JP2022184634A - Anti-aging agent and production method of the same - Google Patents

Anti-aging agent and production method of the same Download PDF

Info

Publication number
JP2022184634A
JP2022184634A JP2021092585A JP2021092585A JP2022184634A JP 2022184634 A JP2022184634 A JP 2022184634A JP 2021092585 A JP2021092585 A JP 2021092585A JP 2021092585 A JP2021092585 A JP 2021092585A JP 2022184634 A JP2022184634 A JP 2022184634A
Authority
JP
Japan
Prior art keywords
aging agent
present
arthrospira
spirulina
algae
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021092585A
Other languages
Japanese (ja)
Inventor
卓司 難波
Takuji Namba
加代 町原
Kayo Machihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Kochi University NUC
Original Assignee
Kyushu University NUC
Kochi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Kochi University NUC filed Critical Kyushu University NUC
Priority to JP2021092585A priority Critical patent/JP2022184634A/en
Publication of JP2022184634A publication Critical patent/JP2022184634A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

To provide an anti-aging agent showing an excellent action such as a mitochondrial activating action, and to provide a production method of the same.SOLUTION: An anti-aging agent contains polysaccharides derived from algae of the genus Arthospira as the active ingredient. A production method of the anti-aging agent includes a step of extracting polysaccharides from algae of the genus Arthospira using a phenol aqueous solution or a trichloroacetic acid aqueous solution.SELECTED DRAWING: None

Description

本発明は、ミトコンドリア活性化作用などの優れた作用を示すアンチエイジング剤とその製造方法に関するものである。 TECHNICAL FIELD The present invention relates to an anti-aging agent exhibiting excellent effects such as mitochondrial activating action, and a method for producing the same.

日本における平均寿命は20世紀後半に著しい伸長を遂げ、世界有数の長寿国となった。その一方で、加齢による問題も健在化してきている。例えば、加齢による老化の表現型としては、認知力の低下、筋力の衰え、骨粗鬆症、内臓脂肪の増加、心血管機能の低下、不眠などが挙げられる。 The average life expectancy in Japan has increased significantly in the latter half of the 20th century, making Japan one of the world's leading longevity countries. On the other hand, problems due to aging are becoming more alive. For example, age-related aging phenotypes include cognitive decline, muscle weakness, osteoporosis, increased visceral fat, reduced cardiovascular function, and insomnia.

かつては加齢のプロセスは非常に複雑で、介入など不可能であると思われていた。しかし近年、科学の進歩により、加齢は細胞生物学的なプロセスの一つとして介入の可能性があることが明らかにされ、加齢という生物学的プロセスに介入し、加齢に伴う動脈硬化やがんといった加齢関連疾患の発症確率を下げ、生活の質(QOL:Quality Of Life)を維持しつつ健康長寿をめざすアンチエイジング技術が検討されている。 The aging process was once thought to be so complex that intervention was impossible. However, in recent years, scientific advances have revealed that aging is one of the cell-biological processes that can be intervened. BACKGROUND ART Anti-aging techniques are being studied to reduce the probability of developing age-related diseases such as cancer and cancer, and to maintain the quality of life (QOL: Quality Of Life) while aiming for healthy longevity.

ところで、スピルリナ(Spirulina)と呼ばれる藻類は、藍藻類の一種で、今から30億年以上も昔に地球上に誕生した最古の植物の一つであり、多種類の栄養素が豊富に含まれていることから、最近、食生活の偏りがちな現代人の栄養補助食品として利用されている。 By the way, algae called Spirulina is a type of blue-green algae, and is one of the oldest plants that was born on the earth more than 3 billion years ago. For this reason, it has recently been used as a nutritional supplement for modern people who tend to have an unbalanced diet.

例えば特許文献1には、スピルリナ自体がヒドロキシラジカル消去能を有することが示されており、肝炎の予防や治療に有効であることが記載されている。また、特許文献2には、スピルリナから抽出される青色色素タンパク質であるフィコシアニンを含む化粧料が開示されており、かかる化粧料が抗老化作用や美白作用などを示すとされている。 For example, Patent Document 1 shows that Spirulina itself has a hydroxyl radical scavenging ability, and describes that it is effective in preventing and treating hepatitis. In addition, Patent Document 2 discloses a cosmetic containing phycocyanin, which is a blue pigment protein extracted from spirulina, and is said to exhibit anti-aging action, whitening action, and the like.

特開2009-256230号公報JP 2009-256230 A 特開2020-183356号公報JP 2020-183356 A

上述したように、スピルリナは、栄養補助食品の他、予防剤や治療剤などの有効成分としての利用が検討されている。しかし、例えば特許文献2に記載の抗老化作用や美白作用については、スピルリナ由来のタンパク質を含む化粧料の塗布により肌に弾力を感じるかや肌が白いと感じるかといった主観的な定性的評価しか為されていない。
そこで本発明は、ミトコンドリア活性化作用などの優れた作用を示すアンチエイジング剤とその製造方法を提供することを目的とする。
As described above, Spirulina is being considered for use as an active ingredient in preventive agents, therapeutic agents, and the like, in addition to dietary supplements. However, for the anti-aging action and whitening action described in Patent Document 2, for example, there is only subjective qualitative evaluation such as whether the application of a cosmetic containing a protein derived from spirulina makes the skin feel elastic or white. not done.
Accordingly, an object of the present invention is to provide an anti-aging agent exhibiting excellent effects such as mitochondrial activating action, and a method for producing the same.

本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、アルスロスピラ属藻類から抽出された多糖類が、客観的に優れたアンチエイジング作用を示すことを見出して、本発明を完成した。
以下、本発明を示す。
The present inventors have made intensive studies to solve the above problems. As a result, the inventors have found that polysaccharides extracted from Arthrospira algae exhibit objectively excellent anti-aging effects, and have completed the present invention.
The present invention is shown below.

[1] 有効成分としてアルスロスピラ属藻類由来の多糖類を含有することを特徴とするアンチエイジング剤。
[2] 前記アルスロスピラ属藻類がアルスロスピラ・プラテンシスである前記[1]に記載のアンチエイジング剤。
[3] ミトコンドリア活性化作用を示す前記[1]または[2]に記載のアンチエイジング剤。
[4] 抗酸化作用を示す前記[1]~[3]のいずれかに記載のアンチエイジング剤。
[5] コラーゲン生合成増強作用を示す前記[1]~[4]のいずれかに記載のアンチエイジング剤。
[6] アンチエイジング剤を製造するための方法であって、
アルスロスピラ属藻類から、フェノール水溶液またはトリクロロ酢酸水溶液を用いて多糖類を抽出する工程を含むことを特徴とする方法。
[7] 前記アルスロスピラ属藻類としてアルスロスピラ・プラテンシスを用いる前記[6]に記載の方法。
[1] An anti-aging agent characterized by containing a polysaccharide derived from Arthrospira algae as an active ingredient.
[2] The anti-aging agent according to [1] above, wherein the Arthrospira algae is Arthrospira platensis.
[3] The anti-aging agent according to [1] or [2] above, which exhibits a mitochondrial activation action.
[4] The anti-aging agent according to any one of [1] to [3], which exhibits antioxidant action.
[5] The anti-aging agent according to any one of [1] to [4], which exhibits collagen biosynthesis-enhancing action.
[6] A method for producing an anti-aging agent, comprising:
A method comprising a step of extracting polysaccharides from Arthrospira algae using an aqueous phenol solution or an aqueous trichloroacetic acid solution.
[7] The method according to [6] above, wherein Arthrospira platensis is used as the Arthrospira algae.

本発明に係るアルスロスピラ属藻類由来の多糖類は、ミトコンドリアの活性化、抗酸化作用、コラーゲンや小胞体のフォールディングに関与する分子シャペロンの生合成の増強作用、コラーゲンの生合成の増強作用など、客観的で且つ優れたアンチエイジング作用を示す。また、本発明に係る多糖類は、それ自体が栄養補助食品などとして利用されているスピルリナ(アルスロスピラ属藻類)に由来するものであるからか、グラム陰性菌からのエンドトキシンの抽出方法と同様の方法で抽出されるものでありながら、細胞毒性が低いことが実験的に証明されている。よって本発明は、優れたアンチアンチエイジング剤に関する技術として、産業上非常に優れている。 The polysaccharide derived from Arthrospira algae according to the present invention has effects such as activation of mitochondria, antioxidant action, enhancement of biosynthesis of collagen and molecular chaperones involved in folding of the endoplasmic reticulum, enhancement of collagen biosynthesis, etc. Objective effective and excellent anti-aging action. In addition, the polysaccharide according to the present invention is derived from Spirulina (Arthrospira algae), which itself is used as a nutritional supplement, or by a method similar to the method for extracting endotoxin from Gram-negative bacteria. It has been experimentally proven to have low cytotoxicity even though it is extracted from Therefore, the present invention is industrially extremely superior as a technology relating to an excellent anti-aging agent.

図1は、本発明に係るスピルリナ多糖類による老化細胞中のミトコンドリアの活性化の指標となるJC-1蛍光強度を示すグラフである。FIG. 1 is a graph showing JC-1 fluorescence intensity, which is an indicator of activation of mitochondria in senescent cells by Spirulina polysaccharide according to the present invention. 図2は、本発明に係るスピルリナ多糖類を含む培地で培養した老化細胞におけるミトコンドリアスーパーオキシドジスムターゼ2(SOD2)の遺伝子発現の経時的変化を示すグラフである。FIG. 2 is a graph showing temporal changes in gene expression of mitochondrial superoxide dismutase 2 (SOD2) in senescent cells cultured in a medium containing the Spirulina polysaccharide according to the present invention. 図3は、本発明に係るスピルリナ多糖類を含む培地で培養した老化細胞におけるミトコンドリアスーパーオキシドジスムターゼ2(SOD2)の生合成量の経時的変化を示すイムノブロッティング写真である。FIG. 3 is an immunoblotting photograph showing temporal changes in the amount of mitochondrial superoxide dismutase 2 (SOD2) biosynthesis in senescent cells cultured in a medium containing the Spirulina polysaccharide according to the present invention. 図4は、本発明に係るスピルリナ多糖類を含む培地で培養した老化細胞の酸化活性を示すグラフである。FIG. 4 is a graph showing the oxidative activity of senescent cells cultured in a medium containing Spirulina polysaccharide according to the present invention. 図5は、本発明に係るスピルリナ多糖類を含む培地で培養した老化細胞のコラーゲン産生量を示すグラフである。FIG. 5 is a graph showing the amount of collagen produced by senescent cells cultured in a medium containing the Spirulina polysaccharide according to the present invention. 図6(1)は、コントロールsiRNAまたはミトコンドリアスーパーオキシドジスムターゼ2(SOD2)に対するsiRNAで形質転換した老化細胞を、本発明に係るスピルリナ多糖類で処理した場合または処理しなかった場合におけるSOD2の産生能を示すイムノブロッティング写真であり、図6(2)は、コラーゲンの産生量を示すグラフである。Fig. 6 (1) shows the production capacity of SOD2 in senescent cells transformed with control siRNA or siRNA against mitochondrial superoxide dismutase 2 (SOD2), with or without treatment with the Spirulina polysaccharide according to the present invention. FIG. 6(2) is a graph showing the amount of collagen produced. 図7(1)は、本発明に係るスピルリナ多糖類(SPC)またはリポ多糖(LPS)を含む培地で培養した老化細胞におけるミトコンドリアスーパーオキシドジスムターゼ2(SOD2)の相対的遺伝子発現量を示すグラフであり、図7(2)は、サイトカインであるIL-6の相対的遺伝子発現量を示すグラフである。FIG. 7 (1) is a graph showing the relative gene expression level of mitochondrial superoxide dismutase 2 (SOD2) in senescent cells cultured in a medium containing spirulina polysaccharide (SPC) or lipopolysaccharide (LPS) according to the present invention. FIG. 7(2) is a graph showing relative gene expression levels of cytokine IL-6. 図8(1)は、本発明に係るスピルリナ多糖類を含む培地で培養した老化細胞における小胞体分子シャペロンHSP47の相対的遺伝子発現量を示すグラフであり、図8(2)は、小胞体分子シャペロンGRP78の相対的遺伝子発現量を示すグラフである。FIG. 8 (1) is a graph showing the relative gene expression levels of the endoplasmic reticulum molecule chaperone HSP47 in senescent cells cultured in a medium containing the Spirulina polysaccharide according to the present invention, and FIG. FIG. 2 is a graph showing relative gene expression levels of chaperone GRP78. FIG. 図9は、本発明に係るスピルリナ多糖類の細胞毒性試験の結果を示すグラフである。FIG. 9 is a graph showing the results of a cytotoxicity test of Spirulina polysaccharides according to the present invention.

本発明に係るアンチエイジング剤は、有効成分としてアルスロスピラ属藻類由来の多糖類を含有する。 The anti-aging agent according to the present invention contains a polysaccharide derived from Arthrospira algae as an active ingredient.

アルスロスピラ属藻類は、幅5~8μm、長さ300~500μmほどの、藍藻綱ユレモ目アルスロスピラ属に属し、淡水域に生息するらせん形藻類であり、一般的にスピルリナと呼ばれることもある。 Arthrospira algae are spiral-shaped algae that live in freshwater areas and are 5 to 8 μm wide and 300 to 500 μm long.

本発明で用い得るアルスロスピラ属藻類は、アンチエイジング効果を示す多糖類を含むものであれば特に制限されないが、例えば、アルスロスピラ・プラテンシス(Arthrospira platensis,別名:Spirulina pacifica)、アルスロスピラ・マキシマ(Arthrospira maxima)、アルスロスピラ・ゲイトレリ(Arthrospira geitleri)、アルスロスピラ・サイアミーゼ(Arthrospira siamese)、スピルリナ・メイヤー(Spirulina major)、スピルリナ・サブサルサ(Spirulina subsalsa)等が挙げられ、アルスロスピラ・プラテンシスおよび/またはアルスロスピラ・マキシマが好ましく、アルスロスピラ・プラテンシスがより好ましい。 Algae of the genus Arthrospira that can be used in the present invention are not particularly limited as long as they contain polysaccharides exhibiting an anti-aging effect. , Arthrospira geitleri, Arthrospira siamese, Spirulina major, Spirulina subsalsa, etc., preferably Arthrospira alxima platensis and/or Arthrospira platensis • Platensis is more preferred.

多糖類とは、単糖分子がグリコシド結合により結合したポリマーをいう。本発明では、後述する通りグラム陰性細菌からエンドトキシンを抽出する方法と同様の方法でアルスロスピラ属藻類から有効成分を抽出する一方で、抽出物はエンドトキシンの様な毒性を示さないため、有効成分は多糖構造を有するが、エンドトキシンの毒性の原因であるリピドAは有さないと考えられる。一方、本発明に係る多糖類は、多糖構造を有する他、ペプチド、アミノ酸、リン酸基、炭化水素基などの構造も有する可能性がある。 A polysaccharide is a polymer in which monosaccharide molecules are linked by glycosidic bonds. In the present invention, as will be described later, the active ingredient is extracted from Arthrospira algae by a method similar to the method for extracting endotoxin from Gram-negative bacteria. structure, but not lipid A, which is responsible for endotoxin toxicity. On the other hand, the polysaccharide according to the present invention may have a polysaccharide structure as well as structures such as peptides, amino acids, phosphate groups, and hydrocarbon groups.

本発明に係る多糖類は、ミトコンドリアを活性化することが本発明者らの実験により見出されている。ミトコンドリアは、糖質、タンパク質、脂質などの代謝をつかさどり、エネルギー物質であるATPや熱を産生する。よって、本発明に係る多糖類は、ミトコンドリアの活性化を通じて、恒常的な生命活動を維持するためのエネルギーの供給に寄与したり、また、精神的な安定をもたらす4-アミノ酪酸(GABA)や血糖値を低下させるインスリンの分泌を促進することも考えられる。 The inventors' experiments have found that the polysaccharide according to the present invention activates mitochondria. Mitochondria are responsible for the metabolism of carbohydrates, proteins, lipids, and the like, and produce ATP and heat, which are energy substances. Therefore, the polysaccharide according to the present invention contributes to the supply of energy for maintaining constant life activity through activation of mitochondria, and also 4-aminobutyric acid (GABA) that brings mental stability. It may also stimulate the secretion of insulin, which lowers blood sugar levels.

また、本発明に係る多糖類は、本発明者らの実験的知見により、ミトコンドリアの抗酸化酵素の遺伝子発現と生合成を促進することが明らかにされている。生体内の活性酸素は、本来は体内に侵入した細菌やウイルスを攻撃して生体を保護する重要な働きを有するが、過剰な活性酸素は正常な細胞まで攻撃したり、また、活性酸素により生じた過酸化脂質が更に活性酸素を生じるという悪循環に陥ることがある。抗酸化酵素は、過剰な活性酸素を分解して無害化するものであるため、例えば、本発明に係る多糖類は、ミトコンドリアの抗酸化酵素の活性化を通じてミトコンドリアを活性化する他、健康の維持や肌の状態の維持に寄与することが考えられる。 In addition, the experimental findings of the present inventors have revealed that the polysaccharide according to the present invention promotes gene expression and biosynthesis of mitochondrial antioxidant enzymes. Active oxygen in the body originally has an important function of protecting the body by attacking bacteria and viruses that have invaded the body, but excessive active oxygen attacks normal cells and is caused by active oxygen. A vicious cycle may occur in which the lipid peroxides that have been oxidized further generate active oxygen. Since antioxidant enzymes decompose excess active oxygen and render it harmless, for example, the polysaccharide according to the present invention activates mitochondria through the activation of mitochondrial antioxidant enzymes and maintains health. and contribute to the maintenance of skin condition.

更に、本発明者らは、本発明に係る多糖類がコラーゲンの生合成を促進することを実験的に証明している。コラーゲンは、皮膚、腱、軟骨などを構成する繊維状のタンパク質であるが、加齢によりその前駆体からコラーゲンを生成する酵素が減少し、コラーゲンの生合成量が低下して、シワの発生や肌の張りの減少などに繋がることが知られている。よって、本発明に係る多糖類により、加齢によるシワの発生や肌の張りの減少など、肌の状態が改善されることが考えられる。 Furthermore, the present inventors have experimentally demonstrated that the polysaccharide according to the present invention promotes collagen biosynthesis. Collagen is a fibrous protein that constitutes the skin, tendon, cartilage, etc. With aging, the enzyme that produces collagen from its precursor decreases, and the amount of collagen biosynthesis decreases, causing wrinkles and wrinkles. It is known to lead to a decrease in skin tension. Therefore, it is conceivable that the polysaccharide according to the present invention improves skin conditions such as the occurrence of wrinkles due to aging and the reduction of skin tension.

本発明に係るアンチエイジング剤は、有効成分としてアルスロスピラ属藻類由来の多糖類を含有する。有効成分とは、本発明に係るアンチエイジング剤に含まれる成分のうちアンチエイジング効果を発揮する成分をいい、換言すれば、本発明に係るアンチエイジング剤は、アンチエイジング効果が発揮される量の多糖類を含む。具体的には、特に制限されないが、例えば、本発明に係るアンチエイジング剤における多糖類の割合を10質量%以上、100質量%以下とすることができる。また、本発明に係るアンチエイジング剤が外用剤である場合には、多糖類の割合を0.1質量%以上、10質量%以下にすることもできる。 The anti-aging agent according to the present invention contains a polysaccharide derived from Arthrospira algae as an active ingredient. The active ingredient refers to a component that exerts an anti-aging effect among the components contained in the anti-aging agent according to the present invention. Contains polysaccharides. Specifically, although not particularly limited, for example, the proportion of polysaccharides in the anti-aging agent according to the present invention can be 10% by mass or more and 100% by mass or less. Moreover, when the anti-aging agent according to the present invention is an external preparation, the proportion of polysaccharides can be 0.1% by mass or more and 10% by mass or less.

本発明に係るアンチエイジング剤の投与頻度や投与量は、投与対象の年齢、性別、状態などに応じて適宜調整すればよく、アンチエイジング効果を発揮できる量を投与対象へ投与する。例えば、1日当たりのアンチエイジング剤の投与量としては10mg/kg体重以上、1g/kg体重以下とすることができる。また、本発明に係るアンチエイジング剤が外用剤である場合には、一日当たりのアンチエイジング剤の塗布量としては0.1mg以上、10mg以下とすることもできる。1日当たりの投与回数や塗布回数は特に限定されず、所望の投与範囲内において、単回または数回に分けて投与または塗布すればよい。 The administration frequency and dosage of the anti-aging agent according to the present invention may be appropriately adjusted according to the age, sex, condition, etc. of the subject, and the amount that can exhibit anti-aging effects is administered to the subject. For example, the dosage of the anti-aging agent per day can be 10 mg/kg body weight or more and 1 g/kg body weight or less. Moreover, when the anti-aging agent according to the present invention is an external preparation, the amount of the anti-aging agent to be applied per day may be 0.1 mg or more and 10 mg or less. The number of times of administration and the number of times of application per day are not particularly limited.

本発明に係るアンチエイジング剤は、ヒトに限らず、ヒト以外の動物にも投与可能である。投与対象動物としては、例えば、ウマ、ウシ、ブタ、ヒツジ、ヤギ、ラクダ、ラマなどの家畜;競走馬などの競技動物;イヌ、ネコなどの愛玩動物;マウス、ラット、モルモット、ウサギなどの実験動物;ニワトリ、アヒル、七面鳥、駝鳥などの家禽などが挙げられる。 The anti-aging agent according to the present invention can be administered not only to humans but also to animals other than humans. Examples of animals to be administered include domestic animals such as horses, cattle, pigs, sheep, goats, camels, and llamas; sports animals such as racehorses; pets such as dogs and cats; experiments using mice, rats, guinea pigs, rabbits, etc. Animals; poultry such as chickens, ducks, turkeys and ostriches.

本発明に係るアンチエイジング剤の剤形は特に制限されず、例えば、多糖類自体であってもよいし、他の成分と組み合わせた組成物であってもよいし、これらの溶液または懸濁液であってもよい。本発明に係るアンチエイジング剤の剤形としては、特に制限されないが、例えば、錠剤、散剤、カプセル剤、糖衣錠、顆粒剤、液剤、外用剤などを挙げることができる。本発明に係るアンチエイジング剤には、剤形に合わせ、薬学上許容される添加剤を用いてもよい。かかる添加剤としては、例えば、賦形剤、崩壊剤、滑沢剤、結合剤、酸化防止剤、着色剤、甘味料、凝集防止剤、防腐剤、有効成分の溶解補助剤、安定化剤などを挙げることができる。 The dosage form of the anti-aging agent according to the present invention is not particularly limited. For example, it may be a polysaccharide itself, a composition combined with other ingredients, a solution or suspension thereof may be The dosage form of the anti-aging agent according to the present invention is not particularly limited, and examples thereof include tablets, powders, capsules, sugar-coated tablets, granules, liquids, external preparations and the like. Pharmaceutically acceptable additives may be used in the anti-aging agent according to the present invention according to the dosage form. Such additives include, for example, excipients, disintegrants, lubricants, binders, antioxidants, colorants, sweeteners, aggregation inhibitors, preservatives, active ingredient dissolution aids, stabilizers, and the like. can be mentioned.

本発明に係るアンチエイジング剤の有効成分である多糖類は、グラム陰性細菌からエンドトキシン(リポ多糖)を抽出する方法と同様の方法によって、アルスロスピラ属藻類から抽出することができる。かかる方法としては、Westphal法やTCA抽出法が挙げられる。 The polysaccharide, which is the active ingredient of the anti-aging agent according to the present invention, can be extracted from Arthrospira algae by the same method as the method for extracting endotoxin (lipopolysaccharide) from Gram-negative bacteria. Such methods include the Westphal method and the TCA extraction method.

Westphal法は、フェノール水溶液を使って膜成分を解離させ、多糖を水相中に抽出する方法である。原料であるアルスロスピラ属藻類としては、その培養液を用いてもよいが、精製の観点から、アルスロスピラ属藻類自体やその乾燥体を用いることが好ましい。例えば、アルスロスピラ属藻類の水分散液にフェノール水溶液を添加する。この際、加熱することにより、細胞が破壊される。加熱温度は適宜調整すればよいが、例えば、50℃以上、100℃未満とすることができる。この際、水とフェノールの合計に対するフェノールの割合は、例えば、30質量%以上、60質量%以下とすることができる。また、水とフェノールは完全に混和せず、二層に分離することがあるので、激しく撹拌することが好ましい。撹拌時間としては、例えば、5分間以上、30分間以下とすることができる。 The Westphal method is a method of dissociating membrane components using an aqueous phenol solution and extracting polysaccharides into the aqueous phase. As the raw material, the Arthrospira algae, its culture solution may be used, but from the viewpoint of purification, it is preferable to use the Arthrospira algae itself or its dried body. For example, an aqueous phenol solution is added to an aqueous dispersion of Arthrospira algae. At this time, the cells are destroyed by heating. The heating temperature may be adjusted as appropriate, and may be, for example, 50°C or higher and lower than 100°C. At this time, the ratio of phenol to the total of water and phenol can be, for example, 30% by mass or more and 60% by mass or less. In addition, since water and phenol are not completely miscible and may separate into two layers, vigorous stirring is preferred. The stirring time can be, for example, 5 minutes or more and 30 minutes or less.

TCA抽出法は、トリクロロ酢酸(TCA)を使ってアルスロスピラ属藻類から多糖類を抽出する方法である。例えば、アルスロスピラ属藻類の冷分散液に、冷トリクロロ酢酸を加え、1時間以上、10時間以下程度振盪することにより多糖類を抽出する。この際における抽出溶媒全体に対するTCAの濃度は、例えば、15質量%以上、30質量%以下とすることができる。この方法は比較的温和な抽出法である。 The TCA extraction method is a method of extracting polysaccharides from Arthrospira algae using trichloroacetic acid (TCA). For example, cold trichloroacetic acid is added to a cold dispersion of Arthrospira algae, and the mixture is shaken for about 1 hour to 10 hours to extract polysaccharides. At this time, the concentration of TCA with respect to the entire extraction solvent can be, for example, 15% by mass or more and 30% by mass or less. This method is a relatively mild extraction method.

抽出後は、一般的な方法により多糖類を精製すればよい。精製方法としては、例えば、分液、透析、濃縮、遠心分離、凍結乾燥などが挙げられる。 After extraction, the polysaccharide may be purified by a general method. Purification methods include, for example, liquid separation, dialysis, concentration, centrifugation, freeze-drying and the like.

本発明に係る多糖類は、以下の実施例の通り、ミトコンドリアの活性化、抗酸化作用、コラーゲンや小胞体のフォールディングに関与する分子シャペロンの生合成の増強作用、コラーゲンの生合成の増強作用など、客観的で且つ優れたアンチエイジング作用を示す。また、本発明に係る多糖類は、以下の実施例の通り、それ自体が栄養補助食品などとして利用されているスピルリナ(アルスロスピラ属藻類)に由来するものであり、グラム陰性菌からのエンドトキシンの抽出方法と同様の方法で抽出されるものでありながら、細胞毒性が低い。よって本発明に係るアンチアンチエイジング剤は、アンチエイジング効果に優れた健康食品などとして恒常的に摂取することも可能である。 As shown in the following examples, the polysaccharide according to the present invention has an effect of activating mitochondria, an antioxidant effect, an effect of enhancing the biosynthesis of collagen and molecular chaperones involved in the folding of the endoplasmic reticulum, an effect of enhancing the biosynthesis of collagen, etc. , shows an objective and excellent anti-aging action. In addition, as shown in the following examples, the polysaccharide according to the present invention is derived from Spirulina (Arthrospira algae), which itself is used as a nutritional supplement, and is extracted from Gram-negative bacteria. Although it is extracted by the same method as the method, it has low cytotoxicity. Therefore, the anti-aging agent according to the present invention can be constantly ingested as a health food having an excellent anti-aging effect.

例えば、本発明に係る多糖類は、アンチアンチエイジング剤として、一般的な飲食品とすることも可能である。本発明に係る多糖類を添加する飲食品は特に限定されないが、例えば、乳飲料、清涼飲料、スポーツドリンク、栄養ドリンク、美容ドリンク、液体栄養剤などの飲料;チューインガム、チョコレート、キャンディー、ゼリー、ケーキ、ビスケット、クラッカーなどの菓子類;アイスクリーム、氷菓などの冷菓類;うどん、中華麺、スパゲティー、即席麺などの麺類;蒲鉾、竹輪、半片などの練り製品;ドレッシング、マヨネーズ、ソースなどの調味料;パン、ハム、雑炊、米飯、スープ、各種レトルト食品、各種冷凍食品などが挙げられる。本発明に係る多糖類を含有する飲食品は、いわゆる健康食品、サプリメント、機能性食品、機能性表示食品、栄養補助食品、特定保健用食品、栄養機能食品、介護食品、スマイルケア食、咀嚼・嚥下補助食品、濃厚流動食品、病者用食品などの用途に用いることができる。 For example, the polysaccharide according to the present invention can be used as an anti-aging agent in general foods and drinks. The food and drink to which the polysaccharide according to the present invention is added is not particularly limited, but for example, milk drinks, soft drinks, sports drinks, nutritional drinks, beauty drinks, liquid nutritional supplements; chewing gums, chocolates, candies, jellies, cakes Confectionery such as , biscuits and crackers; Frozen desserts such as ice cream and frozen desserts; Noodles such as udon noodles, Chinese noodles, spaghetti and instant noodles; Examples include bread, ham, rice porridge, cooked rice, soup, various retort foods, and various frozen foods. The food and drink products containing the polysaccharide according to the present invention are so-called health foods, supplements, functional foods, functionally labeled foods, nutritional supplements, foods for specified health uses, foods with nutrient function claims, nursing foods, smile care foods, chewing and It can be used for applications such as swallowing aids, concentrated liquid foods, and foods for sick people.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples, and can be modified appropriately within the scope that can conform to the gist of the above and later descriptions. It is of course possible to implement them, and all of them are included in the technical scope of the present invention.

実施例1: Westphal法によるスピルリナ抽出物の製造
スピルリナ・パシフィカ(Spirulina pacifica)は、Cyanotech社により、食用スピルリナ(Arthrospira (Spirulina) platensis)の菌株から1984年に最初に選択されたものである。
乾燥したスピルリナ・パシフィカの細胞(10g)をアセトンで洗浄し、蒸留水(55mL)に分散させた後、68℃で激しく攪拌しながら90%フェノール水(45mL)を加えた。撹拌を120分間継続した後、混合物を濾過し、二層に分かれた濾液を分液した。得られた水相から、透析により残存するフェノールを除去した。具体的には、濾液を透析膜(「RC透析用チューブ」スペクトラム社製)に入れ、水(2L)に浸漬して4℃で48時間保持することにより残存フェノールを除去した。次いで、凍結乾燥した。
得られた粗精製物(0.1g)を水(10mL)に溶解し、100,000gで6時間超遠心分離に付すことにより、固形分を除去し、上清を凍結乾燥することにより、ゼリー状の堆積物が得られた。Westphal画分は、得られたゼリー堆積物から得られた。
得られた抽出物を質量スペクトル分析およびドデシル硫酸ナトリウムポリアクリルアミドゲル電気泳動で分析したところ、その分子量は1000~20,000と推定された。分析の参考として、E.coli 055:B5 LPS(Smooth type,Sigma-Aldrich社製)を使用した。
なお、一般的にWestphal法によればグラム陰性菌からリポ多糖が抽出されるが、以下の実験により、本発明に係る抽出物は、スピルリナに由来するものであることからか、エンドトキシンであるリポ多糖とは異なる特性を示すことが明らかとなり、リポ多糖の毒性の原因であるリピドAは含まないと考えられることから、以下、得られた抽出物を「スピルリナ多糖類」という。
Example 1: Preparation of Spirulina Extract by the Westphal Method Spirulina pacifica was first selected in 1984 by Cyanotech from strains of the edible Spirulina (Arthrospira (Spirulina) platensis).
Dried Spirulina pacifica cells (10 g) were washed with acetone and dispersed in distilled water (55 mL), followed by addition of 90% phenol water (45 mL) at 68° C. with vigorous stirring. After continuing stirring for 120 minutes, the mixture was filtered and the two layers of filtrate were separated. The remaining phenol was removed from the resulting aqueous phase by dialysis. Specifically, the filtrate was placed in a dialysis membrane (“RC dialysis tube” manufactured by Spectrum), immersed in water (2 L), and held at 4° C. for 48 hours to remove residual phenol. It was then lyophilized.
The resulting crude product (0.1 g) was dissolved in water (10 mL), subjected to ultracentrifugation at 100,000 g for 6 hours to remove solids, and the supernatant was lyophilized to obtain a jelly. A deposit was obtained. A Westphal fraction was obtained from the resulting jelly deposit.
The resulting extract was analyzed by mass spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis, and its molecular weight was estimated to be 1000-20,000. As a reference for analysis, E. coli 055:B5 LPS (Smooth type, manufactured by Sigma-Aldrich) was used.
Although lipopolysaccharides are generally extracted from Gram-negative bacteria according to the Westphal method, the following experiments revealed that the extract according to the present invention was derived from Spirulina, and lipopolysaccharides, which are endotoxins, Since it was found to exhibit properties different from those of polysaccharides, and it is thought that it does not contain lipid A, which is the cause of the toxicity of lipopolysaccharides, the resulting extract is hereinafter referred to as "Spirulina polysaccharides".

試験例1: ミトコンドリア活性試験
(1)ミトコンドリア活性試験
MEMα培地に、10%FBS、100μg/mLペニシリン、及び100μg/mLストレプトマイシンを配合した培地を用い、ヒト皮膚線維芽細胞(NB1RGB細胞)を80~89日間培養することにより、老化細胞とした。
実施例1で製造したスピルリナ多糖類を前記培地に150μg/mLの割合で添加し、前記ヒト皮膚線維芽老化細胞を更に37℃で24時間培養した。比較のために、別途、スピルリナ多糖類を添加しない以外は同様にして培養した。
次いで、ミトコンドリアの活性を、ミトコンドリア膜電位検出キット(「JC-1 MitoMP Detection kit」Dojindo社製)を使って、製造元のプロトコルに従って、JC-1(Dojindo Molecular Technologies社製)染色により測定した。蛍光は、535nm/590nmおよび485nm/535nmのフィルターペアを使用して、蛍光マイクロプレートリーダー(「Infinite M200」TECAN社製)で測定した。
ミトコンドリアの活性が高い場合には膜電位差が維持され、低分子蛍光色素であるJC-1が凝集して、より波長の長い蛍光が発せられ、活性が低下すると膜電位差も低下し、JC-1が単量体となって、より波長の短い蛍光が発せられる。よって、ミトコンドリアの活性は、535nm/590nmで測定されたより長波長の蛍光と485nm/535nmで測定されたより低波長の蛍光の比率として測定できる。結果を、対照例に対するスピルリナ多糖類処理例の比として図1に示す。図1中、「*」は、二元配置分散分析に続くTukey’s testによりp<0.05で有意差があることを示す。
図1に示される結果の通り、スピルリナ多糖類で処理した老化細胞では、未処理老化細胞に比較して、ミトコンドリアが有意に活性化されていることが明らかにされた。
Test Example 1: Mitochondrial Activity Test (1) Mitochondrial Activity Test Using a medium containing 10% FBS, 100 µg/mL penicillin, and 100 µg/mL streptomycin in MEMα medium, human dermal fibroblasts (NB1RGB cells) were Senescent cells were obtained by culturing for 89 days.
The Spirulina polysaccharide produced in Example 1 was added to the medium at a rate of 150 μg/mL, and the human skin fibroblast senescent cells were further cultured at 37° C. for 24 hours. For comparison, culture was carried out in the same manner except that Spirulina polysaccharide was not added.
Mitochondrial activity was then measured by JC-1 (Dojindo Molecular Technologies) staining using a mitochondrial membrane potential detection kit (“JC-1 MitoMP Detection kit” Dojindo) according to the manufacturer's protocol. Fluorescence was measured with a fluorescence microplate reader ("Infinite M200" TECAN) using 535 nm/590 nm and 485 nm/535 nm filter pairs.
When the mitochondrial activity is high, the membrane potential difference is maintained, and the low-molecular-weight fluorescent dye JC-1 aggregates to emit fluorescence with a longer wavelength. becomes a monomer and emits fluorescence with a shorter wavelength. Thus, mitochondrial activity can be measured as the ratio of the longer wavelength fluorescence measured at 535 nm/590 nm and the lower wavelength fluorescence measured at 485 nm/535 nm. The results are shown in FIG. 1 as a ratio of Spirulina polysaccharide-treated examples to controls. In FIG. 1, "*" indicates significant difference at p<0.05 by Tukey's test followed by two-way analysis of variance.
As the results shown in FIG. 1 , it was revealed that mitochondria were significantly activated in senescent cells treated with Spirulina polysaccharide as compared to untreated senescent cells.

(2)mRNAの発現解析
試験例1(1)と同様にして、スピルリナ多糖類を150μg/mLの割合で添加した培地を用い、ヒト皮膚線維芽老化細胞を更に37℃で24時間培養し、培養開始から0,3,6,12,及び24時間後に試料を採取し、高効率リアルタイムPCR用マスターミックス(「THUNDERBIRD(R) Next SYBR(R) qPCR Mix」東洋紡社製)を使って、ミトコンドリアの抗酸化酵素であるスーパーオキシドジスムターゼ2(SOD2)の遺伝子発現を定量した。全RNAは、内部標準としてβ-アクチン相補DNAを使用して、各反応でノーマライズした。結果を図2に示す。図2中、「*」は、二元配置分散分析に続くTukey’s testによりp<0.05で有意差があることを示す。
図2に示される結果の通り、本発明に係るスピルリナ多糖類によりミトコンドリアの抗酸化酵素SOD2遺伝子の発現が促進され、SOD2 mRNAの産生が促進されることが明らかとなった。
(2) mRNA expression analysis In the same manner as in Test Example 1 (1), human skin fibroblast senescent cells were further cultured at 37° C. for 24 hours using a medium supplemented with spirulina polysaccharide at a rate of 150 μg/mL. Samples were collected 0, 3, 6, 12, and 24 hours after the start of culture, and a high-efficiency real-time PCR master mix ("THUNDERBIRD (R) Next SYBR (R) qPCR Mix" manufactured by Toyobo) was used to extract mitochondria. gene expression of superoxide dismutase 2 (SOD2), an antioxidant enzyme in Total RNA was normalized in each reaction using β-actin complementary DNA as an internal standard. The results are shown in FIG. In FIG. 2, "*" indicates significant difference at p<0.05 by Tukey's test followed by two-way analysis of variance.
As shown in FIG. 2, it was revealed that the Spirulina polysaccharide according to the present invention promoted the expression of the mitochondrial antioxidant enzyme SOD2 gene and the production of SOD2 mRNA.

(3)SOD2生合成量の解析
抗SOD2抗体(Cell Signaling Technology社製)と抗β-actin(sigma社製)を用い、SOD2生合成量を解析した。
具体的には、試験例1(2)と同様にして得た試料からタンパク質溶液を調製し、ポリアクリルアミドゲル電気泳動に付した後、メンブレンに転写し、抗SOD2抗体製品を1000倍に、抗β-アクチン抗体を10000倍に希釈し、メンブレンを浸漬し、4℃で18時間インキュベートした後、洗浄した。次いで、HRP標識抗ウサギおよび抗マウス二次抗体製品(Promega社製)を5000倍に希釈し、メンブレンを浸漬し、常温で1時間インキュベートした後、洗浄した。次に、メンブランをルミノール反応溶液に浸漬し、発光するまで常温で5~10分間インキュベートした後、X線フィルムに感光させて現像した。
SOD2のバンドの蛍光強度を、各試料におけるβ-アクチンのバンドの蛍光強度で補正した。結果を図3に示す。図3中の「Intensity」は、上記補正値を示す。
図3に示される結果の通り、本発明に係るスピルリナ多糖類により、ミトコンドリアの抗酸化タンパク質SOD2の生合成量が経時的に増加していることが明らかとなった。
(3) Analysis of Amount of SOD2 Biosynthesis The amount of SOD2 biosynthesis was analyzed using an anti-SOD2 antibody (manufactured by Cell Signaling Technology) and anti-β-actin (manufactured by Sigma).
Specifically, a protein solution was prepared from the sample obtained in the same manner as in Test Example 1 (2), subjected to polyacrylamide gel electrophoresis, transferred to a membrane, and the anti-SOD2 antibody product was multiplied by 1000. A β-actin antibody was diluted 10,000 times, the membrane was immersed, incubated at 4° C. for 18 hours, and then washed. Next, HRP-labeled anti-rabbit and anti-mouse secondary antibody products (manufactured by Promega) were diluted 5000-fold, the membrane was immersed, incubated at room temperature for 1 hour, and then washed. Next, the membrane was immersed in a luminol reaction solution, incubated at room temperature for 5 to 10 minutes until luminescence occurred, and then exposed to an X-ray film for development.
The fluorescence intensity of the SOD2 band was corrected with the fluorescence intensity of the β-actin band in each sample. The results are shown in FIG. "Intensity" in FIG. 3 indicates the correction value.
As shown in FIG. 3, the Spirulina polysaccharide according to the present invention was found to increase the amount of mitochondrial antioxidant protein SOD2 biosynthesis over time.

(4)抗酸化活性測定: (Dojindo社: SOD assay kit)
試験例1(1)と同様にして、スピルリナ多糖類を150μg/mLの割合で添加した培地を用い、ヒト皮膚線維芽老化細胞を更に37℃で24時間培養し、試料を得た。比較のために、別途、スピルリナ多糖類を添加しない以外は同様に培養して試料を得た。
得られた試料の抗酸化活性を、抗酸化能測定キット(「SOD Assay Kit-WST」Dojindo Molecular Technologies社製)を用い、製造元のプロトコルに従って評価した。蛍光は、380nm/485nmのフィルターペアを備えた蛍光マイクロプレートリーダー(「Infinite M200」TECAN社製)で測定した。結果を図4に示す。図4中、「*」は、二元配置分散分析に続くTukey’s testによりp<0.05で有意差があることを示す。
図4に示される結果の通り、コントロールの細胞での活性酸素(ROS)の消去能は27%であったが、本発明に係るスピルリナ多糖類で処理した細胞では活性酸素消去能が47%へと増加していたことから、スピルリナ多糖類で処理した細胞では抗酸化活性が有意に上昇していることが分かった。
(4) Antioxidant activity measurement: (Dojindo: SOD assay kit)
Human skin fibroblast senescent cells were further cultured at 37° C. for 24 hours in a medium supplemented with 150 μg/mL of spirulina polysaccharide in the same manner as in Test Example 1 (1) to obtain a sample. For comparison, samples were separately obtained by culturing in the same manner except that Spirulina polysaccharide was not added.
The antioxidant activity of the obtained sample was evaluated using an antioxidant capacity measurement kit (“SOD Assay Kit-WST” manufactured by Dojindo Molecular Technologies) according to the manufacturer's protocol. Fluorescence was measured with a fluorescence microplate reader (“Infinite M200” manufactured by TECAN) equipped with a 380 nm/485 nm filter pair. The results are shown in FIG. In FIG. 4, "*" indicates a significant difference at p<0.05 by Tukey's test following two-way analysis of variance.
As the results shown in FIG. 4, the ROS scavenging ability in the control cells was 27%, but the ROS scavenging ability increased to 47% in the cells treated with the Spirulina polysaccharide according to the present invention. It was found that the antioxidant activity was significantly increased in the cells treated with Spirulina polysaccharide.

以上の実験結果により、本発明に係るスピルリナ多糖類により、老化細胞のミトコンドリアが活性化され、特にミトコンドリアの抗酸化酵素の発現が促進されることが明らかにされた。 The above experimental results demonstrate that the Spirulina polysaccharide according to the present invention activates the mitochondria of senescent cells, and particularly promotes the expression of mitochondrial antioxidant enzymes.

試験例2: コラーゲン産生能試験
(1)コラーゲン産生能試験
試験例1(1)と同様にして、スピルリナ多糖類を150μg/mLの割合で添加した培地を用い、ヒト皮膚線維芽老化細胞を更に37℃で24時間培養し、試料を得た。比較のために、別途、スピルリナ多糖類を添加しない以外は同様に培養して試料を得た。得られた試料から細胞溶解液を調製し、含まれるタンパク質濃度を揃えた細胞溶解液1μLあたりの細胞層中のコラーゲンの量を、コラーゲン定量キット(コスモバイオ社製)を使用して、製造元のプロトコルに従って評価した。蛍光は、380nm/485nmのフィルターペアを備えた蛍光マイクロプレートリーダー(「Infinite M200」TECAN社製)で測定した。結果を図5に示す。図5中、「*」は、二元配置分散分析に続くTukey’s testによりp<0.05で有意差があることを示す。
図5に示される結果の通り、スピルリナ多糖類を添加しないで培養したコントロール老化細胞のコラーゲン産生量は14μg/mLであったが、本発明に係るスピルリナ多糖類を含む培養液中で培養された老化細胞では19μg/mLへと増加していた。よって、本発明に係るスピルリナ多糖類で処理した細胞では、コラーゲン産生能が有意に上昇していることが分かった。
Test Example 2: Collagen Producing Ability Test (1) Collagen Producing Ability Test In the same manner as in Test Example 1 (1), using a medium supplemented with spirulina polysaccharide at a rate of 150 µg/mL, human dermal fibroblast senescent cells were further added. After culturing at 37° C. for 24 hours, a sample was obtained. For comparison, samples were separately obtained by culturing in the same manner except that Spirulina polysaccharide was not added. A cell lysate was prepared from the obtained sample, and the amount of collagen in the cell layer per 1 μL of the cell lysate containing the same protein concentration was measured using a collagen quantification kit (manufactured by Cosmo Bio), which was determined by the manufacturer. Assessed according to protocol. Fluorescence was measured with a fluorescence microplate reader (“Infinite M200” manufactured by TECAN) equipped with a 380 nm/485 nm filter pair. The results are shown in FIG. In FIG. 5, "*" indicates a significant difference at p<0.05 by Tukey's test following two-way analysis of variance.
As shown in the results shown in FIG. 5, the amount of collagen produced by the control senescent cells cultured without adding Spirulina polysaccharide was 14 μg/mL, but when cultured in the culture solution containing the Spirulina polysaccharide according to the present invention, the amount of collagen produced was 14 μg/mL. It increased to 19 μg/mL in senescent cells. Therefore, it was found that the cells treated with the Spirulina polysaccharide according to the present invention had a significantly increased ability to produce collagen.

(2)siRNAによる形質転換
ミトコンドリアの抗酸化タンパク質SOD2の遺伝子に対するsiRNA(配列番号1および配列番号2)またはコントロールsiRNA(Santa Cruz Biotechnology社製)と、LipofectamineTM RNAiMAXトランスフェクション試薬(Invitrogen社製)を製造元の指示に従って使用して、試験例1(1)と同様にして得られたヒト皮膚線維芽細胞老化細胞を形質転換した。
次いで、試験例1(1)と同様にして、スピルリナ多糖類を150μg/mLの割合で添加した培地を用い、ヒト皮膚線維芽老化細胞を更に37℃で24時間培養し、試料を得た。比較のために、別途、スピルリナ多糖類を添加しない以外は同様に培養して試料を得た。
得られた試料から、試験例1(3)と同様にしてSOD2生合成量を測定し、また、試験例2(1)と同様にしてコラーゲン産生量を測定した。SOD2生合成量を図6(1)に、コラーゲン産生量を図6(2)に示す。図6(2)中、「SPC」はスピルリナ多糖類を示し、「*」は、二元配置分散分析に続くTukey’s testによりp<0.05で有意差があることを示す。
図6に示される結果の通り、siRNAによりSOD2の生合成を抑制すると、スピルリナ多糖類(SPC)によるコラーゲン生合成量の増加効果も阻害されることから、スピルリナ多糖類によるコラーゲン産生能の増強効果は、SOD2の発現増加、即ちミトコンドリアの抗酸能増加に依存していることが示唆された。
(2) Transformation with siRNA siRNA (SEQ ID NO: 1 and SEQ ID NO: 2) or control siRNA (manufactured by Santa Cruz Biotechnology) against the mitochondrial antioxidant protein SOD2 gene and Lipofectamine RNAiMAX transfection reagent (manufactured by Invitrogen) were used. Human dermal fibroblast senescent cells obtained in the same manner as in Test Example 1 (1) were transformed using according to the manufacturer's instructions.
Next, human skin fibroblast senescent cells were further cultured at 37° C. for 24 hours using a medium supplemented with 150 μg/mL of spirulina polysaccharide in the same manner as in Test Example 1 (1) to obtain a sample. For comparison, samples were separately obtained by culturing in the same manner except that Spirulina polysaccharide was not added.
From the obtained samples, the amount of SOD2 biosynthesis was measured in the same manner as in Test Example 1 (3), and the amount of collagen production was measured in the same manner as in Test Example 2 (1). The amount of SOD2 biosynthesis is shown in FIG. 6(1), and the amount of collagen production is shown in FIG. 6(2). In FIG. 6(2), "SPC" indicates Spirulina polysaccharides, and "*" indicates a significant difference at p<0.05 by Tukey's test following two-way analysis of variance.
As shown in the results shown in FIG. 6, when the biosynthesis of SOD2 is suppressed by siRNA, the effect of increasing the amount of collagen biosynthesis by spirulina polysaccharide (SPC) is also inhibited. was suggested to be dependent on increased expression of SOD2, ie, increased mitochondrial antioxidant capacity.

試験例3: リポ多糖との比較
試験例1(1)と同様にして、スピルリナ多糖類を150μg/mL、又はリポ多糖(「リポポリサッカライド」富士フィルム和光純薬社製)を1μg/mLの割合で添加した培地を用い、ヒト皮膚線維芽老化細胞を更に37℃で24時間培養し、試料を得た。比較のために、別途、スピルリナ多糖類およびリポ多糖を添加しない以外は同様に培養して試料を得た。次いで、試験例1(2)と同様にして、SOD2 mRNA、又はサイトカインであるIL-6 mRNAの発現量を測定した。SOD2 mRNA発現量の結果を図7(1)に、IL-6 mRNA発現量の結果を図7(2)に示す。図7中、「SPC」はスピルリナ多糖類を示し、「LPS」はリポ多糖を示し、「*」は、二元配置分散分析に続くTukey’s testによりp<0.05で有意差があることを示す。
図7に示される結果の通り、本発明に係るスピルリナ多糖類(SPC)は、ミトコンドリアの抗酸化タンパク質SOD2の生合成を強く促進する一方で、サイトカインIL-6の生合成促進効果は弱いといえる。それに対してリポ多糖(LPS)は、SOD2の生合成促進効果はSPCの約0.4倍と非常に弱い一方で、IL-6の生合成促進効果は約3倍と非常に強い。
この様に、リポ多糖(LPS)はグラム陰性菌からWestphal法などにより精製され、エンドトキシンとも呼ばれ毒性の高いものであるのに対して、本発明に係るスピルリナ多糖類は、スピルリナから同じくWestphal法などにより精製されるものであるが、炎症や免疫疾患の発症に関与するサイトカインであるIL-6を誘導するといった毒性は低い一方で、ミトコンドリアの抗酸化タンパク質SOD2の生合成を強く促進する作用を示す。
Test Example 3: Comparison with lipopolysaccharide In the same manner as in Test Example 1 (1), 150 µg/mL of Spirulina polysaccharide or 1 µg/mL of lipopolysaccharide (“Lipopolysaccharide” manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was added. Human skin fibroblast senescent cells were further cultured at 37° C. for 24 hours using the medium added at the ratio to obtain a sample. For comparison, samples were separately obtained by culturing in the same manner except that Spirulina polysaccharide and lipopolysaccharide were not added. Next, the expression level of SOD2 mRNA or IL-6 mRNA, which is a cytokine, was measured in the same manner as in Test Example 1(2). The results for the SOD2 mRNA expression level are shown in FIG. 7(1), and the results for the IL-6 mRNA expression level are shown in FIG. 7(2). In FIG. 7, "SPC" indicates Spirulina polysaccharide, "LPS" indicates lipopolysaccharide, and "*" indicates a significant difference at p<0.05 by Tukey's test following two-way analysis of variance. indicates that
As shown in FIG. 7, the Spirulina polysaccharide (SPC) according to the present invention strongly promotes the biosynthesis of the mitochondrial antioxidant protein SOD2, while the effect of promoting the biosynthesis of the cytokine IL-6 is weak. . On the other hand, lipopolysaccharide (LPS) promotes the biosynthesis of SOD2 by about 0.4 times that of SPC, which is very weak, but promotes the biosynthesis of IL-6 by about 3 times, which is very strong.
Thus, lipopolysaccharide (LPS) is purified from Gram-negative bacteria by the Westphal method or the like, and is also called endotoxin, and is highly toxic. Although it is purified by such as, it has low toxicity such as inducing IL-6, a cytokine that is involved in the development of inflammation and immune diseases, while it has the effect of strongly promoting the biosynthesis of the mitochondrial antioxidant protein SOD2. show.

試験例4: 小胞体シャペロンの発現量測定
Hsp47は小胞体に局在し、コラーゲンのフォールディングに必須の分子シャペロンであり、小胞体内で三重らせん構造に結合することで、その安定化に寄与している。また、GRP78は、小胞体でのタンパク質のフォールディングや組み立てに関与する分子シャペロンである。そこで、本発明に係るスピルリナ多糖類の、これら分子シャペロンに対する作用効果を調べた。
試験例1(1)と同様にして、スピルリナ多糖類を100μg/mLまたは150μg/mLの割合で添加した培地を用い、ヒト皮膚線維芽老化細胞を更に37℃で24時間培養し、試料を得た。比較のために、別途、スピルリナ多糖類を添加しない以外は同様に培養して試料を得た。次いで、試験例1(2)と同様にして、Hsp47 mRNA、又はGRP78 mRNAの発現量を測定した。Hsp47 mRNA発現量の結果を図8(1)に、GRP78 mRNA発現量の結果を図8(2)に示す。図8中、「SPC」はスピルリナ多糖類を示し、「*」は、二元配置分散分析に続くTukey’s testによりp<0.05で対照例(SPC添加無し)に対して有意差があることを示す。
図8に示される結果の通り、本発明に係るスピルリナ多糖類は、コラーゲンや小胞体のフォールディングに関与する分子シャペロン遺伝子の発現を促進することから、コラーゲンを含む様々なタンパク質の産生を促進していると考えられる。
Test Example 4: Measurement of expression level of endoplasmic reticulum chaperone Hsp47 is localized in the endoplasmic reticulum and is a molecular chaperone essential for collagen folding. ing. GRP78 is also a molecular chaperone involved in protein folding and assembly in the endoplasmic reticulum. Therefore, the effect of the Spirulina polysaccharide according to the present invention on these molecular chaperones was investigated.
In the same manner as in Test Example 1 (1), human skin fibroblast senescent cells were further cultured at 37° C. for 24 hours using a medium supplemented with spirulina polysaccharide at a ratio of 100 μg/mL or 150 μg/mL to obtain a sample. rice field. For comparison, samples were separately obtained by culturing in the same manner except that Spirulina polysaccharide was not added. Then, the expression level of Hsp47 mRNA or GRP78 mRNA was measured in the same manner as in Test Example 1(2). The results of Hsp47 mRNA expression level are shown in FIG. 8(1), and the results of GRP78 mRNA expression level are shown in FIG. 8(2). In FIG. 8, "SPC" indicates Spirulina polysaccharides, and "*" indicates a significant difference from the control (no SPC addition) at p < 0.05 by Tukey's test following two-way analysis of variance. indicates that there is
As shown in FIG. 8, the Spirulina polysaccharide according to the present invention promotes the expression of molecular chaperone genes involved in the folding of collagen and endoplasmic reticulum, thus promoting the production of various proteins including collagen. It is thought that there are

試験例5: 細胞毒性試験
本発明に係るスピルリナ多糖類の細胞毒性を、MTT(3-(4,5-ジメチルチアゾール-2-イル)-2,5-ジフェニルテトラゾリウムブロミド)法により試験した。
具体的には、試験例1(1)と同様にして、スピルリナ多糖類を0~150μg/mLの割合で添加した培地を用い、ヒト皮膚線維芽老化細胞を37℃で24時間培養した。次いで、培地中のMTT濃度が1mg/mLになるよう培地にMTT溶液を添加し、更に1~2時間インキュベートした。次に、2-プロパノールとHClを、それぞれ最終濃度が50%および20mMになるように添加した後、570nmの吸光度を、無限F50R分光光度計(TECAN社製)を使用して測定した。結果を図9に示す。
図9に示される結果の通り、本発明に係るスピルリナ多糖類は、試験したいずれの濃度でも、細胞に対して毒性を示さなかった。
Test Example 5 Cytotoxicity Test The cytotoxicity of the Spirulina polysaccharide according to the present invention was tested by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method.
Specifically, human skin fibroblast senescent cells were cultured at 37° C. for 24 hours in a medium supplemented with 0 to 150 μg/mL of Spirulina polysaccharide in the same manner as in Test Example 1 (1). Then, an MTT solution was added to the medium so that the MTT concentration in the medium was 1 mg/mL, and the cells were further incubated for 1 to 2 hours. Next, 2-propanol and HCl were added to final concentrations of 50% and 20 mM, respectively, and absorbance at 570 nm was measured using an infinite F50R spectrophotometer (manufactured by TECAN). The results are shown in FIG.
As the results shown in Figure 9, the Spirulina polysaccharide according to the present invention did not show toxicity to cells at any concentration tested.

試験例6: 成分分析
実施例1で得られた抽出物はWestphal法により得られたものであるため多糖類であると予想された。そこで、得られた抽出物(スピルリナ多糖類)に含まれる糖類の量を測定した。
具体的には、Total Carbohydrate Assay kit(CELL BIOLABS社製)を用い、フェノール硫酸法により糖類の含量を求めた。当該キットによれば、試料中の全糖類は硫酸により加水分解されてフルフラールおよびフルフラール誘導体となり、更にキット試薬と反応させることにより色素が形成される。次いで、吸光度を測定し、測定値をグルコース検量線と照らし合わせ、総糖類含量を求める。吸光度は、492nmのフィルターを使用して、プレートリーダー(「Infinite F50」TECAN社製)で測定した。
その結果、グルコース換算で、スピルリナ多糖類の66±11%が糖類であることが分かった。残部の約34%は、十分に分解されなかった多糖類や、グルコースに比べて反応性の低い糖類、或いは多糖類に結合したペプチド、アミノ酸、リン酸基などであり、抽出物のほとんどは多糖類であると考えられる。
Test Example 6: Component Analysis Since the extract obtained in Example 1 was obtained by the Westphal method, it was expected to be polysaccharides. Therefore, the amount of saccharides contained in the obtained extract (Spirulina polysaccharides) was measured.
Specifically, using a Total Carbohydrate Assay kit (manufactured by CELL BIOLABS), the saccharide content was determined by the phenol-sulfuric acid method. According to the kit, all saccharides in the sample are hydrolyzed with sulfuric acid to furfural and furfural derivatives, which are further reacted with kit reagents to form dyes. Absorbance is then measured and the measurements are compared to a glucose standard curve to determine the total sugar content. Absorbance was measured with a plate reader ("Infinite F50" manufactured by TECAN) using a 492 nm filter.
As a result, it was found that 66±11% of Spirulina polysaccharides were saccharides in terms of glucose. About 34% of the remainder is polysaccharides that have not been sufficiently decomposed, saccharides that are less reactive than glucose, or peptides, amino acids, phosphate groups, etc. bound to polysaccharides, and most of the extract is polysaccharides. considered to be sugars.

Claims (7)

有効成分としてアルスロスピラ属藻類由来の多糖類を含有することを特徴とするアンチエイジング剤。 An anti-aging agent comprising, as an active ingredient, a polysaccharide derived from algae belonging to the genus Arthrospira. 前記アルスロスピラ属藻類がアルスロスピラ・プラテンシスである請求項1に記載のアンチエイジング剤。 2. The anti-aging agent according to claim 1, wherein the Arthrospira algae is Arthrospira platensis. ミトコンドリア活性化作用を示す請求項1または2に記載のアンチエイジング剤。 3. The anti-aging agent according to claim 1 or 2, which exhibits mitochondrial activation action. 抗酸化作用を示す請求項1~3のいずれかに記載のアンチエイジング剤。 The anti-aging agent according to any one of claims 1 to 3, which exhibits antioxidant action. コラーゲン生合成増強作用を示す請求項1~4のいずれかに記載のアンチエイジング剤。 The anti-aging agent according to any one of claims 1 to 4, which exhibits collagen biosynthesis enhancing activity. アンチエイジング剤を製造するための方法であって、
アルスロスピラ属藻類から、フェノール水溶液またはトリクロロ酢酸水溶液を用いて多糖類を抽出する工程を含むことを特徴とする方法。
A method for producing an anti-aging agent, comprising:
A method comprising a step of extracting polysaccharides from Arthrospira algae using an aqueous phenol solution or an aqueous trichloroacetic acid solution.
前記アルスロスピラ属藻類としてアルスロスピラ・プラテンシスを用いる請求項6に記載の方法。 7. The method according to claim 6, wherein Arthrospira platensis is used as the Arthrospira algae.
JP2021092585A 2021-06-01 2021-06-01 Anti-aging agent and production method of the same Pending JP2022184634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021092585A JP2022184634A (en) 2021-06-01 2021-06-01 Anti-aging agent and production method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021092585A JP2022184634A (en) 2021-06-01 2021-06-01 Anti-aging agent and production method of the same

Publications (1)

Publication Number Publication Date
JP2022184634A true JP2022184634A (en) 2022-12-13

Family

ID=84437577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021092585A Pending JP2022184634A (en) 2021-06-01 2021-06-01 Anti-aging agent and production method of the same

Country Status (1)

Country Link
JP (1) JP2022184634A (en)

Similar Documents

Publication Publication Date Title
AU2015254309B2 (en) Muscle atrophy inhibitor containing quercetin glycoside
CN106103696B (en) Novel lactobacillus paracasei strain
US11666607B2 (en) Nanovesicles derived from Faecalibacterium prausnitzii and uses thereof
JP7013238B2 (en) Composition for suppressing muscle fattening
Pimentel et al. Postbiotics: An overview of concepts, inactivation technologies, health effects, and driver trends
JP2016008180A (en) Muscle endurance improver
KR20090073214A (en) Activity enhancer for detoxifying enzyme
KR20230004158A (en) Method for manufacturing high content of c-phycocyanin extract and health functional food using the same
JP2022184634A (en) Anti-aging agent and production method of the same
WO2023063033A1 (en) Sarcopenic obesity inhibiting composition, and prophylactic and/or therapeutic composition containing the same for improving sarcopenic obesity induced by diabetes
JP7144441B2 (en) Ground flounder having antioxidant and antihypertensive effects and method for producing the same
JP6360357B2 (en) Method for inhibiting adipocyte formation
JP7177440B2 (en) Composition containing organic selenium compound
US20220298196A1 (en) Novel compound derived from watermelon, and composition using same
KR102534934B1 (en) Milk enzyme treated product, manufacturing method, composition and product thereof
JP2003313131A (en) Medicine or cosmetic
Jin et al. Effects of Hizikia fusiforme polysaccharides on innate immunity and disease resistance of the mud crab Scylla paramamosain
JP6579605B2 (en) Skin improver
US11554144B2 (en) Nanovesicles derived from enhydrobacter bacteria, and use thereof
US12018337B2 (en) Nano-vesicle derived from catenibacterium bacteria and use thereof
WO2024090341A1 (en) Anti-aging agent
JP2012229165A (en) Anti-inflammatory agent, and method for producing the same
RU2470655C1 (en) Agent normalising liver mitochondria
JP2020188689A (en) INHIBITOR OF TOXIC AGEs FORMATION
JP6243777B2 (en) Hyaluronic acid synthesis accelerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240531