JP2022181999A - power storage device - Google Patents

power storage device Download PDF

Info

Publication number
JP2022181999A
JP2022181999A JP2021089270A JP2021089270A JP2022181999A JP 2022181999 A JP2022181999 A JP 2022181999A JP 2021089270 A JP2021089270 A JP 2021089270A JP 2021089270 A JP2021089270 A JP 2021089270A JP 2022181999 A JP2022181999 A JP 2022181999A
Authority
JP
Japan
Prior art keywords
adjacent
laminate
power storage
axis direction
storage element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021089270A
Other languages
Japanese (ja)
Inventor
丈 佐々木
Jo Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2021089270A priority Critical patent/JP2022181999A/en
Publication of JP2022181999A publication Critical patent/JP2022181999A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a power storage device which can suppress a variation in performance degradation of power storage elements.SOLUTION: A power storage device comprises: a laminate including a plurality of power storage elements lined up in a prescribed direction and a plurality of adjacent members disposed between the power storage elements; and a holding part for holding the laminate. Each of the plurality of adjacent members extends from an edge of one of the power storage elements to an edge of the other of the power storage elements at least in a direction orthogonal to the prescribed direction between the power storage elements. The bending strength of the adjacent member located in a central part of the laminate in the prescribed direction is greater than the bending strength of the adjacent member closest to an end of the laminate.SELECTED DRAWING: Figure 3

Description

本発明は、複数の蓄電素子が保持部材によって拘束されている蓄電装置に関する。 The present invention relates to a power storage device in which a plurality of power storage elements are restrained by a holding member.

従来から複数の電池セルが配列方向に拘束されている組電池が知られている(特許文献1参照)。この組電池は、一方向に配列された一列の複数の電池セルと、複数の電池セルの配列方向の両端から、一列の複数の電池セルを狭持する一対のエンドプレートと、配列方向に垂直な方向から複数の電池セルを挟持すると共に、配列方向の両端で一対のエンドプレートを締結する一対のバインドバーと、を備える。そして、組電池において、一列の複数の電池セルは、一対のエンドプレートと一対のバインドバーとによって配列方向に緊締されている。 2. Description of the Related Art Conventionally, an assembled battery in which a plurality of battery cells are constrained in the arrangement direction is known (see Patent Document 1). This assembled battery includes a row of battery cells arranged in one direction, a pair of end plates sandwiching the row of battery cells from both ends in the arrangement direction of the battery cells, and a pair of end plates perpendicular to the arrangement direction. a pair of bind bars that sandwich the plurality of battery cells from different directions and fasten the pair of end plates at both ends in the arrangement direction. In the assembled battery, the plurality of battery cells arranged in a line are tightened in the arrangement direction by a pair of end plates and a pair of bind bars.

このように、一列の複数の電池セルが一対のエンドプレートと一対のバインドバーとによって配列方向に緊締されているため、この組電池では、経年劣化等によって各電池セルが膨張しても、組電池における配列方向の寸法が変わらない。このため、配列方向の中央に近づくほど各電池セルの膨張した分が累積されて中央側の電池セルほど隣り合う電池セルから加えられる中央側への力(圧力)が大きくなり、これにより、中央側の電池セルほど電池性能の劣化が大きい。即ち、各電池セルの性能劣化にバラつきが生じる。 In this way, since a row of a plurality of battery cells is tightened in the arrangement direction by a pair of end plates and a pair of bind bars, in this assembled battery, even if each battery cell expands due to deterioration over time, etc. The dimensions in the arrangement direction of the battery do not change. For this reason, the closer to the center of the arrangement direction, the more the expansion of each battery cell accumulates, and the closer to the center the battery cell, the greater the force (pressure) applied from the adjacent battery cells toward the center. The deterioration of the battery performance is greater in the battery cells on the side. That is, the performance deterioration of each battery cell varies.

複数の電池セルを備えた組電池の性能は、最も劣化した電池セルの性能に支配されるため、上記のように、組電池において各電池セルの性能劣化にバラつきが生じる、即ち、一部の電池セルの性能劣化が大きいと、該組電池の性能劣化が急速に進むことになる。 Since the performance of an assembled battery including a plurality of battery cells is governed by the performance of the most deteriorated battery cell, as described above, the performance deterioration of each battery cell in the assembled battery varies. When the performance deterioration of the battery cells is large, the performance deterioration of the assembled battery progresses rapidly.

特開2020-177935号公報JP 2020-177935 A

そこで、本実施形態は、所定方向に並ぶ複数の蓄電素子が保持部によって保持された蓄電装置であって、各蓄電素子の性能劣化のバラつきを抑えることができる蓄電装置を提供することを目的とする。 Accordingly, an object of the present embodiment is to provide a power storage device in which a plurality of power storage elements arranged in a predetermined direction are held by a holding portion, and which is capable of suppressing variations in performance deterioration of the power storage elements. do.

本実施形態の蓄電装置は、
所定方向に並ぶ複数の蓄電素子と各蓄電素子間に配置される複数の隣接部材とを含む積層体と、
前記積層体を保持する保持部と、を備え、
前記複数の隣接部材のそれぞれは、前記蓄電素子間において、少なくとも前記所定方向と直交する方向における前記蓄電素子の一方の端縁から他方の端縁まで広がり、
前記所定方向において、前記積層体の中央部に配置される前記隣接部材の曲げ強度は、該積層体の端部に最も近い前記隣接部材の曲げ強度より大きい。
The power storage device of this embodiment is
a laminate including a plurality of storage elements arranged in a predetermined direction and a plurality of adjacent members arranged between the storage elements;
and a holding part that holds the laminate,
each of the plurality of adjacent members extends from at least one edge to the other edge of the energy storage element in a direction orthogonal to the predetermined direction, between the energy storage elements;
In the predetermined direction, the bending strength of the adjacent member located in the central portion of the stack is greater than the bending strength of the adjacent member closest to the end of the stack.

かかる構成によれば、積層体が保持部に保持されることでX軸方向への該積層体の伸びが規制された状態であっても、積層体における所定方向の中央部に配置される隣接部材の曲げ強度が端部に最も近い隣接部材の曲げ強度より大きいため、前記中央部に配置された隣接部材より積層体の端部に近い位置に配置された各蓄電素子の膨張が前記中央部に配置された隣接部材より積層体の中央に近い位置に配置された蓄電素子に伝わり難くなる。これにより、前記中央に近い位置に配置された蓄電素子において各蓄電素子の膨張に起因する性能劣化が抑えられ、その結果、各蓄電素子の性能劣化のバラつきが抑えられる。 According to this configuration, even in a state in which the stack is held by the holding portion and the extension of the stack in the X-axis direction is restricted, the adjacent portion arranged in the central portion of the stack in the predetermined direction Since the bending strength of the member is greater than the bending strength of the adjacent member closest to the end, the expansion of each storage element arranged closer to the end of the laminate than the adjacent member arranged in the central portion is greater than that of the central portion. It becomes difficult for the electric energy to be transmitted to the storage element arranged at the position closer to the center of the laminate than the adjacent member arranged at the bottom. As a result, performance deterioration due to expansion of each storage element is suppressed in the storage elements arranged near the center, and as a result, variation in performance deterioration of each storage element is suppressed.

また、本実施形態の蓄電装置は、
所定方向に並ぶ複数の蓄電素子と各蓄電素子間に配置される複数の隣接部材とを含む積層体と、
前記積層体を保持する保持部と、を備え、
前記複数の隣接部材のそれぞれは、前記蓄電素子間において、少なくとも前記所定方向と直交する方向における前記蓄電素子の一方の端縁から他方の端縁まで広がり、
前記積層体における所定の隣接部材である第一隣接部材の曲げ強度は、該積層体における該第一隣接部材より前記所定方向の端部に近い位置に配置される第二隣接部材の曲げ強度より大きい。
In addition, the power storage device of the present embodiment is
a laminate including a plurality of storage elements arranged in a predetermined direction and a plurality of adjacent members arranged between the storage elements;
and a holding part that holds the laminate,
each of the plurality of adjacent members extends from at least one edge to the other edge of the energy storage element in a direction orthogonal to the predetermined direction, between the energy storage elements;
The bending strength of the first adjacent member, which is a predetermined adjacent member in the laminate, is greater than the bending strength of the second adjacent member arranged at a position closer to the end in the predetermined direction than the first adjacent member in the laminate. big.

かかる構成によれば、積層体が保持部に保持されることでX軸方向への該積層体の伸びが規制された状態であっても、第一隣接部材の曲げ強度が、該第一隣接部材より所定方向における積層体の端部に近い位置に配置される第二隣接部材の曲げ強度より大きいため、第一隣接部材より積層体の端部に近い位置に配置される各蓄電素子の膨張が当該第一隣接部材より積層体の中央に近い位置に配置される蓄電素子に伝わり難くなる。これにより、前記中央に近い位置に配置される蓄電素子において各蓄電素子の膨張に起因する性能劣化が抑えられ、その結果、各蓄電素子の性能劣化のバラつきが抑えられる。 According to this configuration, even in a state in which the laminate is held by the holding portion and the elongation of the laminate in the X-axis direction is restricted, the flexural strength of the first adjacent member is equal to that of the first adjacent member. Since the bending strength of the second adjacent member located closer to the end of the laminate in the predetermined direction than the member is greater than the bending strength, each power storage element located closer to the edge of the laminate than the first adjacent member expands. is less likely to be transmitted to the storage element arranged at a position closer to the center of the laminate than the first adjacent member. As a result, performance deterioration due to expansion of each storage element is suppressed in the storage elements arranged near the center, and as a result, variation in performance deterioration of each storage element is suppressed.

前記蓄電装置では、
前記積層体において隣り合う二つの隣接部材のうちの前記所定方向における該積層体の中央に近い隣接部材の曲げ強度は、該隣接部材より該積層体の端部に近い隣接部材の曲げ強度より大きくてもよい。
In the power storage device,
Of the two adjacent members in the laminate, the bending strength of the adjacent member closer to the center of the laminate in the predetermined direction is greater than the bending strength of the adjacent member closer to the edge of the laminate than the adjacent member. may

かかる構成によれば、前記中央に近い隣接部材より積層体の端部に近い位置に配置される各蓄電素子の膨張が当該中央に近い隣接部材より積層体の中央に近い位置に配置される蓄電素子に伝わり難くなり、これにより、各蓄電素子の性能劣化のバラつきが抑えられる。 According to such a configuration, the expansion of each power storage element arranged at a position closer to the end of the laminate than the adjacent member close to the center is such that the expansion of the power storage element is arranged at a position closer to the center of the laminate than the adjacent member close to the center. This makes it difficult for the energy to be transmitted to the elements, thereby suppressing variations in the deterioration of the performance of each storage element.

また、前記蓄電装置では、
前記積層体において前記所定方向の中央に近い隣接部材ほど曲げ強度が大きくてもよい。
Further, in the power storage device,
In the laminate, an adjacent member closer to the center in the predetermined direction may have greater bending strength.

かかる構成によれば、各蓄電素子の膨張が所定方向における積層体の中央に近い蓄電素子へ伝わり難くなり、これにより、各蓄電素子の性能劣化のバラつきが抑えられる。 According to such a configuration, the expansion of each storage element is less likely to be transmitted to the storage element closer to the center of the stack in a predetermined direction, thereby suppressing variations in performance deterioration of each storage element.

また、本実施形態の蓄電装置は、
所定方向に並ぶ複数の蓄電素子と各蓄電素子間に配置される複数の隣接部材とを含む積層体と、
前記積層体を保持する保持部と、を備え、
前記複数の隣接部材のそれぞれは、前記隣り合う蓄電素子間において、少なくとも前記所定方向と直交する方向における前記蓄電素子の一方の端縁から他方の端縁まで広がり、
前記積層体において、前記所定方向の端部に最も近い隣接部材から前記所定方向の中央又は中央に最も近い隣接部材に向かうに従って各隣接部材の曲げ強度が順に大きくなっている。
In addition, the power storage device of the present embodiment is
a laminate including a plurality of storage elements arranged in a predetermined direction and a plurality of adjacent members arranged between the storage elements;
and a holding part that holds the laminate,
each of the plurality of adjacent members extends between the adjacent energy storage elements at least from one edge to the other edge of the energy storage element in a direction orthogonal to the predetermined direction;
In the laminate, the bending strength of each adjacent member increases in order from the adjacent member closest to the end in the predetermined direction toward the center or the adjacent member closest to the center in the predetermined direction.

かかる構成によっても、各蓄電素子の膨張が所定方向における積層体の中央に近い蓄電素子へ伝わり難くなり、これにより、各蓄電素子の性能劣化のバラつきが抑えられる。 Such a configuration also makes it difficult for the expansion of each storage element to be transmitted to the storage element near the center of the stack in a predetermined direction, thereby suppressing variations in performance deterioration of each storage element.

以上より、本実施形態によれば、所定方向に並ぶ複数の蓄電素子が保持部によって保持された蓄電装置であって、各蓄電素子の性能劣化のバラつきを抑えることができる蓄電装置を提供することができる。 As described above, according to the present embodiment, it is possible to provide a power storage device in which a plurality of power storage elements arranged in a predetermined direction are held by a holding portion, and in which variation in performance deterioration of each power storage element can be suppressed. can be done.

図1は、本実施形態に係る蓄電装置の斜視図である。FIG. 1 is a perspective view of a power storage device according to this embodiment. 図2は、前記蓄電装置の構成を一部省略した分解斜視図である。FIG. 2 is an exploded perspective view in which a part of the configuration of the power storage device is omitted. 図3は、前記蓄電装置における積層方向の各位置の隣接部材の曲げ強度を示す図である。FIG. 3 is a diagram showing bending strength of adjacent members at respective positions in the stacking direction in the power storage device. 図4は、前記蓄電装置の積層方向の位置による隣接部材の曲げ強度の違いを説明するための模式図である。FIG. 4 is a schematic diagram for explaining the difference in bending strength of adjacent members depending on the position in the stacking direction of the power storage device. 図5は、他実施形態に係る蓄電装置の積層方向の各位置の隣接部材の曲げ強度を示す図である。FIG. 5 is a diagram showing bending strengths of adjacent members at respective positions in the stacking direction of a power storage device according to another embodiment. 図6は、曲げ強度の測定方法を説明するための模式図である。FIG. 6 is a schematic diagram for explaining a method of measuring bending strength.

以下、本発明の一実施形態について、図1~図4を参照しつつ説明する。尚、本実施形態の各構成部材(各構成要素)の名称は、本実施形態におけるものであり、背景技術における各構成部材(各構成要素)の名称と異なる場合がある。 An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. FIG. The name of each component (each component) of this embodiment is the one in this embodiment, and may differ from the name of each component (each component) in the background art.

蓄電装置は、図1及び図2に示すように、複数の蓄電素子10を含む積層体Lと、積層体Lを保持する保持部材(保持部)4と、を備える。また、蓄電装置1は、積層体Lと保持部材4との間に配置される少なくとも一つのインシュレータ6と、異なる蓄電素子10同士を導通可能に接続する複数のバスバ8と、を備える。 As shown in FIGS. 1 and 2, the electric storage device includes a laminate L including a plurality of electric storage elements 10 and a holding member (holding portion) 4 that holds the laminate L. As shown in FIGS. The power storage device 1 also includes at least one insulator 6 arranged between the laminate L and the holding member 4, and a plurality of bus bars 8 electrically connecting the different power storage elements 10 to each other.

具体的に、積層体Lは、複数の蓄電素子10と複数の隣接部材2とを含む。この積層体Lにおいて、蓄電素子10と隣接部材2とは、所定方向に交互に配置されている。 Specifically, the laminate L includes a plurality of storage elements 10 and a plurality of adjacent members 2 . In this laminate L, the storage elements 10 and the adjacent members 2 are alternately arranged in a predetermined direction.

複数の蓄電素子10のそれぞれは、一次電池、二次電池、キャパシタ等である。本実施形態の蓄電素子10は、充放電可能な非水電解質二次電池である。より具体的には、蓄電素子10は、リチウムイオンの移動に伴って生じる電子移動を利用したリチウムイオン二次電池である。 Each of the plurality of power storage elements 10 is a primary battery, a secondary battery, a capacitor, or the like. The power storage device 10 of the present embodiment is a chargeable/dischargeable non-aqueous electrolyte secondary battery. More specifically, the power storage device 10 is a lithium ion secondary battery that utilizes electron transfer that occurs with the movement of lithium ions.

具体的に、各蓄電素子10は、電極体と、電極体を電解液と共に収容するケース13と、少なくとも一部がケース13の外側に露出する外部端子14と、電極体と外部端子14とを接続する集電体と、を備える。 Specifically, each electric storage element 10 includes an electrode body, a case 13 that houses the electrode body together with an electrolyte, an external terminal 14 that is at least partially exposed to the outside of the case 13, and the electrode body and the external terminal 14. and a current collector to be connected.

電極体では、正極と負極とがセパレータを介して交互に積層されている。この電極体においてリチウムイオンが正極と負極との間を移動することにより、蓄電素子10が充放電する。 In the electrode assembly, positive electrodes and negative electrodes are alternately laminated with separators interposed therebetween. In this electrode body, lithium ions move between the positive electrode and the negative electrode, thereby charging and discharging the storage element 10 .

ケース13は、開口を有するケース本体131と、ケース本体131の開口を塞ぐ(閉じる)板状の蓋板132と、を有する。本実施形態のケース本体131は、有底角筒状であり、ケース13は、直方体形状(六面形状)である。本実施形態のケース13は、扁平な直方体形状であり、複数の蓄電素子10は、積層体Lにおいて、ケース13(ケース本体131)の幅広な面(壁部)を、隣接部材2を介して対向させた状態でX軸方向に並んでいる。 The case 13 has a case body 131 having an opening and a plate-like cover plate 132 that closes (closes) the opening of the case body 131 . The case main body 131 of the present embodiment is in the shape of a square tube with a bottom, and the case 13 is in the shape of a rectangular parallelepiped (hexahedral shape). The case 13 of the present embodiment has a flat rectangular parallelepiped shape, and the plurality of power storage elements 10 are arranged in the laminate L so that the wide surface (wall portion) of the case 13 (case main body 131) is connected with the adjacent member 2 interposed therebetween. They are arranged in the X-axis direction while facing each other.

以下の説明では、複数の蓄電素子10が並ぶ方向(所定方向)を直交座標系のX軸、ケース13の幅狭な一対の面(壁部)が対向する方向を直交座標系のY軸、蓋板132の法線方向を直交座標系のZ軸とする。 In the following description, the direction in which the plurality of storage elements 10 are arranged (predetermined direction) is the X-axis of the Cartesian coordinate system, the direction in which the pair of narrow surfaces (walls) of the case 13 face each other is the Y-axis of the Cartesian coordinate system, Let the normal direction of the cover plate 132 be the Z-axis of the orthogonal coordinate system.

複数の隣接部材2のそれぞれは、絶縁性を有し、X軸方向に並ぶ蓄電素子10間、又は蓄電素子10と該蓄電素子10に対してX軸方向に並ぶ部材(本実施形態の例では、保持部材4の一部)との間に配置される。本実施形態の複数の隣接部材2のそれぞれは、樹脂によって形成されている。 Each of the plurality of adjacent members 2 has insulating properties, and is a member aligned in the X-axis direction between the storage elements 10 arranged in the X-axis direction, or between the storage elements 10 and the storage elements 10 (in the example of this embodiment, , part of the holding member 4). Each of the plurality of adjacent members 2 of the present embodiment is made of resin.

また、複数の隣接部材2それぞれは、隣接する蓄電素子10との間に温度調整用の流体(本実施形態の例では空気等の冷却流体)が流通可能な流路Rを形成する。これら複数の隣接部材2は、複数種の隣接部材を含み、本実施形態の複数の隣接部材2は、蓄電素子10間に配置される中間隣接部材(隣接部材)21と、X軸方向において最も端にある蓄電素子10の外側で該蓄電素子10と隣接する端部隣接部材22と、を含む。即ち、蓄電装置1は、隣接部材2として、中間隣接部材21と、端部隣接部材22と、を備える。本実施形態の蓄電装置1は、複数の中間隣接部材21と、二つ(一対)の端部隣接部材22と、を備える。これら複数の中間隣接部材21のそれぞれは、各蓄電素子10間に配置されている。 In addition, each of the plurality of adjacent members 2 forms a flow path R through which temperature-adjusting fluid (cooling fluid such as air in the example of the present embodiment) can flow between adjacent storage elements 10 . The plurality of adjacent members 2 includes a plurality of types of adjacent members, and the plurality of adjacent members 2 of the present embodiment includes an intermediate adjacent member (adjacent member) 21 arranged between the storage elements 10 and the most adjacent member in the X-axis direction. and an end adjacent member 22 that adjoins the storage element 10 on the outside of the storage element 10 at the end. That is, the power storage device 1 includes the intermediate adjacent members 21 and the end adjacent members 22 as the adjacent members 2 . The power storage device 1 of this embodiment includes a plurality of intermediate adjacent members 21 and two (a pair of) end adjacent members 22 . Each of the plurality of intermediate adjacent members 21 is arranged between each storage element 10 .

複数の中間隣接部材(隣接部材)21のそれぞれは、X軸方向に隣り合う蓄電素子10間においてX軸方向と直交する方向に広がる第一本体部211と、第一本体部211と隣り合う蓄電素子10の該第一本体部211に対する移動を規制する少なくとも一つの第一規制部215と、を有する。 Each of the plurality of intermediate adjacent members (adjacent members) 21 includes a first main body portion 211 extending in a direction orthogonal to the X-axis direction between the power storage elements 10 adjacent in the X-axis direction, and a power storage device adjacent to the first main body portion 211 . and at least one first restricting portion 215 that restricts movement of the element 10 with respect to the first body portion 211 .

第一本体部211は、蓄電素子10のケース13の幅広な面と対向し、その一部を該幅広な面に当接させている部位である。この第一本体部211は、隣接する蓄電素子10に対し、少なくともX軸方向と直交する方向における蓄電素子10の一方の端縁から他方の端縁まで広がっている。詳しくは、第一本体部211は、隣接する蓄電素子10のケース13における幅広の面に対し、少なくとも該面の中心部を挟んで対向する二つの端縁における一方の端縁から他方の端縁まで広がっている。本実施形態の第一本体部211は、X軸方向からみてケース13の幅広の面と同じ大きさ又は幅広の面より大きい(幅広の面が含まれる大きさである)。これにより、第一本体部211が、隣り合う蓄電素子10のケース13における幅広の面の周縁部全域で挟み込まれている。 The first body portion 211 is a portion that faces the wide surface of the case 13 of the power storage element 10 and is partly in contact with the wide surface. The first main body portion 211 extends from one edge to the other edge of the adjacent storage element 10 at least in the direction orthogonal to the X-axis direction. Specifically, the first main body portion 211 extends from one end edge to the other end edge of the wide surface of the case 13 of the adjacent electric storage element 10, at least between the two edges facing each other across the center of the wide surface. spreads to The first main body 211 of the present embodiment has the same size as the wide surface of the case 13 or is larger than the wide surface (the size includes the wide surface) when viewed in the X-axis direction. As a result, the first body portion 211 is sandwiched over the entire periphery of the wide surfaces of the cases 13 of the adjacent storage elements 10 .

この第一本体部211は、隣接する蓄電素子10と共同して該蓄電素子10との間に温度調整用の流体が流通可能な流路Rを形成する。本実施形態の第一本体部211は、隣接する蓄電素子10との間に複数の流路Rを形成する。詳しくは、第一本体部211は、X軸方向の一方側に隣接する蓄電素子10との間に複数の流路Rを形成すると共に、X軸方向の他方側に隣接する蓄電素子10との間に複数の流路Rを形成する。この第一本体部211は、X軸方向から見て、隣接する蓄電素子10と対応する大きさの矩形状であり、該第一本体部211のX-Z面(X軸方向とZ軸方向とを含む面)に沿った断面が矩形波形形状である。 The first body portion 211 forms a channel R in cooperation with the adjacent storage element 10 so that the fluid for temperature adjustment can flow between the storage element 10 and the storage element 10 . The first main body part 211 of the present embodiment forms a plurality of flow paths R between adjacent power storage elements 10 . Specifically, the first body portion 211 forms a plurality of flow paths R between the energy storage element 10 adjacent on one side in the X-axis direction and the energy storage element 10 adjacent on the other side in the X-axis direction. A plurality of flow paths R are formed between them. The first body portion 211 has a rectangular shape with a size corresponding to that of the adjacent power storage element 10 when viewed from the X-axis direction. A cross section along a plane containing and has a rectangular wave shape.

第一規制部215は、矩形状の第一本体部211の少なくとも角部からX軸方向に延び、第一本体部211と隣接する蓄電素子10(詳しくはケース13)とY-Z面(Y軸方向とZ軸方向とを含む面)方向の外側から当接することによって該蓄電素子10の第一本体部211に対するY-Z面方向への相対移動を規制する。本実施形態の第一規制部215は、第一本体部211からX軸方向の両側に向けてそれぞれ延びている。 The first restricting portion 215 extends in the X-axis direction from at least the corners of the rectangular first main body portion 211, and extends between the power storage element 10 (specifically, the case 13) adjacent to the first main body portion 211 and the YZ plane (Y By contacting from the outside in the plane (including the axial direction and the Z-axis direction), the storage element 10 is restricted from moving relative to the first body portion 211 in the YZ plane direction. The first restricting portion 215 of the present embodiment extends from the first body portion 211 toward both sides in the X-axis direction.

二つの端部隣接部材(隣接部材)22のそれぞれは、X軸方向に隣り合う蓄電素子10と保持部材4(詳しくは、終端部材41)との間においてX軸方向と直交する方向に広がる第二本体部221と、第二本体部221と隣り合う蓄電素子10の該第二本体部221に対する移動を規制する少なくとも一つの第二規制部225と、を有する。 Each of the two end adjacent members (adjacent members) 22 extends in a direction orthogonal to the X-axis direction between the energy storage element 10 and the holding member 4 (more specifically, the terminal member 41) that are adjacent in the X-axis direction. It has two body portions 221 and at least one second restriction portion 225 that restricts movement of the storage element 10 adjacent to the second body portion 221 with respect to the second body portion 221 .

第二本体部221は、蓄電素子10のケース13の幅広な面と一部を当接させた状態で対向する部位である。この第二本体部221は、隣接する蓄電素子10に対し、少なくともX軸方向と直交する方向における蓄電素子10の一方の端縁から他方の端縁まで広がっている。詳しくは、第二本体部221は、隣接する蓄電素子10のケース13における幅広の面に対し、少なくとも該面の中心部を挟んで対向する二つの端縁における一方の端縁から他方の端縁まで広がっている。本実施形態の第二本体部221は、X軸方向からみてケース13の幅広の面と同じ大きさ又は幅広の面より大きい(幅広の面が含まれる大きさである)。また、X軸方向から見て終端部材41は、蓄電素子10(詳しくは、ケース13)と同じ大きさ又は僅かに大きい。これにより、第二本体部221は、隣り合う終端部材41と蓄電素子10のケース13の幅広の面との各周縁部全域で挟み込まれている。 The second body portion 221 is a portion that faces the wide surface of the case 13 of the storage element 10 while being partially in contact therewith. The second main body portion 221 extends from one edge to the other edge of the adjacent storage element 10 at least in the direction orthogonal to the X-axis direction. Specifically, the second main body portion 221 extends from one end edge to the other end edge of the wide surface of the case 13 of the adjacent electric storage element 10, at least between the two edges facing each other across the center of the wide surface. spreads to The second body portion 221 of the present embodiment has the same size as the wide surface of the case 13 or is larger than the wide surface (the size includes the wide surface) when viewed in the X-axis direction. In addition, the termination member 41 has the same size as or slightly larger than the power storage element 10 (specifically, the case 13) when viewed from the X-axis direction. As a result, the second main body portion 221 is sandwiched between the adjacent terminal member 41 and the wide surface of the case 13 of the storage element 10 over the entire peripheral edge portions thereof.

この第二本体部221も、中間隣接部材21の第一本体部211と同様に、隣接する蓄電素子10と共同して該蓄電素子10との間に温度調整用の流体が流通可能な流路Rを形成する。本実施形態の第二本体部221は、隣接する蓄電素子10との間に複数の流路Rを形成する。この第二本体部221は、X軸方向から見て隣接する蓄電素子10と対応する大きさの矩形板状であり、本実施形態の第二本体部221は、Y軸方向に長尺な矩形状である。 Like the first body portion 211 of the intermediate adjacent member 21 , the second main body portion 221 also cooperates with the adjacent power storage element 10 to provide a flow path through which a fluid for temperature adjustment can flow between the power storage element 10 and the power storage element 10 . form R. The second body portion 221 of the present embodiment forms a plurality of flow paths R between adjacent storage elements 10 . The second body portion 221 has a rectangular plate shape with a size corresponding to that of the adjacent power storage element 10 when viewed in the X-axis direction. Shape.

具体的に、第二本体部221は、積層体LにおけるX軸方向の一方側の端部又は他方側の端部においてX軸方向と直交する方向に広がり、且つ隣り合う蓄電素子10(ケース13の幅広の面)又は終端部材41と対向する二つの対向面2211と、蓄電素子10側の対向面2211から突出する複数の凸条2212と、を有する。複数の凸条2212のそれぞれは、Y軸方向に延び、Z軸方向に間隔をあけて配置されている。 Specifically, the second body portion 221 extends in a direction orthogonal to the X-axis direction at one end or the other end of the laminate L in the X-axis direction, and is adjacent to the storage element 10 (case 13). 2211 facing the terminating member 41 and a plurality of ridges 2212 protruding from the facing surface 2211 on the storage element 10 side. Each of the plurality of ridges 2212 extends in the Y-axis direction and is spaced apart in the Z-axis direction.

第二規制部225は、矩形状の第二本体部221の少なくとも角部からX軸方向に延び、第二本体部221と隣接する蓄電素子10(詳しくはケース13)とY-Z面方向の外側から当接することによって該蓄電素子10の第二本体部221に対するY-Z面方向への相対移動を規制する。本実施形態の第二規制部225は、第二本体部221からX軸方向の一方側(蓄電素子10側)に向けて延びている。 The second restricting portion 225 extends in the X-axis direction from at least the corners of the rectangular second body portion 221, and extends in the YZ plane direction from the storage element 10 (specifically, the case 13) adjacent to the second body portion 221. The contact from the outside restricts the relative movement of the storage element 10 with respect to the second body portion 221 in the YZ plane direction. The second restricting portion 225 of the present embodiment extends from the second main body portion 221 toward one side in the X-axis direction (the power storage element 10 side).

以上のように構成される複数の隣接部材2(中間隣接部材21)は、曲げ強度の異なる隣接部材2を含む。具体的には、図3に示すように、積層体LにおいてX軸方向の中央側の中間隣接部材21ほど曲げ強度が大きい。この強度分布のグラフでは、積層体Lにおける蓄電素子10の並び方向の端から中央に向かうにつれて曲げ強度が直線的に変化せずに、曲線的に変化している。この複数の中間隣接部材21の曲げ強度の違いは、例えば、隣接部材2の厚さ(X軸方向の寸法)の違いや、材質の違い、構造の違い(例えば、矩形波型の断面における矩形波のピッチの違い)、これらの組み合わせ等によって生じている。ここで、本実施形態における曲げ強度とは、図6に示すように、隣接部材2のY方向の両端部を支点9によって支持した状態で、YZ面の中央部(Y軸方向の中央部で且つZ軸方向の中央部)を押したときに、隣接部材2が折れ曲がったときの力Fを測定したものである。尚、各支点9は、Z軸方向に線状に延びる頂部によって隣接部材2を支持する。 The plurality of adjacent members 2 (intermediate adjacent members 21) configured as described above include adjacent members 2 having different bending strengths. Specifically, as shown in FIG. 3, the intermediate adjacent member 21 closer to the center in the X-axis direction in the laminate L has a higher bending strength. In this strength distribution graph, the bending strength does not change linearly, but changes curvilinearly toward the center from the ends in the direction in which the electric storage elements 10 are arranged in the laminate L. As shown in FIG. The difference in bending strength between the plurality of intermediate adjacent members 21 is, for example, the difference in the thickness (dimension in the X-axis direction) of the adjacent member 2, the difference in material, the difference in structure (for example, a rectangular shape in a rectangular wave cross section). difference in wave pitch), a combination of these, and so on. Here, as shown in FIG. 6, the flexural strength in this embodiment means that both ends of the adjacent member 2 in the Y direction are supported by fulcrums 9, and the central portion of the YZ plane (the central portion in the Y axis direction) Also, when the central portion in the Z-axis direction) is pushed, the force F when the adjacent member 2 is bent is measured. In addition, each fulcrum 9 supports the adjacent member 2 by a top linearly extending in the Z-axis direction.

詳しくは、複数の中間隣接部材21において、積層体LにおけるX軸方向の中央部に配置される中間隣接部材21が最も曲げ強度が大きく、X軸方向の端(積層体LのX軸方向の端部に最も近い位置)に配置される中間隣接部材21が最も曲げ強度が小さい。尚、中央部に配置される中間隣接部材21とは、中間隣接部材21の数が奇数の場合は、X軸方向の中央にある一つの中間隣接部材21であり、中間隣接部材21の数が偶数の場合は、X軸方向の中央に最も近い二つの中間隣接部材21である。 Specifically, among the plurality of intermediate adjacent members 21, the intermediate adjacent member 21 arranged in the central portion of the laminate L in the X-axis direction has the highest bending strength, and the end in the X-axis direction (the X-axis direction of the laminate L) The bending strength of the intermediate adjacent member 21 arranged at the position closest to the end portion is the lowest. Note that the intermediate adjacent member 21 arranged in the central portion is one intermediate adjacent member 21 located in the center in the X-axis direction when the number of intermediate adjacent members 21 is an odd number, and the number of intermediate adjacent members 21 is For an even number, it is the two intermediate adjacent members 21 closest to the center in the X-axis direction.

また、積層体Lにおいて隣接部材2の曲げ強度のX軸方向(蓄電素子10の積層方向)の強度分布が図3に示す状態の場合、積層体Lにおける所定の隣接部材2である第一隣接部材(例えば、図4のNo.7の隣接部材)2Aの曲げ強度は、該第一隣接部材2AよりX軸方向における積層体Lの端部に近い位置に配置される第二隣接部材(例えば、図4のNo.3の隣接部材)2Bの曲げ強度より大きい。また、積層体Lにおいて隣り合う二つの隣接部材2のうちのX軸方向における積層体Lの中央に近い隣接部材(例えば、図4のNo.7の隣接部材)2Aの曲げ強度は、該隣接部材2Aより該積層体Lの端部に近い隣接部材(例えば、図4のNo.6の隣接部材)2Cの曲げ強度より大きい。 In addition, when the strength distribution of the bending strength of the adjacent member 2 in the laminate L in the X-axis direction (the stacking direction of the power storage element 10) is in the state shown in FIG. The bending strength of the member (for example, No. 7 adjacent member in FIG. 4) 2A is greater than that of the second adjacent member (for example, , adjacent member of No. 3 in Fig. 4) greater than the bending strength of 2B. Further, among the two adjacent members 2 adjacent to each other in the laminate L, the bending strength of the adjacent member (for example, No. 7 adjacent member in FIG. 4) 2A near the center of the laminate L in the X-axis direction is The flexural strength of the adjacent member 2C closer to the end of the laminate L than the member 2A (for example, adjacent member No. 6 in FIG. 4) is greater than that of the member 2A.

保持部材4は、積層体Lの周囲を囲むことで該積層体LをX軸方向に緊締した状態で保持する少なくとも一つの保持部(保持領域)を有する。本実施形態の保持部材4は、一つの保持部のみによって構成されている。この保持部は、積層体LのX軸方向の伸びを規制した状態で該積層体Lを保持する部位である。本実施形態の蓄電装置1では、一つの保持部が一つの積層体Lを保持する、換言すると、一つの保持部によって保持される複数の蓄電素子10と複数の隣接部材2が一つの積層体Lを構成する。 The holding member 4 has at least one holding portion (holding region) that surrounds the laminate L and holds the laminate L in a tightened state in the X-axis direction. The holding member 4 of this embodiment is composed of only one holding portion. This holding portion is a portion that holds the laminate L in a state where the laminate L is restricted from being stretched in the X-axis direction. In the power storage device 1 of the present embodiment, one holding portion holds one stacked body L, in other words, a plurality of storage elements 10 and a plurality of adjacent members 2 held by one holding portion form one stacked body. Construct L.

保持部材4は、金属等の導電性を有する部材によって構成される。具体的に、保持部材4は、X軸方向において積層体L(X軸方向に並ぶ複数の蓄電素子10)の両側に配置される一対の終端部材41と、一対の終端部材41を接続する一対の接続部材42と、終端部材41と接続部材42と連結する複数の連結部材43と、を有する。 The holding member 4 is made of a conductive member such as metal. Specifically, the holding member 4 includes a pair of terminal members 41 arranged on both sides of the laminate L (the plurality of power storage elements 10 arranged in the X-axis direction) in the X-axis direction, and a pair of terminal members 41 connecting the pair of terminal members 41 . and a plurality of connecting members 43 connecting the terminal member 41 and the connecting member 42 .

一対の終端部材41は、X軸方向における積層体Lの両側に配置されている。具体的に、一対の終端部材41のそれぞれは、積層体LにおいてX軸方向の端(最も外側)に配置された蓄電素子10との間に端部隣接部材22を挟み込むように配置される。これら一対の終端部材41のそれぞれは、X軸方向から見て蓄電素子10と対応する大きさの矩形板状であり、各終端部材41の剛性は、各隣接部材2より高い。具体的に、各終端部材41は、Y軸方向に長尺な矩形状であり、Y軸方向の両端部にZ軸方向に間隔をあけて配置される複数の貫通孔411を有する。 A pair of terminating members 41 are arranged on both sides of the laminate L in the X-axis direction. Specifically, each of the pair of terminating members 41 is arranged so as to sandwich the end adjacent member 22 between the energy storage element 10 arranged at the end (outermost) in the X-axis direction in the laminate L. Each of the pair of termination members 41 has a rectangular plate shape with a size corresponding to that of the storage element 10 when viewed from the X-axis direction, and the rigidity of each termination member 41 is higher than that of each adjacent member 2 . Specifically, each end member 41 has a rectangular shape elongated in the Y-axis direction, and has a plurality of through holes 411 arranged at intervals in the Z-axis direction at both ends in the Y-axis direction.

一対の接続部材42のそれぞれは、Y軸方向における積層体Lの両側に配置され、積層体Lに沿ってX軸方向に延びている。各接続部材42は、X軸方向に延び且つZ軸方向に間隔をあけて配置される一対の梁部421と、一対の梁部421の端部同士を連結する一対の端部連結部422と、X軸方向における途中位置において一対の梁部421同士を連結する中間連結部425と、を有する。本実施形態の接続部材42は、複数の中間連結部425を有する。 Each of the pair of connection members 42 is arranged on both sides of the laminate L in the Y-axis direction and extends along the laminate L in the X-axis direction. Each connecting member 42 includes a pair of beams 421 extending in the X-axis direction and spaced apart in the Z-axis direction, and a pair of end connecting portions 422 connecting the ends of the pair of beams 421 to each other. , and an intermediate connecting portion 425 that connects the pair of beam portions 421 at an intermediate position in the X-axis direction. The connecting member 42 of this embodiment has a plurality of intermediate connecting portions 425 .

各端部連結部422は、終端部材41のX軸方向の外側の面に沿って広がる固定片423を有し、固定片423は、終端部材41の貫通孔411とX軸方向から見て重なる位置に貫通孔424を有する。 Each end connecting portion 422 has a fixing piece 423 extending along the outer surface of the termination member 41 in the X-axis direction, and the fixing piece 423 overlaps the through hole 411 of the termination member 41 when viewed from the X-axis direction. It has a through hole 424 at the position.

複数の連結部材43のそれぞれは、終端部材41の貫通孔411及び接続部材42(固定片423)の貫通孔424を挿通した状態で終端部材41と接続部材42とを連結する。本実施形態の各連結部材43は、ボルト431とナット432によって構成されている。 Each of the plurality of connecting members 43 connects the terminating member 41 and the connecting member 42 while being inserted through the through hole 411 of the terminating member 41 and the through hole 424 of the connecting member 42 (fixed piece 423). Each connecting member 43 of this embodiment is composed of a bolt 431 and a nut 432 .

インシュレータ6は、絶縁性を有する。このインシュレータ6は、接続部材42と、積層体L(複数の蓄電素子10)との間に配置される。具体的に、蓄電装置1は、一対のインシュレータ6を備え、各インシュレータ6は、接続部材42における少なくとも積層体Lと対向する領域をそれぞれ覆う。これにより、各インシュレータ6は、接続部材42と、積層体Lに含まれる複数の蓄電素子10との間を絶縁する。 The insulator 6 has insulating properties. The insulator 6 is arranged between the connection member 42 and the laminate L (the plurality of power storage elements 10). Specifically, the power storage device 1 includes a pair of insulators 6 , and each insulator 6 covers at least a region of the connecting member 42 facing the laminate L, respectively. Thereby, each insulator 6 insulates between the connection member 42 and the plurality of power storage elements 10 included in the laminate L. As shown in FIG.

複数のバスバ8のそれぞれは、金属等の導電性を有する板状の部材である。各バスバ8は、蓄電素子10の外部端子14同士を導通させる。本実施形態の複数のバスバ8は、蓄電装置1に含まれる複数の蓄電素子10を直列に接続する(導通させる)。 Each of the plurality of busbars 8 is a plate-like member having conductivity such as metal. Each bus bar 8 electrically connects the external terminals 14 of the storage elements 10 to each other. The plurality of busbars 8 of the present embodiment connect (make conductive) the plurality of power storage elements 10 included in the power storage device 1 in series.

以上の蓄電装置1によれば、積層体Lが保持部材4に保持されることでX軸方向への該積層体Lの伸びが規制された状態であっても、積層体LにおけるX軸方向の中央部に配置される中間隣接部材21の曲げ強度が端部に最も近い中間隣接部材21の曲げ強度より大きい。このため、積層体Lの中央部に配置された中間隣接部材21より該積層体Lの端部に近い位置に配置された各蓄電素子10の膨張が前記中央部に配置された中間隣接部材21より積層体Lの中央(X軸方向の中央)に近い位置に配置された蓄電素子10に伝わり難くなる。詳しくは、以下の通りである。 According to the power storage device 1 described above, even when the stack L is held by the holding member 4 and the stack L is restricted from extending in the X-axis direction, The flexural strength of the intermediate adjacent member 21 arranged in the central portion of is greater than the flexural strength of the intermediate adjacent member 21 closest to the ends. For this reason, the expansion of each storage element 10 arranged at a position closer to the end of the laminate L than the intermediate adjacent member 21 arranged in the central portion of the laminate L causes the expansion of the intermediate adjacent member 21 arranged in the central portion. It becomes difficult to transmit to the storage element 10 arranged at a position closer to the center of the laminate L (the center in the X-axis direction). Details are as follows.

経年劣化等によって各蓄電素子10が膨らんだときに、保持部材4(保持部)によってX軸方向の積層体Lの寸法が変わらない(即ち、金属製の接続部材42によって接続されていることで一対の終端部材41同士の間隔が変わらない)ため、各蓄電素子10の膨らみが累積されて積層体LのX軸方向の中央に近い蓄電素子10ほどX軸方向の両側の蓄電素子から加わる力(挟み込まれる力)が大きくなりやすい。しかし、本実施形態の蓄電装置1では、積層体LのX軸方向の中央部の中間隣接部材21の曲げ強度が、積層体LのX軸方向の端(外側端)に最も近い中間隣接部材21の曲げ強度より大きいため、該中央部の中間隣接部材21より積層体LのX軸方向の端に近い各蓄電素子10の膨らみが該中央部の中間隣接部材21より積層体LのX軸方向の中央に近い位置に配置された蓄電素子10に伝わり難くなる。 When each power storage element 10 swells due to aged deterioration or the like, the dimension of the stacked body L in the X-axis direction is not changed by the holding member 4 (holding portion) (that is, by being connected by the metal connecting member 42, Since the gap between the pair of end members 41 does not change), the bulging of each storage element 10 is accumulated, and the storage element 10 closer to the center in the X-axis direction of the laminate L is subjected to a force applied from the storage elements on both sides in the X-axis direction. (clamping force) tends to increase. However, in the power storage device 1 of the present embodiment, the bending strength of the intermediate adjacent member 21 in the central portion of the laminate L in the X-axis direction is the same as that of the intermediate adjacent member closest to the end (outer end) of the laminate L in the X-axis direction. 21, the bulge of each storage element 10 closer to the end in the X-axis direction of the laminate L than the intermediate adjacent member 21 in the central portion is closer to the X-axis of the laminate L than the intermediate adjacent member 21 in the central portion. It becomes difficult to be transmitted to the electric storage element 10 arranged at a position near the center of the direction.

これにより、前記中央部の蓄電素子10において、前記劣化による各蓄電素子10の膨張によって加えられる力に起因する性能劣化が抑えられ、その結果、各蓄電素子10の性能劣化のバラつきが抑えられる。 As a result, in the central power storage element 10, the performance deterioration due to the force applied by the expansion of each power storage element 10 due to the deterioration is suppressed.

本実施形態の蓄電装置1では、積層体Lにおいて隣り合う二つの隣接部材2のうちのX軸方向における積層体Lの中央に近い中間隣接部材21の曲げ強度が、該中間隣接部材21より該積層体Lの端部に近い中間隣接部材21の曲げ強度より大きい。このため、積層体LのX軸方向の中央に近い中間隣接部材21より該積層体Lの端部に近い位置に配置される各蓄電素子10の膨張が当該中央に近い中間隣接部材21より積層体の中央に近い位置に配置される蓄電素子10に伝わり難くなる。これにより、各蓄電素子10の性能劣化のバラつきが抑えられる。 In the power storage device 1 of the present embodiment, of the two adjacent members 2 in the laminate L, the bending strength of the intermediate adjacent member 21 closer to the center of the laminate L in the X-axis direction is greater than that of the intermediate adjacent member 21. It is greater than the bending strength of the intermediate adjacent member 21 near the end of the laminate L. For this reason, the expansion of each storage element 10 arranged at a position closer to the end of the laminate L than the intermediate adjacent member 21 closer to the center in the X-axis direction of the laminate L causes the stack to expand more than the intermediate adjacent member 21 closer to the center. It becomes difficult to transmit to the electric storage element 10 arranged at a position close to the center of the body. As a result, variation in performance deterioration of each storage element 10 can be suppressed.

また、本実施形態の蓄電装置1では、積層体LにおいてX軸方向の中央に近い中間隣接部材21ほど曲げ強度が大きい。このため、各蓄電素子10の膨張がX軸方向における積層体Lの中央に近い蓄電素子10へ伝わり難くなり、これにより、各蓄電素子10の性能劣化のバラつきが好適に抑えられる。 In addition, in the power storage device 1 of the present embodiment, the bending strength of the intermediate adjacent member 21 closer to the center in the X-axis direction in the laminate L is greater. Therefore, the expansion of each storage element 10 is less likely to be transmitted to the storage element 10 closer to the center of the laminate L in the X-axis direction, thereby suitably suppressing variations in performance deterioration of each storage element 10 .

しかも、全ての中間隣接部材21の曲げ強度を大きくすると、各中間隣接部材21の厚さが大きくなって蓄電装置1(積層体L)のX軸方向の寸法が大きくなったり、絶縁被覆した金属等の樹脂に比べて高価な材料で中間隣接部材21を形成すると、蓄電装置1の製造コストが大きくなったりするが、積層体Lにおいて蓄電素子10に加わる力の大きなX軸方向の中央に近い中間隣接部材21の強度を大きくし、積層体LのX軸方向の端部に近い中間隣接部材21の強度を小さくすることで、前記寸法の増大や製造コストの増大を抑えつつも各蓄電素子10の性能劣化のバラつきを好適に抑えることができる。 Moreover, if the bending strength of all intermediate adjacent members 21 is increased, the thickness of each intermediate adjacent member 21 is increased, and the dimension of power storage device 1 (laminated body L) in the X-axis direction is increased. If the intermediate adjacent member 21 is made of a material that is more expensive than resin such as resin, the manufacturing cost of the power storage device 1 increases. By increasing the strength of the intermediate adjacent member 21 and decreasing the strength of the intermediate adjacent member 21 near the end of the laminate L in the X-axis direction, each power storage element can be manufactured while suppressing the increase in size and manufacturing cost. 10, the variation in performance deterioration can be suitably suppressed.

尚、本発明の蓄電装置は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。 It should be noted that the power storage device of the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention. For example, the configuration of one embodiment can be added to the configuration of another embodiment, and part of the configuration of one embodiment can be replaced with the configuration of another embodiment. Furthermore, some of the configurations of certain embodiments can be deleted.

上記実施形態の蓄電装置1では、積層体LにおいてX軸方向の中央に近い中間隣接部材21ほど曲げ強度が大きいが、この構成に限定されない。 In the power storage device 1 of the above embodiment, the intermediate adjacent member 21 closer to the center in the X-axis direction in the laminate L has a higher bending strength, but the configuration is not limited to this.

例えば、積層体LにおけるX軸方向の中央部の所定の数の隣接部材(例えば、図4のNo.5~No.10の隣接部材)2の曲げ強度が、残りの(端部側の)隣接部材(例えば、図4のNo.1~No.4、No.11~No.14番の隣接部材)2の曲げ強度より大きい構成でもよい。この場合、前記所定の数の隣接部材2の各曲げ強度は、同じでもよく、中央に近い隣接部材2ほど大きくてもよい For example, the bending strength of a predetermined number of adjacent members (for example, No. 5 to No. 10 adjacent members in FIG. 4) 2 in the central portion of the laminate L in the X-axis direction is The bending strength of the adjacent members 2 (for example, adjacent members No. 1 to No. 4 and No. 11 to No. 14 in FIG. 4) may be greater than the bending strength. In this case, the flexural strength of each of the predetermined number of adjacent members 2 may be the same, or the adjacent member 2 closer to the center may have a greater bending strength.

また、複数の隣接部材2のうちの一部の隣接部材(例えば、図4のNo.3~No.7の隣接部材)2において、中央に近い隣接部材2ほど曲げ強度が大きい構成でもよい。かかる構成によっても、中央に近い蓄電素子(例えば、図4のNo.7の隣接部材2と中央側で隣接する蓄電素子)10において少なくともX軸方向の一方側から加わる力(経年劣化等による蓄電素子10の膨らみに起因する力)が抑えられるため、全てが曲げ強度の小さな隣接部材2の場合に比べ、各蓄電素子10の性能劣化のバラつきが抑えられる。 In addition, among the plurality of adjacent members 2, some of the adjacent members 2 (for example, No. 3 to No. 7 adjacent members in FIG. 4) may have a configuration in which the bending strength of the adjacent member 2 closer to the center is greater. Even with such a configuration, the power storage element 10 near the center (for example, the power storage element adjacent to the adjacent member 2 of No. 7 in FIG. Since the force caused by the bulging of the elements 10) is suppressed, the variation in performance deterioration of the storage elements 10 is suppressed compared to the case where all of the adjacent members 2 have a small bending strength.

また、上記実施形態の蓄電装置1における隣接部材2の強度分布での蓄電素子10の並び方向の各位置での曲げ強度は、一つの隣接部材2の曲げ強度であるが、この構成に限定されない。例えば、移動平均のように、図4におけるNo.1~No.3の隣接部材2の曲げ強度の平均値、No.2~No.4の隣接部材2の曲げ強度の平均値、No.3~No.6番の隣接部材2の曲げ強度の平均値、No.4~No.7の隣接部材2の曲げ強度の平均値、No.5~No.8の隣接部材2の曲げ強度の平均値、No.6~No.9の隣接部材2の曲げ強度の平均値、No.7~No.10の隣接部材2の曲げ強度の平均値、・・・・のように、蓄電素子10の並び方向に連続して並ぶ複数の隣接部材2の平均値が図3に示される分布となるように構成されていてもよい。 In addition, the bending strength at each position in the arrangement direction of the storage elements 10 in the strength distribution of the adjacent members 2 in the electricity storage device 1 of the above-described embodiment is the bending strength of one adjacent member 2, but is not limited to this configuration. . For example, like the moving average, No. in FIG. 1 to No. 3, the average value of the bending strength of the adjacent member 2, No. 2 to No. 4, the average value of the bending strength of the adjacent member 2, No. 3 to No. Average value of bending strength of adjacent member 2 of No. 6; 4 to No. 7, the average value of the bending strength of the adjacent member 2, No. 7; 5 to No. 8, the average value of the bending strength of the adjacent member 2, No. 6 to No. 9, the average value of the bending strength of the adjacent member 2, No. 7 to No. The average value of the flexural strengths of the ten adjacent members 2, . may be configured.

また、上記実施形態の蓄電装置1において、保持部材4は、一つの保持部(保持領域)を有している、即ち、一つの積層体Lを保持しているが、この構成に限定されない。例えば、保持部材4は、X軸方向の途中位置において蓄電素子10間に配置され且つ一対の接続部材42に固定される固定部材(センタープレート等)、即ち、蓄電素子10の膨張等によって終端部材41とのX軸方向の間隔が変わらない部材を少なくとも一つ有することで、二つ以上の保持部を有していてもよい。 In addition, in the power storage device 1 of the above-described embodiment, the holding member 4 has one holding portion (holding region), that is, holds one laminate L, but is not limited to this configuration. For example, the holding member 4 is a fixing member (such as a center plate) that is disposed between the storage elements 10 at an intermediate position in the X-axis direction and is fixed to the pair of connection members 42 , that is, a terminal member that is disposed when the storage elements 10 expand or the like. Two or more holding portions may be provided by providing at least one member that does not change the distance from the member 41 in the X-axis direction.

より具体的には、保持部は、接続部材42に対してX軸方向の位置が固定された部材間(上記の例では終端部材41と固定部材との間であり、上記実施形態の例では、一対の終端部材41間)の領域のことであり、領域毎に積層体Lが配置される。即ち、上記実施形態の蓄電装置1において、例えば、一つの固定部材が配置される場合、該固定部材によって一対の終端部材41間の領域が仕切られることで二つの保持部(保持領域)が形成され、二つの固定部材が配置される場合、これら二つの固定部材によって一対の終端部材41間の領域が二か所で仕切られることで三つ位の保持部(保持領域)が形成される。 More specifically, the holding portion is located between members whose positions in the X-axis direction are fixed with respect to the connection member 42 (in the above example, between the terminal member 41 and the fixed member, and in the example of the above embodiment, , between a pair of terminal members 41), and the laminate L is arranged in each region. That is, in the power storage device 1 of the above-described embodiment, for example, when one fixing member is arranged, the fixing member partitions the region between the pair of end members 41 to form two holding portions (holding regions). When two fixing members are arranged, the area between the pair of end members 41 is partitioned at two points by these two fixing members, thereby forming three holding portions (holding areas).

この場合、保持部材4は、保持部の数と同じ数の積層体Lを保持し、これら複数の積層体Lのそれぞれにおいて、X軸方向の中央部に配置される隣接部材2の曲げ強度が、該積層体Lの端部に最も近い隣接部材2の曲げ強度より大きくなっている。このとき、複数の積層体Lのそれぞれにおいて、X軸方向の中央側の隣接部材2ほど曲げ強度が大きくなっている構成(強度分布)、より詳しくは、各積層体Lにおいて、X軸方向の端部に最も近い隣接部材2からX軸方向の中央又は中央に最も近い隣接部材2に向かうに従って各隣接部材2の曲げ強度が順に大きくなっている構成(強度分布)が好ましい。 In this case, the holding member 4 holds the same number of laminates L as the number of holding portions, and in each of the plurality of laminates L, the bending strength of the adjacent member 2 arranged in the central portion in the X-axis direction is , is greater than the bending strength of the adjacent member 2 closest to the edge of the laminate L. At this time, in each of the plurality of laminates L, the configuration (strength distribution) in which the bending strength increases toward the adjacent member 2 closer to the center in the X-axis direction. A configuration (strength distribution) in which the bending strength of each adjacent member 2 increases in order from the adjacent member 2 closest to the end toward the center or the adjacent member 2 closest to the center in the X-axis direction is preferable.

例えば具体的には、保持部材4が一つの固定部材を有することで、保持部材4に二つの保持部(一方の終端部材41と固定部材と一対の接続部材42によって構成される保持部、及び、他方の終端部材41と固定部材と一対の接続部材42によって構成される保持部)が構成されている、即ち、保持部材4がX軸方向に並ぶ二つの積層体Lを保持する場合、図5に示すように、各積層体Lでの隣接部材2の曲げ強度の分布が、それぞれX軸方向の中央側の隣接部材2ほど大きくなっている構成が好ましい。 For example, specifically, the holding member 4 has one fixing member, so that the holding member 4 has two holding portions (a holding portion configured by one end member 41, a fixing member, and a pair of connection members 42, and , the other end member 41, a fixing member, and a pair of connection members 42), that is, when the holding member 4 holds two laminates L aligned in the X-axis direction, 5, it is preferable that the distribution of the bending strength of the adjacent members 2 in each laminate L increases toward the adjacent members 2 closer to the center in the X-axis direction.

また、上記実施形態においては、蓄電素子が充放電可能な非水電解質二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、蓄電素子の種類や大きさ(容量)は任意である。また、上記実施形態において、蓄電素子の一例として、リチウムイオン二次電池について説明したが、これに限定されるものではない。例えば、本発明は、種々の二次電池、その他、一次電池や、電気二重層キャパシタ等のキャパシタの蓄電素子にも適用可能である。 In addition, in the above embodiment, the storage element is used as a chargeable/dischargeable non-aqueous electrolyte secondary battery (for example, a lithium-ion secondary battery), but the type and size (capacity) of the storage element are arbitrary. is. Also, in the above embodiments, a lithium ion secondary battery has been described as an example of a storage element, but the storage element is not limited to this. For example, the present invention can be applied to various secondary batteries, primary batteries, and electric storage elements of capacitors such as electric double layer capacitors.

1…蓄電装置、2、2C…隣接部材、2A…第一隣接部材(隣接部材)、2B…第二隣接部材(隣接部材)、21…中間隣接部材(隣接部材)、211…第一本体部、215…第一規制部、22…端部隣接部材(隣接部材)、221…第二本体部、2211…対向面、2212…凸条、225…第二規制部、4…保持部材、41…終端部材、411…貫通孔、42…接続部材、421…梁部、422…端部連結部、423…固定片、424…貫通孔、425…中間連結部、43…連結部材、431…ボルト、432…ナット、6…インシュレータ、8…バスバ、9…支点、10…蓄電素子、13…ケース、131…ケース本体、132…蓋板、14…外部端子、L…積層体、R…流路 Reference Signs List 1 power storage device 2, 2C adjacent member 2A first adjacent member (adjacent member) 2B second adjacent member (adjacent member) 21 intermediate adjacent member (adjacent member) 211 first main body , 215... First restricting part 22... End adjacent member (adjacent member) 221... Second body part 2211... Opposing surface 2212... Protruding strip 225... Second restricting part 4... Holding member 41... Terminal member 411 Through hole 42 Connecting member 421 Beam 422 End connecting portion 423 Fixed piece 424 Through hole 425 Intermediate connecting portion 43 Connecting member 431 Bolt 432... Nut, 6... Insulator, 8... Bus bar, 9... Fulcrum, 10... Power storage element, 13... Case, 131... Case main body, 132... Lid plate, 14... External terminal, L... Laminated body, R... Flow path

Claims (5)

所定方向に並ぶ複数の蓄電素子と各蓄電素子間に配置される複数の隣接部材とを含む積層体と、
前記積層体を保持する保持部と、を備え、
前記複数の隣接部材のそれぞれは、前記蓄電素子間において、少なくとも前記所定方向と直交する方向における前記蓄電素子の一方の端縁から他方の端縁まで広がり、
前記所定方向において、前記積層体の中央部に配置される前記隣接部材の曲げ強度は、該積層体の端部に最も近い前記隣接部材の曲げ強度より大きい、蓄電装置。
a laminate including a plurality of storage elements arranged in a predetermined direction and a plurality of adjacent members arranged between the storage elements;
and a holding part that holds the laminate,
each of the plurality of adjacent members extends from at least one edge to the other edge of the energy storage element in a direction orthogonal to the predetermined direction, between the energy storage elements;
The power storage device, wherein, in the predetermined direction, the flexural strength of the adjacent member arranged in the central portion of the stack is greater than the flexural strength of the adjacent member closest to an end of the stack.
所定方向に並ぶ複数の蓄電素子と各蓄電素子間に配置される複数の隣接部材とを含む積層体と、
前記積層体を保持する保持部と、を備え、
前記複数の隣接部材のそれぞれは、前記蓄電素子間において、少なくとも前記所定方向と直交する方向における前記蓄電素子の一方の端縁から他方の端縁まで広がり、
前記積層体における所定の隣接部材である第一隣接部材の曲げ強度は、該積層体における該第一隣接部材より前記所定方向の端部に近い位置に配置される第二隣接部材の曲げ強度より大きい、蓄電装置。
a laminate including a plurality of storage elements arranged in a predetermined direction and a plurality of adjacent members arranged between the storage elements;
and a holding part that holds the laminate,
each of the plurality of adjacent members extends from at least one edge to the other edge of the energy storage element in a direction orthogonal to the predetermined direction, between the energy storage elements;
The bending strength of the first adjacent member, which is a predetermined adjacent member in the laminate, is greater than the bending strength of the second adjacent member arranged at a position closer to the end in the predetermined direction than the first adjacent member in the laminate. Large power storage device.
前記積層体において隣り合う二つの隣接部材のうちの前記所定方向における該積層体の中央に近い隣接部材の曲げ強度は、該隣接部材より該積層体の端部に近い隣接部材の曲げ強度より大きい、請求項1又は2に記載の蓄電装置。 Of the two adjacent members in the laminate, the bending strength of the adjacent member closer to the center of the laminate in the predetermined direction is greater than the bending strength of the adjacent member closer to the edge of the laminate than the adjacent member. , The power storage device according to claim 1 or 2. 前記積層体において前記所定方向の中央に近い隣接部材ほど曲げ強度が大きい、請求項1~3のいずれか1項に記載の蓄電装置。 4. The power storage device according to claim 1, wherein an adjacent member closer to the center in said predetermined direction in said laminate has greater bending strength. 所定方向に並ぶ複数の蓄電素子と各蓄電素子間に配置される複数の隣接部材とを含む積層体と、
前記積層体を保持する保持部と、を備え、
前記複数の隣接部材のそれぞれは、前記隣り合う蓄電素子間において、少なくとも前記所定方向と直交する方向における前記蓄電素子の一方の端縁から他方の端縁まで広がり、
前記積層体において、前記所定方向の端部に最も近い隣接部材から前記所定方向の中央又は中央に最も近い隣接部材に向かうに従って各隣接部材の曲げ強度が順に大きくなっている、蓄電装置。
a laminate including a plurality of storage elements arranged in a predetermined direction and a plurality of adjacent members arranged between the storage elements;
and a holding part that holds the laminate,
each of the plurality of adjacent members extends between the adjacent energy storage elements at least from one edge to the other edge of the energy storage element in a direction orthogonal to the predetermined direction;
A power storage device, wherein in the laminate, the bending strength of each adjacent member increases in order from the adjacent member closest to the end in the predetermined direction toward the center or the adjacent member closest to the center in the predetermined direction.
JP2021089270A 2021-05-27 2021-05-27 power storage device Pending JP2022181999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021089270A JP2022181999A (en) 2021-05-27 2021-05-27 power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021089270A JP2022181999A (en) 2021-05-27 2021-05-27 power storage device

Publications (1)

Publication Number Publication Date
JP2022181999A true JP2022181999A (en) 2022-12-08

Family

ID=84328290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021089270A Pending JP2022181999A (en) 2021-05-27 2021-05-27 power storage device

Country Status (1)

Country Link
JP (1) JP2022181999A (en)

Similar Documents

Publication Publication Date Title
JP7174923B2 (en) power storage device
US8852789B2 (en) Battery module having battery cell holder
US11387502B2 (en) Battery module comprising a heat transfer component and a thermal expansion material between cells
US9203065B2 (en) Battery module
JP6306431B2 (en) Battery module
JP7050849B2 (en) Battery pack
US9786898B2 (en) Secondary battery and secondary battery array
US10483509B2 (en) Energy storage apparatus, moving body, and energy storage system
US11177523B2 (en) Energy storage apparatus
WO2018142809A1 (en) Power storage device
WO2017217313A1 (en) Power storage device
KR20200043402A (en) Lead tab for battery terminal
US20130115494A1 (en) Rechargeable battery
KR20200064114A (en) Battery pack with cell suppression
EP3675203B1 (en) Secondary battery and battery module
JP7134626B2 (en) power storage device
US11088423B2 (en) Secondary battery and battery module
US11545706B2 (en) Battery cell having a plurality of electrodes and battery module using the same
JP2022181999A (en) power storage device
JP7393732B2 (en) Power storage device
WO2023145586A1 (en) Power storage device
JP2019220419A (en) Power storage device
JP7455797B2 (en) battery module
JP2022148373A (en) power storage device
CN113508492B (en) Electrochemical cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240201