0%を含む水溶液を60℃とし、合金片を5分間浸漬した後、これを水道水で水洗した。次に別の槽に、65℃とした5.0%濃度の酸性弗化アンモン含む水溶液を用意し、これに合金片を5分間浸漬した後、水洗した。次に別の槽に、40℃とした3.0%濃度の硝酸水溶液を用意し、前記合金片を3分間浸漬した後、これを水洗した。次に別の槽に、70℃の2%濃度の過マンガン酸カリと3%濃度の苛性カリを含む水溶液を用意し、これに前記合金片を30分浸漬した後、水洗した。次に別の槽に、55℃とした5%濃度の亜塩素酸ソーダと10%濃度の苛性ソーダを含む水溶液を用意し、これに前記鋼片を10分浸漬した後、水洗した。次に超音波発振端をセットした水洗槽に、7分浸漬して水洗した。次に別の槽に、40℃とし0.2%濃度にしたトリエタノールアミン水溶液を用意し、前記鋼片を60分浸漬し、次に別の槽に、用意していたトリエタノールアミンを25PPM含むその超希釈水に、前記鋼片を入れて上下させて洗浄した。これを槽から上げて水切り操作を加え、67℃とした温風乾燥機に15分置いて乾燥し、アルミホイルで包んで保管した。
[Experimental Example A4-2] SNMT of 64Ti alloy
A number of 18mm x 45mm x 1.5mm rectangular pieces were machined from 64Ti alloy. An aqueous solution containing 10.0% of the degreasing agent for aluminum "NA-6" was heated to 60° C. in a bath, and the alloy flakes were immersed for 5 minutes and then washed with tap water. Next, an aqueous solution containing 5.0% acidic ammonium fluoride at 65° C. was prepared in another bath, and the alloy flakes were immersed in this solution for 5 minutes and then washed with water. Next, a 3.0% nitric acid aqueous solution at 40° C. was prepared in another bath, and the alloy pieces were immersed in the solution for 3 minutes and then washed with water. Next, an aqueous solution containing 2% potassium permanganate and 3% caustic potassium at 70° C. was prepared in another tank, and the alloy flakes were immersed in this for 30 minutes and then washed with water. Next, an aqueous solution containing 5% sodium chlorite and 10% caustic soda at 55° C. was prepared in another tank, and the steel slabs were immersed in this solution for 10 minutes and then washed with water. Next, it was immersed for 7 minutes in a water washing bath in which an ultrasonic oscillation end was set and washed with water. Next, in another tank, a triethanolamine aqueous solution having a concentration of 0.2% at 40° C. was prepared, the steel piece was immersed for 60 minutes, and then the prepared triethanolamine was added to 25 PPM in another tank. The steel billet was placed in the ultra-diluted water containing the steel and moved up and down for washing. It was taken out of the tank, drained, placed in a warm air dryer set at 67° C. for 15 minutes to dry, wrapped in aluminum foil and stored.

[実験例A4-3]64Ti合金のSNMT2処理
64Ti合金から多数の18mm×45mm×1.5mmの長方形片を機械加工で作成した。槽に上記アルミ用脱脂剤「NA-6」10%を含む水溶液を60℃とし、合金片を5分間浸漬した後、これを水道水で水洗した。次に別の槽に、65℃とした5.0%濃度の酸性弗化アンモン含む水溶液を用意し、これに合金片を5分間浸漬して水洗した。次に別の槽に、40℃とした3.0%濃度の硝酸水溶液を用意し、前記合金片を3分浸漬し水洗した。次に別の槽に、70℃の2.0%濃度の過マンガン酸カリと3.0%濃度の苛性カリを含む水溶液を用意し、これに前記合金片を30分浸漬し水洗した。次に別の槽に、55℃とした5.0%濃度の亜塩素酸ソーダと10.0%濃度の苛性ソーダを含む水溶液を用意し、これに前記鋼片を10分浸漬した後、これを水洗した。次に超音波発振端をセットした水洗槽に、7分浸漬して水洗した。次に別の槽に、40℃とし0.4%濃度にしたEDTA(4Na)の水溶液を用意し、前記鋼片を10分浸漬し、次に別の槽に、用意していた0.1%濃度の酢酸水溶液に前記鋼片を入れて上下させて洗浄した。槽から上げて水切り操作を加え、67℃とした温風乾燥機に15分置いて乾燥し、アルミホイルで包んで保管した。
[Experimental Example A4-3] SNMT2 treatment of 64Ti alloy A number of 18mm x 45mm x 1.5mm rectangular pieces were machined from 64Ti alloy. An aqueous solution containing 10% of the degreasing agent for aluminum "NA-6" was heated to 60° C. in a bath, and the alloy flakes were immersed for 5 minutes and then washed with tap water. Next, an aqueous solution containing 5.0% acidic ammonium fluoride at 65° C. was prepared in another bath, and the alloy flakes were immersed in this solution for 5 minutes and washed with water. Next, a 3.0% concentration nitric acid aqueous solution at 40° C. was prepared in another tank, and the alloy flakes were immersed for 3 minutes and washed with water. Next, an aqueous solution containing 2.0% concentration of potassium permanganate and 3.0% concentration of caustic potassium at 70° C. was prepared in another tank, and the alloy flakes were immersed in this for 30 minutes and washed with water. Next, an aqueous solution containing sodium chlorite with a concentration of 5.0% and caustic soda with a concentration of 10.0% at 55° C. was prepared in another tank, and the steel slab was immersed in this solution for 10 minutes and then immersed. washed with water. Next, it was immersed for 7 minutes in a water washing bath in which an ultrasonic oscillation end was set and washed with water. Next, prepare an aqueous solution of EDTA (4Na) with a concentration of 0.4% at 40° C. in another tank, immerse the steel billet for 10 minutes, and then transfer the prepared 0.1 % concentration aqueous solution of acetic acid and washed by moving it up and down. It was removed from the tank, drained, placed in a hot air dryer at 67°C for 15 minutes to dry, wrapped in aluminum foil and stored.

[実験例A5-1]A6061Al合金のNMT8処理(参考例)
1.5mm厚のA6061Al合金板から多数の18mm×45mm×1.5mmの長方形片を機械加工で作成した。槽に上記アルミ用脱脂剤「NA-6」10.0%を含む水溶液を60℃とし、Al合金片を5分間浸漬した後、水道水で水洗した。次に別の槽に、40℃とした10.0%濃度の苛性ソーダ水溶液を用意し、前記合金片を1分浸漬し、水洗した。次に別の槽に、40℃とした5.0%の塩酸と1.0%の水和塩化アルミニウムを含む水溶液を用意し、前記合金片を1分浸漬した後、これを水洗した。次に別の槽に、40℃とした10.0%濃度の硫酸と2.0%濃度の酸性弗化アンモン含む水溶液を用意し、これに合金片を1分間浸漬した後、水洗した。次に別の槽に、40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、前記合金片を2分浸漬した後、水洗した。次に別の槽に、40℃とした3.0%濃度の硝酸水溶液を用意し、前記合金片を1.5分浸漬した後、これを水洗した。次に別の槽に、60℃とした3.5%濃度の水和ヒドラジン水溶液を用意し、これに前記合金片を1分浸漬した。次に別の槽に、33℃とした0.5%濃度の水和ヒドラジン水溶液を用意し、これに前記合金片を4.5分浸漬し水洗した。次に別の槽に、1.0%濃度の過酸化水素水を用意し、前記の合金片を1分浸漬した後、水洗した。次に0.2%濃度にしたトリエタノールアミン水溶液を用意し、前記合金片を15分浸漬して水洗した。得た合金片を、67℃に設定した温風乾燥機に15分間入れて乾燥し、アルミ箔で包んで保管した。
[Experimental example A5-1] NMT8 treatment of A6061Al alloy (reference example)
A number of 18 mm x 45 mm x 1.5 mm rectangular pieces were machined from a 1.5 mm thick A6061 Al alloy plate. An aqueous solution containing 10.0% of the degreasing agent for aluminum “NA-6” was heated to 60° C. in a bath, and the Al alloy piece was immersed for 5 minutes and then washed with tap water. Next, a 10.0% aqueous solution of caustic soda at 40° C. was prepared in another tank, and the alloy flakes were immersed for 1 minute and washed with water. Next, an aqueous solution containing 5.0% hydrochloric acid and 1.0% hydrated aluminum chloride at 40° C. was prepared in another bath, and the alloy flakes were immersed for 1 minute and then washed with water. Next, an aqueous solution containing 10.0% sulfuric acid and 2.0% acidic ammonium fluoride at 40° C. was prepared in another bath, and the alloy flakes were immersed in this solution for 1 minute and then washed with water. Next, a 1.5% caustic soda aqueous solution adjusted to 40° C. was prepared in another tank, and the alloy flakes were immersed for 2 minutes and then washed with water. Next, a 3.0% concentration nitric acid aqueous solution at 40° C. was prepared in another bath, and the alloy pieces were immersed in the solution for 1.5 minutes and then washed with water. Next, an aqueous solution of hydrazine hydrate having a concentration of 3.5% at 60° C. was prepared in another tank, and the alloy flakes were immersed in this for 1 minute. Next, an aqueous solution of hydrazine hydrate having a concentration of 0.5% at 33° C. was prepared in another tank, and the alloy flakes were immersed in this for 4.5 minutes and washed with water. Next, a 1.0% hydrogen peroxide solution was prepared in another tank, and the alloy flakes were immersed for 1 minute and then washed with water. Next, an aqueous triethanolamine solution having a concentration of 0.2% was prepared, and the alloy flakes were immersed in the solution for 15 minutes and washed with water. The obtained alloy flakes were placed in a hot air dryer set at 67° C. for 15 minutes to dry, wrapped in aluminum foil and stored.

[実験例A5-2]A6061Al合金のSNMT処理(参考例)
このAl合金片の処理方法はNMT8処理法とその90%以上が同じである。即ち、表面の形状化に関係する部分は実質的に同一である。即ち、18mm×45mm×1.5mmのA6061Al合金片を作成後、脱脂工程から最終的な化学エッチング工程を終えるまで、即ち、化学吸着させていた水和ヒドラジンを薄い過酸化水素水に浸漬して、化学吸着しているヒドラジン分子を完全分解し、その後に水洗する工程までは、他のSNMT処理と全く同じである。それ故に、それ以降を記述する。即ち、その水洗後、0.2%濃度にしたトリエタノールアミン水溶液を用意し、前記合金片を15分浸漬し、そして水洗はするのだが、純水を使用しての水洗ではなく、25ppm濃度のトリエタノールアミン水溶液で水洗し、得た合金片を、67℃に設定した温風乾燥機に15分間入れて乾燥し、アルミ箔で包んで保管した。
[Experimental example A5-2] SNMT treatment of A6061Al alloy (reference example)
90% or more of the processing method of this Al alloy piece is the same as the NMT8 processing method. That is, the parts concerned with shaping the surface are substantially identical. That is, after the A6061Al alloy piece of 18 mm × 45 mm × 1.5 mm was produced, the degreasing process and the final chemical etching process were completed, that is, the chemically adsorbed hydrazine hydrate was immersed in a thin hydrogen peroxide solution. , completely decomposing the chemisorbed hydrazine molecules and then washing with water are exactly the same as other SNMT treatments. Therefore, it is described after that. That is, after washing with water, a triethanolamine aqueous solution having a concentration of 0.2% is prepared, the alloy piece is immersed for 15 minutes, and then washed with water. The obtained alloy flakes were dried in a hot air dryer set at 67° C. for 15 minutes, wrapped in aluminum foil and stored.

[実験例A5-3]A6061Al合金のSNMT処理2(参考例)
このAl合金片の処理方法はSNMT処理法と殆ど同じだが、アミン系化合物がトリエタノールアミンに代えてEDTA誘導体を使用した処理法であり前記と同ようにSNMT2処理法とした。よって、脱脂工程から最終的な化学エッチング工程を終えるまで、即ち、化学吸着していた水和ヒドラジンを薄い過酸化水素水に浸漬してヒドラジン分子を完全分解し、その後に水洗する工程までは全く同じである。それ故に、それ以降を記述する。即ち、その水洗後、55℃で0.2%濃度にしたEDTA水溶液を用意し、前記合金片を15分浸漬し、次いで水洗した。67℃に設定した温風乾燥機に15分間入れて乾燥し、アルミ箔で包んで保管した。
[Experimental example A5-3] SNMT treatment 2 of A6061Al alloy (reference example)
The processing method of this Al alloy piece is almost the same as the SNMT processing method, but the amine compound is a processing method using an EDTA derivative instead of triethanolamine, and the same SNMT2 processing method as described above is used. Therefore, from the degreasing step to the final chemical etching step, that is, the step of immersing the chemically adsorbed hydrazine hydrate in a dilute hydrogen peroxide solution to completely decompose the hydrazine molecules, and then washing with water. are the same. Therefore, it is described after that. That is, after washing with water, an EDTA aqueous solution having a concentration of 0.2% was prepared at 55° C., the alloy flakes were immersed for 15 minutes, and then washed with water. It was placed in a warm air dryer set at 67° C. for 15 minutes to dry, wrapped in aluminum foil and stored.

[実験例B]射出接合物の作成と接合力測定
[実験例B1]射出接合物のせん断接合強度:ポリアミド系樹脂使用時
実験例A1~A4で得た表面処理済み各種金属片を射出成形金型にインサートし、射出接合用として、前述したポリアミド系樹脂「CM3506G50」を射出し、図1に示す試験片である射出接合品を得た。この時の射出温度は300℃、金型温度は140℃とした。得られた射出接合物は、170℃とした熱風乾燥機内に1時間置いてアニール処理した。えられた試験片のせん断接合強度を表1に記載する。せん断接合強度の測定法は、ISO19095に従い図1に示す試験片の試験片を、図3に示す補助治具に収納して、23℃下で引張り試験機にかけた結果であり、各3個の平均値である。
[Experimental example B] Preparation of injection-bonded product and measurement of bonding force [Experimental example B1] Shear bond strength of injection-bonded product: When using polyamide resin Various surface-treated metal pieces obtained in Experimental examples A1 to A4 were injection molded. It was inserted into a mold, and the above-described polyamide resin "CM3506G50" was injected for injection joining to obtain an injection-jointed product as a test piece shown in FIG. The injection temperature at this time was 300°C, and the mold temperature was 140°C. The obtained injection-bonded product was annealed by placing it in a hot air dryer at 170° C. for 1 hour. Table 1 shows the shear bond strength of the obtained test pieces. The method for measuring the shear bond strength is the result of putting the test piece of the test piece shown in FIG. 1 in accordance with ISO 19095 in the auxiliary jig shown in FIG. Average value.

Figure 2022187378000002
表1に記載したのはSPCC、SUS430、SUS304、及び、64Ti合金に対して、最も優れていると判断した新NMT型の処理品とSNMT処理をした金属片使用の射出接合物の試験結果(せん断接合強度)を示したものである。表中のせん断接合強度は、3個の平均値を示したものであり、高い接合強度は表示値より何れも高い。ただ、新NMT処理品は明らかにSNMT処理品より劣る。更に言えば、トリエタノールアミンを使用したSNMTは、表1に示したように、ここで行った全非アルミ金属に対して接合強度を高くすることに成功した。更に、吸着物の耐熱性を高めようとして、新たに採用したEDTA・4Naは、そう単純な結果を示さず、「SNMT2」の表示で示したように、64Ti合金だけが最高の結果を生んだだけで、他に対しては効果なく、特にSPCCに関しては酷い結果を示した。
Figure 2022187378000002
Table 1 shows the test results of injection-bonded products using the new NMT-type treated products and SNMT-treated metal pieces that were judged to be the best for SPCC, SUS430, SUS304, and 64Ti alloys ( Shear bond strength). The shear bonding strength in the table shows the average value of three pieces, and the high bonding strength is higher than the indicated value. However, the new NMT treated product is clearly inferior to the SNMT treated product. Furthermore, SNMT using triethanolamine, as shown in Table 1, was successful in increasing bond strength to all non-aluminum metals performed here. Furthermore, EDTA 4Na, which was newly adopted to increase the heat resistance of the adsorbate, did not show such a simple result. However, it had no effect on others, and showed terrible results especially with respect to SPCC.

[実験例B2]射出接合物のせん断接合強度:PEEK系樹脂の使用時
射出樹脂として、PEEK「90G(ビクトレックスジャパン株式会社(本社:日本国東京都)発売)」とPEI「ULTEM9075(SHPPジャパン(本社:日本国東京都)発売)」を重量比95:5のドライブレンドした物を使用した。実験例A1-2、A2-2、及びA3-2で得たSNMT処理をした各種金属片、及び、A1―3、A2-3、A3-3、及びA4―3で得たSNMT2処理をした各種金属片を射出成形金型にインサートし、射出樹脂として上記のPEEK系樹脂を射出し、図1に示す試験片の射出接合品を得た。この時の射出温度は360℃、金型温度は180℃とした。得られた射出接合物は170℃とした熱風乾燥機内に1時間置いてアニールした。得た射出接合物のせん断接合強度を表2に記載した。

Figure 2022187378000003
[Experimental example B2] Shear bond strength of injection-bonded product: when using PEEK-based resin As injection resins, PEEK "90G (marketed by Victrex Japan Co., Ltd. (Headquarters: Tokyo, Japan))" and PEI "ULTEM9075 (SHPP Japan) (headquarters: Tokyo, Japan)" was dry-blended at a weight ratio of 95:5. Various SNMT-treated metal pieces obtained in Experimental Examples A1-2, A2-2, and A3-2, and SNMT2-treated pieces obtained in A1-3, A2-3, A3-3, and A4-3 Various metal pieces were inserted into an injection mold, and the above PEEK-based resin was injected as an injection resin to obtain an injection-bonded product of the test piece shown in FIG. At this time, the injection temperature was 360°C and the mold temperature was 180°C. The obtained injection-bonded product was annealed by placing it in a hot air dryer set to 170° C. for 1 hour. Table 2 shows the shear bond strength of the obtained injection-bonded product.
Figure 2022187378000003

表2での結果で分かるようにトリエタノールアミン使用の処理品(SNMT処理品)は射出樹脂がPEEK系樹脂に変ると全くよくない。これは前記したようにポリアミド系樹脂使用の射出接合物作りの為の金型温度や樹脂射出温度が40℃以上高くなり吸着物がトリエタノールアミンではこの高温で脱離したからだと思われた。それ故に、より重いEDTAやEDTA誘導体を試そうとしたのだが、水に殆ど不溶のEDTA(4H)は液温70℃にして吸着させようとしたが結果的に射出接合力を上げることができず、EDTA(2Na)も水に溶解するもののやはり成果を与えなかった。そこで完全な塩であるが水溶性は十分あるEDTA(3Na)を使ったのが「SNMT2」である。その結果は64Tiだけ異常に高効果を与え最高値でせん断接合強度64MPaを与えた。このSNMT2での結果は表2にように何しろ異常であり、64Ti以外は良くないが、その中ではSUS304が20MPaと数字を残しており、フェライト系ステンレス鋼や一般鋼材であるSPCCでは驚く悪結果であった。この不思議な結果を生んだ原因は、使用したアミン系化合物、即ちEDTA・4Na塩の立体形状にその原因があると予期するものの正しくはそこまで理論的な解明はしなかった。 As can be seen from the results in Table 2, the treated products using triethanolamine (SNMT treated products) are not good at all when the injection resin is changed to PEEK resin. This is thought to be because, as mentioned above, the mold temperature and the resin injection temperature for making an injection-bonded article using polyamide resin were raised by 40° C. or more, and the adsorbed substances were desorbed at this high temperature in the case of triethanolamine. Therefore, we tried heavier EDTA and EDTA derivatives, but EDTA (4H), which is almost insoluble in water, was tried to be adsorbed at a liquid temperature of 70°C, but as a result, the injection joining force could not be increased. , and EDTA (2Na) were also soluble in water, but did not give results either. Therefore, "SNMT2" uses EDTA (3Na), which is a complete salt but has sufficient water solubility. The result was that only 64 Ti gave an extraordinarily high effect, giving a maximum shear bond strength of 64 MPa. The result of this SNMT2 is abnormal as shown in Table 2, and although it is not good except for 64Ti, SUS304 has a figure of 20 MPa, and it is a surprisingly bad result for SPCC, which is a ferritic stainless steel and general steel material. Met. Although it is expected that the cause of this strange result is the three-dimensional shape of the amine compound used, that is, the EDTA.4Na salt, the correct theoretical elucidation has not been made.

但し、射出樹脂として前述したポリアミド系樹脂「CM3506G50」使用で、Al合金類に加えて銅を除く非アルミ金属類が高い射出接合性を示したことは述べた。そこで、本発明により、PEEKやPAEK系樹脂以外の全結晶性熱可塑性樹脂が関係する金属・樹脂間の高性能射出接合技術が確立したことになる。加えて言えば、超耐熱性樹脂であるPEEK系やPAEK系樹脂を使用する射出接合技術において、50~65MPaのせん断接合強度を示すことができる金属合金として全Al合金と64Ti合金のあることが明確になった。即ち、自動車を中心とする移動機械の部品部材用の金属・樹脂からなる複合体作りでは、(一般鋼材、ステンレス鋼、Ti合金、Al合金)×(ポリアミド系樹脂)の組み合わせと(Ti合金)×(PEEK、PAEK系樹脂)の組み合わせがあれば、当面の複合体に要求される最高仕様を満たすものである。 However, it has been mentioned that non-aluminum metals excluding copper, in addition to Al alloys, exhibited high injection bondability when using the above-described polyamide resin "CM3506G50" as the injection resin. Therefore, according to the present invention, a high-performance injection joining technique between metal and resin involving all-crystalline thermoplastic resins other than PEEK and PAEK resins has been established. In addition, in the injection joining technology using PEEK or PAEK resins, which are super heat-resistant resins, there are all-Al alloys and 64Ti alloys as metal alloys capable of exhibiting a shear joint strength of 50 to 65 MPa. clarified. That is, in the production of composites made of metals and resins for parts and members of mobile machines, mainly automobiles, the combination of (general steel, stainless steel, Ti alloy, Al alloy) x (polyamide resin) and (Ti alloy) A combination of x (PEEK, PAEK resin) satisfies the highest specifications required for the present composite.

[実験例B3]射出接合物のせん断接合強度:PPS系樹脂の使用時
本実施例で開示するのは、表1、表2に示した非アルミ金属材とポリアミド系樹脂、PEEK・PEI混合樹脂との射出接合物の成功例、不成功例だけではない。新たに開発した「新型のNMT」という新射出接合の有用性も示しておきたい。最新の新NMT処理した非アルミ金属材と上記PPS系樹脂「SGX120」の射出接合物(図1に示す試験片)でのせん断接合強度は約40MPaであり、既に「SGX120」使用の射出接合物での最高強度に達しているが、今回開示した「SNMT」は、常に新NMTより優れた技術であることを確認する為に、PPS系樹脂使用の射出接合物に関してもその試験結果を開示しておく。
[Experimental example B3] Shear bond strength of injection-bonded product: when PPS resin is used This example discloses the non-aluminum metal materials and polyamide resins shown in Tables 1 and 2, and the PEEK/PEI mixed resin. There are not only successful and unsuccessful cases of injection joints with I would like to show the usefulness of the new injection joining called "new type NMT" that was newly developed. The latest new NMT-treated non-aluminum metal material and the above PPS resin "SGX120" injection-bonded product (test piece shown in Fig. 1) has a shear bond strength of about 40 MPa, and the injection-bonded product already using "SGX120" However, in order to confirm that the "SNMT" disclosed this time is always a superior technology to the new NMT, we also disclose the test results for injection-bonded products using PPS-based resin. Keep

実験例A1-2、A2-2、A3-2、A4-2で得たSNMT処理をした各種金属片を射出成形金型にインサートし、射出樹脂として上記PPS系樹脂「SGX120」を射出し、図1に示す試験片の射出接合品を得た。この時の射出温度は300℃、金型温度は140℃とした。得られた射出接合物は170℃とした熱風乾燥機内に1時間置いてアニールした。得た射出接合物のせん断接合強度を表3に記載した。測定法はISO19095に従い図1に示す試験片の射出接合物を図3に示す補助治具に収納して23℃下で引張り試験機にかけた結果であり、各3個の平均値である。

Figure 2022187378000004
The SNMT-treated metal pieces obtained in Experimental Examples A1-2, A2-2, A3-2, and A4-2 were inserted into an injection mold, and the PPS resin "SGX120" was injected as the injection resin, An injection-bonded product of the test piece shown in FIG. 1 was obtained. The injection temperature at this time was 300°C, and the mold temperature was 140°C. The obtained injection-bonded product was annealed by placing it in a hot air dryer set to 170° C. for 1 hour. Table 3 shows the shear bond strength of the obtained injection-bonded products. According to ISO 19095, the test piece shown in FIG. 1 was placed in the auxiliary jig shown in FIG.
Figure 2022187378000004

表3で明らかなように、非アルミ金属片に対してSNMT処理で表面処理したものを使用して、上記PPS系樹脂「SGX120」と射出接合してえた、図1に示す試験片の一体化物のせん断接合強度値は全て41~42MPaで十分高い。要するに上記「SGX120」使用の射出接合物におけるせん断接合強度の上限値とみられる41~42MPaを示した。耐熱性ある結晶性樹脂の融点として、200℃以上のものと本発明者等が設定した数値を置いていた。その意味では、種々の機械製造において使用される熱可塑性樹脂として、この融点200℃以上の樹脂群を挙げると、PPSが290℃付近、PA66が210℃付近、PEEKが340℃付近とみられ、これらが使用する具体的な樹脂素材種である。要するに、本発明で使用した「SNMT」は現在の処、非アルミ金属類に対してはPPS系樹脂、PA66系樹脂に関して十分に有効であり、基本的には「SNMT」は全金属種と融点200℃以上の結晶性熱可塑性樹脂の組み合わせに関する射出接合技術として使用できることが分る。 As is clear from Table 3, the integrated product of the test piece shown in FIG. All shear bond strength values of 41 to 42 MPa are sufficiently high. In short, it showed 41 to 42 MPa, which is considered to be the upper limit of the shear bonding strength of the injection-bonded product using the above "SGX120". As the melting point of the heat-resistant crystalline resin, a numerical value set by the present inventors was set to 200° C. or higher. In this sense, among the thermoplastic resins used in the manufacture of various machines, the resin group with a melting point of 200°C or higher is considered to be around 290°C for PPS, around 210°C for PA66, and around 340°C for PEEK. is a specific resin material type used by In short, the "SNMT" used in the present invention is currently sufficiently effective for PPS resins and PA66 resins for non-aluminum metals. It can be seen that it can be used as an injection joining technique for combinations of crystalline thermoplastic resins above 200°C.

Claims (8)

表面処理された表面を有する金属材と、前記表面と結晶性熱可塑性樹脂組成物とが、射出成形操作により接合された金属と樹脂の一体化複合体において、
前記金属材は、鋼材、チタン合金、及びステンレス鋼から選択される一種で、かつ、前記表面が化成処理されたものであり、
前記化成処理後の前記表面は、千倍電子顕微鏡観察で20~50μm周期の粗面が形成され、前記粗面上に1万倍電子顕微鏡観察で0.5~5μm周期の微細凹凸面を有し、かつ、10万倍電子顕微鏡観察で10~100nm周期の超微細凹凸面を有した微細凹凸周期を有するものであり、
前記結晶性熱可塑性樹脂組成物は、融点200℃以上の耐熱性があり、
前記表面に水溶性の高分子量アミン系化合物が吸着された状態で、前記結晶性熱可塑性樹脂組成物を前記射出成形により一体化した、前記一体化複合体の接合部は、せん断接合強度が39MPa以上を有するものである
ことを特徴とする金属と樹脂の一体化複合体。
An integrated composite of metal and resin, in which a metal material having a surface-treated surface and the surface and a crystalline thermoplastic resin composition are joined by an injection molding operation,
The metal material is one selected from steel, titanium alloy, and stainless steel, and the surface is chemically treated,
On the surface after the chemical conversion treatment, a rough surface with a period of 20 to 50 μm is formed when observed with an electron microscope at a magnification of 1000, and a fine uneven surface with a period of 0.5 to 5 μm is formed on the rough surface when observed with an electron microscope at a magnification of 10,000. And, it has a fine irregularity period with an ultrafine uneven surface with a period of 10 to 100 nm when observed with an electron microscope at 100,000 times,
The crystalline thermoplastic resin composition has heat resistance of a melting point of 200° C. or higher,
The joint of the integrated composite obtained by integrating the crystalline thermoplastic resin composition by the injection molding with the water-soluble high molecular weight amine compound adsorbed on the surface has a shear joint strength of 39 MPa. An integrated composite of a metal and a resin, characterized by having the above.
請求項1に記載の金属と樹脂の一体化複合体であり、
前記高分子量アミン系化合物は、トリエタノールアミン、又は、EDTA誘導体である
ことを特徴とする金属と樹脂の一体化複合体。
An integrated composite of the metal and resin according to claim 1,
The integrated composite of metal and resin, wherein the high-molecular-weight amine-based compound is triethanolamine or an EDTA derivative.
請求項1又は2に記載の金属と樹脂の一体化複合体であって、
前記鋼材は、一般鋼であり、前記ステンレス鋼は、オーステナイト系ステンレス鋼とフェライト系ステンレス鋼含む特殊鋼である
ことを特徴とする金属と樹脂の一体化複合体。
The integrated composite of metal and resin according to claim 1 or 2,
The integrated composite of metal and resin, wherein the steel material is general steel, and the stainless steel is special steel including austenitic stainless steel and ferritic stainless steel.
請求項1ないし3から選択される1項に記載の金属と樹脂の一体化複合体であり、
前記結晶性熱可塑性樹脂組成物は、ポリフェニレンサルファイドを樹脂分中に70重量%以上、変性ポリオレフィン樹脂を30重量%以下、第3成分樹脂を5重量%以下含む樹脂組成であり、かつ、ガラス短繊維を全体の15~25重量%含む組成物であり、
前記せん断接合強度は、39~43MPaを有するものである
ことを特徴とする金属と樹脂の一体化複合体。
An integrated composite of metal and resin according to claim 1 selected from claims 1 to 3,
The crystalline thermoplastic resin composition is a resin composition containing 70% by weight or more of polyphenylene sulfide, 30% by weight or less of modified polyolefin resin, and 5% by weight or less of a third component resin in the resin content, and A composition containing 15 to 25% by weight of the total fiber,
An integrated composite of metal and resin, characterized in that the shear bonding strength is 39 to 43 MPa.
請求項1ないし3から選択される1項に記載の金属と樹脂の一体化複合体であり、
前記結晶性熱可塑性樹脂組成物は、半芳香族ポリアミドを樹脂分中に10重量%以上、脂肪族ポリアミドを90重量%以下含む樹脂組成であり、かつ、ガラス短繊維を全体の25重量%以上占める組成物であり、
前記せん断接合強度は、45~65MPaを有するものである
ことを特徴とする金属と樹脂の一体化複合体。
An integrated composite of metal and resin according to claim 1 selected from claims 1 to 3,
The crystalline thermoplastic resin composition is a resin composition containing 10% by weight or more of semi-aromatic polyamide and 90% by weight or less of aliphatic polyamide in the resin content, and 25% by weight or more of the total short glass fiber. is a composition comprising
The integrated composite of metal and resin, characterized in that the shear bonding strength is 45 to 65 MPa.
請求項1ないし3から選択される1項に記載の金属と樹脂の一体化複合体であり、
前記結晶性熱可塑性樹脂組成物は、ポリエーテルエーテルケトンを樹脂分中に80~100重量%、ポリエーテルイミドを0~20重量%含む樹脂組成であり、
前記せん断接合強度値は、50MPa以上を有するものである
ことを特徴とする金属と樹脂の一体化複合体。
An integrated composite of metal and resin according to claim 1 selected from claims 1 to 3,
The crystalline thermoplastic resin composition is a resin composition containing 80 to 100% by weight of polyetheretherketone and 0 to 20% by weight of polyetherimide in the resin content,
The integrated composite of metal and resin, wherein the shear bonding strength value is 50 MPa or more.
請求項1ないし6から選択された1項に記載の金属と樹脂の一体化複合体の製造方法であって、
前記表面の前記化成処理後は、
前記金属材に酸塩基水溶液、若しくは酸化性還元性水溶液に、順次浸漬処理することにより、前記粗面、前記微細凹凸面、及び前記超微細凹凸面を形成し、又は、
最初にショットブラスト処理による物理的粗面化処理により、前記粗面及び前記微細凹凸面を形成した後、前記超微細凹凸面を化学的処理により形成した後、
前記表面は、0.1~0.5%濃度のトリエタノールアミン水溶液に1~60分浸漬し、更に、純水、又は、5~50PPM濃度の超希釈トリエタノールアミン水溶液で洗浄した後、乾燥させて射出接合用の前記金属材とする
ことを特徴とする金属と樹脂の一体化複合体の製造方法。
A method for manufacturing a metal-resin integrated composite according to one of claims 1 to 6,
After the chemical conversion treatment of the surface,
The rough surface, the fine uneven surface, and the ultra-fine uneven surface are formed by sequentially immersing the metal material in an acid-base aqueous solution or an oxidizing-reductive aqueous solution, or
First, after forming the rough surface and the fine uneven surface by physical roughening treatment by shot blasting, after forming the ultrafine uneven surface by chemical treatment,
The surface is immersed in a triethanolamine aqueous solution with a concentration of 0.1-0.5% for 1-60 minutes, further washed with pure water or an ultra-diluted triethanolamine aqueous solution with a concentration of 5-50 PPM, and then dried. A method for manufacturing an integrated composite of a metal and a resin, characterized in that the metal material for injection joining is obtained by heating the metal material.
請求項1ないし6から選択された1項に記載の金属と樹脂の一体化複合体に関するその製造方法であって、
前記表面の前記化成処理後は、
前記金属材に酸塩基水溶液、若しくは酸化性還元性水溶液に、順次浸漬処理することにより、前記粗面、前記微細凹凸面、及び前記超微細凹凸面を形成し又は、
最初にショットブラスト処理による物理的粗面化処理により、前記粗面及び前記微細凹凸面を形成した後、前記超微細凹凸面を化学的処理により形成した後、
前記表面は、0.1~0.5%濃度のEDTAの4Na塩の水溶液に1~60分浸漬し、更に、純水若しくは0.05~0.5%濃度の酢酸水溶液、又は、5~50PPM濃度の超希釈EDTAの4Naの水溶液で洗浄した後、乾燥させて射出接合用の前記金属材とする
ことを特徴とする金属と樹脂の一体化複合体の製造方法。
A method for manufacturing the integrated composite of metal and resin according to one of claims 1 to 6,
After the chemical conversion treatment of the surface,
The rough surface, the fine uneven surface, and the ultra-fine uneven surface are formed by sequentially immersing the metal material in an acid-base aqueous solution or an oxidizing-reductive aqueous solution, or
First, after forming the rough surface and the fine uneven surface by physical roughening treatment by shot blasting, after forming the ultrafine uneven surface by chemical treatment,
The surface is immersed in an aqueous solution of 4Na salt of EDTA with a concentration of 0.1 to 0.5% for 1 to 60 minutes, and then pure water or an acetic acid aqueous solution with a concentration of 0.05 to 0.5%, or A method for producing an integrated composite of a metal and a resin, comprising: washing with an aqueous solution of 4Na of ultra-diluted EDTA having a concentration of 50 PPM, and then drying the metal material for injection joining.
JP2021095385A 2021-06-07 2021-06-07 Integrated composite of metal and resin and manufacturing method of the same Pending JP2022187378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021095385A JP2022187378A (en) 2021-06-07 2021-06-07 Integrated composite of metal and resin and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021095385A JP2022187378A (en) 2021-06-07 2021-06-07 Integrated composite of metal and resin and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2022187378A true JP2022187378A (en) 2022-12-19

Family

ID=84525618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021095385A Pending JP2022187378A (en) 2021-06-07 2021-06-07 Integrated composite of metal and resin and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2022187378A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117047973A (en) * 2023-08-17 2023-11-14 广东东方管业有限公司 Electrothermal melting multilayer steel wire winding framework pipe fitting and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117047973A (en) * 2023-08-17 2023-11-14 广东东方管业有限公司 Electrothermal melting multilayer steel wire winding framework pipe fitting and preparation method thereof
CN117047973B (en) * 2023-08-17 2024-03-19 广东东方管业有限公司 Electrothermal melting multilayer steel wire winding framework pipe fitting and preparation method thereof

Similar Documents

Publication Publication Date Title
TWI707781B (en) Metal-resin composite molded article and production method thereof
JP5447742B1 (en) Battery packaging materials
JP4903897B2 (en) Zinc-based plated steel sheet and adherend bonded body and method for producing the same
JP5139426B2 (en) Steel composite and manufacturing method thereof
JP6331482B2 (en) Battery packaging materials
JP5733999B2 (en) Method for producing metal resin composite
EP2322691B1 (en) Iron alloy article, iron alloy member, and method for producing the iron alloy article
JP4750096B2 (en) Magnesium alloy article, magnesium alloy member and manufacturing method thereof
JP2017109496A (en) Method for producing metal-resin joined body
JPWO2014024877A1 (en) Aluminum resin bonded body and manufacturing method thereof
TW201143951A (en) Method for laser-joining of aluminum alloy plate and resin member together
JP2008162115A (en) Method of manufacturing metal/resin composite material
JP6764517B1 (en) Aluminum surface treatment method
WO2013178057A1 (en) Metal composite and method of preparing the same, metal-resin composite and method of preparing the same
JP2022187378A (en) Integrated composite of metal and resin and manufacturing method of the same
CN110385826B (en) Composite of aluminum alloy and resin and method for producing same
JP6630297B2 (en) An integrated product of metal and resin
JPWO2008126812A1 (en) Copper alloy composite and manufacturing method thereof
JP7405905B2 (en) A base material at least in whole or in part made of a metal material, the surface of the metal material having pores, and a composite of the base material and a cured resin material, including the base material and a cured resin material.
CN105984069A (en) Method for producing metal-resin complex
JP6341880B2 (en) Method for producing metal-containing composite
JP6869373B2 (en) Preparation method of 7XXX aluminum alloy for adhesive bonding and related products
WO2016199339A1 (en) Metal resin composite molded body and method for producing same
JP5540029B2 (en) Composite of aluminum or aluminum alloy and resin and method for producing the same
TW201348518A (en) Surface-treated metal, metal-resin composite and method for preparing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240424