JP2022181484A - Aircraft position measurement system, positioning processing device, aircraft position measurement method and program - Google Patents

Aircraft position measurement system, positioning processing device, aircraft position measurement method and program Download PDF

Info

Publication number
JP2022181484A
JP2022181484A JP2021088467A JP2021088467A JP2022181484A JP 2022181484 A JP2022181484 A JP 2022181484A JP 2021088467 A JP2021088467 A JP 2021088467A JP 2021088467 A JP2021088467 A JP 2021088467A JP 2022181484 A JP2022181484 A JP 2022181484A
Authority
JP
Japan
Prior art keywords
signal
signal receiving
time
receiving station
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021088467A
Other languages
Japanese (ja)
Inventor
亮 佐藤
Akira Sato
清之 畑
Kiyoyuki Hata
恭弘 高瀬
Takahiro Takase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2021088467A priority Critical patent/JP2022181484A/en
Publication of JP2022181484A publication Critical patent/JP2022181484A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

To provide an aircraft position measurement system that enhances resistance to deterioration of a system performance caused by a change in external environment.SOLUTION: In an aircraft position measurement system 100, a plural signal reception station 2d is configured to receive a first signal including identification information from an aircraft 1 of a monitor object, a second signal (ADS-B signal) including identification information and position information from a second aircraft 4, a reference signal from a reference station 3 and a positioning signal from a positioning satellite 5. Each of a plurality of reception stations 2a to 2c and 2e to 2i is configured to receive at least one of the first signal, second signal, reference signal and positioning signal. A positioning processing device 8 is configured to calculate an amount of offset between the plural signal reception station 2d and the plurality of reception stations 2a to 2c receiving the second signal, and calculate a time difference as of reception of the first signal at the different reception station on the basis of the amount of offset. The positioning processing device 8 is configured to measure a position of the first aircraft 1 on the basis of the calculated time difference at the reception time of the first signal and a position of the reception station.SELECTED DRAWING: Figure 1

Description

本開示は、航空機位置測定システム、測位処理装置、航空機位置測定方法、およびプログラムに関する。 TECHNICAL FIELD The present disclosure relates to an aircraft positioning system, a positioning processing device, an aircraft positioning method, and a program.

航空機位置の測定において必要となる受信局間の時刻同期を実現する代表的な方法として、基準局から受信した基準信号に基づく基準局同期方式と、1機以上の測位衛星から受信した時刻情報つきの測位信号に基づくGNSS(Global Navigation Satellite System)同期方式とが知られている。時刻同期とは、受信局が有する時計装置が計測する時刻を、同じ時点での時刻の差を決められた上限値以下とすることである。時計装置には、決められた周期でカウンタ値が増加するクロックカウンタも含まれる。 Typical methods for realizing time synchronization between receiving stations, which is necessary for aircraft position measurement, are the reference station synchronization method based on the reference signal received from the reference station, and the positioning signal with time information received from one or more positioning satellites. GNSS (Global Navigation Satellite System) synchronization schemes are known. Time synchronization means that the difference between the times measured by the clock device of the receiving station is equal to or less than a predetermined upper limit value. The clock device also includes a clock counter whose counter value increases at a determined cycle.

たとえば、特許文献1(特開2013-200282号公報)は、GNSS同期方式の1つであるGPS(Global Positioning System)同期方式と基準局同期方式とを併用することにより、受信局の配置の柔軟性と妨害に対する抗堪性を持って航空機の位置を測定するシステムを提案している。同特許文献の図3には受信局の構成例が示されている。 For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2013-200282) discloses that a combination of a GPS (Global Positioning System) synchronization method, which is one of the GNSS synchronization methods, and a reference station synchronization method enables flexible arrangement of receiving stations. and proposes a system for measuring the position of an aircraft with resistance to jamming. FIG. 3 of the same patent document shows a configuration example of a receiving station.

また、特許文献2(国際公開第2017/212636号)は、GPS同期方式によって高い精度で航空機位置を測定するシステムについて提案している。同特許文献の図2には航空機位置測定システムの全体構成例が示されている。 In addition, Patent Document 2 (International Publication No. 2017/212636) proposes a system for measuring an aircraft position with high accuracy using a GPS synchronization method. FIG. 2 of the same patent document shows an example of the overall configuration of the aircraft position measurement system.

特開2013-200282号公報Japanese Unexamined Patent Application Publication No. 2013-200282 国際公開第2017/212636号WO2017/212636

基準局同期方式とGNSS同期方式とは、航空機位置測定システムで用いられる時刻同期方式として代表的なものだが、いずれも外的環境の変化によりシステム性能が劣化しやすい脆弱性がある。 The reference station synchronization method and the GNSS synchronization method are typical time synchronization methods used in aircraft positioning systems, but both have the vulnerability of easily degrading system performance due to changes in the external environment.

基準局方式では、基準局と受信局の間が見通せることが必要である。基準局同期方式における脆弱性の例として、空港場内に建築物が新設されることによる電波の遮蔽の影響が挙げられる。新設された建築物により、基準局からの送信電波が受信局に届かなくなることがあるからである。また、空港環境の変化等によりマルチパス波の混入が一時的に増加する場合には基準信号の到来時間に誤差が生じるために、航空機位置測定システムの時刻同期精度が劣化することがある。 In the reference station system, it is necessary to have a line of sight between the reference station and the receiving station. An example of the vulnerability of the reference station synchronization method is the influence of radio wave shielding due to the construction of a new building in the airport field. This is because a newly constructed building may prevent the transmission radio wave from the reference station from reaching the receiving station. In addition, when the multipath wave mixture temporarily increases due to changes in the airport environment or the like, an error occurs in the arrival time of the reference signal, which may degrade the time synchronization accuracy of the aircraft position measurement system.

GNSS同期方式における脆弱性の例として、携帯LTE(Long Term Evolution)信号等による干渉波混入の影響が挙げられる他、敵対的信号妨害や偽信号によるかく乱の影響が挙げられる。これらの干渉波または妨害波などにより、測位衛星からのGNSS信号(測位信号とも称する)の精度に影響が生じ航空機位置測定システムの時刻同期精度が劣化することがある。 Examples of vulnerabilities in the GNSS synchronization system include the influence of interference waves mixed by mobile LTE (Long Term Evolution) signals, etc., and the influence of disturbance due to hostile signal jamming and false signals. These interfering waves or jamming waves may affect the accuracy of GNSS signals (also called positioning signals) from positioning satellites, degrading the time synchronization accuracy of the aircraft positioning system.

したがって、特許文献1のように基準局同期方式とGNSS同期方式とを組み合わせるだけでは、時刻同期精度を十分に担保できない場合があると考えられる。本開示の目的の1つは、従来と異なる時刻同期方式を提案し、この新しい時刻同期方式を従来の時刻同期方式と組み合わせることにより、外的環境の変化によるシステム性能の劣化への耐性を高めた航空機位置測定システムを提供することである。 Therefore, it is conceivable that sufficient time synchronization accuracy cannot be ensured by simply combining the reference station synchronization method and the GNSS synchronization method as in Patent Document 1. One of the purposes of the present disclosure is to propose a time synchronization method different from the conventional one, and combine this new time synchronization method with the conventional time synchronization method to improve resistance to deterioration of system performance due to changes in the external environment. to provide an aircraft positioning system that

本開示に係る航空機位置測定システムは、監視対象の第1航空機から送信される第1航空機の識別情報を含む第1信号と、第2航空機から送信される第2航空機の識別情報および位置情報を含む第2信号とを受信し、クロックカウンタを有する第2信号受信局と、第1信号と、基準局から送信される基準信号とを受信し、クロックカウンタを有する基準信号受信局と、第1信号と、測位衛星から送信される測位信号とを受信し、測位信号に基づく時刻信号を生成し、クロックカウンタを有する測位信号受信局と、第2信号、基準信号および測位信号の中で少なくとも2種類の信号を受信する1個または複数個の複数信号受信局であって、第2信号、基準信号および測位信号の3種類の信号の各々が何れかの複数信号受信局で受信されるように受信する信号の種類が決められている複数信号受信局と、第2信号受信局、基準信号受信局、測位信号受信局の何れかである第1信号受信局および複数信号受信局の各々と通信可能であり、第1航空機の位置を測定する測位処理装置とを備える。
第1信号、第2信号および基準信号の何れかの信号を受信したか、または時刻信号を生成した第1信号受信局および複数信号受信局の各々は、受信あるいは生成した信号の種類と、第2信号を受信した場合は第2信号に含まれる第2航空機の位置情報と、信号を受信あるいは生成した時点でのクロックカウンタのカウンタ値と、第1信号受信局および複数信号受信局の各々を識別する情報とを含む時刻カウンタ情報を測位処理装置に送信する。
測位処理装置は、第1信号受信局および複数信号受信局の各々から送信される時刻カウンタ情報を受信する受信部と、基準局、第1信号受信局および複数信号受信局の各々の位置を記憶する位置情報記憶部と、同じ第2信号を受信した第2信号受信局および複数信号受信局の各々が送信する時刻カウンタ情報に含まれるカウンタ値および第2航空機の位置情報と、第2信号受信局および複数信号受信局の位置とに基づき、第2信号受信局および複数信号受信局の各々が有するクロックカウンタの間の、第2航空機が第2信号を送信した時点でのカウンタ値の差を表すオフセット量を計算する第2信号受信局間オフセット量計算部と、同じ基準信号を受信した基準信号受信局および複数信号受信局の各々が送信する時刻カウンタ情報に含まれるカウンタ値と、基準局、基準信号受信局および複数信号受信局の位置とに基づき、基準信号受信局および複数信号受信局の各々が有するクロックカウンタの間の、基準局が基準信号を送信した時点でのオフセット量を計算する基準信号受信局間オフセット量計算部と、同じ時刻信号を生成した測位信号受信局および複数信号受信局の各々が送信する時刻カウンタ情報に含まれるカウンタ値に基づき、測位信号受信局および複数信号受信局の各々が有するクロックカウンタの間の、時刻信号を生成した時点でのオフセット量を計算する測位信号受信局間オフセット量計算部と、同じ第1信号を受信した異なる2個の第1信号受信局の組ごとに、第1信号を受信した際に第1信号受信局が送信した時刻カウンタ情報に含まれるカウンタ値と、2個の第1信号受信局が有するクロックカウンタの間のオフセット量とに基づき、2個の前記第1信号受信局が同じ前記第1信号を受信した時刻の差である時間差を、決められた組数に対して計算する時間差計算部と、時間差と第1信号受信局の位置とに基づき第1航空機の位置を計算する航空機位置測定部とを有する。
An aircraft positioning system according to the present disclosure combines a first signal including identification information of a first aircraft transmitted from a first aircraft to be monitored and identification information and location information of a second aircraft transmitted from a second aircraft. a second signal receiving station having a clock counter; a reference signal receiving station receiving the first signal and a reference signal transmitted from the reference station; having a clock counter; a positioning signal receiving station that receives a positioning signal transmitted from a positioning satellite, generates a time signal based on the positioning signal, and has a clock counter; and at least two of the second signal, the reference signal, and the positioning signal. wherein each of the three types of signals, the second signal, the reference signal and the positioning signal, is received by any one of the multiple signal receiving stations It is possible to communicate with each of the first signal receiving station and the multiple signal receiving stations that are either the second signal receiving station, the reference signal receiving station, or the positioning signal receiving station. and a positioning processor for determining the position of the first aircraft.
Each of the first signal receiving station and the multiple signal receiving station that received any one of the first signal, the second signal and the reference signal or generated the time signal receives or generates the type of signal and the first signal. When two signals are received, the position information of the second aircraft included in the second signal, the counter value of the clock counter at the time the signal was received or generated, and each of the first signal receiving station and multiple signal receiving stations to the positioning processing device.
The positioning processing device stores a receiving unit that receives time counter information transmitted from each of the first signal receiving station and the multiple signal receiving stations, and the positions of each of the reference station, the first signal receiving station, and the multiple signal receiving stations. A position information storage unit, a counter value included in time counter information transmitted by each of a second signal receiving station and a plurality of signal receiving stations that received the same second signal, position information of a second aircraft, and a second signal receiving station and the positions of the multiple signal receiving stations, representing the difference between the counter values of the second signal receiving station and the clock counters of each of the multiple signal receiving stations at the time when the second aircraft transmitted the second signal. A second signal receiving station offset amount calculating unit that calculates an offset amount, a counter value included in time counter information transmitted by each of a reference signal receiving station and a plurality of signal receiving stations that have received the same reference signal, a reference station, a reference A reference signal for calculating, based on the positions of the signal receiving station and the multiple signal receiving station, the amount of offset between the clock counters of each of the reference signal receiving station and the multiple signal receiving station at the time the reference station transmits the reference signal. Based on the counter value included in the time counter information transmitted by each of the positioning signal receiving station and the multiple signal receiving station that generated the same time signal, the inter-receiving station offset calculation unit and the positioning signal receiving station and the multiple signal receiving stations Positioning signal receiving station offset calculation unit for calculating the offset amount at the time of generating the time signal between the respective clock counters, and two different first signal receiving stations receiving the same first signal. For each pair, based on the counter value included in the time counter information transmitted by the first signal receiving station when the first signal is received and the offset amount between the clock counters of the two first signal receiving stations , a time difference calculator for calculating, for a predetermined number of sets, a time difference, which is a difference between the times at which the two first signal receiving stations receive the same first signal; an aircraft position determination unit for calculating the position of the first aircraft based on the position;

本開示によれば、基準局時刻同期方式およびGNSS時刻同期方式だけの場合よりも、外的環境の変化によるシステム性能の劣化への耐性を高めた航空機位置測定システムを提供できる。 According to the present disclosure, it is possible to provide an aircraft position measurement system that is more resistant to system performance degradation due to changes in the external environment than when only the reference station time synchronization method and the GNSS time synchronization method are used.

実施の形態1に係る航空機位置測定システムの構成例を示す図である。1 is a diagram showing a configuration example of an aircraft position measurement system according to Embodiment 1; FIG. 図1の各受信局および測位処理装置の機能構成例を示すブロック図である。FIG. 2 is a block diagram showing a functional configuration example of each receiving station and positioning processing device in FIG. 1; ADS-B同期方式について説明するための図である。FIG. 2 is a diagram for explaining the ADS-B synchronization system; FIG. 時間差の計算処理の一例を説明するためのタイミング図である。FIG. 5 is a timing chart for explaining an example of time difference calculation processing; 航空機の位置測定処理の一例を示すフローチャートである。4 is a flow chart showing an example of a position measurement process for an aircraft; 測位処理装置のハードウェア構成の一例を示すブロック図である。It is a block diagram which shows an example of the hardware constitutions of a positioning processing apparatus.

以下、実施の形態について図面を参照して詳しく説明する。なお、同一または相当する部分には同一の参照符号を付して、その説明を繰り返さない場合がある。 Hereinafter, embodiments will be described in detail with reference to the drawings. In addition, the same reference numerals may be given to the same or corresponding parts, and the description thereof may not be repeated.

実施の形態1.
[航空機位置測定システムの全体構成例]
図1は、実施の形態1に係る航空機位置測定システムの構成例を示す図である。図1の航空機位置測定システム100は、基準局3と、受信局(A~I)2a~2iと、測位処理装置8とを備える。受信局(A~I)2a~2iは、基準局3、航空機4、および測位衛星5の何れか少なくとも1種類からの信号を受信する。基準局3、航空機4、および測位衛星5は、それぞれ代表して1個を記載しているが、複数の場合がある。受信局2a~2iを総称する場合またはいずれか1局を示す場合に受信局2と記載する。監視対象である航空機1は、滑走路上または誘導路上を1a、1b、1cの順に移動する。空港内に存在する航空機1は、通常は複数機である。ここでは、1機の航空機1を例に説明する。航空機4は、飛行中の航空機であり、ADS-B(Automatic Dependent Surveillance-Broadcast)信号を送信する。ADS-B信号は、航空機4によって自身の識別情報および位置情報などを含む信号が自発的にブロードキャストされる信号である。
Embodiment 1.
[Overall configuration example of aircraft positioning system]
FIG. 1 is a diagram showing a configuration example of an aircraft positioning system according to Embodiment 1. FIG. The aircraft positioning system 100 of FIG. Receiving stations (AI) 2a-2i receive signals from at least one of reference station 3, aircraft 4, and positioning satellites 5. FIG. Although one reference station 3, one aircraft 4, and one positioning satellite 5 are described as representatives, there may be more than one. When collectively referring to the receiving stations 2a to 2i or when referring to any one station, the receiving station 2 is used. An aircraft 1 to be monitored moves on a runway or a taxiway in the order 1a, 1b, 1c. There are usually a plurality of aircraft 1 present in the airport. Here, one aircraft 1 will be described as an example. Aircraft 4 is an aircraft in flight and transmits ADS-B (Automatic Dependent Surveillance-Broadcast) signals. An ADS-B signal is a signal in which an aircraft 4 voluntarily broadcasts a signal containing its own identification information, location information, and the like.

基準局3および受信局2の各々は、その局に固有な番号あるいは文字列などを割り当てられている。各局に割り当てられた番号あるいは文字列などにより、その局を識別する。基準局3および受信局2の各々は、送信する信号に自身を識別する情報を含ませて他の局などと通信する。航空機1、4および測位衛星5の各々も、送信する信号に自局を識別する情報を含ませる。 Each of the reference station 3 and the receiving station 2 is assigned a unique number or character string. A station is identified by a number or character string assigned to each station. Each of the reference station 3 and the receiving station 2 communicates with other stations and the like by including information identifying itself in the transmitted signal. Each of the aircraft 1, 4 and the positioning satellites 5 also includes information identifying itself in the signals it transmits.

航空機位置測定システム100は、航空機1から送信される自身の識別情報を含むモードS信号を複数の受信局2a~2iで受信することにより、受信時刻の差から航空機1の位置を測定するマルチラテレーションシステムである。滑走路上または誘導路上などの空港面の航空機1の位置を測定する場合には全部で3局以上の受信局2が航空機1のモードS信号を受信することが必要であり、航空機1の高度を含む位置を測定する場合には全部で4局以上の受信局2が航空機1のモードS信号を受信することが必要である。航空機1の位置を高精度に測定するために、受信局2a~2iの各々で受信されたADS-B信号、基準信号、GNSS信号のいずれかに基づいて、異なる受信局2の間で時刻同期が実施される。航空機1が監視対象の第1航空機である。モードS信号が、航空機1の識別情報を含む第1信号である。GNSS信号を測位信号とも呼ぶ。 The aircraft positioning system 100 is a multi-rate system that measures the position of the aircraft 1 from the difference in reception times by receiving mode S signals including identification information of itself transmitted from the aircraft 1 at a plurality of receiving stations 2a to 2i. ration system. When measuring the position of an aircraft 1 on an airport surface such as a runway or a taxiway, it is necessary for a total of three or more receiving stations 2 to receive the mode S signal of the aircraft 1, and the altitude of the aircraft 1 is determined by In total, four or more receiving stations 2 need to receive the Mode S signal of the aircraft 1 when measuring the position including. In order to measure the position of the aircraft 1 with high accuracy, time synchronization is performed between the different receiving stations 2 based on any of the ADS-B signals, reference signals, and GNSS signals received by each of the receiving stations 2a to 2i. is carried out. Aircraft 1 is the first aircraft to be monitored. A Mode S signal is the first signal containing the identity of the aircraft 1 . A GNSS signal is also called a positioning signal.

具体的に、受信局2a~2cは、遮蔽物等7の影響により基準局3からの基準信号を受信できないが、航空機4からADS-B信号を受信できる。受信局2a~2cは、航空機4から受信されたADS-B信号を利用して時刻同期を行う。ADS-B信号に基づく時刻同期の詳細については、図3を参照して後述する。 Specifically, the receiving stations 2a to 2c cannot receive the reference signal from the reference station 3 due to the influence of the shielding object 7, but can receive the ADS-B signal from the aircraft 4. FIG. The receiving stations 2a to 2c use the ADS-B signal received from the aircraft 4 to perform time synchronization. Details of time synchronization based on the ADS-B signal will be described later with reference to FIG.

受信局2e~2gは、妨害波/干渉波等6aの影響により航空機4からのADS-B信号を受信できないが、基準局3から基準信号を受信できる。基準信号は、自身の識別情報を含む信号である。受信局2e~2gは、基準局3から受信された基準信号を利用して時刻同期を行う。 The receiving stations 2e to 2g cannot receive the ADS-B signal from the aircraft 4 due to the interference wave/interference wave 6a, but can receive the reference signal from the reference station 3. A reference signal is a signal that contains its own identification information. The receiving stations 2e to 2g use the reference signal received from the reference station 3 to perform time synchronization.

受信局2h,2iは、航空機4からのADS-B信号および基準局3からの基準信号をいずれも受信できないが、測位衛星5からのGNSS信号を受信できる。また、受信局2dは、航空機4からのADS-B信号、基準局3からの基準信号、および測位衛星5からのGNSS信号のいずれも受信できる。測位衛星5からのGNSS信号を受信することで、受信局2h,2i,2dが有する時計装置を測位衛星5が有する時計装置に時刻同期させる。航空機4は、第2航空機である。ADS-B信号は、第2航空機から送信される第2航空機の識別情報および位置情報を含む第2信号である。 Receiving stations 2 h and 2 i cannot receive ADS-B signals from aircraft 4 and reference signals from reference station 3 , but can receive GNSS signals from positioning satellites 5 . Also, the receiving station 2d can receive any of the ADS-B signal from the aircraft 4, the reference signal from the reference station 3, and the GNSS signal from the positioning satellite 5. By receiving the GNSS signal from the positioning satellite 5, the clock devices of the receiving stations 2h, 2i, and 2d are time-synchronized with the clock device of the positioning satellite 5. FIG. Aircraft 4 is the second aircraft. The ADS-B signal is a second signal transmitted from the second aircraft containing the identification and location information of the second aircraft.

上記のように、航空機位置測定システム100は、各受信局2が基準信号、GNSS信号、およびADS-B信号のいずれか少なくとも1つを受信でき、かつ少なくとも1局の受信局2(図1の場合、受信局2d)が基準信号、GNSS信号、およびADS-B信号のすべてを受信できるように構成されている。これにより、外的環境の変化によるシステム性能の劣化への耐性を高めることができる。なお、例えば、受信局2dが基準信号とGNSS信号を受信でき、受信局2hがGNSS信号とADS-B信号を受信できてもよい。基準信号、GNSS信号、およびADS-B信号の中で少なくとも2種類の信号を受信する受信局2を複数信号受信局と呼ぶ。受信局2d、2hが、複数信号受信局になる。1個または複数個の複数信号受信局が、基準信号、GNSS信号(測位信号)、およびADS-B信号(第2信号)の3種類の信号を受信できればよい。GNSS信号、およびADS-B信号の3種類の信号が何れかの複数信号受信局で受信されるように複数信号受信局が受信する信号の種類が決められていればよい。複数信号受信局は、モードS信号(第1信号)を受信できなくてもよい。 As described above, in the aircraft positioning system 100, each receiving station 2 can receive at least one of a reference signal, a GNSS signal, and an ADS-B signal, and at least one receiving station 2 ( In that case, the receiving station 2d) is configured to receive all of the reference signal, the GNSS signal and the ADS-B signal. This makes it possible to increase resistance to deterioration of system performance due to changes in the external environment. For example, the receiving station 2d may receive the reference signal and the GNSS signal, and the receiving station 2h may receive the GNSS signal and the ADS-B signal. A receiving station 2 that receives at least two types of signals among the reference signal, the GNSS signal and the ADS-B signal is called a multi-signal receiving station. Receiving stations 2d and 2h become multi-signal receiving stations. One or more multi-signal receiving stations need only be able to receive three types of signals: reference signals, GNSS signals (positioning signals), and ADS-B signals (second signals). It is sufficient that the types of signals received by the multiple signal receiving stations are determined so that any of the three types of signals, ie, the GNSS signal and the ADS-B signal, can be received by any one of the multiple signal receiving stations. A multi-signal receiving station may not be able to receive the Mode S signal (the first signal).

受信局2a~2dは、第1信号と、第2航空機から送信される第2航空機の識別情報および位置情報を含む第2信号とを受信し、クロックカウンタを有する第2信号受信局である。受信局2d~2gは、第1信号と、基準局から送信される基準信号とを受信し、クロックカウンタを有する基準信号受信局である。受信局2d,2h,2iは、第1信号と、測位衛星から送信される測位信号とを受信し、測位信号に基づく時刻信号を生成し、クロックカウンタを有する測位信号受信局である。第2信号受信局、基準信号受信局および測位信号受信局の何れかを、第1信号受信局と呼ぶ。 Receiving stations 2a-2d are second signal receiving stations that receive a first signal and a second signal containing identification and location information of a second aircraft transmitted from a second aircraft and have a clock counter. The receiving stations 2d to 2g are reference signal receiving stations that receive the first signal and the reference signal transmitted from the reference station and have clock counters. Receiving stations 2d, 2h, and 2i are positioning signal receiving stations that receive the first signal and positioning signals transmitted from positioning satellites, generate time signals based on the positioning signals, and have clock counters. Any one of the second signal receiving station, the reference signal receiving station and the positioning signal receiving station is called the first signal receiving station.

[各受信局および測位処理装置の機能構成例]
図2は、図1の各受信局および測位処理装置の機能構成例を示すブロック図である。図2に示すように、各受信局2は、GNSS受信部10と、ローカルクロック部11と、ダウンコンバータ12と、受信処理部13と、送信部14と、GNSSアンテナ15と、アンテナ16とを備える。測位処理装置8は、受信部17と、ハイブリッドTDOA(Time Difference of Arrival)処理部18と、測位追尾処理部19と、記憶部20とを備える。なお、GNSS信号を受信できない受信局2e~2gは、GNSS受信部10を有しなくてもよい。
[Example of functional configuration of each receiving station and positioning processing device]
FIG. 2 is a block diagram showing a functional configuration example of each receiving station and positioning processing device in FIG. As shown in FIG. 2, each receiving station 2 includes a GNSS receiver 10, a local clock 11, a downconverter 12, a reception processor 13, a transmitter 14, a GNSS antenna 15, and an antenna 16. Prepare. The positioning processing device 8 includes a receiving unit 17 , a hybrid TDOA (Time Difference of Arrival) processing unit 18 , a positioning tracking processing unit 19 and a storage unit 20 . Note that the receiving stations 2e to 2g that cannot receive GNSS signals may not have the GNSS receiving section 10. FIG.

まず、各受信局2が備える各構成要素の機能について説明する。GNSS受信部10は、測位衛星から送信されるGNSS信号を、GNSSアンテナ15を介して受信する。GNSS受信部10は、毎正秒に1PPS(Pulse Per Second)信号を生成する。GNSS受信部10は、受信したGNSS信号の復号処理を行うことにより、GNSS信号の受信時点を把握し、受信局2が有する時計装置を測位衛星が有する時計装置との誤差を把握する。GNSS信号を受信して同期処理を行うことで、受信局2が有する時計装置は、測位衛星が有する時計装置と時刻同期する。1PPS信号は、受信局2が有する時計装置において1秒が経過するごとに生成される、GNSS信号に基づく時刻信号である。 First, the function of each component provided in each receiving station 2 will be described. The GNSS receiver 10 receives GNSS signals transmitted from positioning satellites via a GNSS antenna 15 . The GNSS receiver 10 generates a 1PPS (Pulse Per Second) signal every second. The GNSS receiver 10 performs decoding processing on the received GNSS signal to grasp the reception time point of the GNSS signal and to grasp the error between the clock device of the receiving station 2 and the clock device of the positioning satellite. By receiving the GNSS signal and performing synchronization processing, the clock device of the receiving station 2 is time-synchronized with the clock device of the positioning satellite. The 1PPS signal is a time signal based on the GNSS signal, which is generated each time one second elapses in the clock device of the receiving station 2 .

ローカルクロック部11は、決められた周期(例えば500MHz)で1増加するクロックカウンタ21と、指定されたタイミングでのクロックカウンタ21のカウンタ値を取得する機構とを有する。ローカルクロック部11は、GNSS受信部10で生成された1PPS信号を受信し、1PPS信号を受信した時点のローカルクロックのカウンタ値を保持する。以下、クロックカウンタ値に対応する時間をファインタイムと呼ぶ。ファインタイムは、クロックカウンタ値に1クロックカウンタごとの時間(例えば500MHz周期の場合は、2nsec)を乗算した値と考えることができる。クロックカウンタ値は、クロックカウンタ値を表現するビット数で決まる最大カウンタ値になると1に戻る。 The local clock unit 11 has a clock counter 21 that increases by 1 at a predetermined cycle (eg, 500 MHz) and a mechanism that acquires the counter value of the clock counter 21 at specified timing. The local clock unit 11 receives the 1PPS signal generated by the GNSS receiving unit 10 and holds the counter value of the local clock at the time of receiving the 1PPS signal. Hereinafter, the time corresponding to the clock counter value is called fine time. The fine time can be considered as a value obtained by multiplying the clock counter value by the time per clock counter (for example, 2 nsec for a 500 MHz period). The clock counter value returns to 1 when it reaches the maximum counter value determined by the number of bits representing the clock counter value.

ダウンコンバータ12は、基準局3から送信される基準信号、航空機4から送信されるADS-B信号、および航空機1から送信されるモードS信号を、アンテナ16を介して受信する。ダウンコンバータ12は、受信した基準信号、ADS-B信号、およびモードS信号をダウンコンバートしてから受信処理部13に出力する。 Downconverter 12 receives the reference signal transmitted from reference station 3 , the ADS-B signal transmitted from aircraft 4 and the Mode S signal transmitted from aircraft 1 via antenna 16 . The down-converter 12 down-converts the received reference signal, ADS-B signal, and Mode S signal, and outputs them to the reception processing unit 13 .

受信処理部13は、ダウンコンバータ12から入力されたダウンコンバート後の基準信号、ADS-B信号、およびモードS信号をA/D(Analog to Digital)変換してから復号処理を行う。さらに、受信処理部13は、基準信号、ADS-B信号、およびモードS信号の立ち上がりを検出し、検出した時点のローカルクロックのカウンタ値(すなわち、ファインタイム)を保持する。 The reception processing unit 13 A/D (Analog to Digital) converts the down-converted reference signal, ADS-B signal, and Mode S signal input from the down converter 12, and then performs decoding processing. Further, the reception processing unit 13 detects rising edges of the reference signal, the ADS-B signal, and the mode S signal, and holds the local clock counter value (that is, fine time) at the time of detection.

送信部14は、ローカルクロック部11によって検出された1PPS信号の生成時刻を示すファインタイム、ならびに受信処理部13によって検出された基準信号、ADS-B信号、およびモードS信号の受信時刻を示すファインタイムを、測位処理装置8に送信する。 The transmission unit 14 generates a fine time indicating the generation time of the 1PPS signal detected by the local clock unit 11, and a fine time indicating the reception time of the reference signal, the ADS-B signal, and the mode S signal detected by the reception processing unit 13. The time is transmitted to the positioning processing device 8.

次に、測位処理装置8の各構成要素の機能について説明する。受信部17は、各受信局2から、ローカルクロック部11によって検出されたファインタイムおよび受信処理部13によって検出されたファインタイムを含む時刻カウンタ情報を受信する。測位処理装置8は、すべての受信局2と通信可能である。測位処理装置8は、監視対象である航空機1の位置を測定する。 Next, the function of each component of the positioning processing device 8 will be described. The receiving unit 17 receives time counter information including the fine time detected by the local clock unit 11 and the fine time detected by the reception processing unit 13 from each receiving station 2 . The positioning processing device 8 can communicate with all receiving stations 2 . The positioning processing device 8 measures the position of the aircraft 1 to be monitored.

ハイブリッドTDOA処理部18は、同じ信号に対する異なる2局の受信局間での受信時刻を表すファインタイムの差を計算する。同じ信号に対する異なる2局の受信局間のファインタイムの差をTDOA(Time of Difference of Arrival)と呼ぶ。具体的に図1の場合、ハイブリッドTDOA処理部18は、受信局2a~2cによって航空機4から同じADS-B信号を受信した時点を示すファインタイムの差を、受信局2a~2cの中の2局の可能なすべての組について計算する。さらに、ハイブリッドTDOA処理部18は、受信局2e~2fによって基準局3から同じ基準信号を受信した時点を示すファインタイムの差を、受信局2e~2fの中の2局の可能なすべての組について計算する。ハイブリッドTDOA処理部18は、受信局2d,2h,2iにおいて最も最近に生成した1PPS信号の生成時刻を表すファインタイムの差を、受信局2d,2h,2iの中の2局の可能なすべての組について計算する。 The hybrid TDOA processing unit 18 calculates the fine time difference representing the reception time between two different receiving stations for the same signal. The fine time difference between two different receiving stations for the same signal is called TDOA (Time of Difference of Arrival). Specifically, in the case of FIG. 1, the hybrid TDOA processing unit 18 calculates the fine time difference indicating the point in time when the same ADS-B signal is received from the aircraft 4 by the receiving stations 2a to 2c. Compute for all possible pairs of stations. Further, the hybrid TDOA processing unit 18 calculates the fine time difference indicating the point in time when the same reference signal is received from the reference station 3 by the receiving stations 2e to 2f for all possible pairs of two stations among the receiving stations 2e to 2f. calculate. The hybrid TDOA processing unit 18 calculates the fine time difference representing the generation time of the 1PPS signal most recently generated in the receiving stations 2d, 2h, and 2i by all possible two stations among the receiving stations 2d, 2h, and 2i. Compute for a set.

測位追尾処理部19は、ハイブリッドTDOA処理部18から入力される同じ1PPS信号を生成した各受信局2でのファインタイムの差であるTDOAから、同じ1PPS信号を生成した時点での各受信局2におけるファインタイムのオフセット量を算出する。オフセット量とは、異なるクロックカウンタ(各受信局2が有する)の同じ時刻を表すカウンタ値(ファインタイム)の差を表す量である。ファインタイムからオフセット量を減算することで、異なるクロックカウンタのファインタイムを同じ基準に対する値に変換できる。ファインタイムの差からオフセット量の差を減算することで、ファインタイムの差から時間差を計算できる。 The positioning tracking processing unit 19 receives the same 1PPS signal input from the hybrid TDOA processing unit 18 and generates the same 1PPS signal from each receiving station 2 at the time when the same 1PPS signal is generated from the TDOA, which is the fine time difference between the receiving stations 2. Calculate the fine time offset amount in . The offset amount is an amount representing a difference between counter values (fine time) representing the same time of different clock counters (held by each receiving station 2). By subtracting the offset amount from the fine time, the fine times of different clock counters can be converted to values with respect to the same reference. By subtracting the offset amount difference from the fine time difference, the time difference can be calculated from the fine time difference.

測位追尾処理部19は、ハイブリッドTDOA処理部18から入力される同じ基準信号を各受信局2で受信した時点を表すファインタイムの差であるTDOAから、同じ基準信号を受信した各受信局2におけるファインタイムのオフセット量を算出する。測位追尾処理部19は、ハイブリッドTDOA処理部18から入力される同じADS-B信号を各受信局2で受信した時点を表すファインタイムの差であるTDOAから、同じADS-B号を受信した各受信局2におけるファインタイムのオフセット量を算出する。このような処理により、異なる受信局間の時刻同期を図ることができる。測位追尾処理部19は、算出したファインタイムのオフセット量に基づいて、監視対象の航空機1が送信するモードS信号を受信する各受信局2においてモードS信号を受信した時点を表すファインタイムから、航空機1が送信するモードS信号を受信する各受信局で受信したモードS信号の受信時刻の時間差を算出する。 The positioning and tracking processing unit 19 receives the same reference signal from the hybrid TDOA processing unit 18, and from the TDOA, which is the fine time difference representing the time point at which each receiving station 2 receives the same reference signal, Calculate the fine time offset amount. The positioning and tracking processing unit 19 receives the same ADS-B signal from the TDOA, which is the fine time difference representing the time point at which each receiving station 2 receives the same ADS-B signal input from the hybrid TDOA processing unit 18. A fine time offset amount in the receiving station 2 is calculated. Such processing enables time synchronization between different receiving stations. Based on the offset amount of the fine time calculated, the positioning and tracking processing unit 19 calculates, from the fine time representing the point in time when the Mode S signal is received at each receiving station 2 that receives the Mode S signal transmitted by the aircraft 1 to be monitored, The time difference between the reception times of the Mode S signals received by each receiving station that receives the Mode S signals transmitted by the aircraft 1 is calculated.

航空機1が送信するモードS信号を受信する受信局2の数が多い場合は、3組以上の決められた組数の2局の受信局2の組について、測位追尾処理部19は、モードS信号を受信した時刻の差である時間差を算出する。決められた組数とすることで、精度が低い受信局も使用することによる測位精度の低下を防止できる。測位追尾処理部19は、時間差を算出する受信局2の組に関して、基準信号受信局を測位信号受信局よりも優先し、測位信号受信局を第2信号受信局よりも優先して、決められた組数の時間差を計算する。このように優先順位を決める理由は、時刻同期の精度が、基準局同期方式、GNSS同期方式、ADS-B同期方式の順に高いからである。時刻同期の精度が高い受信局を優先して、モードS信号の受信信号を受信した時刻の時間差を計算して、計算した時間差を航空機1の位置の測定に使用することで、航空機1の位置を測定する精度を高めることができる。 When the number of receiving stations 2 receiving Mode S signals transmitted by the aircraft 1 is large, the positioning and tracking processing unit 19 performs Mode S A time difference, which is the difference between the times when the signals are received, is calculated. By using a predetermined number of sets, it is possible to prevent a decrease in positioning accuracy due to the use of receiving stations with low accuracy. The positioning tracking processing unit 19 prioritizes the reference signal receiving station over the positioning signal receiving station and the positioning signal receiving station over the second signal receiving station with respect to the set of the receiving stations 2 for calculating the time difference. Calculate the time difference of the number of pairs. The reason for determining the priority in this way is that the accuracy of time synchronization is higher in the order of the reference station synchronization method, the GNSS synchronization method, and the ADS-B synchronization method. Priority is given to a receiving station with high accuracy of time synchronization, and the time difference between the reception times of the mode S signal is calculated. By using the calculated time difference to measure the position of the aircraft 1, can improve the accuracy of measuring

時間差を計算する2個の受信局2の組の優先順位を、より具体的に説明すると以下のようになる。前に書いてあるものの優先順位が高い。なお、基準信号受信局であり、かつ測位信号受信局でもある受信局は基準信号受信局とする。基準信号受信局であり、かつ第2信号受信局でもある受信局は基準信号受信局とする。測位信号受信局であり、かつ第2信号受信局でもある受信局は測位信号受信局とする。
(受信局2の組の選択の優先順位)
1:2局がともに基準信号受信局。
2:1局が基準信号受信局で、1局が測位信号受信局。
3:1局が基準信号受信局で、1局が第2信号受信局。
4:2局がともに測位信号受信局。
5:1局が測位信号受信局で、1局が第2信号受信局。
6:2局がともに第2信号受信局。
More specifically, the order of priority of the set of two receiving stations 2 for calculating the time difference is as follows. The previous ones have higher priority. A receiving station that is both a reference signal receiving station and a positioning signal receiving station is referred to as a reference signal receiving station. A receiving station that is both a reference signal receiving station and a second signal receiving station is referred to as a reference signal receiving station. A receiving station that is both a positioning signal receiving station and a second signal receiving station is assumed to be a positioning signal receiving station.
(Priority order of selection of pair of receiving station 2)
1: Both stations are reference signal receiving stations.
2: 1 station is a reference signal receiving station and 1 station is a positioning signal receiving station.
3: 1 station is the reference signal receiving station and 1 station is the second signal receiving station.
4: Both stations are positioning signal receiving stations.
5: 1 station is a positioning signal receiving station, and 1 station is a second signal receiving station.
6: Both stations are second signal receiving stations.

測位追尾処理部19は、同じ第2信号を受信した第2信号受信局および複数信号受信局の各々が送信する時刻カウンタ情報に含まれるカウンタ値および第2航空機の位置情報と、第2信号受信局および複数信号受信局の位置とに基づき、第2信号受信局および複数信号受信局の各々が有するクロックカウンタの間の、第2航空機が第2信号を送信した時点でのカウンタ値の差を表すオフセット量を計算する第2信号受信局間オフセット量計算部である。 The positioning and tracking processing unit 19 receives the same second signal, and the counter value and the position information of the second aircraft included in the time counter information transmitted by each of the second signal receiving station and the multiple signal receiving stations. Based on the positions of the station and the multiple signal receiving station, the difference in the counter value between the clock counters of each of the second signal receiving station and the multiple signal receiving station at the time when the second aircraft transmitted the second signal is calculated. It is a second signal receiving station offset amount calculation unit that calculates the offset amount to represent.

測位追尾処理部19は、第2信号に含まれる第2航空機の位置情報と、記憶部20に記憶された第2信号受信局および複数信号受信局の位置とに基づき、第2航空機から送信された第2信号が第2信号受信局または複数信号受信局の各々で受信されるまでの時間である到来時間を第2信号受信局または複数信号受信局ごとに計算し、時刻カウンタ情報に含まれるカウンタ値の差と到来時間に基づきオフセット量を計算する。 The positioning and tracking processing unit 19 transmits from the second aircraft based on the position information of the second aircraft included in the second signal and the positions of the second signal receiving station and the multiple signal receiving stations stored in the storage unit 20. The arrival time, which is the time until the second signal is received by each of the second signal receiving station or the plurality of signal receiving stations, is calculated for each of the second signal receiving station or the plurality of signal receiving stations and included in the time counter information. An offset amount is calculated based on the difference between the counter values and the arrival time.

測位追尾処理部19は、同じ基準信号を受信した基準信号受信局および複数信号受信局の各々が送信する時刻カウンタ情報に含まれるカウンタ値と、基準局、基準信号受信局および複数信号受信局の位置とに基づき、基準信号受信局および複数信号受信局の各々が有するクロックカウンタの間の、基準局が基準信号を送信した時点でのオフセット量を計算する基準信号受信局間オフセット量計算部である。 The positioning tracking processing unit 19 calculates the counter value included in the time counter information transmitted by each of the reference signal receiving station and the multiple signal receiving stations that received the same reference signal, and the positions of the reference station, the reference signal receiving station, and the multiple signal receiving stations. and a reference signal receiving station offset calculation unit that calculates the offset amount between the clock counters of each of the reference signal receiving station and the multiple signal receiving stations at the time when the reference station transmits the reference signal.

測位追尾処理部19は、同じ時刻信号を生成した測位信号受信局および複数信号受信局の各々が送信する時刻カウンタ情報に含まれるカウンタ値に基づき、測位信号受信局および複数信号受信局の各々が有するクロックカウンタの間の、時刻信号を生成した時点でのオフセット量を計算する測位信号受信局間オフセット量計算部である。 Based on the counter value included in the time counter information transmitted by each of the positioning signal receiving station and the multiple signal receiving stations that generated the same time signal, the positioning tracking processing unit 19 determines whether each of the positioning signal receiving station and the multiple signal receiving stations A positioning signal receiving station offset amount calculation unit that calculates an offset amount between the clock counters provided at the time when the time signal is generated.

測位追尾処理部19は、同じ第1信号を受信した異なる2個の第1信号受信局の組ごとに、第1信号を受信した際に第1信号受信局が送信した時刻カウンタ情報に含まれるカウンタ値と、2個の第1信号受信局が有するクロックカウンタの間のオフセット量とに基づき、2個の第1信号受信局が同じ第1信号を受信した時刻の差である時間差を、決められた組数に対して計算する時間差計算部である。 The positioning tracking processing unit 19 is included in the time counter information transmitted by the first signal receiving station when the first signal is received, for each set of two different first signal receiving stations that have received the same first signal. Based on the counter value and the amount of offset between the clock counters possessed by the two first signal receiving stations, a time difference, which is the difference between the times when the two first signal receiving stations receive the same first signal, is determined. It is a time difference calculation unit that calculates for the number of pairs obtained.

測位追尾処理部19は、算出した各受信局のモードS信号の受信時刻の時間差に基づいて航空機1の位置を測定する。具体的に測位追尾処理部19は、モードS信号の受信時刻の時間差を航空機1からの距離差に変換し、各受信局2の位置に基づき距離差が一定である条件からなる双曲線を求める。複数の双曲線の交点を求めることにより、航空機1の位置を算出する。 The positioning and tracking processing unit 19 measures the position of the aircraft 1 based on the calculated time difference between the reception times of the Mode S signals of each receiving station. Specifically, the positioning and tracking processing unit 19 converts the time difference between the reception times of the Mode S signals into the distance difference from the aircraft 1 and obtains a hyperbola under the condition that the distance difference is constant based on the position of each receiving station 2 . The position of the aircraft 1 is calculated by finding the intersection points of a plurality of hyperbolas.

測位追尾処理部19は、時間差と第1信号受信局の位置とに基づき第1航空機の位置を計算する航空機位置測定部である。 The positioning and tracking processing unit 19 is an aircraft position measurement unit that calculates the position of the first aircraft based on the time difference and the position of the first signal receiving station.

記憶部20は、基準局3の位置情報、各受信局2の位置情報、ならびにモードS信号およびADS-B信号の伝搬速度の情報を予め記憶する。さらに、記憶部20は、GNSS信号を受信できる各受信局2が直近に1PPS信号を生成した時点を示すファインタイムと、ADS-B信号を受信できる各受信局2が直近にADS-B信号を受信した時点を示すファインタイムと、基準信号を受信できる各受信局2が直近に基準信号を受信した時点を示すファインタイムとを記憶する。これらの情報は、時刻同期および航空機の位置測定に必要である。 The storage unit 20 stores in advance the position information of the reference station 3, the position information of each receiving station 2, and the propagation speed information of the Mode S signal and the ADS-B signal. Furthermore, the storage unit 20 stores a fine time indicating the point in time when each receiving station 2 that can receive the GNSS signal generated the 1PPS signal most recently, and each receiving station 2 that can receive the ADS-B signal most recently generated the ADS-B signal. A fine time indicating the point of time of reception and a fine time indicating the point of time when each receiving station 2 capable of receiving the reference signal most recently received the reference signal are stored. These information are necessary for time synchronization and aircraft positioning.

記憶部20は、基準局、第1信号受信局および複数信号受信局の各々の位置を記憶する位置情報記憶部である。 The storage unit 20 is a position information storage unit that stores the positions of the reference station, the first signal receiving station, and the multiple signal receiving stations.

[ADS-B同期方式]
次に、本開示の特徴の1つであるADS-B同期方式について説明する。図3は、ADS-B同期方式について説明するための図である。図3に示すように、航空機4は、自機の位置情報を含むADS-B信号をブロードキャストする。
[ADS-B synchronization method]
Next, the ADS-B synchronization method, which is one of the features of the present disclosure, will be described. FIG. 3 is a diagram for explaining the ADS-B synchronization method. As shown in FIG. 3, aircraft 4 broadcast ADS-B signals containing their position information.

受信局2a,2b,2c,2dは航空機4から送信されるADS-B信号を受信し、ADS-B信号の波形の立ち上がりを検出し、立ち上がり検出時のクロックカウンタ値(ファインタイム)を保持する。さらに、受信局2a,2b,2c,2dは、受信したADS-B信号の復号処理を行い、復号されたADS-B信号から航空機4の位置情報を抽出する。受信局2a,2b,2c,2dは、測位処理装置8へファインタイムと航空機4の位置情報とを含む時刻カウンタ情報を送信する。 The receiving stations 2a, 2b, 2c, and 2d receive the ADS-B signal transmitted from the aircraft 4, detect the rise of the waveform of the ADS-B signal, and hold the clock counter value (fine time) at the time of detection of the rise. . Further, the receiving stations 2a, 2b, 2c and 2d decode the received ADS-B signals and extract the position information of the aircraft 4 from the decoded ADS-B signals. The receiving stations 2 a , 2 b , 2 c , 2 d transmit time counter information including fine time and position information of the aircraft 4 to the positioning processing device 8 .

測位処理装置8は、受信局2a,2b,2c,2dからファインタイムと航空機4の位置情報とを受信する。測位処理装置8は、受信局2aの位置情報(x,y,z)、受信局2bの位置情報(x,y,z)、受信局2cの位置情報(x,y,z)、および受信局2dの位置情報(x,y,z)が既知であることを利用し、これらの位置情報と航空機4の位置情報(x,y,z)とから幾何学計算により航空機4と各受信局2a,2b,2c,2dとの間の距離d,d,d,dを計算する。距離d,d,d,dは、以下の(1A),(1B),(1C),(1D)式で表される。 The positioning processing device 8 receives the fine time and the position information of the aircraft 4 from the receiving stations 2a, 2b, 2c and 2d. The positioning processing device 8 receives the position information ( xa , ya , za ) of the receiving station 2a, the position information ( xb , yb , zb ) of the receiving station 2b, the position information ( xc , y c , z c ) and the position information (x d , y d , z d ) of the receiving station 2d are known, and these position information and the position information of the aircraft 4 (x r , y r , z r ) and the distances d a , d b , d c , d d between the aircraft 4 and each receiving station 2a, 2b, 2c, 2d are calculated by geometrical calculations. The distances d a , d b , d c , and d d are represented by the following formulas (1A), (1B), (1C), and (1D).

Figure 2022181484000002
Figure 2022181484000002

算出した航空機4と各受信局2a,2b,2c,2dとの間の距離から、航空機4から各受信局2a,2b,2c,2dへのADS-B信号の到来時間τ,τ,τ,τ[nsec]を以下の(2)式に示すように求めることができる。ただし、(2)式において、ADS-B信号の伝搬速度をcとしている。 From the calculated distances between the aircraft 4 and the respective receiving stations 2a, 2b, 2c, 2d, arrival times τ a , τ b , τ c and τ d [nsec] can be obtained as shown in the following equation (2). However, in equation (2), the propagation speed of the ADS-B signal is c.

Figure 2022181484000003
Figure 2022181484000003

ADS-B信号の到来時間は、航空機4から送信されたADS-B信号がADS-B信号を受信する受信局の各々で受信されるまでの時間である。 The arrival time of the ADS-B signal is the time until the ADS-B signal transmitted from the aircraft 4 is received by each receiving station that receives the ADS-B signal.

受信局2a,2b,2c,2dにおけるADS-B信号の受信時刻を示すファインタイムT,T,T,T[nsec]から、航空機4からのADS-B信号の到来時間τ,τ,τ,τをそれぞれ差し引くことにより、航空機4がADS-B信号を送信した時刻における各受信局2a,2b,2c,2dのファインタイムが求まる。同じ時刻における異なる受信局2が有するクロックカウンタが出力するファインタイムに基づきオフセット量を計算する。受信局2a,2b,2c,2dにおけるオフセット量をΔt,Δt,Δt,Δtとする。したがって、以下の(3)式に示すようにADS-B信号の送信時刻では、ファインタイムからオフセット量を減算した値が等しいという関係から、オフセット量を計算でき、オフセット量をファインタイムから減算することで受信局2a,2b,2c間の時刻同期が可能となる。 The arrival time τa of the ADS-B signal from the aircraft 4 is obtained from the fine times T a , T b , T c , and T d [nsec] indicating the reception times of the ADS-B signals at the receiving stations 2a, 2b, 2c, and 2d . , τ b , τ c , and τ d are subtracted to obtain the fine times of the receiving stations 2a, 2b, 2c, and 2d at the time when the aircraft 4 transmitted the ADS-B signal. The offset amount is calculated based on the fine times output by the clock counters of the different receiving stations 2 at the same time. Let Δt a , Δt b , Δt c , and Δt d be the offset amounts at the receiving stations 2a, 2b, 2c, and 2d. Therefore, as shown in the following equation (3), at the transmission time of the ADS-B signal, the offset amount can be calculated from the relationship that the value obtained by subtracting the offset amount from the fine time is equal, and the offset amount is subtracted from the fine time. This enables time synchronization among the receiving stations 2a, 2b, and 2c.

Figure 2022181484000004
Figure 2022181484000004

式(3)では4変数に対して3個の等式であり、1変数に関しては自由度がある。ここでは、すべての種類の信号を受信する受信局2dのファインタイムを基準として、Δt=0とする。なお、2個の受信局2j、2の間のオフセット量Δtj,kを使用してもよい。Δtj,kを使用する場合には、j,kが数の場合はj<kとし、j,kがアルファベットの場合は、jをアルファベットの並び順でkよりも前にある方とする。 Equation (3) has three equations for four variables, and one variable has a degree of freedom. Here, Δt d =0 based on the fine time of the receiving station 2d that receives all kinds of signals. Note that the offset amount Δt j,k between the two receiving stations 2 j and 2 k may also be used. If Δt j,k is used, then j<k if j,k is a number, and if j,k is alphabetic, then j is the one that precedes k in alphabetical order.

基準局同期方式も基本的に上記と同様である。基準局同期方式の場合には、上記の航空機4の位置情報に代えて基準局3の位置情報が用いられ、ADS-B信号に代えて基準信号が用いられる。 The reference station synchronization method is also basically the same as above. In the case of the reference station synchronization method, the position information of the reference station 3 is used instead of the position information of the aircraft 4, and the reference signal is used instead of the ADS-B signal.

[時間差算出処理の具体例]
以下、具体例を挙げて監視対象の航空機1からのモードS信号の受信時刻の時間差を計算する処理について説明する。図4は、時間差の計算処理の一例を説明するためのタイミング図である。図4では、図1の受信局2c,2d,2e,2hによって同一の航空機1からモードS信号を受信した場合が示されている。図4では、白四角は各受信局で1PPS信号を作成したことを示す。白丸は、各受信局でADS-B信号を受信したことを示す。黒丸は、各受信局で基準信号を受信したことを示す。二重丸は、各受信局でモードS信号を受信したことを示す。時刻t1などにおけるt1などは、時点を表す変数である。t1などの時刻が計測される訳ではない。計測されるのは、時刻t1ではファインタイムT1,T2である。
[Specific example of time difference calculation process]
Hereinafter, the process of calculating the time difference between the reception times of the Mode S signals from the aircraft 1 to be monitored will be described using a specific example. FIG. 4 is a timing chart for explaining an example of time difference calculation processing. FIG. 4 shows the case where the receiving stations 2c, 2d, 2e and 2h of FIG. 1 receive Mode S signals from the same aircraft 1. In FIG. In FIG. 4, white squares indicate that each receiving station produced a 1PPS signal. A white circle indicates that an ADS-B signal was received at each receiving station. A black dot indicates that the reference signal was received at each receiving station. A double circle indicates that each receiving station has received a Mode S signal. t1, etc. in time t1, etc. are variables representing time points. Time such as t1 is not measured. Fine times T1 and T2 are measured at time t1.

時刻t1において、受信局2d,2hは、4機以上の測位衛星5からGNSS信号を受信する。受信局2d,2hで共通にGNSS信号を受信する測位衛星5の数が、多い方が望ましい。受信局2d,2hは、測位衛星5が有する時計装置と時刻同期した1PPS信号を発生させる。受信局2d,2hは時刻同期しているので、同じ時刻t1に1PPS信号を発生させる。受信局2d,2hは、ファインタイムT1,T2と1PPS信号を識別する情報を含む時刻カウンタ情報(後述)を測位処理装置8に送信する。測位処理装置8は、受信した時刻カウンタ情報に含まれるファインタイムT1、T2から、受信局2hが有するクロックカウンタのオフセット量Δtを、以下の式で計算する。なお、Δt=0である。
Δt=T2-T1 …(4)
At time t1, the receiving stations 2d and 2h receive GNSS signals from four or more positioning satellites 5. FIG. It is desirable that the number of positioning satellites 5 from which GNSS signals are received in common by the receiving stations 2d and 2h is large. Receiving stations 2d and 2h generate 1PPS signals that are time-synchronized with the clock device of positioning satellite 5. FIG. Since the receiving stations 2d and 2h are time-synchronized, they generate a 1PPS signal at the same time t1. The receiving stations 2d and 2h transmit to the positioning processor 8 fine times T1 and T2 and time counter information (described later) including information for identifying the 1PPS signal. The positioning processing device 8 calculates the offset amount Δth of the clock counter of the receiving station 2h from the fine times T1 and T2 included in the received time counter information using the following formula. Note that Δt d =0.
Δt h =T2-T1 (4)

時刻t2において航空機4からADS-B信号が送信される。受信局2c,2dは、それぞれ時刻t3,t4にADS-B信号を受信する。受信局2c,2dによって検出されたADS-B信号の受信時刻を示すファインタイムは、それぞれT3,T4である。受信局2cは、ファインタイムT3、航空機4の識別情報と位置情報とを含む時刻カウンタ情報を作成して測位処理装置8に送信する。受信局2dは、ファインタイムT4、航空機4の識別情報と位置情報とを含む時刻カウンタ情報を作成して測位処理装置8に送信する。受信局2c,2dからの時刻カウンタ情報を受信した測位処理装置8は、時刻カウンタ情報含まれる航空機4の位置情報と受信局2c,2dの位置情報とから、航空機4から受信局2cまでのADS-B信号の到来時間τ3と、航空機4から受信局2dまでのADS-B信号の到来時間τ4とを計算する。測位処理装置8は、さらに受信局2cが有するクロックカウンタのオフセット量Δtcを、以下の式で計算する。
Δt=T3-τ3-(T4-τ4) …(5)
An ADS-B signal is transmitted from the aircraft 4 at time t2. Receiving stations 2c and 2d receive the ADS-B signal at times t3 and t4, respectively. The fine times indicating the reception times of the ADS-B signals detected by the receiving stations 2c and 2d are T3 and T4, respectively. The receiving station 2c creates fine time T3, time counter information including identification information and position information of the aircraft 4, and transmits the created time counter information to the positioning processing device 8. FIG. The receiving station 2 d creates fine time T 4 , time counter information including identification information and position information of the aircraft 4 , and transmits the created time counter information to the positioning processing device 8 . The positioning processing device 8 receives the time counter information from the receiving stations 2c and 2d, and based on the position information of the aircraft 4 and the position information of the receiving stations 2c and 2d included in the time counter information, the ADS from the aircraft 4 to the receiving station 2c. - Calculate the arrival time τ3 of the B signal and the arrival time τ4 of the ADS-B signal from the aircraft 4 to the receiving station 2d. The positioning processing device 8 further calculates the offset amount Δtc of the clock counter of the receiving station 2c using the following formula.
Δt c =T3-τ3-(T4-τ4) (5)

時刻t5において基準局3から基準信号が送信される。受信局2e,2dは、それぞれ時刻t6,t7に基準信号を受信する。受信局2e,2dによって検出された基準信号の受信時刻を示すファインタイムは、それぞれT5,T6である。受信局2eは、ファインタイムT5、基準信号を識別する情報を含む時刻カウンタ情報を作成して測位処理装置8に送信する。受信局2dは、ファインタイムT6、基準信号を識別する情報を含む時刻カウンタ情報を作成して測位処理装置8に送信する。受信局2e,2dからの時刻カウンタ情報を受信した測位処理装置8は、基準局3の位置情報および受信局2e,2dの位置情報から、基準局3から受信局2eまでの基準信号の到来時間τ5と、基準局3から受信局2dまでの基準信号の到来時間τ6とを計算する。測位処理装置8は、さらに受信局2eが有するクロックカウンタのオフセット量Δteを、以下の式で計算する。
Δt=T5-τ5-(T6-τ6) …(6)
A reference signal is transmitted from the reference station 3 at time t5. Receiving stations 2e and 2d receive the reference signal at times t6 and t7, respectively. Fine times indicating reception times of the reference signals detected by the receiving stations 2e and 2d are T5 and T6, respectively. The receiving station 2 e creates fine time T5 and time counter information including information for identifying the reference signal, and transmits the created time counter information to the positioning processing device 8 . The receiving station 2 d creates fine time T 6 and time counter information including information for identifying the reference signal, and transmits it to the positioning processing device 8 . The positioning processing device 8 that has received the time counter information from the receiving stations 2e and 2d determines the arrival time τ5 of the reference signal from the reference station 3 to the receiving station 2e and , and the arrival time τ6 of the reference signal from the reference station 3 to the receiving station 2d. The positioning processing device 8 further calculates the offset amount Δte of the clock counter of the receiving station 2e using the following formula.
Δt e =T5−τ5−(T6−τ6) (6)

受信局2c,2d,2h,2eは、それぞれ時刻t8,t9,t10,t11に監視対象である航空機1からモードS信号を受信する。受信局2c,2d,2h,2eによって検出されたモードS信号の受信時刻を示すファインタイムは、それぞれT7,T8,T9,T10である。受信局2cは、ファインタイムT7と航空機1のモードS信号を識別する情報を含む時刻カウンタ情報を作成して測位処理装置8に送信する。受信局2dは、ファインタイムT8と航空機1のモードS信号を識別する情報を含む時刻カウンタ情報を作成して測位処理装置8に送信する。受信局2hは、ファインタイムT9と航空機1のモードS信号を識別する情報を含む時刻カウンタ情報を作成して測位処理装置8に送信する。受信局2eは、ファインタイムT8と航空機1のモードS信号を識別する情報を含む時刻カウンタ情報を作成して測位処理装置8に送信する。 Receiving stations 2c, 2d, 2h and 2e receive Mode S signals from the monitored aircraft 1 at times t8, t9, t10 and t11, respectively. The fine times indicating the reception times of the Mode S signals detected by the receiving stations 2c, 2d, 2h and 2e are T7, T8, T9 and T10, respectively. The receiving station 2c creates fine time T7 and time counter information including information for identifying the mode S signal of the aircraft 1, and transmits the created time counter information to the positioning processing device 8. FIG. The receiving station 2d creates fine time T8 and time counter information including information for identifying the mode S signal of the aircraft 1, and transmits the created time counter information to the positioning processing device 8. FIG. The receiving station 2h creates fine time T9 and time counter information including information for identifying the Mode S signal of the aircraft 1, and transmits the time counter information to the positioning processing device 8. FIG. The receiving station 2e creates fine time T8 and time counter information including information for identifying the Mode S signal of the aircraft 1, and transmits the created time counter information to the positioning processing device 8. FIG.

時刻カウンタ情報は、モードS信号、ADS-B信号および基準信号の何れかの信号を受信したか、または測位信号を受信して1PPS信号生成した第1信号受信局および複数信号受信局の各々が、生成して測位処理装置8に送信する情報である。時刻カウンタ情報は、受信あるいは生成した信号の種類と、ADS-B信号を受信した場合はADS-B信号に含まれる航空機の位置情報と、信号を受信あるいは生成した時点でのクロックカウンタのカウンタ値と、第1信号受信局および複数信号受信局の各々を識別する情報とを含む。 The time counter information is obtained by each of the first signal receiving station and the multiple signal receiving stations that received any one of the Mode S signal, ADS-B signal, and reference signal, or received the positioning signal and generated the 1PPS signal. , is information to be generated and transmitted to the positioning processing device 8 . The time counter information includes the type of signal received or generated, the aircraft position information included in the ADS-B signal if an ADS-B signal is received, and the counter value of the clock counter at the time the signal was received or generated. and information identifying each of the first signal receiving station and the plurality of signal receiving stations.

測位処理装置8は、上記の例の場合、受信局2c,2dによるモードS信号の受信時刻の時間差δ3を、以下の式で計算する。なお、Δt=0である。
δ3=(T7-Δt)-(T8-Δt) …(7)
式(7)に式(5)を代入して、以下の式を得る。
δ3=(T7-T3+τ3)-(T8-T4+τ4) …(8)
ADS-B信号の受信時刻を示すファインタイムとADS-B信号に含まれる航空機4の位置情報によって計算されたオフセット量により、モードS信号の受信時刻を示すファインタイムが補正される。
In the case of the above example, the positioning processing device 8 calculates the time difference δ3 between the reception times of the Mode S signals by the receiving stations 2c and 2d using the following formula. Note that Δt d =0.
δ3=(T7−Δt c )−(T8−Δt d ) (7)
By substituting equation (5) into equation (7), the following equation is obtained.
δ3=(T7-T3+τ3)-(T8-T4+τ4) (8)
The fine time indicating the reception time of the mode S signal is corrected by the fine time indicating the reception time of the ADS-B signal and the offset amount calculated from the position information of the aircraft 4 included in the ADS-B signal.

測位処理装置8は、受信局2h,2dによるモードS信号の受信時刻の時間差δ4を、以下の式で計算する。
δ4=(T9-Δt)-(T8-Δt) …(9)
式(9)に式(4)を代入して、以下の式を得る。
δ4=(T9-T2)-(T8-T1) …(10)
1PPS信号を生成した時点でのファインタイムから計算されたオフセット量により、モードS信号の受信時刻を示すファインタイムが補正される。
The positioning processing device 8 calculates the time difference δ4 between the reception times of the Mode S signals by the receiving stations 2h and 2d using the following formula.
δ4=(T9−Δt h )−(T8−Δt d ) (9)
By substituting equation (4) into equation (9), the following equation is obtained.
δ4=(T9-T2)-(T8-T1) (10)
The fine time indicating the reception time of the mode S signal is corrected by the offset amount calculated from the fine time when the 1PPS signal was generated.

受信局2e,2dによるモードS信号の受信時刻の時間差δ5を、以下の式で計算する。
δ5=(T10-Δt)-(T8-Δt) …(11)
式(11)に式(6)を代入して、以下の式を得る。
δ5=(T10-T5+τ5)-(T8-T6+τ5) …(12)
基準信号の受信時刻を示すファインタイムと基準局3の位置情報とによって計算されたオフセット量により、モードS信号の受信時刻を示すファインタイムとが補正される。
A time difference δ5 between the reception times of the Mode S signals by the receiving stations 2e and 2d is calculated by the following formula.
δ5=(T10−Δt e )−(T8−Δt d ) (11)
By substituting equation (6) into equation (11), the following equation is obtained.
δ5=(T10-T5+τ5)-(T8-T6+τ5) (12)
The fine time indicating the reception time of the mode S signal is corrected by the offset amount calculated from the fine time indicating the reception time of the reference signal and the position information of the reference station 3 .

[航空機の位置測定処理の一例]
図5は、航空機の位置測定処理の一例を示すフローチャートである。以下、図5を参照して、監視対象の航空機1の位置を測定する処理についてこれまでの説明を総括する。
[An example of aircraft position measurement processing]
FIG. 5 is a flow chart showing an example of aircraft position measurement processing. Below, with reference to FIG. 5, the description so far of the process of measuring the position of the aircraft 1 to be monitored will be summarized.

ステップS11において、測位処理装置8は、各受信局2が直近にADS-B信号を受信したファインタイムおよびADS-B信号に含まれる航空機4の位置情報を含む時刻カウンタ情報、各受信局2が直近に基準信号を受信したファインタイムを含む時刻カウンタ情報、各受信局が直近に生成した1PPS信号を生成したファインタイムを含む時刻カウンタ情報、基準局3および各受信局2の位置情報に基づいて、各受信局2が有するクロックカウンタのオフセット量を計算する。 In step S11, the positioning processing device 8 obtains the fine time at which each receiving station 2 most recently received the ADS-B signal and the time counter information including the position information of the aircraft 4 included in the ADS-B signal, Based on the time counter information including the fine time at which the reference signal was most recently received, the time counter information including the fine time at which each receiving station generated the 1PPS signal most recently, and the position information of the reference station 3 and each receiving station 2, The offset amount of the clock counter that each receiving station 2 has is calculated.

ステップS12において、測位処理装置8は、各受信局2から航空機1のモードS信号を受信したファインタイムを含む時刻カウンタ情報を受信すると(ステップS11でYES)、処理をステップS13に進める。 In step S12, when the positioning processing device 8 receives the time counter information including the fine time at which the mode S signal of the aircraft 1 was received from each receiving station 2 (YES in step S11), the process proceeds to step S13.

ステップS13において、測位処理装置8は、各受信局2がモードS信号を受信したファインタイムを含む時刻カウンタ情報、各受信局2が有するクロックカウンタのオフセット量に基づいて、3個以上の受信局2で航空機1から受信されたモードS信号の受信時刻の時間差を計算する。 In step S13, the positioning processing device 8 selects three or more receiving stations based on the time counter information including the fine time when each receiving station 2 received the Mode S signal and the offset amount of the clock counter possessed by each receiving station 2. 2, the time difference between the reception times of the Mode S signals received from aircraft 1 is calculated.

次のステップS14において、測位処理装置8は、算出したモードS信号の受信時刻の時間差と各受信局2の位置情報とに基づいて、航空機1の位置を測定する。これによって航空機1の位置測定処理が終了する。 In the next step S14, the positioning processing device 8 measures the position of the aircraft 1 based on the calculated time difference between the reception times of the Mode S signals and the position information of each receiving station 2. FIG. This completes the position measurement process for the aircraft 1 .

[測位処理装置のハードウェア構成の一例]
図6は、測位処理装置のハードウェア構成の一例を示すブロック図である。図6を参照して、測位処理装置8は、制御部31、主記憶部32、外部記憶部33、操作部34、表示部35、および送受信部36を備える。主記憶部32、外部記憶部33、操作部34、表示部35および送受信部36は、内部バス30を介して制御部31に接続されている。
[Example of hardware configuration of positioning processing device]
FIG. 6 is a block diagram showing an example of the hardware configuration of the positioning processing device. Referring to FIG. 6 , positioning processing device 8 includes control unit 31 , main storage unit 32 , external storage unit 33 , operation unit 34 , display unit 35 and transmission/reception unit 36 . The main storage unit 32 , the external storage unit 33 , the operation unit 34 , the display unit 35 and the transmission/reception unit 36 are connected to the control unit 31 via the internal bus 30 .

制御部31は、CPU(Central Processing Unit)などから構成され、外部記憶部33に記憶されている制御プログラム39に従って動作することにより、図2のハイブリッドTDOA処理部18および測位追尾処理部19の各処理を実行する。制御プログラム39は、コンピュータ読み取り可能な記憶媒体を介して提供されてもよいし、ネットワークを介して提供されてもよい。 The control unit 31 is composed of a CPU (Central Processing Unit) or the like, and operates according to a control program 39 stored in the external storage unit 33 to control each of the hybrid TDOA processing unit 18 and the positioning and tracking processing unit 19 shown in FIG. Execute the process. The control program 39 may be provided via a computer-readable storage medium or via a network.

主記憶部32は、RAM(Random Access Memory)などから構成される。主記憶部32は、外部記憶部33に記憶されている制御プログラム39がロードされることにより、制御部31の作業領域として用いられる。 The main storage unit 32 is composed of a RAM (Random Access Memory) or the like. The main storage unit 32 is used as a work area for the control unit 31 by loading the control program 39 stored in the external storage unit 33 .

外部記憶部33は、フラッシュメモリ、ハードディスクなどの不揮発性メモリから構成され、測位処理装置8の処理を制御部31に行わせるためのプログラムおよびデータを記憶する。図2の記憶部20は、外部記憶部33に対応する。 The external storage unit 33 is composed of a non-volatile memory such as a flash memory or a hard disk, and stores programs and data for causing the control unit 31 to perform processing of the positioning processing device 8 . The storage unit 20 in FIG. 2 corresponds to the external storage unit 33 .

操作部34は、測位処理装置8へのユーザの入力操作に用いられる。操作部34は、たとえば、キーボードおよびマウスなどのポインティングデバイスを含む。 The operation unit 34 is used for user input operations to the positioning processing device 8 . Operation unit 34 includes, for example, a keyboard and a pointing device such as a mouse.

表示部35は、ユーザへの情報の表示に用いられ、たとえば、航空機1の位置を示す測定情報が表示される。表示部35は、LCD(Liquid Crystal Display)または有機ELディスプレイなどから構成される。 The display unit 35 is used to display information to the user, for example measurement information indicating the position of the aircraft 1 is displayed. The display unit 35 is configured by an LCD (Liquid Crystal Display), an organic EL display, or the like.

送受信部36は、ネットワークに接続するための有線または無線の通信装置を含む。送受信部36は、ネットワークを介して各受信局2と接続する。図2の受信部17は、送受信部36に対応する。 The transceiver 36 includes a wired or wireless communication device for connecting to a network. The transmitting/receiving section 36 is connected to each receiving station 2 via a network. The receiver 17 in FIG. 2 corresponds to the transmitter/receiver 36 .

[効果]
以下、本開示の効果についてまとめる。航空機位置測定システムで用いられる時刻同期方式として基準局同期方式とGNSS同期方式とが代表的だが、外的環境の変化によりシステム性能が劣化しやすい脆弱性がある。
[effect]
The effects of the present disclosure are summarized below. The reference station synchronization method and the GNSS synchronization method are typical time synchronization methods used in aircraft positioning systems, but they have the vulnerability that system performance tends to deteriorate due to changes in the external environment.

これに対して、本開示のADS-B同期方式では、航空機からのADS-B信号に含まれる当該航空機の位置情報を利用することにより、当該航空機から各受信局までのADS-B信号の到達時間を求める。本開示のADS-B同期方式は、このADS-B信号の到達時間と各受信局のADS-B信号の受信時刻を示すクロックカウンタ値とに基づいて、受信局ごとのクロックカウンタ値の相違を把握することにより、時刻同期を行うものである。さらに、ADS-B同期方式と従来のGNSS同期方式および基準局同期方式とを組み合わせることにより、外的環境の変化で性能劣化が生じやすいという航空機位置測定システムの脆弱性に対する耐性を従来よりも高めることができる。 On the other hand, in the ADS-B synchronization method of the present disclosure, by using the position information of the aircraft included in the ADS-B signal from the aircraft, the arrival of the ADS-B signal from the aircraft to each receiving station ask for time. The ADS-B synchronization method of the present disclosure detects the difference in the clock counter value for each receiving station based on the arrival time of the ADS-B signal and the clock counter value indicating the reception time of the ADS-B signal at each receiving station. By grasping, time synchronization is performed. Furthermore, by combining the ADS-B synchronization method with the conventional GNSS synchronization method and reference station synchronization method, it is possible to increase the resistance to the vulnerability of the aircraft positioning system, which is prone to performance deterioration due to changes in the external environment. can be done.

今回開示された実施の形態はすべての点で例示であって制限的なものでないと考えられるべきである。この出願の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered as examples and not restrictive in all respects. The scope of this application is indicated by the scope of claims rather than the above description, and is intended to include all changes within the meaning and scope of equivalence to the scope of claims.

1,4 航空機、2,2a~2i 受信局、3 基準局、5 測位衛星、6a,6b 妨害波/干渉波等、7 遮蔽物等、8 測位処理装置、10 GNSS受信部、11 ローカルクロック部、12 ダウンコンバータ、13 受信処理部、14 送信部、15,16 アンテナ、17 受信部、18 ハイブリッドTDOA処理部、19 測位追尾処理部、20 記憶部、21 クロックカウンタ、30 内部バス、31 制御部、32 主記憶部、33 外部記憶部、34 操作部、35 表示部、36 送受信部、39 制御プログラム、100 航空機位置測定システム。 1, 4 aircraft, 2, 2a to 2i receiving stations, 3 reference stations, 5 positioning satellites, 6a, 6b interference waves/interference waves, etc., 7 shields, etc., 8 positioning processing device, 10 GNSS receiving unit, 11 local clock unit, 12 down converter, 13 reception processing unit, 14 transmission unit, 15, 16 antennas, 17 reception unit, 18 hybrid TDOA processing unit, 19 positioning tracking processing unit, 20 storage unit, 21 clock counter, 30 internal bus, 31 control unit, 32 main storage unit, 33 external storage unit, 34 operation unit, 35 display unit, 36 transmission/reception unit, 39 control program, 100 aircraft position measurement system.

Claims (8)

監視対象の第1航空機から送信される前記第1航空機の識別情報を含む第1信号と、第2航空機から送信される前記第2航空機の識別情報および位置情報を含む第2信号とを受信し、クロックカウンタを有する第2信号受信局と、
前記第1信号と、基準局から送信される基準信号とを受信し、前記クロックカウンタを有する基準信号受信局と、
前記第1信号と、測位衛星から送信される測位信号とを受信し、前記測位信号に基づく時刻信号を生成し、前記クロックカウンタを有する測位信号受信局と、
前記第2信号、前記基準信号および前記測位信号の中で少なくとも2種類の信号を受信する1個または複数個の複数信号受信局であって、前記第2信号、前記基準信号および前記測位信号の3種類の信号の各々が何れかの前記複数信号受信局で受信されるように受信する信号の種類が決められている前記複数信号受信局と、
前記第2信号受信局、前記基準信号受信局、前記測位信号受信局の何れかである第1信号受信局および前記複数信号受信局の各々と通信可能であり、前記第1航空機の位置を測定する測位処理装置とを備え、
前記第1信号、前記第2信号および前記基準信号の何れかの信号を受信したか、または前記時刻信号を生成した前記第1信号受信局および前記複数信号受信局の各々は、受信あるいは生成した信号の種類と、前記第2信号を受信した場合は前記第2信号に含まれる前記第2航空機の位置情報と、信号を受信あるいは生成した時点での前記クロックカウンタのカウンタ値と、前記第1信号受信局および前記複数信号受信局の各々を識別する情報とを含む時刻カウンタ情報を前記測位処理装置に送信し、
前記測位処理装置は、
前記第1信号受信局および前記複数信号受信局の各々から送信される前記時刻カウンタ情報を受信する受信部と、
前記基準局、前記第1信号受信局および前記複数信号受信局の各々の位置を記憶する位置情報記憶部と、
同じ前記第2信号を受信した前記第2信号受信局および前記複数信号受信局の各々が送信する前記時刻カウンタ情報に含まれる前記カウンタ値および前記第2航空機の位置情報と、前記第2信号受信局および前記複数信号受信局の位置とに基づき、前記第2信号受信局および前記複数信号受信局の各々が有する前記クロックカウンタの間の、前記第2航空機が前記第2信号を送信した時点での前記カウンタ値の差を表すオフセット量を計算する第2信号受信局間オフセット量計算部と、
同じ前記基準信号を受信した前記基準信号受信局および前記複数信号受信局の各々が送信する前記時刻カウンタ情報に含まれる前記カウンタ値と、前記基準局、前記基準信号受信局および前記複数信号受信局の位置とに基づき、前記基準信号受信局および前記複数信号受信局の各々が有する前記クロックカウンタの間の、前記基準局が前記基準信号を送信した時点での前記オフセット量を計算する基準信号受信局間オフセット量計算部と、
同じ前記時刻信号を生成した前記測位信号受信局および前記複数信号受信局の各々が送信する前記時刻カウンタ情報に含まれる前記カウンタ値に基づき、前記測位信号受信局および前記複数信号受信局の各々が有する前記クロックカウンタの間の、前記時刻信号を生成した時点での前記オフセット量を計算する測位信号受信局間オフセット量計算部と、
同じ前記第1信号を受信した異なる2個の前記第1信号受信局の組ごとに、前記第1信号を受信した際に前記第1信号受信局が送信した前記時刻カウンタ情報に含まれる前記カウンタ値と、2個の前記第1信号受信局が有する前記クロックカウンタの間の前記オフセット量とに基づき、2個の前記第1信号受信局が同じ前記第1信号を受信した時刻の差である時間差を、決められた組数に対して計算する時間差計算部と、
前記時間差と前記第1信号受信局の位置とに基づき前記第1航空機の位置を計算する航空機位置測定部とを有する、航空機位置測定システム。
receiving a first signal transmitted from a first aircraft to be monitored containing identification information of said first aircraft and a second signal transmitted from a second aircraft containing identification information and location information of said second aircraft; , a second signal receiving station having a clock counter;
a reference signal receiving station that receives the first signal and a reference signal transmitted from a reference station and has the clock counter;
a positioning signal receiving station that receives the first signal and a positioning signal transmitted from a positioning satellite, generates a time signal based on the positioning signal, and has the clock counter;
one or more multi-signal receiving stations that receive at least two kinds of signals among the second signal, the reference signal and the positioning signal, wherein the second signal, the reference signal and the positioning signal are received; a plurality of signal receiving stations in which types of signals to be received are determined such that each of three types of signals is received by any one of the plurality of signal receiving stations;
capable of communicating with each of the first signal receiving station, which is one of the second signal receiving station, the reference signal receiving station, and the positioning signal receiving station, and the plurality of signal receiving stations, and measuring the position of the first aircraft; and a positioning processing device for
Each of the first signal receiving station and the plurality of signal receiving stations that received any one of the first signal, the second signal, and the reference signal or generated the time signal received or generated the type of the signal; the position information of the second aircraft included in the second signal when the second signal is received; the counter value of the clock counter at the time the signal was received or generated; transmitting time counter information including information identifying each of the signal receiving station and the plurality of signal receiving stations to the positioning processing device;
The positioning processing device is
a receiver that receives the time counter information transmitted from each of the first signal receiving station and the plurality of signal receiving stations;
a position information storage unit that stores positions of each of the reference station, the first signal receiving station, and the plurality of signal receiving stations;
the counter value and position information of the second aircraft included in the time counter information transmitted by each of the second signal receiving station and the plurality of signal receiving stations that have received the same second signal; and the reception of the second signal. station and the positions of the multiple signal receiving stations, between the clock counters of each of the second signal receiving station and the multiple signal receiving stations at the time the second aircraft transmits the second signal. A second signal receiving inter-station offset amount calculating unit that calculates an offset amount representing the difference between the counter values of
the counter value included in the time counter information transmitted by each of the reference signal receiving station and the plurality of signal receiving stations that have received the same reference signal; between the reference signal receiving stations for calculating the offset amount between the clock counters of each of the reference signal receiving station and the plurality of signal receiving stations at the time when the reference station transmits the reference signal, based on the positions of the reference signal receiving stations. an offset amount calculator;
Based on the counter value included in the time counter information transmitted by each of the positioning signal receiving station and the plurality of signal receiving stations that generated the same time signal, each of the positioning signal receiving station and the plurality of signal receiving stations a positioning signal receiving station offset calculation unit that calculates the offset between the clock counters at the time of generating the time signal;
The counter included in the time counter information transmitted by the first signal receiving station when receiving the first signal for each set of two different first signal receiving stations that received the same first signal. and the offset amount between the clock counters of the two first signal receiving stations, the difference between the times when the two first signal receiving stations receive the same first signal. a time difference calculator that calculates the time difference for a predetermined number of sets;
an aircraft position determination component that calculates the position of the first aircraft based on the time difference and the position of the first signal receiving station.
前記第2信号はADS-B信号であり、
前記第2信号受信局は、前記ADS-B信号の立ち上がりを検出した時点を、前記第2信号を受信した時点とし、
前記第2信号受信局間オフセット量計算部は、前記第2信号に含まれる前記第2航空機の前記位置情報と、前記位置情報記憶部に記憶された前記第2信号受信局および前記複数信号受信局の位置とに基づき、前記第2航空機から送信された前記第2信号が前記第2信号受信局または前記複数信号受信局の各々で受信されるまでの時間である到来時間を前記第2信号受信局または前記複数信号受信局ごとに計算し、前記時刻カウンタ情報に含まれる前記カウンタ値の差と前記到来時間に基づき前記オフセット量を計算する、請求項1に記載の航空機位置測定システム。
the second signal is an ADS-B signal;
The second signal receiving station regards the point of time when the rising edge of the ADS-B signal is detected as the point of time when the second signal is received,
The second signal receiving station offset amount calculating unit calculates the position information of the second aircraft included in the second signal, the second signal receiving station stored in the position information storage unit, and the multiple signal receiving station. a time of arrival of said second signal, which is the time it takes for said second signal transmitted from said second aircraft to be received at each of said second signal receiving station or said plurality of signal receiving stations, based on the location of said second signal; 2. The aircraft positioning system according to claim 1, wherein said offset amount is calculated for each receiving station or said plurality of signal receiving stations, and based on the difference between said counter values included in said time counter information and said arrival time.
前記時間差計算部は、前記基準信号受信局を前記測位信号受信局よりも優先し、前記測位信号受信局を前記第2信号受信局よりも優先して、決められた組数の前記時間差を計算する、請求項1または請求項2に記載の航空機位置測定システム。 The time difference calculator calculates a predetermined number of sets of the time differences, giving priority to the reference signal receiving station over the positioning signal receiving station and giving priority to the positioning signal receiving station over the second signal receiving station. 3. An aircraft positioning system according to claim 1 or claim 2, wherein 監視対象の第1航空機から送信される前記第1航空機の識別情報を含む第1信号と、第2航空機から送信される前記第2航空機の識別情報および位置情報を含む第2信号とを受信し、クロックカウンタを有する第2信号受信局、前記第1信号と、基準局から送信される基準信号とを受信し、前記クロックカウンタを有する基準信号受信局、および前記第1信号と、測位衛星から送信される測位信号とを受信し、前記測位信号に基づく時刻信号を生成し、前記クロックカウンタを有する測位信号受信局の何れかである第1信号受信局、および前記第2信号、前記基準信号および前記測位信号の中で少なくとも2種類の信号を受信する1個または複数個の複数信号受信局であって、前記第2信号、前記基準信号および前記測位信号の3種類の信号の各々が何れかの前記複数信号受信局で受信されるように受信する信号の種類が決められている前記複数信号受信局の各々と通信可能であり、前記第1航空機の位置を測定する測位処理装置であって、
前記第1信号、前記第2信号および前記基準信号の何れかの信号を受信したか、または前記時刻信号を生成した前記第1信号受信局および前記複数信号受信局の各々が送信する、受信あるいは生成した信号の種類と、前記第2信号を受信した場合は前記第2信号に含まれる前記第2航空機の位置情報と、信号を受信あるいは生成した時点での前記クロックカウンタのカウンタ値と、前記第1信号受信局および前記複数信号受信局の各々を識別する情報とを含む時刻カウンタ情報を受信する受信部と、
前記基準局、前記第1信号受信局および前記複数信号受信局の各々の位置を記憶する位置情報記憶部と、
同じ前記第2信号を受信した前記第2信号受信局および前記複数信号受信局の各々が送信する前記時刻カウンタ情報に含まれる前記カウンタ値および前記第2航空機の位置情報と、前記第2信号受信局および前記複数信号受信局の位置とに基づき、前記第2信号受信局および前記複数信号受信局の各々が有する前記クロックカウンタの間の、前記第2航空機が前記第2信号を送信した時点での前記カウンタ値の差を表すオフセット量を計算する第2信号受信局間オフセット量計算部と、
同じ前記基準信号を受信した前記基準信号受信局および前記複数信号受信局の各々が送信する前記時刻カウンタ情報に含まれる前記カウンタ値と、前記基準局、前記基準信号受信局および前記複数信号受信局の位置とに基づき、前記基準信号受信局および前記複数信号受信局の各々が有する前記クロックカウンタの間の、前記基準局が前記基準信号を送信した時点での前記オフセット量を計算する基準信号受信局間オフセット量計算部と、
同じ前記時刻信号を生成した前記測位信号受信局および前記複数信号受信局の各々が送信する前記時刻カウンタ情報に含まれる前記カウンタ値に基づき、前記測位信号受信局および前記複数信号受信局の各々が有する前記クロックカウンタの間の、前記時刻信号を生成した時点での前記オフセット量を計算する測位信号受信局間オフセット量計算部と、
同じ前記第1信号を受信した異なる2個の前記第1信号受信局の組ごとに、前記第1信号を受信した際に前記第1信号受信局が送信した前記時刻カウンタ情報に含まれる前記カウンタ値と、2個の前記第1信号受信局が有する前記クロックカウンタの間の前記オフセット量とに基づき、2個の前記第1信号受信局が同じ前記第1信号を受信した時刻の差である時間差を、決められた組数に対して計算する時間差計算部と、
前記時間差と前記第1信号受信局の位置とに基づき前記第1航空機の位置を計算する航空機位置測定部とを備えた測位処理装置。
receiving a first signal transmitted from a first aircraft to be monitored containing identification information of said first aircraft and a second signal transmitted from a second aircraft containing identification information and location information of said second aircraft; a second signal receiving station having a clock counter; receiving the first signal and a reference signal transmitted from a reference station; a reference signal receiving station having the clock counter; and transmitting the first signal and the positioning satellite. a first signal receiving station which is any one of positioning signal receiving stations which receives a positioning signal, generates a time signal based on the positioning signal, and has the clock counter; and the second signal, the reference signal and One or more multiple signal receiving stations that receive at least two types of signals among the positioning signals, wherein each of the three types of signals of the second signal, the reference signal and the positioning signal is a positioning processing device capable of communicating with each of said plurality of signal receiving stations in which the types of signals to be received by said plurality of signal receiving stations are determined to be received by said plurality of signal receiving stations, and measuring the position of said first aircraft, ,
each of the first signal receiving station and the plurality of signal receiving stations that received any one of the first signal, the second signal, and the reference signal or generated the time signal transmits, receives, or the type of the generated signal; the positional information of the second aircraft included in the second signal when the second signal is received; the counter value of the clock counter at the time the signal was received or generated; a receiver for receiving time counter information including information identifying each of the first signal receiving station and the plurality of signal receiving stations;
a position information storage unit that stores positions of each of the reference station, the first signal receiving station, and the plurality of signal receiving stations;
the counter value and position information of the second aircraft included in the time counter information transmitted by each of the second signal receiving station and the plurality of signal receiving stations that have received the same second signal; and the reception of the second signal. station and the positions of the multiple signal receiving stations, between the clock counters of each of the second signal receiving station and the multiple signal receiving stations at the time the second aircraft transmits the second signal. A second signal receiving inter-station offset amount calculating unit that calculates an offset amount representing the difference between the counter values of
the counter value included in the time counter information transmitted by each of the reference signal receiving station and the plurality of signal receiving stations that have received the same reference signal; between the reference signal receiving stations for calculating the offset amount between the clock counters of each of the reference signal receiving station and the plurality of signal receiving stations at the time when the reference station transmits the reference signal, based on the positions of the reference signal receiving stations. an offset amount calculator;
Based on the counter value included in the time counter information transmitted by each of the positioning signal receiving station and the plurality of signal receiving stations that generated the same time signal, each of the positioning signal receiving station and the plurality of signal receiving stations a positioning signal receiving station offset calculation unit that calculates the offset between the clock counters at the time of generating the time signal;
The counter included in the time counter information transmitted by the first signal receiving station when receiving the first signal for each set of two different first signal receiving stations that received the same first signal. and the offset amount between the clock counters of the two first signal receiving stations, the difference between the times when the two first signal receiving stations receive the same first signal. a time difference calculator that calculates the time difference for a predetermined number of sets;
an aircraft position determination unit that calculates the position of the first aircraft based on the time difference and the position of the first signal receiving station.
前記第2信号はADS-B信号であり、
前記第2信号受信局は、前記ADS-B信号の立ち上がりを検出した時点を、前記第2信号を受信した時点とし、
前記第2信号受信局間オフセット量計算部は、前記第2信号に含まれる前記第2航空機の前記位置情報と、前記位置情報記憶部に記憶された前記第2信号受信局および前記複数信号受信局の位置とに基づき、前記第2航空機から送信された前記第2信号が前記第2信号受信局または前記複数信号受信局で受信されるまでの時間である到来時間を前記第2信号受信局または前記複数信号受信局ごとに計算し、前記時刻カウンタ情報に含まれる前記カウンタ値の差と前記到来時間に基づき前記オフセット量を計算する、請求項4に記載の測位処理装置。
the second signal is an ADS-B signal;
The second signal receiving station regards the point of time when the rising edge of the ADS-B signal is detected as the point of time when the second signal is received,
The second signal receiving station offset amount calculating unit calculates the position information of the second aircraft included in the second signal, the second signal receiving station stored in the position information storage unit, and the multiple signal receiving station. a time of arrival, which is the time it takes for the second signal transmitted from the second aircraft to be received at the second signal receiving station or the plurality of signal receiving stations, based on the location of the second signal receiving station; 5. The positioning processing apparatus according to claim 4, wherein said offset amount is calculated for each of said plurality of signal receiving stations, and said offset amount is calculated based on said arrival time and the difference between said counter values included in said time counter information.
前記時間差計算部は、前記基準信号受信局を前記測位信号受信局よりも優先し、前記測位信号受信局を前記第2信号受信局よりも優先して、決められた組数の前記時間差を計算する、請求項4または請求項5に記載の測位処理装置。 The time difference calculator calculates a predetermined number of sets of the time differences, giving priority to the reference signal receiving station over the positioning signal receiving station and giving priority to the positioning signal receiving station over the second signal receiving station. The positioning processing device according to claim 4 or 5, wherein 監視対象の第1航空機から送信される前記第1航空機の識別情報を含む第1信号と、第2航空機から送信される前記第2航空機の識別情報および位置情報を含む第2信号とを受信し、クロックカウンタを有する第2信号受信局、前記第1信号と、基準局から送信される基準信号とを受信し、前記クロックカウンタを有する基準信号受信局、前記第1信号と、測位衛星から送信される測位信号とを受信し、前記測位信号に基づく時刻信号を生成し、前記クロックカウンタを有する測位信号受信局、および前記第2信号、前記基準信号および前記測位信号の中で少なくとも2種類の信号を受信する1個または複数個の複数信号受信局であって、前記第2信号、前記基準信号および前記測位信号の3種類の信号の各々が何れかの前記複数信号受信局で受信されるように受信する信号の種類が決められている前記複数信号受信局の位置を記憶するステップと、
前記第2信号受信局と、前記第2信号を受信する前記複数信号受信局とが前記第2信号を受信するステップと、
前記第2信号を受信した前記第2信号受信局および前記複数信号受信局の各々が、前記第2信号を表す信号の種類と、前記第2航空機の位置情報と、前記第2信号を受信した時点での前記クロックカウンタのカウンタ値と、前記第2信号受信局および前記複数信号受信局の各々を識別する情報とを含む時刻カウンタ情報を、前記第1航空機の位置を測定する測位処理装置に送信するステップと、
前記第2信号を受信した前記第2信号受信局および前記複数信号受信局の各々が送信する前記時刻カウンタ情報を前記測位処理装置が受信するステップと、
同じ前記第2信号を受信した前記第2信号受信局および前記複数信号受信局の各々が送信する前記時刻カウンタ情報に含まれる前記カウンタ値および前記第2航空機の位置情報と、前記第2信号受信局および前記複数信号受信局の位置とに基づき、前記第2信号受信局および前記複数信号受信局の各々が有するクロックカウンタの間の、前記第2航空機が前記第2信号を送信した時点での前記カウンタ値の差を表すオフセット量を計算するステップと、
前記基準信号受信局と、前記基準信号を受信する前記複数信号受信局とが前記基準信号を受信するステップと、
前記基準信号を受信した前記基準信号受信局および前記複数信号受信局の各々が、前記基準信号を表す信号の種類と、前記基準信号を受信した時点での前記カウンタ値と、前記基準信号受信局および前記複数信号受信局の各々を識別する情報とを含む前記時刻カウンタ情報を、前記測位処理装置に送信するステップと、
前記基準信号を受信した前記基準信号受信局と前記複数信号受信局とが送信する前記時刻カウンタ情報を前記測位処理装置が受信するステップと、
同じ前記基準信号を受信した前記基準信号受信局および前記複数信号受信局の各々が送信する前記時刻カウンタ情報に含まれる前記カウンタ値と、前記基準局、前記基準信号受信局および前記複数信号受信局の位置とに基づき、前記基準信号受信局および前記複数信号受信局の各々が有する前記クロックカウンタの間の、前記基準局が前記基準信号を送信した時点での前記オフセット量を計算するステップと、
前記測位信号受信局と、前記測位信号を受信する前記複数信号受信局とが、前記測位衛星からの前記測位信号を受信し、前記時刻信号を生成するステップと、
前記時刻信号を生成した前記測位信号受信局および前記複数信号受信局の各々が、前記時刻信号を表す信号の種類と、前記時刻信号を受信した時点での前記カウンタ値と、前記測位信号受信局および前記複数信号受信局の各々を識別する情報とを含む前記時刻カウンタ情報を、前記測位処理装置に送信するステップと、
同じ前記時刻信号を生成した前記測位信号受信局および前記複数信号受信局の各々が送信する前記時刻カウンタ情報に含まれる前記カウンタ値に基づき、前記測位信号受信局および前記複数信号受信局の各々が有する前記クロックカウンタの間の、前記時刻信号を生成した時点での前記オフセット量を計算するステップと、
各々が前記第2信号受信局、前記基準信号受信局、前記測位信号受信局の何れかである複数の第1信号受信局のうち、同じ前記第1信号を受信した異なる2個の前記第1信号受信局の組ごとに、前記第1信号を受信した際に前記第1信号受信局が送信した前記時刻カウンタ情報に含まれる前記カウンタ値と、2個の前記第1信号受信局が有する前記クロックカウンタの間の前記オフセット量とに基づき、2個の前記第1信号受信局が同じ前記第1信号を受信した時刻の差である時間差を、決められた組数に対して計算するステップと、
前記時間差と前記第1信号受信局の位置とに基づき前記第1航空機の位置を計算するステップとを有する、航空機位置測定方法。
receiving a first signal transmitted from a first aircraft to be monitored containing identification information of said first aircraft and a second signal transmitted from a second aircraft containing identification information and location information of said second aircraft; a second signal receiving station having a clock counter; receiving the first signal and a reference signal transmitted from a reference station; a reference signal receiving station having the clock counter; a positioning signal receiving station that receives a positioning signal from the positioning signal, generates a time signal based on the positioning signal, and has the clock counter; and at least two signals among the second signal, the reference signal, and the positioning signal. wherein each of the three types of signals, the second signal, the reference signal and the positioning signal, is received by any of the multiple signal receiving stations storing the locations of the plurality of signal receiving stations whose types of signals to be received are determined in
receiving the second signal by the second signal receiving station and the multiple signal receiving stations receiving the second signal;
Each of the second signal receiving station that received the second signal and the plurality of signal receiving stations received the type of signal representing the second signal, location information of the second aircraft, and the second signal. Time counter information including the counter value of the clock counter at the time and information identifying each of the second signal receiving station and the plurality of signal receiving stations is sent to a positioning processing device for measuring the position of the first aircraft. a step of sending;
a step in which the positioning processing device receives the time counter information transmitted by each of the second signal receiving station and the plurality of signal receiving stations that have received the second signal;
the counter value and position information of the second aircraft included in the time counter information transmitted by each of the second signal receiving station and the plurality of signal receiving stations that have received the same second signal; and the reception of the second signal. station and the position of the multiple signal receiving station, between the clock counters of each of the second signal receiving station and the multiple signal receiving station at the time the second aircraft transmits the second signal. calculating an offset amount representing the difference between the counter values;
receiving the reference signal by the reference signal receiving station and the multiple signal receiving stations receiving the reference signal;
Each of the reference signal receiving station that has received the reference signal and the plurality of signal receiving stations has the type of signal representing the reference signal, the counter value at the time of receiving the reference signal, and the reference signal receiving station. and information identifying each of the plurality of signal receiving stations to the positioning processing device;
a step in which the positioning processing device receives the time counter information transmitted by the reference signal receiving station that received the reference signal and the multiple signal receiving station;
the counter value included in the time counter information transmitted by each of the reference signal receiving station and the plurality of signal receiving stations that have received the same reference signal; calculating the offset between the clock counters of each of the reference signal receiving station and the plurality of signal receiving stations at the time when the reference station transmits the reference signal, based on the position;
a step in which the positioning signal receiving station and the plurality of signal receiving stations that receive the positioning signals receive the positioning signals from the positioning satellites and generate the time signals;
Each of the positioning signal receiving station that generated the time signal and the plurality of signal receiving stations has the type of signal representing the time signal, the counter value at the time of receiving the time signal, and the positioning signal receiving station. and information identifying each of the plurality of signal receiving stations to the positioning processing device;
Based on the counter value included in the time counter information transmitted by each of the positioning signal receiving station and the plurality of signal receiving stations that generated the same time signal, each of the positioning signal receiving station and the plurality of signal receiving stations calculating the offset between the clock counters at the time of generating the time signal;
Among a plurality of first signal receiving stations, each of which is one of the second signal receiving station, the reference signal receiving station, and the positioning signal receiving station, two different first signal receiving stations receiving the same first signal For each set of signal receiving stations, the counter value included in the time counter information transmitted by the first signal receiving station when receiving the first signal, and the counter value possessed by the two first signal receiving stations calculating a time difference, which is the difference between the times when two said first signal receiving stations received the same first signal, for a determined number of sets, based on said offset amount between clock counters; ,
calculating the position of the first aircraft based on the time difference and the position of the first signal receiving station.
監視対象の第1航空機から送信される前記第1航空機の識別情報を含む第1信号と、第2航空機から送信される前記第2航空機の識別情報および位置情報を含む第2信号とを受信し、クロックカウンタを有する第2信号受信局、前記第1信号と、基準局から送信される基準信号とを受信し、前記クロックカウンタを有する基準信号受信局、および前記第1信号と、測位衛星から送信される測位信号とを受信し、前記測位信号に基づく時刻信号を生成し、前記クロックカウンタを有する測位信号受信局の何れかである第1信号受信局、および前記第2信号、前記基準信号および前記測位信号の中で少なくとも2種類の信号を受信する1個または複数個の複数信号受信局であって、前記第2信号、前記基準信号および前記測位信号の3種類の信号の各々が何れかの前記複数信号受信局で受信されるように受信する信号の種類が決められている前記複数信号受信局の各々と通信可能なコンピュータを、
前記第1信号、前記第2信号および前記基準信号の何れかの信号を受信したか、または前記時刻信号を生成した前記第1信号受信局および前記複数信号受信局の各々が送信する、受信あるいは生成した信号の種類と、前記第2信号を受信した場合は前記第2信号に含まれる前記第2航空機の位置情報と、信号を受信あるいは生成した時点での前記クロックカウンタのカウンタ値と、前記第1信号受信局および前記複数信号受信局の各々を識別する情報とを含む時刻カウンタ情報を受信する受信部、
前記基準局、前記第1信号受信局および前記複数信号受信局の各々の位置を記憶する位置情報記憶部、
同じ前記第2信号を受信した前記第2信号受信局および前記複数信号受信局の各々が送信する前記時刻カウンタ情報に含まれる前記カウンタ値および前記第2航空機の位置情報と、前記第2信号受信局および前記複数信号受信局の位置とに基づき、前記第2信号受信局および前記複数信号受信局の各々が有する前記クロックカウンタの間の、前記第2航空機が前記第2信号を送信した時点での前記カウンタ値の差を表すオフセット量を計算する第2信号受信局間オフセット量計算部、
同じ前記基準信号を受信した前記基準信号受信局および前記複数信号受信局の各々が送信する前記時刻カウンタ情報に含まれる前記カウンタ値と、前記基準局、前記基準信号受信局および前記複数信号受信局の位置とに基づき、前記基準信号受信局および前記複数信号受信局の各々が有する前記クロックカウンタの間の、前記基準局が前記基準信号を送信した時点での前記オフセット量を計算する基準信号受信局間オフセット量計算部、
同じ前記時刻信号を生成した前記測位信号受信局および前記複数信号受信局の各々が送信する前記時刻カウンタ情報に含まれる前記カウンタ値に基づき、前記測位信号受信局および前記複数信号受信局の各々が有する前記クロックカウンタの間の、前記時刻信号を生成した時点での前記オフセット量を計算する測位信号受信局間オフセット量計算部、
同じ前記第1信号を受信した異なる2個の前記第1信号受信局の組ごとに、前記第1信号を受信した際に前記第1信号受信局が送信した前記時刻カウンタ情報に含まれる前記カウンタ値と、2個の前記第1信号受信局が有する前記クロックカウンタの間の前記オフセット量とに基づき、2個の前記第1信号受信局が同じ前記第1信号を受信した時刻の差である時間差を、決められた組数に対して計算する時間差計算部、
前記時間差と前記第1信号受信局の位置とに基づき前記第1航空機の位置を計算する航空機位置測定部、
として機能させる、プログラム。
receiving a first signal transmitted from a first aircraft to be monitored containing identification information of said first aircraft and a second signal transmitted from a second aircraft containing identification information and location information of said second aircraft; a second signal receiving station having a clock counter; receiving the first signal and a reference signal transmitted from a reference station; a reference signal receiving station having the clock counter; and transmitting the first signal and the positioning satellite. a first signal receiving station which is any one of positioning signal receiving stations which receives a positioning signal, generates a time signal based on the positioning signal, and has the clock counter; and the second signal, the reference signal and One or more multiple signal receiving stations that receive at least two types of signals among the positioning signals, wherein each of the three types of signals of the second signal, the reference signal and the positioning signal is a computer capable of communicating with each of said plurality of signal receiving stations in which the types of signals to be received are determined to be received by said plurality of signal receiving stations of
each of the first signal receiving station and the plurality of signal receiving stations that received any one of the first signal, the second signal, and the reference signal or generated the time signal transmits, receives, or the type of the generated signal; the positional information of the second aircraft included in the second signal when the second signal is received; the counter value of the clock counter at the time the signal was received or generated; a receiver for receiving time counter information including information identifying each of the first signal receiving station and the plurality of signal receiving stations;
a position information storage unit that stores positions of each of the reference station, the first signal receiving station, and the plurality of signal receiving stations;
the counter value and position information of the second aircraft included in the time counter information transmitted by each of the second signal receiving station and the plurality of signal receiving stations that have received the same second signal; and the reception of the second signal. station and the positions of the multiple signal receiving stations, between the clock counters of each of the second signal receiving station and the multiple signal receiving stations at the time the second aircraft transmits the second signal. A second signal receiving inter-station offset amount calculation unit that calculates an offset amount representing the difference between the counter values of
the counter value included in the time counter information transmitted by each of the reference signal receiving station and the plurality of signal receiving stations that have received the same reference signal; between the reference signal receiving stations for calculating the offset amount between the clock counters of each of the reference signal receiving station and the plurality of signal receiving stations at the time when the reference station transmits the reference signal, based on the positions of the reference signal receiving stations. an offset amount calculator,
Based on the counter value included in the time counter information transmitted by each of the positioning signal receiving station and the plurality of signal receiving stations that generated the same time signal, each of the positioning signal receiving station and the plurality of signal receiving stations a positioning signal receiving station offset amount calculation unit that calculates the offset amount between the clock counters at the time the time signal is generated;
The counter included in the time counter information transmitted by the first signal receiving station when receiving the first signal for each set of two different first signal receiving stations that received the same first signal. and the offset amount between the clock counters of the two first signal receiving stations, the difference between the times when the two first signal receiving stations receive the same first signal. a time difference calculator that calculates the time difference for a predetermined number of pairs;
an aircraft position measuring unit that calculates the position of the first aircraft based on the time difference and the position of the first signal receiving station;
A program that functions as
JP2021088467A 2021-05-26 2021-05-26 Aircraft position measurement system, positioning processing device, aircraft position measurement method and program Pending JP2022181484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021088467A JP2022181484A (en) 2021-05-26 2021-05-26 Aircraft position measurement system, positioning processing device, aircraft position measurement method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021088467A JP2022181484A (en) 2021-05-26 2021-05-26 Aircraft position measurement system, positioning processing device, aircraft position measurement method and program

Publications (1)

Publication Number Publication Date
JP2022181484A true JP2022181484A (en) 2022-12-08

Family

ID=84328801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021088467A Pending JP2022181484A (en) 2021-05-26 2021-05-26 Aircraft position measurement system, positioning processing device, aircraft position measurement method and program

Country Status (1)

Country Link
JP (1) JP2022181484A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12007487B1 (en) * 2020-12-31 2024-06-11 Waymo Llc Global positioning system time verification for autonomous vehicles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12007487B1 (en) * 2020-12-31 2024-06-11 Waymo Llc Global positioning system time verification for autonomous vehicles

Similar Documents

Publication Publication Date Title
US20200142025A1 (en) Observed time difference of arrival angle of arrival discriminator
US10595292B2 (en) Asynchronous wireless communication system
CN101606076B (en) Improvements in or relating to distance estimation
US7911385B2 (en) RF transmitter geolocation system and related methods
US6748224B1 (en) Local positioning system
JP5450081B2 (en) Method, software and system for determining the position of a user device
US20120106380A1 (en) System and method for high resolution indoor positioning using a narrowband rf transceiver
EP2000820A2 (en) Method and apparatus for determining an error estimate in a hybrid position determination system
EP3751305A2 (en) Method and apparatus for positioning with wireless signals
JP2008515351A (en) Method for locating a mobile terminal in a cellular radio system
CN105026951A (en) Acquisition channel geolocation
KR20020008201A (en) Improvements in radio positioning systems
US20140256352A1 (en) Method for measuring position of user terminal
US10935671B2 (en) Positioning method, assistant site, and system
CN107113762A (en) A kind of localization method, location-server and alignment system
US20060239391A1 (en) Evaluating base station timing in an asynchronous network
US20210088622A1 (en) Positioning, navigation, timing, ranging, or beacon transmission system apparatus which utilizes and exploits --- relayed, delayed, or virtual timing marker transmissions of gps, gps alternative, gnss, pnt, electronic, optic, acoustic, or similar signals
US20230067774A1 (en) Transmission receiver system apparatus utilizing relayed, delayed, or virtual timing marker transmissions of gps, gps, alternative, gnss, pnt, electronic, optic, acoustic, or similar signals for positioning, navigation, timing, ranging, or beacon purposes or applications
US20170205493A1 (en) Method for location determination using radio signals
KR20090066463A (en) Method and apparatus for supporting location based service in mobile communication system
JP2022181484A (en) Aircraft position measurement system, positioning processing device, aircraft position measurement method and program
EP3232220B1 (en) Method and device for estimating accuracy of a position determination
JP6663098B2 (en) Wave source position selection device, wave source position calculation device, wave source position selection method, wave source position calculation method, and program
RU2444748C2 (en) Method for determining distance to radiating antenna of surveillance radar
EP2327994A1 (en) Improvements in or relating to tracking radio signal sources

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240319