JP2022184761A - 入力データにおける異常を検知するための概念 - Google Patents
入力データにおける異常を検知するための概念 Download PDFInfo
- Publication number
- JP2022184761A JP2022184761A JP2022083144A JP2022083144A JP2022184761A JP 2022184761 A JP2022184761 A JP 2022184761A JP 2022083144 A JP2022083144 A JP 2022083144A JP 2022083144 A JP2022083144 A JP 2022083144A JP 2022184761 A JP2022184761 A JP 2022184761A
- Authority
- JP
- Japan
- Prior art keywords
- machine learning
- input data
- learning model
- preprocessed
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005856 abnormality Effects 0.000 title abstract description 7
- 238000010801 machine learning Methods 0.000 claims abstract description 312
- 238000012549 training Methods 0.000 claims abstract description 108
- 238000000034 method Methods 0.000 claims abstract description 106
- 238000001514 detection method Methods 0.000 claims abstract description 43
- 238000004590 computer program Methods 0.000 claims abstract description 20
- 238000012545 processing Methods 0.000 claims abstract description 20
- 238000009826 distribution Methods 0.000 claims abstract description 17
- 230000006870 function Effects 0.000 claims description 39
- 230000008569 process Effects 0.000 claims description 39
- 210000002569 neuron Anatomy 0.000 claims description 5
- 238000007781 pre-processing Methods 0.000 abstract description 8
- 238000011156 evaluation Methods 0.000 description 25
- 238000003384 imaging method Methods 0.000 description 18
- 210000004027 cell Anatomy 0.000 description 15
- 230000008859 change Effects 0.000 description 15
- 238000013459 approach Methods 0.000 description 12
- 238000013528 artificial neural network Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 12
- 230000002547 anomalous effect Effects 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 238000012935 Averaging Methods 0.000 description 4
- 238000007726 management method Methods 0.000 description 4
- 238000000844 transformation Methods 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000013527 convolutional neural network Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012706 support-vector machine Methods 0.000 description 3
- 238000007792 addition Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000013501 data transformation Methods 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 230000006855 networking Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000013529 biological neural network Methods 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012885 constant function Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013434 data augmentation Methods 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000010223 real-time analysis Methods 0.000 description 1
- 238000001454 recorded image Methods 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/20—Ensemble learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/774—Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
- G06V10/7747—Organisation of the process, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/41—Higher-level, semantic clustering, classification or understanding of video scenes, e.g. detection, labelling or Markovian modelling of sport events or news items
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Software Systems (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- Multimedia (AREA)
- Health & Medical Sciences (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Databases & Information Systems (AREA)
- Image Analysis (AREA)
- Studio Devices (AREA)
Abstract
Description
カメラの小さな変位又は振動でも悪影響をもたらし得る。多くのアプローチの異なる性質に起因して、しばしば2枚の連続する画像が必要とされるため、遅い更新速度又は単一の画像解析もまた、考えられていない。オートエンコーダの使用に依存する上述のアプローチは、ロバストな差分処理及び閾値処理を実装することを困難にするアンバランスな出力が発生しやすい。
習モデルのシーケンスは、前処理された入力データを提供するために入力データを前処理するように構成された第1の機械学習モデルと、出力データを提供するために前処理された入力データを処理するように構成された第2の機械学習モデルとを含む。第1の機械学習モデルは、前処理された入力データが既知の確率分布で統計的に独立している複数のサブコンポーネントを含むように、入力データを変換するように訓練される。第2の機械学習モデルは、オートエンコーダである。装置は、第2の機械学習モデルの出力に基づいて入力データ内の異常の存在を決定するように構成されている。オートエンコーダを使用することは、入力データの単一のサンプルでさえもロバストな異常検知を可能にし得、第1の機械学習モデルによって提供された前処理は、機械学習モデルのシーケンスが訓練中に「崩壊すること」、すなわち、機械学習モデルのシーケンスが、例えば常に一定の値を出力することによって、異常を検知するのに適していないように訓練されること、を防止するために使用されてもよい。
に基づいて入力データ内の異常の位置を決定するように構成されてもよい。装置は、異常の位置に関する情報を提供するように構成されてもよい。例えば、前処理された入力データにおける(或いは出力データにおける)異常の位置は、例えば、画像データのサブコンポーネントと前処理された入力データのサブコンポーネントとの間の空間的関係に基づいて、画像データにおける異常の位置を導くために使用されてもよい。例えば、コンポーネントの位置に関する情報は、異常を包含するバウンディングボックスの1つ又は複数の座標を含んでもよい。そのようなバウンディングボックスは、画像データにオーバーレイされてもよい。
り非集中型のアプローチを異常検知に提供する。そのような場合、適切に訓練された機械学習モデルを有するカメラデバイスは、評価デバイスに異常検知ロジックを移植する必要なく、ビデオ管理システムのような、別の評価デバイスに移動させてもよい。
他の可能な実施例は、詳細に説明されたこれらの実施形態の特徴に限定されない。他の実施例は、特徴の変更だけでなく、特徴の均等物及び代替物も含んでもよい。さらに、ある一定の実施例を説明するために本明細書で使用される用語は、更なる可能な実施例について制限的であってはならない。
して入力データを処理すること110を含む。方法は、第2の機械学習モデルの出力に基づいて入力データ内の異常の存在を決定すること150を含む。
概念が使用される。異常事象及び/又は異常物体についてのビデオデータの解析に関する上記の実施例に関して、異常検知器は、ビデオフィードが与えられると、周囲が通常、現在観測されている照明及び他の外部状況でどのように見えるかを予測するように訓練される機械学習モデルのシーケンスを使用することによって、実質的に実装される。この予測の出力は、本質的に、観測された入力と類似している別の画像である。この実施例では、機械学習モデルのシーケンスは、観測されたシーンのビデオの時間間隔(例えば、1週間のビデオの観測されたシーン)で訓練されてもよい。生成された出力が観測された入力と一致する場合、異常はシーンに存在しないと考えられ得る。一方、未知の物体、例えば、事前に観測されていないスーツケースが観測される場合、予測モジュールは、そのような物体を以前に観測していないため、画像を予測することができない。
提案された第1及び第2の機械学習モデルの各々は、1つ又は複数のサブモデルを含んでもよい。図2aに示される予測モジュール220は、2つの追加、任意のバックボーン及び無相関モジュールのうちの少なくとも1つを有するオートエンコーダを含んでもよく、或いはそのオートエンコーダで構成されてもよい。結果として得られる精度及びロバスト性に不可欠である提案された概念は、機械学習モデルの特定の組み合わせに関する。特に、入力データのサブコンポーネントを無相関化するために使用される機械学習モデルを有するオートエンコーダを使用することは、他のアプローチでは知られていない。
を含んでもよく、第1の機械学習モデルは、第1の次元w2、第2の次元h2及び第3の次元d2を有する前処理された入力データに画像データを変換するように訓練されてもよい。より一般論では、第1の機械学習モデルの第1のサブモデル222の出力において、入力データは、異なる表現に変換されてもよい。したがって、第1サブモデル222(すなわち、バックボーン)は、入力データを、入力データとは異なる形式を有する、変換された入力データに変換してもよい。一般的に、バックボーンの出力の第1及び第2の次元(例えば高さ及び幅)は、入力データの第1及び第2の次元よりも小さくてもよいし、第3の次元(例えば深度)は、より大きくなってもよい。言い換えれば、それぞれの次元は、w2<w1、h2<h1及びd2>d1のように選択されてもよい。バックボーンは、バックボーンからの出力が一定のままであるという意味では画像のわずかな変化、例えば局所変換、回転及び色の変化が無視されるように訓練されてもよい。言い換えれば、第1の機械学習モデルの第1のサブモデル(すなわち、バックボーン)は、わずかな局所変換、回転及び/又は色の変化が第1のサブモデルによって無視されるように、局所変換、回転及び色の変化に関してわずかな差分のみを有する入力データが第1のサブモデルの出力において同じ出力をもたらすように、訓練されてもよい。それはまた、(必要とされる計算数の観点から)より効率的なシステムをもたらし得る。
その位置で異常が発生する確率が高いことを示す。例えば、この2次元変化マップは、前処理された入力データと第2の機械学習モデルの出力との間の差分を表してもよい。例えば、2次元変化マップは、前処理された入力データと第2の機械学習モデルの出力との差分に関する情報を表すために使用されてもよい。例えば、差分、すなわち、変化マップ、又はその派生物を決定することによって、異常の存在が決定されてもよい(異常が差分に存在するか否かを確認するための後続処理が実行されない場合も含む)。言い換えれば、異常の存在を決定することは、前処理された入力データと第2の機械学習モデルの出力との差分、又はその派生物を決定することを含んでもよく、或いは前処理された入力データと第2の機械学習モデルの出力との差分、又はその派生物を決定することで構成されてもよい。
とも1つの閾値、前処理された入力データと第2の機械学習モデルの出力との間の差分をぼかすために使用されるぼかしパラメータ(例えば、カーネルサイズ及び/又は形状)、及び/又はクラスタリングパラメータ(例えば、クラスタリング閾値)は、外部のエンティティによって設定されてもよい。方法は、外部エンティティからの入力に基づいて、少なくとも1つの閾値、ぼかしパラメータ及び/又はクラスタリングパラメータを設定すること130を含んでもよい。例えば、装置が(例えばカメラデバイスの)埋め込み(embedded)デバイスの一部である場合、それぞれの閾値/パラメータ(複数可)は、埋め込みデバイスに接続されている、ビデオ管理システムのような、中央デバイスによって設定されてもよい。
Notation)フォーマット済みテキスト形式などの、構造化されたデータの形式で、或いは、既存のビデオフィードへのオーバーレイの形式で提供されてもよい。言い換えれば、異常に関する情報は、装置によって、カメラデバイスの出力における画像日付上にオーバーレイとして、或いは入力データに付随するメタデータとして、提供されてもよい。例えば、2つのビデオストリームが、カメラデバイスによって提供されてもよく、1つは、入力データ(又はその処理されたバージョン)に対応し、1つは、入力データ(又はその処理されたバージョン)が異常に関する情報とオーバーレイさせたものである。例えば、異常に関する情報は、入力ビデオストリームに異常を示す矩形をオーバーレイさせた新たなビデオストリームに提示され得る。そのようなシステムは、出力が新たな仮想/インテリジェントカメラとしてVMSに提示され得るため、既存のVMSとインタフェースをとりやすいという利点を有する。いくつかの実施例では、2つのアプローチは、ビデオストリームにメタデータとして警報を埋め込むことによって組み合わせられてもよい。
に或いは代替的に、異常に関する情報は、異常の存在に関する指標、例えば、異常が存在するか否かを表す指標を含んでもよい。
のようなシステムはまた、(非異常な訓練用ビデオに存在する)特定の物体が訓練用ビデオと同じ位置にない場合であっても、その物体を無視するように学習することを可能にし得る。
Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、又はネットワークストレージの磁気或い光学記憶媒体のような、コンピュータ可読記憶媒体のグループの少なくとも1つの要素を含んでもよい。
複数の装置10を有する1つ又は複数のカメラ300などの、入力データにおける異常を検知するための少なくとも1つの装置10とを含むシステム350の一例の模式図を示す。少なくとも1つの装置は、評価デバイスに、前処理された入力データと第2の機械学習モデルの出力との間の差分に関する情報を提供するように構成されている。評価デバイスは、入力データにおける異常の存在を決定するために差分に関する情報を処理するように構成されている。
つ又は複数の記憶デバイス46と、任意のインタフェース42とを含む。例えば、インタフェース42と、1つ又は複数のプロセッサ44と、1つ又は複数の記憶デバイス46とは、装置10のそれぞれのコンポーネント12、コンポーネント14、コンポーネント16と同様に実装されてもよい。特に、装置40の機能はまた、図1aから図2bの装置10によって実行されてもよい。装置40と、任意に図1aから図2bの装置10とは、図4aの方法を実行するように構成されている。
が可能である。
るために第2の機械学習モデルを訓練することによって、訓練させる。したがって、第2の機械学習モデルは、ノイズの多いオートエンコーダとして訓練される。第2の機械学習モデルが、第1の機械学習モデルと共同で、使用され、訓練されるため、第1の機械学習モデルは、第2の機械学習モデルのための入力を生成するように使用され、異常は、第1の機械学習モデルと第2の機械学習モデルとの間の入力に導入される。言い換えれば、第2の機械学習モデルは、機械学習モデルのシーケンスの訓練中に第1の機械学習モデルによって提供された前処理された入力データに基づいて第2の機械学習モデルのための訓練用入力データを生成すること415によって訓練されてもよい。特に、前処理された入力データのサブコンポーネントの部分集合は、前処理された入力データが第2の機械学習モデルに提供される前に変更されてもよく、例えば、予め定義された値に設定されてもよいし、或いはランダム値に設定されてもよい。例えば、前処理された入力データの複数のサブコンポーネントの部分集合は、第2の機械学習モデルのための訓練用入力データにおいて固定値(又はランダム値)に設定されてもよい。例えば、第2の機械学習モデルへの入力は、入力における50%のドロップアウトの使用によって大幅に拡張されてもよく、すなわち、サブコンポーネントの半分が値0.0に設定されてもよい。次に、第2の機械学習モデルは、第2の機械学習モデルの出力と第2の機械学習モデルの元の(修正されていない)入力との間の差分に基づいて訓練の損失関数を設定することによって、元の入力を再構成するように訓練される。言い換えれば、第2の損失関数は、第2の機械学習モデルの出力と、前処理された入力データとの差分に基づいていてもよい。
機械学習モデルの訓練中、バックボーンの重みは、バックボーンが通常既に訓練されているため、凍結されてもよい。言い換えれば、第1の機械学習モデルの第1のサブモデルは、人工ニューラルネットワークであってもよいし、特に、ディープニューラルネットワーク又はディープ畳み込みニューラルネットワークであってもよい。バックボーンコンポーネントのニューロン間の重みは、機械学習モデルのシーケンスの共同訓練中に固定(すなわち、凍結)されてもよい。これは、訓練をより速くし、より少ない数の訓練用サンプルを必要とし得る。しかしながら、凍結された重みを使用することは、組み合わせられたシステムの低下した精度をもたらし得る。したがって、代替的に、バックボーンコンポーネントの重みは、機械学習モデルのシーケンスの訓練中に適応されてもよい。
ム可能な論理アレイ((F)PLA)、(フィールド)プログラム可能なゲートアレイ((F)PGA)、グラフィックプロセッサユニット(GPU)、特定用途向け集積回路(ASIC)、集積回路(IC)又はシステムオンチップ(SoC)システムを含んでもよい。
Claims (15)
- 入力データにおける異常を検知するための装置(10)であって、前記装置は、1つ又は複数のプロセッサ(14)と1つ又は複数の記憶デバイス(16)とを含み、
前記装置は、
機械学習モデルのシーケンスを使用して前記入力データを処理することであって、
機械学習モデルの前記シーケンスは、前処理された入力データを提供するために前記入力データを前処理するように構成された第1の機械学習モデルと、出力データを提供するために前記前処理された入力データを処理するように構成された第2の機械学習モデルとを含み、
前記第1の機械学習モデルは、前記前処理された入力データが既知の確率分布で統計的に独立している複数のサブコンポーネントを含むように、前記入力データを変換するように訓練され、且つ、前記第2の機械学習モデルは、オートエンコーダである、前記処理することを行い、且つ、
前記第2の機械学習モデルの前記出力データに基づいて前記入力データ内の異常の存在を決定する、
ように構成されている、装置。 - 前記第1の機械学習モデルは、前記前処理された入力データを生成するために前記入力データの複数のサブコンポーネントを無相関化するように訓練される、請求項1に記載の装置。
- 前記入力データは、複数の画素を含む画像データであり、前記複数の画素は、前記入力データの前記複数のサブコンポーネントに対応する、請求項2に記載の装置。
- 前記画像データは、幅w1、高さh1及び色チャンネル数d1の画素の2次元グリッドを含み、前記第1の機械学習モデルは、前記画像データを、w2<w1、h2<h1及びd2>d1である、第1の次元w2、第2の次元h2及び第3の次元d2を有する前記前処理された入力データに変換するように訓練される、請求項3に記載の装置。
- 前記第1の機械学習モデルは、前記画像データを、前記第1の次元w2、前記第2の次元h2及び前記深度d2を有する表現に変換するように訓練されたバックボーンコンポーネントと、既知の確率分布で統計的に独立している前記複数のサブコンポーネントを有する前記前処理された入力データを生成するために前記変換された画像データを無相関化するように訓練された無相関コンポーネントとを含む、請求項4に記載の装置。
- 前記入力データは画像データであり、前記装置は、前記入力データ内の前記異常の前記存在を決定するために前記前処理された入力データと前記第2の機械学習モデルの前記出力データとの間の差分を決定し、前記差分に基づいて前記入力データ内の前記異常の位置を決定し、且つ、前記異常の前記位置に関する情報を提供するように構成されている、請求項1乃至5のいずれか1項に記載の装置。
- 前記コンポーネントの前記位置に関する前記情報は、前記異常を包含するバウンディングボックスの1つ又は複数の座標を含み、且つ/或いは、前記装置は、前記差分に基づいて、且つ少なくとも1つの閾値に基づいて、前記異常の前記存在及び/又は位置を決定するように構成されている、請求項6に記載の装置。
- 前記装置は、前記前処理された入力データと前記第2の機械学習モデルの前記出力データとの間の前記差分にぼかしを適用し、且つ、前記前処理された入力データと前記第2の機械学習モデルの前記出力データとの間の前記ぼかされた差分に基づいて、且つ少なくと
も1つの閾値に基づいて、前記異常の前記存在及び/又は前記位置を決定するように構成されている、請求項6又は7のいずれか1項に記載の装置。 - 前記少なくとも1つの閾値及び/又は前記前処理された入力データと前記第2の機械学習モデルの前記出力データとの間の前記差分をぼかすために使用されるぼかしパラメータは、外部のエンティティによって設定される、請求項7又は8のいずれか1項に記載の装置。
- 異常検知に使用する機械学習モデルのシーケンスを訓練するための方法であって、
機械学習モデルの前記シーケンスは、前処理された入力データを提供するために入力データを前処理するように構成された第1の機械学習モデルと、出力データを提供するために前記前処理された入力データを処理するように構成された第2の機械学習モデルとを含み、
前記第1の機械学習モデルは、前記前処理された入力データが既知の確率分布で統計的に独立している複数のサブコンポーネントを含むように、前記入力データを処理するために訓練され、且つ、前記第2の機械学習モデルは、オートエンコーダであり、
前記方法は、異常を含まない訓練用入力データのサンプルの集合に基づいて機械学習モデルの前記シーケンスを共同訓練すること(410)を含む、
方法。 - 前記第1の機械学習モデルは、第1の損失関数に基づいて訓練され、且つ、前記第2の機械学習モデルは、第2の損失関数に基づいて訓練される、請求項10に記載の方法。
- 前記第2の機械学習モデルは、機械学習モデルの前記シーケンスの前記訓練中に前記第1の機械学習モデルによって提供された前記前処理された入力データに基づいて前記第2の機械学習モデルのための訓練用入力データを生成すること(415)によって訓練され、前記前処理された入力データの前記複数のサブコンポーネントの部分集合は、前記第2の機械学習モデルのための前記訓練用入力データにおいて固定値に設定され、前記第2の損失関数は、前記第2の機械学習モデルの前記出力データと前記前処理された入力データとの間の差分に基づいている、請求項11に記載の方法。
- 前記第1の機械学習モデルは、バックボーンコンポーネントと無相関コンポーネントとを含み、前記バックボーンコンポーネントのニューロン間の重みは、機械学習モデルの前記シーケンスの前記共同訓練中に固定される、請求項10乃至12のいずれか1項に記載の方法。
- 入力データにおける異常を検知する方法であって、前記方法は、
機械学習モデルのシーケンスを使用して前記入力データを処理すること(110)であって、
機械学習モデルの前記シーケンスは、前処理された入力データを提供するために前記入力データを前処理するように構成された第1の機械学習モデルと、出力データを提供するために前記前処理された入力データを処理するように構成された第2の機械学習モデルとを含み、
前記第1の機械学習モデルは、前記前処理された入力データが既知の確率分布で統計的に独立している複数のサブコンポーネントを含むように、前記入力データを変換するように訓練され、且つ、前記第2の機械学習モデルは、オートエンコーダである、前記処理することと、
前記第2の機械学習モデルの前記出力データに基づいて前記入力データ内の異常の存在を決定すること(150)と、
を含む、方法。 - 請求項10乃至13のいずれか1項に記載の方法又は請求項14に記載の方法を実行するためのプログラムコードを有し、コンピュータ、プロセッサ、処理回路、又はプログラム可能なハードウェアコンポーネント上で実行される、コンピュータプログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21176823.9 | 2021-05-31 | ||
EP21176823.9A EP4099224A1 (en) | 2021-05-31 | 2021-05-31 | A concept for detecting an anomaly in input data |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022184761A true JP2022184761A (ja) | 2022-12-13 |
JP7372391B2 JP7372391B2 (ja) | 2023-10-31 |
Family
ID=76197317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022083144A Active JP7372391B2 (ja) | 2021-05-31 | 2022-05-20 | 入力データにおける異常を検知するための概念 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220392225A1 (ja) |
EP (1) | EP4099224A1 (ja) |
JP (1) | JP7372391B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102625543B1 (ko) * | 2023-08-14 | 2024-01-16 | 주식회사 아이코어 | 인공지능 모델의 앙상블을 통해 객체의 결함을 식별하는전자 장치, 및 그 제어 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120224746A1 (en) * | 2009-09-17 | 2012-09-06 | Behavioral Recognition Systems, Inc. | Classifier anomalies for observed behaviors in a video surveillance system |
WO2020088739A1 (en) * | 2018-10-29 | 2020-05-07 | Hexagon Technology Center Gmbh | Facility surveillance systems and methods |
WO2020175147A1 (ja) * | 2019-02-28 | 2020-09-03 | 日本電信電話株式会社 | 検知装置及び検知プログラム |
US20200387797A1 (en) * | 2018-06-12 | 2020-12-10 | Ciena Corporation | Unsupervised outlier detection in time-series data |
US20200410322A1 (en) * | 2019-06-26 | 2020-12-31 | Nvidia Corporation | Neural architecture for self supervised event learning and anomaly detection |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220351033A1 (en) * | 2021-04-28 | 2022-11-03 | Arm Limited | Systems having a plurality of neural networks |
-
2021
- 2021-05-31 EP EP21176823.9A patent/EP4099224A1/en active Pending
-
2022
- 2022-05-18 US US17/663,832 patent/US20220392225A1/en active Pending
- 2022-05-20 JP JP2022083144A patent/JP7372391B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120224746A1 (en) * | 2009-09-17 | 2012-09-06 | Behavioral Recognition Systems, Inc. | Classifier anomalies for observed behaviors in a video surveillance system |
US20200387797A1 (en) * | 2018-06-12 | 2020-12-10 | Ciena Corporation | Unsupervised outlier detection in time-series data |
WO2020088739A1 (en) * | 2018-10-29 | 2020-05-07 | Hexagon Technology Center Gmbh | Facility surveillance systems and methods |
WO2020175147A1 (ja) * | 2019-02-28 | 2020-09-03 | 日本電信電話株式会社 | 検知装置及び検知プログラム |
US20200410322A1 (en) * | 2019-06-26 | 2020-12-31 | Nvidia Corporation | Neural architecture for self supervised event learning and anomaly detection |
Non-Patent Citations (1)
Title |
---|
MAHMOOD R. AZIMI-SADJADI ET AL.: "Detection and Classification of Buried Dielectric Anomalies Using a Separated Aperture Sensor and a", IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, vol. 14, no. 1, JPN6023013146, February 1992 (1992-02-01), US, pages 137 - 143, ISSN: 0005119798 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102625543B1 (ko) * | 2023-08-14 | 2024-01-16 | 주식회사 아이코어 | 인공지능 모델의 앙상블을 통해 객체의 결함을 식별하는전자 장치, 및 그 제어 방법 |
Also Published As
Publication number | Publication date |
---|---|
JP7372391B2 (ja) | 2023-10-31 |
EP4099224A1 (en) | 2022-12-07 |
US20220392225A1 (en) | 2022-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200012923A1 (en) | Computer device for training a deep neural network | |
Sengar et al. | Moving object area detection using normalized self adaptive optical flow | |
CN112052831B (zh) | 人脸检测的方法、装置和计算机存储介质 | |
Shyam et al. | Abandoned object detection using pixel-based finite state machine and single shot multibox detector | |
CN111401202A (zh) | 一种基于深度学习的行人口罩佩戴实时检测方法 | |
Chen et al. | Neuroaed: Towards efficient abnormal event detection in visual surveillance with neuromorphic vision sensor | |
US20210074001A1 (en) | Motion Detection Method and Motion Detection System with Low Computational Complexity and High Detection Accuracy | |
Wang et al. | Background subtraction on depth videos with convolutional neural networks | |
CN116309781A (zh) | 一种基于跨模态融合的水下视觉目标测距方法及装置 | |
Vijayan et al. | A fully residual convolutional neural network for background subtraction | |
JP7372391B2 (ja) | 入力データにおける異常を検知するための概念 | |
Kalshetty et al. | Abnormal event detection model using an improved ResNet101 in context aware surveillance system | |
Yang et al. | Video anomaly detection for surveillance based on effective frame area | |
Nauman et al. | Identification of Anomalous Behavioral Patterns in Crowd Scenes. | |
Kajendran et al. | Recognition and detection of unusual activities in ATM using dual-channel capsule generative adversarial network | |
CN117523668A (zh) | 时空动作网络的异常行为检测方法 | |
Varghese et al. | Video anomaly detection in confined areas | |
Bangare et al. | Detection of human feature in abandoned object with modern security alert system using Android Application | |
Ghosh et al. | Pedestrian counting using deep models trained on synthetically generated images | |
Kaur et al. | An image processing techniques for pattern detection in Covid-19 | |
Sorte et al. | Motion detection using optical flow and standard deviation | |
Basalamah et al. | Pedestrian crowd detection and segmentation using multi-source feature descriptors | |
Dias et al. | Change Detection in Moving-Camera Videos Using a Shift-Invariant Dissimilarity Metric | |
CN117975638B (zh) | 基于信息融合技术的智慧安防报警系统及其方法 | |
Nabila | Person Re-Identification using Background Subtraction and Siamese Network for Pose Varians |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220523 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220523 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230320 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230404 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230623 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230801 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230919 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231003 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231019 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7372391 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |