JP2022182765A - Composite member and manufacturing method thereof - Google Patents

Composite member and manufacturing method thereof Download PDF

Info

Publication number
JP2022182765A
JP2022182765A JP2021090489A JP2021090489A JP2022182765A JP 2022182765 A JP2022182765 A JP 2022182765A JP 2021090489 A JP2021090489 A JP 2021090489A JP 2021090489 A JP2021090489 A JP 2021090489A JP 2022182765 A JP2022182765 A JP 2022182765A
Authority
JP
Japan
Prior art keywords
wooden
reinforced concrete
wooden member
concrete
cotter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021090489A
Other languages
Japanese (ja)
Inventor
雅之 藤井
Masayuki Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2021090489A priority Critical patent/JP2022182765A/en
Publication of JP2022182765A publication Critical patent/JP2022182765A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

To provide a composite member capable of improving member yield strength while having fire resistance and a manufacturing method of the same.SOLUTION: A composite member 10 comprises a reinforcement concrete member 12 having fire resistance while supporting a sustained loading and a wooden member 14 provided in contact with a surface of the reinforcement concrete member 12 while not supporting the sustained loading and further comprises a cotter 16 provided on a surface of a side in contact with the reinforcement concrete member 12 of the wooden member 14 to integrate the reinforcement concrete member 12 with the wooden member 14. A machine screw projecting on a surface in contact with the reinforcement member 12 of the wooden member 14 may be further provided to prevent a buckling of the wooden member 14.SELECTED DRAWING: Figure 1

Description

本発明は、木材と鉄筋コンクリートの合成部材およびその製造方法に関するものである。 The present invention relates to a composite member of wood and reinforced concrete and a method for producing the same.

従来、耐火建築物において、長期荷重を負担する構造材に木材を使用した柱(木構造柱)が知られている。木構造柱を採用すると、木材の表面を石膏ボード等の耐火被覆材で覆う必要があり、構造木をあらわしとできないという問題がある。また、この耐火被覆によってコストが増大する。耐火被覆材の外側を木材からなる仕上げ材で覆い、仕上げ材としての木をあらわしとする方法もあるが、施工手間とコストがさらに増大してしまう。また、木構造柱の接合部を剛接合とすることは困難なため、耐震要素を別に計画する必要がある。 2. Description of the Related Art Conventionally, in a fire-resistant building, a column (a wooden structure column) using wood as a structural material bearing a long-term load is known. If a wooden structural column is used, the surface of the wooden structure must be covered with a fireproof covering material such as a gypsum board, which poses a problem that the structural wood cannot be exposed. Also, the refractory coating adds cost. There is also a method of covering the outside of the fireproof covering material with a finishing material made of wood to expose the wood as the finishing material, but this further increases the labor and cost of construction. In addition, since it is difficult to rigidly connect wooden structural columns, seismic elements must be planned separately.

一方、鉄骨部材を木材で耐火被覆した部材として、例えば、特許文献1~3に記載のものが知られている。 On the other hand, for example, those described in Patent Documents 1 to 3 are known as fireproof coated steel members with wood.

特開2013-011063号公報JP 2013-011063 A 特開2019-056202号公報JP 2019-056202 A 特開2000-017752号公報JP-A-2000-017752

しかし、上記の従来の特許文献1~3に記載の構造では、木材を耐火被覆材および仕上げ材としてのみ考慮しており、木材を構造体としては利用できていない。このため、耐火性を有するとともに、部材耐力を向上することができる合成部材が求められていた。 However, in the structures described in the conventional Patent Documents 1 to 3, wood is considered only as a fireproof covering material and a finishing material, and wood cannot be used as a structure. For this reason, there has been a demand for a synthetic member that has fire resistance and that can improve the strength of the member.

本発明は、上記に鑑みてなされたものであって、耐火性を有するとともに、部材耐力を向上することができる合成部材およびその製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a synthetic member having fire resistance and improved member strength, and a method for manufacturing the same.

上記した課題を解決し、目的を達成するために、本発明に係る合成部材は、長期荷重を支持するとともに耐火性を有する鉄筋コンクリート部材と、この鉄筋コンクリート部材の表面に接して設けられるとともに長期荷重を支持しない木質部材とを備える合成部材であって、鉄筋コンクリート部材と木質部材とを一体化するために、木質部材の鉄筋コンクリート部材に接する側の面に設けられたコッターをさらに備えることで、木質部材を構造体として利用していることを特徴とする。 In order to solve the above-described problems and achieve the object, the composite member according to the present invention includes a reinforced concrete member that supports a long-term load and has fire resistance, and a reinforced concrete member that is provided in contact with the surface of the reinforced concrete member and supports the long-term load. A synthetic member comprising a non-supporting wooden member, further comprising a cotter provided on a surface of the wooden member on the side contacting the reinforced concrete member in order to integrate the reinforced concrete member and the wooden member, so that the wooden member is It is characterized by being used as a structure.

また、本発明に係る他の合成部材は、上述した発明において、木質部材の水平荷重作用時における応力負担時の座屈を防止するために、木質部材の鉄筋コンクリート部材に接する側の面に突設されたビスをさらに備えることを特徴とする。 In addition, in the above-described invention, the synthetic member according to the present invention is provided on the side of the wooden member that is in contact with the reinforced concrete member in order to prevent the wooden member from buckling when stress is applied when a horizontal load is applied. It is characterized by further comprising a set screw.

また、本発明に係る他の合成部材は、上述した発明において、長期荷重を鉄筋コンクリート部材のみで支持する機構とすることで、木質部材に対して耐火被覆を不要とすることを特徴とする。 Further, another synthetic member according to the present invention is characterized in that, in the above-mentioned invention, a fireproof coating is not required for the wooden member by adopting a mechanism in which the long-term load is supported only by the reinforced concrete member.

また、本発明に係る合成部材の製造方法は、上述した合成部材を製造する方法であって、コンクリート用の型枠として木質部材を組み立てるステップと、木質部材の内側にコンクリートを打設して鉄筋コンクリート部材を構築するステップを有することを特徴とする。 Further, a method for manufacturing a composite member according to the present invention is a method for manufacturing the above-described composite member, comprising the steps of assembling wooden members as forms for concrete, and placing concrete inside the wooden members to form reinforced concrete. The method is characterized by comprising a step of constructing the member.

本発明に係る合成部材によれば、長期荷重を支持するとともに耐火性を有する鉄筋コンクリート部材と、この鉄筋コンクリート部材の表面に接して設けられるとともに長期荷重を支持しない木質部材とを備える合成部材であって、鉄筋コンクリート部材と木質部材とを一体化するために、木質部材の鉄筋コンクリート部材に接する側の面に設けられたコッターをさらに備えることで、木質部材を構造体として利用しているので、合成部材として耐火被覆がなくても、耐火性を有するとともに、部材耐力を向上することができるという効果を奏する。 A composite member according to the present invention is a composite member comprising a long-term load-bearing and fire-resistant reinforced concrete member and a wooden member provided in contact with the surface of the reinforced concrete member and not long-term load-bearing. , In order to integrate the reinforced concrete member and the wooden member, a cotter is provided on the surface of the wooden member that is in contact with the reinforced concrete member, so that the wooden member is used as a structural body. Even if there is no fireproof coating, it is possible to have fire resistance and to improve member strength.

また、本発明に係る他の合成部材によれば、木質部材の水平荷重作用時における応力負担時の座屈を防止するために、木質部材の鉄筋コンクリート部材に接する側の面に突設されたビスをさらに備えるので、木質部材の座屈を防止することができるという効果を奏する。 Further, according to another composite member according to the present invention, in order to prevent buckling of the wooden member when stress is applied when a horizontal load is applied, the screw protrudes from the surface of the wooden member that is in contact with the reinforced concrete member. is further provided, it is possible to prevent buckling of the wooden member.

また、本発明に係る他の合成部材によれば、長期荷重を鉄筋コンクリート部材のみで支持する機構とすることで、木質部材に対して耐火被覆を不要とする。長期荷重を負担しない部材に対しては、耐火性能は要求されないため、木質部材に対して耐火被覆を不要とすることができるという効果を奏する。 Further, according to another composite member according to the present invention, a fireproof coating is not required for the wood member by adopting a mechanism in which the long-term load is supported only by the reinforced concrete member. Since fireproof performance is not required for members that do not bear a long-term load, there is an effect that a fireproof coating can be made unnecessary for wooden members.

また、本発明に係る合成部材の製造方法によれば、上述した合成部材を製造する方法であって、コンクリート用の型枠として木質部材を組み立てるステップと、木質部材の内側にコンクリートを打設して鉄筋コンクリート部材を構築するステップを有するので、合成部材を容易に製造することができるという効果を奏する。 Further, according to a method for manufacturing a synthetic member according to the present invention, there is provided a method for manufacturing the above-described synthetic member, comprising the steps of assembling wooden members as forms for concrete, and pouring concrete inside the wooden members. Since it has a step of constructing a reinforced concrete member by means of the method, it has the effect that the composite member can be easily manufactured.

図1は、本発明に係る合成部材およびその製造方法の実施の形態を示す図であり、(1)は横断面図、(2)は(1)のA-A線に沿った断面図、(3)は(2)のB-B線に沿った断面図である。FIG. 1 is a diagram showing an embodiment of a synthetic member and a manufacturing method thereof according to the present invention, (1) is a cross-sectional view, (2) is a cross-sectional view along the line AA of (1), (3) is a cross-sectional view taken along line BB of (2). 図2は、本実施の形態を適用した柱梁接合部の一例を示す図であり、(1)~(4)は鉄骨梁の場合、(5)~(8)はRC梁の場合である。FIG. 2 is a diagram showing an example of a beam-to-column joint to which the present embodiment is applied, where (1) to (4) are for steel beams, and (5) to (8) are for RC beams. . 図3は、本発明の他の実施の形態を示す図である。FIG. 3 is a diagram showing another embodiment of the present invention. 図4は、本発明の他の実施の形態を示す図である。FIG. 4 is a diagram showing another embodiment of the present invention. 図5は、合成部材の作用説明図であり、(1)は水平荷重による曲げ応力作時の説明図、(2)はビスによる座屈防止の説明図、(3)はコッターによる軸力伝達の説明図である。FIG. 5 is an explanatory diagram of the action of the synthetic member, (1) is an explanatory diagram when bending stress is applied by horizontal load, (2) is an explanatory diagram of buckling prevention by screws, and (3) is an axial force transmission by a cotter. is an explanatory diagram of .

以下に、本発明に係る合成部材およびその製造方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a synthetic member and a method for manufacturing the same according to the present invention will be described below in detail with reference to the drawings. In addition, this invention is not limited by this embodiment.

(合成部材およびその製造方法)
図1に示すように、本発明の実施の形態に係る合成部材10は、柱として使用される部材であり、長期荷重を支持するとともに耐火性を有する鉄筋コンクリート部材12(以下、RC部材という。)と、このRC部材12の表面に接して設けられるとともに長期荷重を支持しない木質部材14とを備える。木質部材14のRC部材12に接する側の面にコッター16が設けられる。
(Synthetic member and manufacturing method thereof)
As shown in FIG. 1, a composite member 10 according to the embodiment of the present invention is a member used as a column, and is a reinforced concrete member 12 (hereinafter referred to as RC member) that supports a long-term load and has fire resistance. and a wooden member 14 provided in contact with the surface of the RC member 12 and not supporting a long-term load. A cotter 16 is provided on the surface of the wooden member 14 that is in contact with the RC member 12 .

RC部材12は、矩形(正方形)断面の柱軸状のコンクリート18と、コンクリート18内に配置された主筋20(鉄筋)およびせん断補強筋22(鉄筋)を備える。主筋20は、横方向に間隔をあけて柱軸方向に配置され、せん断補強筋22は、上下方向に間隔をあけて環状に配置される。 The RC member 12 includes a concrete 18 having a rectangular (square) cross-section and a shaft shape, and main reinforcing bars 20 (reinforcing bars) and shear reinforcing bars 22 (reinforcing bars) arranged in the concrete 18 . The main reinforcements 20 are arranged in the direction of the column axis with intervals in the lateral direction, and the shear reinforcements 22 are arranged in an annular manner with intervals in the vertical direction.

木質部材14は、RC部材12の前後左右の各表面に当接配置される4枚の板からなる。各板の端部24は、横断面視で45度に傾斜したテーパー状になっており、隣接する各端部24はこの部分で接合している。このため、合成部材10全体の断面形状は矩形である。なお、各端部24どうしの接合には、例えば接着剤、木質構造用ビス、ラグスクリュー等の接合手段を用いることができるが、施工性から木質構造用ビスを用いることが好ましい。木質部材14には、例えば集成材やCLT(Cross Laminated Timber)等を用いることができる。木質部材14は、RC部材12のコンクリート18用の型枠として用いられ、RC部材12と一体に施工される。 The wooden member 14 is composed of four plates that are arranged in contact with the front, rear, left, and right surfaces of the RC member 12 . An end 24 of each plate is tapered at 45 degrees in cross section, and adjacent ends 24 are joined at this portion. Therefore, the overall cross-sectional shape of the synthetic member 10 is rectangular. For joining the ends 24, for example, an adhesive, a wooden structural screw, a lag screw, or other joining means can be used, but it is preferable to use a wooden structural screw in terms of workability. Laminated wood, CLT (Cross Laminated Timber), or the like can be used for the wooden member 14, for example. The wooden member 14 is used as a formwork for the concrete 18 of the RC member 12 and constructed integrally with the RC member 12 .

コッター16は、RC部材12と木質部材14とを一体化するために木質部材14の裏面側に設けられる。コッター16は、正面視で矩形の凹状形状に形成され、上下方向および水平方向にそれぞれ間隔をあけて複数設けられる。木質部材14は、RC部材12のコンクリート18用の型枠として用いるため、コッター16の凹状形状の内部には、コンクリート打設によりコンクリート18が充填されることになる。コッター16により軸力を伝達することで、合成部材10として曲げ応力を木質部材14の部分でも負担できるようになり、耐力が向上する。図1(2)の例では、1枚の木質部材14の裏面側の左右部分にコッター16を2列配置するとともに、コッター16を正面視で矩形の凹状形状に形成した場合を示しているが、本発明のコッターの配置や形状はこれに限るものではない。なお、図1(1)の例では、左右方向(水平方向)が想定される加力方向Fであり、右端の圧縮縁Gから引張鉄筋重心位置までの長さが有効せいHである。 A cotter 16 is provided on the back side of the wooden member 14 to integrate the RC member 12 and the wooden member 14 . The cotter 16 is formed in a rectangular concave shape when viewed from the front, and a plurality of cotters 16 are provided at intervals in the vertical direction and the horizontal direction. Since the wooden member 14 is used as a formwork for the concrete 18 of the RC member 12, the concave shape of the cotter 16 is filled with the concrete 18 by placing concrete. By transmitting the axial force through the cotter 16, the bending stress of the composite member 10 can also be borne by the wooden member 14, and the yield strength is improved. In the example of FIG. 1(2), two rows of cotters 16 are arranged on the left and right portions of the back side of one wooden member 14, and the cotters 16 are formed in a rectangular concave shape when viewed from the front. However, the arrangement and shape of the cotter of the present invention are not limited to this. In the example of FIG. 1(1), the left-right direction (horizontal direction) is assumed to be the applied force direction F, and the effective length H is the length from the compression edge G at the right end to the position of the center of gravity of the tensile reinforcing bar.

この合成部材10を製造する場合には、例えば、まずコンクリート用の型枠として木質部材14を組み立てる。続いて、木質部材14の内側の領域に、主筋20、せん断補強筋22を組み立てる。その後、木質部材14の内側にコンクリート18を打設してRC部材12を構築する。木質部材14は、RC部材12の型枠として一体に施工され、RC部材12から脱型しないでそのまま使用する。これにより、合成部材10を容易に製造することができる。 When manufacturing this synthetic member 10, for example, first, the wooden member 14 is assembled as a formwork for concrete. Subsequently, the main reinforcing bars 20 and the shear reinforcing bars 22 are assembled in the area inside the wooden member 14 . After that, concrete 18 is placed inside the wooden member 14 to construct the RC member 12 . The wooden member 14 is constructed integrally as a formwork for the RC member 12, and is used as it is without being demolded from the RC member 12. - 特許庁Thereby, the synthetic member 10 can be manufactured easily.

本実施の形態の合成部材10によれば、長期荷重を支持するとともに耐火性を有するRC部材12と、その表面にコッター16を介して設けられるとともに長期荷重を支持しない木質部材14からなるので、耐火性を有するとともに、部材耐力を向上することができる。また、耐火性能が求められる建物においては、長期荷重を耐火性能のあるRC部材12のみで負担し許容応力度設計を行うことで、特別な耐火被覆を必要としない。耐火被覆が不要となることで、コストを低減することができる。さらに、耐火被覆を設けることなく、構造体の木をあらわしにすることが可能である。また、型枠併用の仕上げにより、通常の木仕上げと比べて施工手間とコストを軽減することができる。 According to the composite member 10 of the present embodiment, the RC member 12 that supports a long-term load and has fire resistance, and the wooden member 14 that is provided on the surface thereof via a cotter 16 and does not support a long-term load. In addition to having fire resistance, it is possible to improve member strength. Also, in a building that requires fire resistance performance, special fire resistance coating is not required by designing the allowable stress by bearing the long-term load only with the RC members 12 having fire resistance performance. Costs can be reduced by eliminating the need for a fireproof coating. Furthermore, it is possible to expose the wood of the structure without providing a fireproof coating. In addition, by using the formwork together with the finishing, it is possible to reduce the labor and cost of construction compared to ordinary wood finishing.

地震時等の水平荷重に対してはRC部材12と木質部材14との合成効果により部材耐力が向上する。部材の耐震性能が向上することにより、躯体費用を低減することができる。耐火性能が求められない建物においては、木質部材14に長期荷重を負担させて設計することも可能である。また、二次設計において、木質部材14が圧壊しないことを確認すれば、RC造と同等の構造特性係数Dsとする構造計算ルート3の設計が可能である。さらに後述するような調湿・空調効果により、環境負荷を低減することができる。 With respect to a horizontal load such as during an earthquake, the combined effect of the RC member 12 and the wooden member 14 improves the strength of the member. Building frame costs can be reduced by improving the seismic performance of members. In a building where fire resistance is not required, it is possible to design the wooden member 14 to bear a long-term load. Also, if it is confirmed in the secondary design that the wooden member 14 will not collapse, it is possible to design the structural calculation route 3 with the structural characteristic coefficient Ds equivalent to that of the RC structure. Furthermore, the environmental load can be reduced due to the effects of humidity control and air conditioning, which will be described later.

上記の実施の形態において、コッター16で木質部材14とRC部材12の一体化を図る場合を例にとり説明したが、本発明はこれに限るものではない。木質部材14の裏面にコッター16を設けることに加え、木質部材14の裏面に所定の間隔でビス等の連結部材をRC部材12のコンクリートに向けて突設してもよい。このようにすれば、ビス等の連結部材によって木質部材14の座屈を防止することができる。また、ビス等の連結部材により部材耐力の低減が防止されるので、コッター16と併用することで合成部材10の部材耐力をより向上することができる。ビス等の連結部材は、木質部材14の裏面側のコッター16内に設けてもよいし、コッター16がない部分に設けてもよい。 In the above embodiment, the case where the wooden member 14 and the RC member 12 are integrated by the cotter 16 has been described as an example, but the present invention is not limited to this. In addition to providing the cotter 16 on the back surface of the wooden member 14 , connection members such as screws may be provided on the back surface of the wooden member 14 at predetermined intervals so as to protrude toward the concrete of the RC member 12 . In this way, buckling of the wooden member 14 can be prevented by connecting members such as screws. In addition, since a connecting member such as a screw prevents a reduction in member yield strength, the combined use of the cotter 16 can further improve the member yield strength of the synthetic member 10 . A connecting member such as a screw may be provided inside the cotter 16 on the back side of the wooden member 14 or may be provided in a portion where the cotter 16 is not provided.

(柱梁接合部)
次に、本実施の形態の合成部材を柱に適用した柱梁接合部について説明する。
図2は、本実施の形態の合成部材10を柱に適用した柱梁接合部の一例であり、(1)~(4)は梁が鉄骨梁の場合、(5)~(8)は梁がRC(鉄筋コンクリート)梁の場合である。(1)は(2)のA-A線に沿った断面図、(2)は(1)のB-B線に沿った断面図、(3)は(1)のC-C線に沿った断面図、(4)は(1)のD-D線に沿った断面図である。(5)は(6)のE-E線に沿った断面図、(6)は(5)のF-F線に沿った断面図、(7)は(5)のG-G線に沿った断面図、(8)は(5)のH-H線に沿った断面図である。
(Column beam joint)
Next, a column-to-beam joint where the synthetic member of the present embodiment is applied to a column will be described.
FIG. 2 is an example of a column-to-beam joint in which the composite member 10 of the present embodiment is applied to a column. (1) to (4) are steel beams, and (5) to (8) are beams is for RC (reinforced concrete) beams. (1) is a cross-sectional view along line AA of (2), (2) is a cross-sectional view along line BB of (1), and (3) is along line CC of (1). (4) is a cross-sectional view taken along line DD of (1). (5) is a cross-sectional view along the EE line of (6), (6) is a cross-sectional view along the FF line of (5), and (7) is along the GG line of (5). (8) is a cross-sectional view taken along line HH of (5).

図2に示すように、合成部材10を構成する木質部材14は、柱梁接合部26の仕口部28で上下に分断される。仕口部28は、略直方体状の鉄筋コンクリートからなり、その上下は合成部材10を構成するRC部材12に連続している。図2(1)~(4)の鉄骨梁の場合の仕口部28には、前後左右の四方からH形鋼からなる鉄骨梁30が接続している。一方、図2(5)~(8)のRC梁の場合の仕口部28には、前後左右の四方からRC梁32が接続している。このような構成においては、木質部材14が長期荷重を負担しないようにするため、木質部材14の下端の脚部34にクリアランスを設けておき、施工時において上部のRC部材12の躯体工事完了後に無収縮モルタル等でクリアランスを埋めることが好ましい。こうすることで、木質部材14が長期荷重を負担しないため地震時等の水平荷重作用時の部材耐力が向上する。 As shown in FIG. 2 , the wooden member 14 that constitutes the composite member 10 is vertically divided at the joint portion 28 of the beam-to-column joint portion 26 . The joint portion 28 is made of reinforced concrete in a substantially rectangular parallelepiped shape, and its upper and lower sides are continuous with the RC member 12 that constitutes the composite member 10 . Steel beams 30 made of H-shaped steel are connected to the joints 28 in the case of the steel beams shown in FIGS. On the other hand, RC beams 32 are connected to the connecting portions 28 in the case of the RC beams shown in FIGS. In such a configuration, in order to prevent the wooden member 14 from bearing a long-term load, a clearance is provided in the leg portion 34 at the lower end of the wooden member 14, and after the construction of the upper RC member 12 is completed, the clearance is provided. It is preferable to fill the clearance with non-shrinking mortar or the like. By doing so, the wooden member 14 does not bear a long-term load, so that the member's bearing strength is improved when a horizontal load is applied during an earthquake or the like.

図2(1)~(4)の鉄骨梁の場合、(5)~(8)のRC梁の場合、いずれの場合においても、木質部材14は柱梁接合部26で分断されるため、水平荷重に対しては引張応力を負担することはなく圧縮応力のみを負担する。RCと木の合成断面の平面保持を仮定すると、RC部材12の有効せいHが大きくなることで部材耐力が向上する。部材の塑性化領域においては、木質部材14が終局耐力に達していなければ木質部材14の脆性破壊は生じないため、二次設計ではRC造と同等の構造特性係数Dsを採用して設計することができる。 In the case of the steel beams in FIGS. 2 (1) to (4) and in the case of the RC beams (5) to (8) in FIG. Only compressive stress is borne with respect to the load, not tensile stress. Assuming that the combined cross section of RC and wood is held flat, the member strength is improved by increasing the effective height H of the RC member 12 . In the plasticized region of the member, brittle fracture of the wooden member 14 does not occur unless the wooden member 14 reaches the ultimate yield strength. can be done.

柱梁接合部26では木質部材14を機械的に接合しない。水平荷重時に圧縮縁となる木質部材14角部のめり込みによる損傷や局部変形を防ぐために、図3(1)に示すように、木質部材14の下端部の縁にアングル材等の保護材36をビス等で取り付けることで、圧縮端を保護する。こうすることで、地震による繰返し荷重時に耐力劣化が生じず、靱性性能が向上する。負担応力によって端部のめり込みによる損傷や局部変形が懸念されない場合は、保護材36は不要とすることもできる。 The wooden member 14 is not mechanically joined at the beam-to-column joint 26 . In order to prevent damage and local deformation due to embedding of the corners of the wooden member 14 that act as compression edges when a horizontal load is applied, as shown in FIG. etc. to protect the compression end. By doing so, the toughness performance is improved without deterioration of yield strength during repeated loads due to earthquakes. The protective material 36 may be unnecessary if there is no concern about damage or local deformation due to embedding of the end portion due to the burden stress.

また、図3(2)に示すように、木質部材14の縁切り位置は柱梁接合部26の仕口部28ではなく柱中央部38に設けることも可能である。柱中央部38の反曲点付近に木質部材14の縁切りを設けた場合、木縁部の保護材36は不要である。 Also, as shown in FIG. 3(2), the edge cutting position of the wooden member 14 can be provided at the column center portion 38 instead of the joint portion 28 of the beam-to-column joint portion 26 . If the wooden member 14 is cut off near the reflex point of the central column 38, the protective material 36 for the wooden edge is not required.

図3(3)~(6)は、図2(1)~(4)の変形例を示したものである。図3(3)~(6)に示すように、柱梁接合部26を跨ぐ態様で上下方向に延びる引きボルト40を上下の木質部材14に設け、上下に分断される木質部材14を引きボルト40で接続してもよい。引きボルト40で引張応力を負担させることにより合成部材10の耐力がさらに向上する。ただし、引張応力を受ける引きボルト40の降伏耐力は、木質部材14の引張耐力・めり込み耐力以下とし、靭性性能を確保した設計とすることが好ましい。図3(3)~(6)の例は鉄骨梁の場合における引きボルト40の納まり例であるが、図2(5)~(8)のRC梁の場合も同様に引きボルト40を設けることができる。この場合の設計も上記と同様に行うことができる。 FIGS. 3(3) to 3(6) show modifications of FIGS. 2(1) to 2(4). As shown in FIGS. 3(3) to 3(6), pull bolts 40 extending in the vertical direction are provided on the upper and lower wooden members 14 so as to straddle the beam-to-column joints 26, and the wooden members 14 that are vertically divided are connected to the pull bolts 40. 40 may be connected. By bearing the tensile stress with the pull bolt 40, the strength of the composite member 10 is further improved. However, it is preferable that the yield strength of the pull bolt 40 that receives the tensile stress is equal to or less than the tensile strength and the penetration strength of the wooden member 14, and that the design ensures toughness performance. The examples of FIGS. 3(3) to 3(6) are examples of fitting of the tension bolt 40 in the case of steel beams, but in the case of RC beams in FIGS. can be done. The design in this case can also be performed in the same manner as described above.

上記の実施の形態では、合成部材10を柱部材として使用する場合を例にとり説明したが、本発明はこれに限るものではなく、合成部材をRC梁や鉄骨梁などの梁部材として用いる場合にも同様に適用可能である。梁部材においても圧縮要素として木質部材14を働かせることで、部材有効せいが大きくなり部材耐力が向上する。 In the above embodiment, the case where the composite member 10 is used as a column member has been described as an example, but the present invention is not limited to this, and when the composite member is used as a beam member such as an RC beam or a steel beam is also applicable. By using the wooden member 14 as a compressive element in the beam member as well, the effective force of the member is increased and the strength of the member is improved.

(調湿・空調効果)
次に、調湿・空調効果について説明する。
木材は、周囲の湿度が高い時には内部に水分を吸収し、乾燥している時には内部の水分を空中に放出する調湿機能を持っている。合成部材10のあらわしとなる木質部材14の表面に凹凸加工を施す、もしくは凹凸加工を施した木材を張り付け、木が空気に触れる表面積を大きくとることで、木材のもつ調湿効果を最大化し室内環境負荷を低減することも可能である。図4に、木質部材の表面に施される凹凸加工の例を示す。また、木材は熱伝導率が鉄の約1/430、コンクリートの約1/12と小さく、厚みのある木材を使用することで室内の温度変化を和らげる効果も期待できる。
(humidity control/air conditioning effect)
Next, the humidity control/air conditioning effect will be described.
Wood has a humidity control function that absorbs moisture inside when the surrounding humidity is high and releases the moisture inside into the air when it is dry. The surface of the wooden member 14 that represents the synthetic member 10 is subjected to uneven processing, or the wood subjected to uneven processing is attached to increase the surface area of the wood that is exposed to air, thereby maximizing the humidity conditioning effect of the wood. It is also possible to reduce the environmental load. FIG. 4 shows an example of unevenness processing applied to the surface of a wooden member. In addition, the thermal conductivity of wood is about 1/430 that of iron and about 1/12 that of concrete, so the use of thick wood can be expected to have the effect of softening indoor temperature changes.

(合成部材としての部材耐力)
次に、上記の合成部材10としての部材耐力の設計方法について補足説明する。
水平荷重による曲げ応力作用時の断面内の応力度分布図を図5(1)に示す。水平荷重のみによる曲げ応力作用時において、合成部材10の場合とRC部材12単体の場合の応力度分布を比較すると、合成部材10の場合は圧縮側の木質部材14が有効となるためコンクリートおよび鉄筋に作用する応力についてCσc<Cσc、T<Tとなり作用応力が小さくなる。
ただし、
Cσc:合成部材のコンクリートに作用する圧縮縁応力度
Cσc:RC部材単体のコンクリートに作用する圧縮縁応力度
:合成部材の鉄筋に作用する引張応力
:RC部材単体の鉄筋に作用する引張応力
(Member yield strength as a synthetic member)
Next, a supplementary description will be given of a method of designing the member yield strength of the composite member 10 described above.
FIG. 5(1) shows a stress intensity distribution diagram in the cross section when bending stress is applied by a horizontal load. When bending stress is applied only by a horizontal load, when comparing the stress intensity distributions of the composite member 10 and the case of the RC member 12 alone, in the case of the composite member 10, the wooden member 14 on the compression side is effective, so concrete and reinforcing bars are effective. Cσc 1 <Cσc 2 , T 1 <T 2 , and the acting stress becomes smaller.
however,
Cσc 1 : Degree of compressive edge stress acting on the concrete of the composite member Cσc 2 : Degree of compressive edge stress acting on the concrete of the RC member alone T 1 : Tensile stress acting on the reinforcing bar of the composite member T 2 : On the reinforcing bar of the RC member alone acting tensile stress

合成部材10の部材耐力は、木質部材14に作用する圧縮縁応力度Mσcが木質部材14の許容圧縮応力度Mfcに達したとき、コンクリートに作用する圧縮縁応力度Cσcがコンクリートの許容圧縮応力度Cfcに達したとき、または引張鉄筋応力度rσtが鉄筋の許容引張応力度rfcに達したときに対して求めたそれぞれの曲げモーメントのうち、最小値を許容曲げモーメントMaとする。軸力については、長期軸力はRC断面で負担し、水平荷重によって生じる圧縮力は全断面、引張力はRC断面で負担する。断面算定時は下式を確認することが望ましい。
Mσc<Mfc、Cσc<Cfc、rσt<rft
When the compressive edge stress Mσc acting on the wooden member 14 reaches the allowable compressive stress Mfc of the wooden member 14, the member yield strength of the composite member 10 is equal to the allowable compressive stress of concrete. Let the minimum value be the allowable bending moment Ma among the respective bending moments obtained when Cfc is reached or when the tensile reinforcing stress degree rσt reaches the allowable tensile stress degree rfc of the reinforcing bar. Regarding the axial force, the long-term axial force is borne by the RC section, the compressive force generated by the horizontal load is borne by the entire section, and the tensile force is borne by the RC section. It is desirable to check the following formula when calculating the cross section.
Mσc<Mfc, Cσc<Cfc, rσt<rft

(軸力を受ける木質部材の座屈防止)
次に、軸力を受ける木質部材14の座屈防止に関する設計方法について補足説明する。
水平荷重時にフレームとして部材に軸力が生じる場合は、合成部材10として木質部材14も軸力を負担する。木質部材14の許容圧縮応力度を超えないよう木質構造用ビスまたはラグスクリュー等の連結部材で木質部材14とコンクリートを結合することが望ましい。
(Prevention of buckling of wooden members receiving axial force)
Next, a supplementary description will be given of a design method for preventing buckling of the wooden member 14 that receives the axial force.
When an axial force is generated in a member as a frame when a horizontal load is applied, the wooden member 14 as the synthetic member 10 also bears the axial force. It is desirable to connect the wooden member 14 and the concrete with a connecting member such as a wooden structural screw or a lag screw so that the allowable compressive stress of the wooden member 14 is not exceeded.

圧縮力を受ける木質部材14の算定式は、木質構造設計基準・同解説にしたがい下式による。
σc≦ηfc
ただし、λ≦30のときη=1、30<λ≦100のときη=1.3-0.01λ、100<λのときη=3000/λ
λ=lk/i
σc:木質部材に作用する圧縮縁応力度、fc:木質部材の許容圧縮応力度
η:材の細長比に応じて決まる座屈低減係数、λ:細長比
i:座屈方向の断面二次半径
The calculation formula for the wooden member 14 that receives the compressive force is based on the following formula according to the wooden structure design standard and its commentary.
σc≦ηfc
However, when λ≤30, η=1, when 30<λ≤100, η=1.3-0.01λ, and when 100<λ, η=3000/ λ2.
λ=lk/i
σc: Compressive edge stress acting on the wooden member, fc: Allowable compressive stress of the wooden member, η: Buckling reduction factor determined according to the slenderness ratio of the member, λ: Slenderness ratio, i: Cross-sectional secondary radius in the buckling direction

木質部材14の座屈拘束のためのコンクリートと木の接合方法を図5(2)に示す。
木質構造用ビス等を介してコンクリートと接合することで木質構造用ビス等の間隔を座屈長さlkとする。有効な座屈長さlkとするためには、座屈方向に生じる力P(木質部材圧縮耐力の2%)に対して、コンクリート部のコーン破壊耐力Ta1、木質構造用ビス等断面積の引張耐力Ta2および木質構造用ビス等の木に対する引抜耐力Ta3が大きいことが条件となる。
FIG. 5(2) shows a method of joining concrete and wood for restraining the wooden member 14 from buckling.
The buckling length lk is set to the interval between the wooden structural screws or the like by joining the concrete with the wooden structural screws or the like. In order to obtain an effective buckling length lk, the force P (2% of the compressive strength of the wooden member) generated in the buckling direction must be met by the cone breaking resistance Ta1 of the concrete part and the tension of the cross-sectional area such as the screw for wooden structure The condition is that the yield strength Ta2 and the pull-out yield strength Ta3 of the wooden structural screw or the like to the tree are large.

P=0.02A・fc(A:木質部材断面積、fc:木質部材の許容圧縮応力度)
P<Ta1=Σ2dπ・fs(fs:コンクリートのせん断耐力、d:木質構造用ビス等の突出長)
P<Ta2=ΣAs・ft(As:木質構造用ビス等の有効断面積、ft:木質構造用ビス等の許容引張応力度)
P<Ta3=Σpa(木質構造設計基準・同解説による)
P = 0.02 A fc (A: wooden member cross-sectional area, fc: allowable compressive stress of wooden member)
P<Ta1=Σ2dπ·fs (fs: shear strength of concrete, d: protruding length of screw for wooden structure, etc.)
P<Ta2=ΣAs ft (As: effective cross-sectional area of wooden structural screws, etc., ft: allowable tensile stress of wooden structural screws, etc.)
P<Ta3=Σpa (according to the wooden structure design standard and commentary)

(コッターによる軸力伝達)
次に、コッター16による軸力伝達に関する設計方法について補足説明する。
RC部材12と木質部材14を一体化するため、RC部材12に生じた応力を木質部材14に設けたコッター16を介して伝達する。木とコンクリートのコッター16による接合部を図5(3)に示す。RC部材12と木質部材14の一体化のためには、コッター下部(コッター下部面積MA)に生じる応力度Mσcが木質部材14の許容圧縮応力度Mfc以下であることが条件となる。コッター下部に生じる応力度Mσcは、コッター間隔xと水平荷重によりコンクリート圧縮縁に生じる応力度Cσcより、下式による。
(Axial force transmission by cotter)
Next, a supplementary description will be given of a design method for axial force transmission by the cotter 16. FIG.
In order to integrate the RC member 12 and the wooden member 14 , the stress generated in the RC member 12 is transmitted through the cotter 16 provided on the wooden member 14 . FIG. 5(3) shows a joint between wood and concrete by the cotter 16. As shown in FIG. In order to integrate the RC member 12 and the wooden member 14, it is a condition that the stress Mσc generated in the cotter lower portion (cotter lower area MA) is equal to or less than the allowable compressive stress Mfc of the wooden member 14 . The stress Mσc generated at the lower part of the cotter is obtained by the following formula from the stress Cσc generated at the concrete compression edge due to the cotter interval x and the horizontal load.

Mfc≦Mσc
=Cσc・x/MA
Mfc≦Mσc
=Cσc x/MA

コッター16と、木質部材14の座屈防止のための木質構造用ビスを併用する場合には、図5(3)のようなコッター16を有する領域に、上記の計算で求めた木質構造用ビスが必要ピッチで配置されることになる。 When the cotter 16 and the wooden structural screw for preventing the buckling of the wooden member 14 are used together, the wooden structural screw obtained by the above calculation is placed in the area having the cotter 16 as shown in FIG. 5(3). are arranged at the required pitch.

以上説明したように、本発明に係る合成部材によれば、長期荷重を支持するとともに耐火性を有する鉄筋コンクリート部材と、この鉄筋コンクリート部材の表面に接して設けられるとともに長期荷重を支持しない木質部材とを備える合成部材であって、鉄筋コンクリート部材と木質部材とを一体化するために、木質部材の鉄筋コンクリート部材に接する側の面に設けられたコッターをさらに備えることで、木質部材を構造体として利用しているので、合成部材として耐火被覆がなくても、耐火性を有するとともに、部材耐力を向上することができる。 As described above, according to the composite member according to the present invention, a reinforced concrete member that supports a long-term load and has fire resistance and a wooden member that is provided in contact with the surface of the reinforced concrete member and does not support a long-term load. In order to integrate the reinforced concrete member and the wooden member, the composite member further includes a cotter provided on the surface of the wooden member that is in contact with the reinforced concrete member, so that the wooden member can be used as a structure. Therefore, even if the synthetic member does not have a fireproof coating, it can have fire resistance and can improve member yield strength.

また、本発明に係る他の合成部材によれば、木質部材の水平荷重作用時における応力負担時の座屈を防止するために、木質部材の鉄筋コンクリート部材に接する側の面に突設されたビスをさらに備えるので、木質部材の座屈を防止することができる。 Further, according to another composite member according to the present invention, in order to prevent buckling of the wooden member when stress is applied when a horizontal load is applied, the screw protrudes from the surface of the wooden member that is in contact with the reinforced concrete member. is further provided, it is possible to prevent buckling of the wooden member.

また、本発明に係る他の合成部材によれば、長期荷重を鉄筋コンクリート部材のみで支持する機構とすることで、木質部材に対して耐火被覆を不要とする。長期荷重を負担しない部材に対しては、耐火性能は要求されないため、木質部材に対して耐火被覆を不要とすることができる。 Further, according to another composite member according to the present invention, a fireproof coating is not required for the wood member by adopting a mechanism in which the long-term load is supported only by the reinforced concrete member. Since fireproof performance is not required for members that do not bear a long-term load, it is possible to eliminate the need for a fireproof coating for wooden members.

また、本発明に係る合成部材の製造方法によれば、上述した合成部材を製造する方法であって、コンクリート用の型枠として木質部材を組み立てるステップと、木質部材の内側にコンクリートを打設して鉄筋コンクリート部材を構築するステップを有するので、合成部材を容易に製造することができる。 Further, according to a method for manufacturing a synthetic member according to the present invention, there is provided a method for manufacturing the above-described synthetic member, comprising the steps of assembling wooden members as forms for concrete, and pouring concrete inside the wooden members. Composite members can be easily manufactured since the step of constructing the reinforced concrete members is carried out by means of a process.

以上のように、本発明に係る合成部材およびその製造方法は、耐火建築物に有用であり、特に、部材耐力を向上した合成部材を得るのに適している。 INDUSTRIAL APPLICABILITY As described above, the synthetic member and the method for manufacturing the same according to the present invention are useful for fire-resistant buildings, and are particularly suitable for obtaining a synthetic member with improved member strength.

10 合成部材
12 鉄筋コンクリート部材
14 木質部材
16 コッター
18 コンクリート
20 主筋(鉄筋)
22 せん断補強筋(鉄筋)
24 端部
26 柱梁接合部
28 仕口部
30 鉄骨梁
32 RC梁
34 脚部
36 保護材
38 柱中央部
40 引きボルト
10 synthetic member 12 reinforced concrete member 14 wooden member 16 cotter 18 concrete 20 main bar (rebar)
22 Shear reinforcing bars (reinforcing bars)
24 end portion 26 column beam joint portion 28 joint portion 30 steel frame beam 32 RC beam 34 leg portion 36 protective material 38 column central portion 40 tension bolt

Claims (4)

長期荷重を支持するとともに耐火性を有する鉄筋コンクリート部材と、この鉄筋コンクリート部材の表面に接して設けられるとともに長期荷重を支持しない木質部材とを備える合成部材であって、
鉄筋コンクリート部材と木質部材とを一体化するために、木質部材の鉄筋コンクリート部材に接する側の面に設けられたコッターをさらに備えることで、木質部材を構造体として利用していることを特徴とする合成部材。
A composite member comprising a long-term load-bearing and fire-resistant reinforced concrete member and a wooden member provided in contact with the surface of the reinforced concrete member and not long-term load-bearing,
In order to integrate the reinforced concrete member and the wooden member, a cotter is further provided on the surface of the wooden member that is in contact with the reinforced concrete member, thereby using the wooden member as a structure. Element.
木質部材の水平荷重作用時における応力負担時の座屈を防止するために、木質部材の鉄筋コンクリート部材に接する側の面に突設されたビスをさらに備えることを特徴とする請求項1に記載の合成部材。 2. The wooden member according to claim 1, further comprising a screw protruding from a surface of the wooden member which is in contact with the reinforced concrete member in order to prevent buckling of the wooden member when stress is applied when a horizontal load is applied. synthetic material. 長期荷重を鉄筋コンクリート部材のみで支持する機構とすることで、木質部材に対して耐火被覆を不要とすることを特徴とする請求項1または2に記載の合成部材。 3. The synthetic member according to claim 1 or 2, characterized in that a fireproof coating is not required for the wood member by adopting a mechanism in which a long-term load is supported only by the reinforced concrete member. 請求項1~3のいずれか一つに記載の合成部材を製造する方法であって、
コンクリート用の型枠として木質部材を組み立てるステップと、木質部材の内側にコンクリートを打設して鉄筋コンクリート部材を構築するステップを有することを特徴とする合成部材の製造方法。
A method for manufacturing a synthetic member according to any one of claims 1 to 3,
1. A method of manufacturing a composite member, comprising the steps of assembling a wooden member as a formwork for concrete, and placing concrete inside the wooden member to construct a reinforced concrete member.
JP2021090489A 2021-05-28 2021-05-28 Composite member and manufacturing method thereof Pending JP2022182765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021090489A JP2022182765A (en) 2021-05-28 2021-05-28 Composite member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021090489A JP2022182765A (en) 2021-05-28 2021-05-28 Composite member and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2022182765A true JP2022182765A (en) 2022-12-08

Family

ID=84329016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021090489A Pending JP2022182765A (en) 2021-05-28 2021-05-28 Composite member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2022182765A (en)

Similar Documents

Publication Publication Date Title
KR101767677B1 (en) Compisite column structure for steel and concrete
US20150167289A1 (en) Open web composite shear connector construction
US11111664B2 (en) Method of introducing prestress to beam-column joint in triaxial compression
JP7040725B2 (en) building
US11352790B2 (en) Method of introducing prestress to beam-column joint of PC structure in triaxial compression
KR101948788B1 (en) Composite core wall strengthened with double angle-shaped steel plates
JP7109999B2 (en) buckling restraint brace
JP2020076226A (en) Shape steel, floor structure, and construction method of floor structure
JP2006144535A (en) Joint structure of column and beam
JP2022182765A (en) Composite member and manufacturing method thereof
JP2011064012A (en) Brace, aseismatic structure and building
KR101171061B1 (en) Modular unit with connector and floor heating plate
CA3009747A1 (en) Thermally broken truss
JPH07207755A (en) Connection part structure of reinforced concrete column and steel structure beam
KR101940857B1 (en) Steel tube and composite column using the same
JP7401145B1 (en) Structural base materials, structural members and structures
JP7364510B2 (en) floor structure
KR102612179B1 (en) Floor structure using steel concrete composite beam and concrete panel and method thereof
JP7477038B2 (en) Connection structure
JP6768358B2 (en) Slab structure
JP7435979B2 (en) Earthquake reinforcement structure for existing buildings using CLT
US20230417052A1 (en) Timber-concrete composite slab with notched plywood shear connector and manufacturing method thereof
JP7127244B2 (en) Seismic reinforcement structure
JP5769458B2 (en) Reinforcement structure of frame
JP2023136917A (en) Composite slab structure and method for constructing composite slab structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240308