JP2022180935A - Solid-state battery and manufacturing method of solid-state battery - Google Patents

Solid-state battery and manufacturing method of solid-state battery Download PDF

Info

Publication number
JP2022180935A
JP2022180935A JP2021087701A JP2021087701A JP2022180935A JP 2022180935 A JP2022180935 A JP 2022180935A JP 2021087701 A JP2021087701 A JP 2021087701A JP 2021087701 A JP2021087701 A JP 2021087701A JP 2022180935 A JP2022180935 A JP 2022180935A
Authority
JP
Japan
Prior art keywords
electrode plate
bipolar electrode
solid
solid electrolyte
bipolar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021087701A
Other languages
Japanese (ja)
Inventor
重光 圷
Shigemitsu Akutsu
真二 藤本
Shinji Fujimoto
宜 鋤柄
Yoshi Sukigara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2021087701A priority Critical patent/JP2022180935A/en
Priority to US17/664,223 priority patent/US20220384802A1/en
Priority to CN202210564993.XA priority patent/CN115395070A/en
Publication of JP2022180935A publication Critical patent/JP2022180935A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • H01M10/044Small-sized flat cells or batteries for portable equipment with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • H01M10/0418Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • H01M10/281Large cells or batteries with stacks of plate-like electrodes
    • H01M10/282Large cells or batteries with stacks of plate-like electrodes with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0407Methods of deposition of the material by coating on an electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/029Bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a solid-state battery comprising a bipolar electrode plate, capable of reducing a lamination space factor of a solid electrolyte as well as reducing resistivity.SOLUTION: A solid-state battery comprises a lamination body formed by laminating a positive electrode plate, one or a plurality of bipolar electrode plates, and a negative electrode plate. In a lamination surface of the bipolar electrode plate, a solid electrolyte layer is formed. In at least one of an end surface of the bipolar electrode plate, the solid electrolyte layer is formed. The bipolar electrode plate is a plurality of bipolar electrode plates. In the end surface of each bipolar electrode plate, a concave part with the solid electrolyte layer and a convex part without the solid electrolyte layer are formed. It is preferable that the concave part and the convex part be alternately arranged between the adjacent bipolar electrode plates.SELECTED DRAWING: Figure 1

Description

本発明は、固体電池及び固体電池の製造方法に関する。 The present invention relates to a solid state battery and a method for manufacturing a solid state battery.

従来、高エネルギー密度を有する二次電池として、リチウムイオン二次電池が幅広く普及している。リチウムイオン二次電池は、正極と負極との間にセパレータを存在させ、液体の電解質を充填した構造を有する。 Conventionally, lithium ion secondary batteries have been widely used as secondary batteries having high energy density. A lithium ion secondary battery has a structure in which a separator is present between a positive electrode and a negative electrode and filled with a liquid electrolyte.

リチウムイオン二次電池の電解液は、通常、可燃性の有機溶媒であるため、特に、熱に対する安全性が問題となる場合があった。そこで、有機系の液体の電解質に代えて、無機系の固体電解質を用いた固体電池が提案されている。例えば、正極層、負極層、並びに、正極層及び負極層の間に配置される固体電解質層を有する積層体を備える固体電池に関する技術が提案されている(特許文献1参照)。 Since the electrolytic solution of the lithium ion secondary battery is usually a combustible organic solvent, there have been cases where the safety against heat has become a problem. Therefore, a solid battery using an inorganic solid electrolyte instead of an organic liquid electrolyte has been proposed. For example, there has been proposed a technique related to a solid battery including a laminate having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer (see Patent Document 1).

バイポーラ電極板を用いた固体電池においても、バイポーラ電極板間に固体電解質層が積層された構成がとられる。 A solid battery using bipolar electrode plates also has a structure in which a solid electrolyte layer is laminated between bipolar electrode plates.

特開2010-205479号公報JP 2010-205479 A

特許文献1に記載された固体電池は、各電極層の間に加圧成型されたシート状の固体電解質層が配置される。シート状の固体電解質層は強度を要するため、数十μm程度の厚みが必要となる。このため、固体電解質の積層占積率が高くなる点、及び電極間の距離増大により抵抗率が増大する点から改善の余地があった。 In the solid battery described in Patent Document 1, a sheet-like solid electrolyte layer pressure-molded is arranged between each electrode layer. Since the sheet-like solid electrolyte layer requires strength, a thickness of about several tens of μm is required. For this reason, there is room for improvement in that the lamination space factor of the solid electrolyte increases and the resistivity increases as the distance between the electrodes increases.

本発明は、上記に鑑みてなされたものであり、固体電解質の積層占積率を低減でき、かつ抵抗率を低減できる、バイポーラ電極板を備える固体電池を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a solid battery having a bipolar electrode plate that can reduce the lamination space factor of a solid electrolyte and reduce the resistivity.

(1) 本発明は、正極板と、1つ又は複数のバイポーラ電極板と、負極板とを積層させてなる積層体を含む固体電池であり、前記バイポーラ電極板の積層面には、固体電解質層が形成される、固体電池に関する。 (1) The present invention relates to a solid battery including a laminate obtained by laminating a positive electrode plate, one or more bipolar electrode plates, and a negative electrode plate, and a solid electrolyte is provided on the laminated surface of the bipolar electrode plate. It relates to a solid state battery in which layers are formed.

(1)の発明によれば、固体電解質の積層占積率を低減でき、かつ抵抗率を低減できる、バイポーラ電極板を備える固体電池を提供できる。 According to the invention of (1), it is possible to provide a solid battery including a bipolar electrode plate that can reduce the lamination space factor of the solid electrolyte and reduce the resistivity.

(2) 前記バイポーラ電極板の端面の少なくとも一部には、固体電解質層が形成される、(1)に記載の固体電池。 (2) The solid battery according to (1), wherein a solid electrolyte layer is formed on at least part of the end surface of the bipolar electrode plate.

(2)の発明によれば、バイポーラ電極板の端面同士の絶縁を確保できる。 According to the invention of (2), the insulation between the end surfaces of the bipolar electrode plates can be ensured.

(3) 前記バイポーラ電極板は複数のバイポーラ電極板であり、前記バイポーラ電極板の端面には、固体電解質層が形成される凹部と、固体電解質層が形成されない凸部と、が形成され、隣接する前記バイポーラ電極板間において、前記凹部と前記凸部とは互い違いに配置される、(1)又は(2)に記載の固体電池。 (3) The bipolar electrode plate is a plurality of bipolar electrode plates, and concave portions in which the solid electrolyte layer is formed and convex portions in which the solid electrolyte layer is not formed are formed on the end faces of the bipolar electrode plates. The solid-state battery according to (1) or (2), wherein the concave portions and the convex portions are alternately arranged between the bipolar electrode plates.

(3)の発明によれば、シート状の固体電解質層に代えて、電極板上に薄い固体電解質層を形成した場合においても、電極板間の絶縁を確保できる。 According to the invention of (3), even when a thin solid electrolyte layer is formed on the electrode plate instead of the sheet-like solid electrolyte layer, insulation between the electrode plates can be ensured.

(4) 前記正極板又は前記負極板に隣接して配置される前記バイポーラ電極板において、前記凹部は、前記正極板又は前記負極板から延出する電極タブに対応する位置に配置され、かつ前記電極タブの幅よりも広い、(3)に記載の固体電池。 (4) In the bipolar electrode plate arranged adjacent to the positive electrode plate or the negative electrode plate, the concave portion is arranged at a position corresponding to an electrode tab extending from the positive electrode plate or the negative electrode plate, and The solid-state battery according to (3), which is wider than the width of the electrode tabs.

(4)の発明によれば、バイポーラ電極板の端面と、正極板又は前記負極板から延出する電極タブとの間の絶縁を確保できると共に、正極板及び負極板上に固体電解質層を形成せずに積層体を構成できるため、固体電池の製造工程を簡略化できる。 According to the invention of (4), the insulation between the end face of the bipolar electrode plate and the electrode tab extending from the positive electrode plate or the negative electrode plate can be ensured, and the solid electrolyte layer is formed on the positive electrode plate and the negative electrode plate. Since the laminated body can be formed without the need for the solid-state battery, the manufacturing process of the solid-state battery can be simplified.

(5) 前記正極板及び前記負極板の積層面には、固体電解質層が形成される、(1)~(4)のいずれかに記載の固体電池。 (5) The solid battery according to any one of (1) to (4), wherein a solid electrolyte layer is formed on the laminated surfaces of the positive electrode plate and the negative electrode plate.

(5)の発明によれば、正極板及び負極板と、バイポーラ電極板の端面との間の絶縁を確保できる積層体を構成できる。 According to the invention of (5), it is possible to construct a laminate that can ensure insulation between the positive electrode plate, the negative electrode plate, and the end face of the bipolar electrode plate.

(6) 前記バイポーラ電極板は複数のバイポーラ電極板であり、隣接して配置される前記バイポーラ電極板の形状は、互いに鏡像関係にある、(1)~(5)のいずれかに記載の固体電池。 (6) The solid state according to any one of (1) to (5), wherein the bipolar electrode plate is a plurality of bipolar electrode plates, and the shapes of the bipolar electrode plates arranged adjacent to each other are mirror images of each other. battery.

(6)の発明によれば、バイポーラ電極板の形状を、バイポーラ電極板の端面同士の絶縁の確保に適した形状とすることができる。 According to the invention of (6), the shape of the bipolar electrode plate can be made suitable for ensuring insulation between the end surfaces of the bipolar electrode plate.

(7) また、本発明は、バイポーラ電極板の製造工程を含む固体電池の製造方法であって、前記バイポーラ電極板の製造工程は、集電板の一方の面に正極材を塗工し、他方の面に負極材を塗工する極材塗工工程と、電極材が塗工された前記集電板の一部に孔部を形成する穴あけ工程と、電極材が塗工された前記集電板に固体電解質を塗工する固体電解質塗工工程と、電極材が塗工された前記集電板を、前記孔部を含む切断線で切断することで、前記集電板の端縁に凹部が形成されるように前記集電板を切断する切断工程と、をこの順に備える、固体電池の製造方法に関する。 (7) The present invention also provides a method for manufacturing a solid-state battery including a step of manufacturing a bipolar electrode plate, wherein the manufacturing step of the bipolar electrode plate comprises coating one surface of a current collector plate with a positive electrode material, an electrode material coating step of coating the other surface with a negative electrode material; a hole drilling step of forming holes in a portion of the current collector coated with the electrode material; and the collector coated with the electrode material. A solid electrolyte coating step of coating a current plate with a solid electrolyte, and cutting the current collector plate coated with the electrode material along a cutting line including the hole, thereby and a cutting step of cutting the current collector plate so as to form a recess, in this order.

(7)の発明によれば、端面の少なくとも一部に固体電解質層が形成されるバイポーラ電極板を効率よく製造でき、固体電池の製造コストを低減できる。 According to the invention of (7), a bipolar electrode plate having a solid electrolyte layer formed on at least a part of the end face can be efficiently manufactured, and the manufacturing cost of the solid battery can be reduced.

(8) 前記バイポーラ電極板の製造工程において、前記穴あけ工程は、隣接する一列の前記孔部同士が互い違いになるように、前記孔部を形成する工程であり、互いに鏡像関係にある2種類の形状の前記バイポーラ電極板が製造される、(7)に記載の固体電池の製造方法。 (8) In the manufacturing process of the bipolar electrode plate, the drilling step is a step of forming the holes so that adjacent rows of the holes are staggered. The method for producing a solid state battery according to (7), wherein the shaped bipolar electrode plate is produced.

(8)の発明によれば、互いに鏡像関係にある2種類の形状の前記バイポーラ電極板を1枚のシート状集電板から製造できるため、固体電池の製造コストを低減できる。 According to the invention of (8), since the bipolar electrode plates having two different shapes which are mirror images of each other can be manufactured from one sheet-like collector plate, the manufacturing cost of the solid-state battery can be reduced.

本発明の第1実施形態に係る積層体の概要を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the outline|summary of the laminated body which concerns on 1st Embodiment of this invention. 図1のA-A線断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1; 図1のB-B線断面図である。FIG. 2 is a cross-sectional view taken along line BB of FIG. 1; 図1のC-C線断面図である。FIG. 2 is a sectional view taken along line CC of FIG. 1; 図1のD-D線断面図である。FIG. 2 is a cross-sectional view taken along line DD of FIG. 1; 本発明の第1実施形態に係るバイポーラ電極板の概要を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the outline|summary of the bipolar electrode plate which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るバイポーラ電極板の概要を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the outline|summary of the bipolar electrode plate which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る積層体の概要を示す図である。It is a figure which shows the outline|summary of the laminated body which concerns on 2nd Embodiment of this invention. 図5のA-A線断面図である。FIG. 6 is a cross-sectional view taken along line AA of FIG. 5; 図5のB-B線断面図である。FIG. 6 is a cross-sectional view taken along line BB of FIG. 5; 図5のC-C線断面図である。6 is a cross-sectional view taken along line CC of FIG. 5; FIG. 図5のD-D線断面図である。FIG. 6 is a cross-sectional view taken along line DD of FIG. 5; 本発明の第2実施形態に係るバイポーラ電極板の概要を示す図である。FIG. 5 is a diagram showing an outline of a bipolar electrode plate according to a second embodiment of the invention; 本発明の第2実施形態に係るバイポーラ電極板の概要を示す図である。FIG. 5 is a diagram showing an outline of a bipolar electrode plate according to a second embodiment of the invention; 本発明の第1実施形態に係るバイポーラ電極板の製造工程を示す図である。It is a figure which shows the manufacturing process of the bipolar electrode plate which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る固体電池用電極の製造工程を示す図である。It is a figure which shows the manufacturing process of the electrode for solid batteries which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るバイポーラ電極板の製造工程を示す図である。It is a figure which shows the manufacturing process of the bipolar electrode plate which concerns on 2nd Embodiment of this invention. 本発明の第1実施形態に係る固体電池の製造工程を示すフロー図である。FIG. 2 is a flow diagram showing manufacturing steps of the solid-state battery according to the first embodiment of the present invention; 本発明の第2実施形態に係る固体電池の製造工程を示すフロー図である。FIG. 5 is a flow diagram showing manufacturing steps of a solid-state battery according to a second embodiment of the present invention;

《第1実施形態》
<固体電池>
本実施形態に係る固体電池は、正極板と、バイポーラ電極板と、負極板とを積層させてなる積層体を含む。積層体は外装体に収容され、正極板及び負極板は、それぞれ正極及び負極に対して電気的に接続される。
<<1st Embodiment>>
<Solid battery>
A solid battery according to this embodiment includes a laminate formed by laminating a positive electrode plate, a bipolar electrode plate, and a negative electrode plate. The laminate is housed in an exterior body, and the positive electrode plate and the negative electrode plate are electrically connected to the positive electrode and the negative electrode, respectively.

[積層体]
本実施形態に係る積層体1は、図1及び図2A~図2Dに示すように、積層両端部に正極板20と、負極板30とが配置され、正極板20と負極板30との間に、2種類のバイポーラ電極板50a及び50bが交互に積層された構成を有する。
[Laminate]
As shown in FIGS. 1 and 2A to 2D, the laminate 1 according to the present embodiment has a positive electrode plate 20 and a negative electrode plate 30 arranged at both ends of the laminate, and between the positive electrode plate 20 and the negative electrode plate 30 In addition, two types of bipolar electrode plates 50a and 50b are alternately laminated.

(正極板)
正極板20は、図2A~図2Dに示すように、正極集電板21と、正極集電板21上に形成された正極活物質を含む正極活物質層22と、正極活物質層22上に形成された固体電解質を含む固体電解質層40と、正極集電板21が延出して形成される正極タブ211と、を有する。
(Positive plate)
As shown in FIGS. 2A to 2D, the positive electrode plate 20 includes a positive electrode collector plate 21, a positive electrode active material layer 22 containing a positive electrode active material formed on the positive electrode collector plate 21, and a positive electrode active material layer 22 on the positive electrode active material layer 22. and a positive electrode tab 211 formed by extending the positive electrode collector plate 21 .

正極集電板21は、特に限定されるものではなく、固体電池の正極に用いうる公知の集電物質により構成される。例えば、アルミニウム、アルミニウム合金、ステンレス、ニッケル、鉄、チタン等により構成される。 The positive electrode current collecting plate 21 is not particularly limited, and is made of a known current collecting material that can be used for the positive electrode of a solid battery. For example, it is made of aluminum, aluminum alloy, stainless steel, nickel, iron, titanium, or the like.

正極活物質層22を構成する正極活物質としては、特に限定されず、リチウムイオン等の電荷移動媒体を吸蔵及び放出することができる公知の材料を適宜選択して用いることができる。例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、異種元素置換Li-Mnスピネル、リン酸金属リチウム、硫化リチウム、硫黄等が挙げられる。具体的には、LiCoO、Li(Ni5/10Co2/10Mn3/10)O2、Li(Ni6/10Co2/10Mn2/10)O2、Li(Ni8/10Co1/10Mn1/10)O2、Li(Ni0.8Co0.15Al0.05)O2、Li(Ni1/6Co4/6Mn1/6)O2、Li(Ni1/3Co1/3Mn1/3)O2、LiCoO、LiMn、LiNiO、LiFePO等が挙げられる。正極活物質層22には、正極活物質以外に、任意に、導電助剤や結着剤等が含まれていてもよい。 The positive electrode active material forming the positive electrode active material layer 22 is not particularly limited, and a known material capable of intercalating and deintercalating a charge transfer medium such as lithium ions can be appropriately selected and used. Examples thereof include lithium cobaltate, lithium nickelate, lithium manganate, Li—Mn spinel substituted with a different element, lithium metal phosphate, lithium sulfide, and sulfur. Specifically, LiCoO 2 , Li(Ni 5/10 Co 2/10 Mn 3/10 )O 2 , Li(Ni 6/10 Co 2/10 Mn 2/10 )O 2 , Li(Ni 8/10 Co1 /10Mn1 /10 ) O2 , Li( Ni0.8Co0.15Al0.05 )O2 , Li(Ni1 /6Co4 / 6Mn1 /6 )O2 , Li( Ni 1/3 Co 1/3 Mn 1/3 )O 2 , LiCoO 4 , LiMn 2 O 4 , LiNiO 2 , LiFePO 4 and the like. The positive electrode active material layer 22 may optionally contain a conductive aid, a binder, and the like in addition to the positive electrode active material.

(負極板)
負極板30は、図2A~図2Dに示すように、負極集電板31と、負極集電板上に形成された負極活物質を含む負極活物質層32と、負極活物質層32上に形成された固体電解質を含む固体電解質層40と、負極集電板31が延出して形成される負極タブ311と、を有する。
(negative plate)
As shown in FIGS. 2A to 2D, the negative electrode plate 30 includes a negative current collector 31, a negative active material layer 32 containing a negative active material formed on the negative current collector, and a negative active material layer 32 on the negative active material layer 32. It has a solid electrolyte layer 40 containing the formed solid electrolyte, and a negative electrode tab 311 formed by extending the negative electrode current collector plate 31 .

負極活物質層32を構成する負極活物質としては、特に限定されず、リチウムイオン等の電荷移動媒体を吸蔵及び放出することができる公知の材料を適宜選択して用いることができる。例えば、チタン酸リチウム等のリチウム遷移金属酸化物、TiO、Nb及びWO等の遷移金属酸化物、Si、SiO、金属硫化物、金属窒化物、並びに人工黒鉛、天然黒鉛、グラファイト、ソフトカーボン及びハードカーボン等の炭素材料、並びに金属リチウム、金属インジウム及びリチウム合金等が挙げられる。負極活物質層32には、負極活物質以外に、任意に、導電助剤や結着剤等が含まれていてもよい。 The negative electrode active material forming the negative electrode active material layer 32 is not particularly limited, and a known material capable of intercalating and deintercalating a charge transfer medium such as lithium ions can be appropriately selected and used. For example, lithium transition metal oxides such as lithium titanate, transition metal oxides such as TiO2 , Nb2O3 and WO3 , Si, SiO , metal sulfides, metal nitrides, as well as artificial graphite, natural graphite, graphite , carbon materials such as soft carbon and hard carbon, and metallic lithium, metallic indium and lithium alloys. The negative electrode active material layer 32 may optionally contain a conductive aid, a binder, and the like in addition to the negative electrode active material.

(バイポーラ電極板)
バイポーラ電極板50a及び50bは、図2A~図2Dに示すように、集電板51の一方の面に分極性電極の正極となる正極活物質層22が形成され、他方の面に分極性電極の負極となる負極活物質層32が形成されてなる電極板である。正極活物質層22及び負極活物質層32の構成は上記と同様の構成を採用できる。正極活物質層22上及び負極活物質層32上には固体電解質を含む固体電解質層40が形成される。集電板51としては、特に限定されないが、例えば、ステンレス鋼箔等が挙げられる。
(bipolar electrode plate)
As shown in FIGS. 2A to 2D, the bipolar electrode plates 50a and 50b have a positive electrode active material layer 22 formed on one surface of a collector plate 51 and a polarizable electrode on the other surface. This is an electrode plate formed with a negative electrode active material layer 32 that serves as the negative electrode of the . The configuration of the positive electrode active material layer 22 and the negative electrode active material layer 32 can employ the same configuration as described above. A solid electrolyte layer 40 containing a solid electrolyte is formed on the positive electrode active material layer 22 and the negative electrode active material layer 32 . The current collector plate 51 is not particularly limited, but examples thereof include stainless steel foil.

固体電解質層40は、正極板20、負極板30、並びにバイポーラ電極板50a及び50bの正極活物質層22及び負極活物質層32上に形成される数μm程度の厚みを有する層であり、固体又はゲル状の電解質である固体電解質材料を少なくとも含む層である。上記固体電解質材料を介して、正極活物質及び負極活物質の間の電荷移動を行うことができる。固体電解質層40に含まれる固体電解質材料としては、特に限定されないが、例えば、硫化物固体電解質材料、酸化物固体電解質材料、窒化物固体電解質材料、ハロゲン化物固体電解質材料等を用いることができる。 The solid electrolyte layer 40 is a layer having a thickness of about several μm formed on the positive electrode plate 20, the negative electrode plate 30, and the positive electrode active material layer 22 and the negative electrode active material layer 32 of the bipolar electrode plates 50a and 50b. Alternatively, it is a layer containing at least a solid electrolyte material that is a gel electrolyte. Charge transfer between the positive electrode active material and the negative electrode active material can be performed through the solid electrolyte material. The solid electrolyte material contained in the solid electrolyte layer 40 is not particularly limited, but for example, a sulfide solid electrolyte material, an oxide solid electrolyte material, a nitride solid electrolyte material, a halide solid electrolyte material, etc. can be used.

正極活物質層22及び負極活物質層32上に固体電解質層40が形成されることで、固体電解質層40の厚みを数μm程度とすることができるため、固体電解質の積層占積率を低減でき、かつ抵抗率を低減できる。また、以下に説明するバイポーラ電極の構成により、本実施形態に係る固体電池は薄層の固体電解質層を有しながら、電極間の絶縁を確保でき、更に製造工程や構造を簡略化できる利点を有する。 By forming the solid electrolyte layer 40 on the positive electrode active material layer 22 and the negative electrode active material layer 32, the thickness of the solid electrolyte layer 40 can be reduced to about several μm, thereby reducing the lamination space factor of the solid electrolyte. and the resistivity can be reduced. In addition, due to the configuration of the bipolar electrodes described below, the solid battery according to the present embodiment can ensure insulation between the electrodes while having a thin solid electrolyte layer, and has the advantage of simplifying the manufacturing process and structure. have.

バイポーラ電極板50a及び50bの構成を、それぞれ図3、図4に示す。図3、図4は、正極活物質層22が形成された積層面側から、それぞれバイポーラ電極板50a及び50bを視た図である。バイポーラ電極板50a及び50bの形状は、端面に凸部51a及び凹部52aが交互に形成された、互いに鏡像関係にある形状である。凸部51a端面には、固体電解質層40は形成されず、凹部52a端面には、固体電解質層40が形成される。積層体1においてバイポーラ電極板50a及び50bは、図2A~図2Dに示すように交互に積層される。バイポーラ電極板50a及び50bの積層数は、特に限定されず、バイポーラ電極板50a及び50bが交互に積層されていればよい。バイポーラ電極板を単に積層する場合、端面同士の絶縁の確保が問題となるが、上記構成を有するバイポーラ電極板50a及び50bが交互に積層されることにより、バイポーラ電極板50aと50bとの間の絶縁を確保できる。 The configurations of the bipolar electrode plates 50a and 50b are shown in FIGS. 3 and 4, respectively. 3 and 4 are diagrams of the bipolar electrode plates 50a and 50b, respectively, viewed from the lamination surface side on which the positive electrode active material layer 22 is formed. The shapes of the bipolar electrode plates 50a and 50b are mirror images of each other, with convex portions 51a and concave portions 52a alternately formed on the end faces. The solid electrolyte layer 40 is not formed on the end face of the projection 51a, and the solid electrolyte layer 40 is formed on the end face of the recess 52a. In the laminate 1, the bipolar electrode plates 50a and 50b are alternately laminated as shown in FIGS. 2A-2D. The number of stacked bipolar electrode plates 50a and 50b is not particularly limited as long as the bipolar electrode plates 50a and 50b are alternately stacked. When the bipolar electrode plates are simply stacked, securing insulation between the end surfaces becomes a problem. Insulation can be secured.

バイポーラ電極板50a及び50bの凸部51a及び凹部52aは、図1に示すように、積層方向から視て互い違いになるように配置されている。また、凹部52aの幅は、凸部51aよりも広い。これにより、図1、図2A、及び図2Dに示すように、バイポーラ電極板50a及び50bの凸部51a同士の間に、積層方向から視て絶縁距離L1aを確保でき、積層断面から視て絶縁距離L1bを確保できる。凹部52aの幅は、特に限定されないが、例えば正極タブ211、負極タブ311の幅T1よりも広くすることができ、凸部51aの幅は、例えば幅T1よりも狭くすることができる。 As shown in FIG. 1, the protrusions 51a and the recesses 52a of the bipolar electrode plates 50a and 50b are arranged alternately when viewed from the stacking direction. Further, the width of the concave portion 52a is wider than that of the convex portion 51a. As a result, as shown in FIGS. 1, 2A, and 2D, an insulation distance L1a can be secured between the protrusions 51a of the bipolar electrode plates 50a and 50b when viewed from the stacking direction, and insulation can be ensured when viewed from the stacking cross section. The distance L1b can be secured. The width of the concave portion 52a is not particularly limited, but can be, for example, wider than the width T1 of the positive electrode tab 211 and the negative electrode tab 311, and the width of the convex portion 51a can be, for example, narrower than the width T1.

バイポーラ電極板50a及び50bの端面には、凸部51a又は凹部52aが形成される。これにより、凹部52aと、正極板20及び負極板30の端面との間は絶縁が確保される。また、図2A、図2C、及び図2Dに示すように、正極板20及び負極板30における正極タブ211及び負極タブ311が配置されない端面と、凸部51aとの間には、積層断面から視て絶縁距離L2a及びL2bを確保できる。絶縁距離L2aは、凸部51aを、正極板20及び負極板30の端面よりも外周側に配置することにより確保される。 Protrusions 51a or recesses 52a are formed on end surfaces of the bipolar electrode plates 50a and 50b. This ensures insulation between the concave portion 52 a and the end surfaces of the positive electrode plate 20 and the negative electrode plate 30 . In addition, as shown in FIGS. 2A, 2C, and 2D, between the end surfaces of the positive electrode plate 20 and the negative electrode plate 30, on which the positive electrode tab 211 and the negative electrode tab 311 are not arranged, and the convex portion 51a, when viewed from the laminated cross section, can ensure the insulation distances L2a and L2b. The insulation distance L2a is ensured by arranging the convex portion 51a on the outer peripheral side of the end surfaces of the positive electrode plate 20 and the negative electrode plate 30 .

本実施形態において、正極板20及び負極板30に隣接してバイポーラ電極板50aが設けられる。正極タブ211及び負極タブ311には、図2A及び図2Cに示すように、積層面に、タブ延出方向に一定の長さを有する固体電解質層40が形成される。これにより、図1に示すように、正極タブ211及び負極タブ311と、バイポーラ電極板50aの凸部51aとの間に、積層方向から視て絶縁距離L3aを確保できる。更に、図2Aに示すように、正極タブ211と、バイポーラ電極板50bの凸部51aとの間に、積層断面から視て絶縁距離L3bを確保できる。同様に、図2Cに示すように、負極タブ311と、バイポーラ電極板50aの凸部51aとの間に、積層断面から視て絶縁距離L3cを確保できる。 In this embodiment, a bipolar electrode plate 50 a is provided adjacent to the positive plate 20 and the negative plate 30 . As shown in FIGS. 2A and 2C, the positive electrode tab 211 and the negative electrode tab 311 are formed with a solid electrolyte layer 40 having a certain length in the tab extending direction on the stacking surface. As a result, as shown in FIG. 1, an insulation distance L3a can be secured between the positive electrode tab 211, the negative electrode tab 311, and the convex portion 51a of the bipolar electrode plate 50a when viewed from the stacking direction. Furthermore, as shown in FIG. 2A, an insulation distance L3b can be secured between the positive electrode tab 211 and the convex portion 51a of the bipolar electrode plate 50b when viewed from the lamination cross section. Similarly, as shown in FIG. 2C, an insulation distance L3c can be secured between the negative electrode tab 311 and the convex portion 51a of the bipolar electrode plate 50a when viewed from the lamination cross section.

<固体電池の製造方法>
本実施形態に係る固体電池の製造方法は、図12に示すように、正極板製造工程S1と、バイポーラ電極板製造工程S2と、負極板製造工程S3と、積層工程S4と、加圧工程S5と、を有する。
<Method for manufacturing solid-state battery>
As shown in FIG. 12, the solid-state battery manufacturing method according to the present embodiment includes a positive electrode plate manufacturing step S1, a bipolar electrode plate manufacturing step S2, a negative electrode plate manufacturing step S3, a stacking step S4, and a pressurizing step S5. and have

正極板製造工程S1は、図12に示すように、極材塗工工程S11と、乾燥工程S12と、固体電解質塗工工程S13と、乾燥工程S14と、切断工程15と、をこの順に有する。 As shown in FIG. 12, the positive electrode plate manufacturing process S1 includes an electrode material coating process S11, a drying process S12, a solid electrolyte coating process S13, a drying process S14, and a cutting process 15 in this order.

極材塗工工程S11は、図10に示すように、シート状の正極集電板21の両面に正極活物質層22を形成する工程である。正極活物質層22を形成する方法は、特に限定されるものではないが、例えば、正極活物質を含む正極合材を調製し、正極合材を正極集電体上に塗布する方法が挙げられる。塗布する方法についても特に限定されるものではなく、例えば、ドクターブレード法、スプレー塗布、スクリーン印刷等が挙げられる。乾燥工程S12は塗布された正極合材を乾燥させる工程であり、乾燥方法としては特に限定されない。 The electrode material coating step S11 is, as shown in FIG. 10, a step of forming the positive electrode active material layers 22 on both sides of the sheet-like positive electrode current collector plate 21 . The method for forming the positive electrode active material layer 22 is not particularly limited, but for example, a method of preparing a positive electrode mixture containing a positive electrode active material and coating the positive electrode mixture on a positive electrode current collector can be mentioned. . The coating method is also not particularly limited, and examples thereof include a doctor blade method, spray coating, screen printing, and the like. The drying step S12 is a step of drying the applied positive electrode mixture, and the drying method is not particularly limited.

固体電解質塗工工程S13は、図10に示すように、両面に正極活物質層22が形成されたシート状の正極集電板21の両面に固体電解質層40を形成する工程である。固体電解質層40を形成する方法は特に限定されず、極材塗工工程S11と同様、ドクターブレード法、スプレー塗布、スクリーン印刷等により固体電解質を塗工する方法が挙げられる。乾燥工程S14は塗布された固体電解質層40を乾燥させる工程であり、乾燥方法としては特に限定されない。 The solid electrolyte coating step S13 is, as shown in FIG. 10, a step of forming the solid electrolyte layers 40 on both sides of the sheet-like positive current collector plate 21 having the positive electrode active material layers 22 formed on both sides. A method for forming the solid electrolyte layer 40 is not particularly limited, and examples thereof include a method of applying a solid electrolyte by a doctor blade method, spray coating, screen printing, or the like, as in the electrode material coating step S11. The drying step S14 is a step of drying the applied solid electrolyte layer 40, and the drying method is not particularly limited.

切断工程S15は、シート状の正極集電板21を所定の大きさに切断することで、正極タブ211を形成する工程である。 The cutting step S15 is a step of forming the positive electrode tab 211 by cutting the sheet-like positive electrode current collector plate 21 into a predetermined size.

バイポーラ電極板製造工程S2は、図12に示すように、極材塗工工程S21と、乾燥工程S22と、穴あけ工程S23と、固体電解質塗工工程S24と、乾燥工程S25と、切断工程26と、をこの順に有する。 As shown in FIG. 12, the bipolar electrode plate manufacturing process S2 includes an electrode material coating process S21, a drying process S22, a drilling process S23, a solid electrolyte coating process S24, a drying process S25, and a cutting process 26. , in that order.

極材塗工工程S21は、図9に示すように、シート状の集電板51の一方の面に正極活物質層22を形成し、他方の面に負極活物質層32を形成する工程である。具体的な方法としては、極材塗工工程S11及び極材塗工工程S31と同様の工程を採用できる。乾燥工程S22は塗布された正極合材及び負極合材を乾燥させる工程であり、乾燥方法としては特に限定されない。 In the electrode material coating step S21, as shown in FIG. 9, a positive electrode active material layer 22 is formed on one surface of a sheet-like collector plate 51, and a negative electrode active material layer 32 is formed on the other surface. be. As a specific method, the same steps as the pole material coating step S11 and the pole material coating step S31 can be adopted. The drying step S22 is a step of drying the applied positive electrode mixture and negative electrode mixture, and the drying method is not particularly limited.

穴あけ工程S23は、両面にそれぞれ正極活物質層22及び負極活物質層32が形成されたシート状の集電板51に孔部を形成する工程である。孔部を形成する方法としては特に限定されず、パンチング金型により穴あけ加工を行う方法、レーザー処理による方法等、従来公知の方法を用いることができる。穴あけ工程S23は、図9に示すように、隣接する一列の孔部同士が互い違いになるように、孔部を形成する工程であることが好ましい。これにより、1枚のシート状の集電板51から、鏡像関係にある2種類の形状を有するバイポーラ電極板50a及び50bを製造することができる。 The hole making step S23 is a step of forming holes in the sheet-like current collector plate 51 having the positive electrode active material layer 22 and the negative electrode active material layer 32 formed on both sides thereof. The method of forming the hole is not particularly limited, and conventionally known methods such as a method of punching with a punching die and a method of laser processing can be used. As shown in FIG. 9, the drilling step S23 is preferably a step of forming holes such that adjacent rows of holes are staggered. Thus, from one sheet-like collector plate 51, bipolar electrode plates 50a and 50b having two types of mirror-image shapes can be manufactured.

固体電解質塗工工程S24は、図9に示すように、両面にそれぞれ正極活物質層22及び負極活物質層32が形成され、孔部が形成されたシート状の集電板51の両面に固体電解質層40を形成する工程である。固体電解質層40を形成する方法は特に限定されず、極材塗工工程S11等と同様、ドクターブレード法、スプレー塗布、スクリーン印刷等により固体電解質を塗工する方法が挙げられる。孔部が形成された集電板51に対し、固体電解質を塗工することで、孔部の端面に固体電解質が回り込み、孔部の端面に対しても固体電解質層40を形成できる。乾燥工程S25は塗布された固体電解質層40を乾燥させる工程であり、乾燥方法としては特に限定されない。 In the solid electrolyte coating step S24, as shown in FIG. 9, a positive electrode active material layer 22 and a negative electrode active material layer 32 are formed on both sides of a sheet-like current collector plate 51 having holes formed therein. This is the step of forming the electrolyte layer 40 . The method of forming the solid electrolyte layer 40 is not particularly limited, and examples thereof include a method of applying a solid electrolyte by a doctor blade method, spray coating, screen printing, etc., as in the electrode material coating step S11 and the like. By applying a solid electrolyte to the current collecting plate 51 having the holes, the solid electrolyte flows around the end faces of the holes, and the solid electrolyte layer 40 can be formed also on the end faces of the holes. The drying step S25 is a step of drying the applied solid electrolyte layer 40, and the drying method is not particularly limited.

切断工程S26は、シート状の集電板51を、穴あけ工程S23により形成された孔部を含む切断線で切断することで、端面に凸部51a及び凹部52aが形成されたバイポーラ電極板50a及び50bを形成する工程である。 In the cutting step S26, the sheet-like current collector plate 51 is cut along a cutting line including the holes formed in the perforating step S23, thereby forming the bipolar electrode plate 50a and 50b is formed.

上記工程を有するバイポーラ電極板製造工程S2によれば、端面に凸部51a及び凹部52aが形成され、凹部52aの端面に固体電解質層40が形成されたバイポーラ電極板50a及び50bを製造することができる。即ち、シート状の集電板51を切断する前に、孔部の端面に固体電解質を塗工して端面の少なくとも一部に固体電解質層40が形成されたバイポーラ電極板50a及び50bを製造することができるため、バイポーラ電極板50a及び50bの生産効率の観点から好ましい。 According to the bipolar electrode plate manufacturing step S2 including the above steps, the bipolar electrode plates 50a and 50b having the convex portions 51a and the concave portions 52a formed on the end surfaces and the solid electrolyte layer 40 formed on the end surfaces of the concave portions 52a can be manufactured. can. That is, before cutting the sheet-like collector plate 51, the end faces of the holes are coated with a solid electrolyte to manufacture the bipolar electrode plates 50a and 50b in which the solid electrolyte layer 40 is formed on at least a part of the end faces. This is preferable from the viewpoint of production efficiency of the bipolar electrode plates 50a and 50b.

負極板製造工程S3は、図12に示すように、極材塗工工程S31と、乾燥工程S32と、固体電解質塗工工程S33と、乾燥工程S34と、切断工程35と、をこの順に有する。負極板製造工程S3は、極材塗工工程S31においてシート状の負極集電板31の両面に負極活物質層32を形成する工程であること以外は、正極板製造工程S1と同様の工程である。 As shown in FIG. 12, the negative electrode plate manufacturing process S3 includes, in this order, an electrode material coating process S31, a drying process S32, a solid electrolyte coating process S33, a drying process S34, and a cutting process . The negative electrode plate manufacturing step S3 is the same as the positive electrode plate manufacturing step S1 except that the negative electrode active material layers 32 are formed on both sides of the sheet-like negative electrode current collector plate 31 in the electrode material coating step S31. be.

積層工程S4は、正極板製造工程S1により製造された正極板20と、バイポーラ電極板製造工程S2により製造されたバイポーラ電極板50a及び50bと、負極板製造工程S3により製造された負極板30とを積層する工程である。積層工程S4において、バイポーラ電極板50a及び50bは交互に積層され、積層両端部に正極板20及び負極板30が配置される。 In the stacking step S4, the positive electrode plate 20 manufactured in the positive electrode plate manufacturing step S1, the bipolar electrode plates 50a and 50b manufactured in the bipolar electrode plate manufacturing step S2, and the negative electrode plate 30 manufactured in the negative electrode plate manufacturing step S3. is a step of laminating the In the stacking step S4, the bipolar electrode plates 50a and 50b are alternately stacked, and the positive electrode plate 20 and the negative electrode plate 30 are arranged at both ends of the stack.

加圧工程S5は、積層された正極板20、バイポーラ電極板50a及び50b、並びに負極板30をプレス機等で挟んで加圧することで一体化させる工程である。 The pressing step S5 is a step of sandwiching and pressurizing the laminated positive electrode plate 20, the bipolar electrode plates 50a and 50b, and the negative electrode plate 30 with a press or the like to integrate them.

以下、本発明の他の実施形態について説明する。上記で説明した構成と同様の構成については、説明を省略する場合がある。 Other embodiments of the present invention will be described below. Descriptions of configurations similar to those described above may be omitted.

《第2実施形態》
[積層体]
図5は、第2実施形態に係る固体電池の積層体1aの概要を示す図である。積層体1aは、図5及び図6A~図6Dに示すように、積層両端部に正極板20aと、負極板30aとが配置され、正極板20aと負極板30aとの間に、2種類のバイポーラ電極板50c及び50dが交互に積層された構成を有する。
<<Second embodiment>>
[Laminate]
FIG. 5 is a diagram showing an outline of a stack 1a of a solid-state battery according to the second embodiment. As shown in FIGS. 5 and 6A to 6D, the laminate 1a has a positive electrode plate 20a and a negative electrode plate 30a arranged at both ends of the laminate, and two types of electrodes are arranged between the positive electrode plate 20a and the negative electrode plate 30a. It has a configuration in which bipolar electrode plates 50c and 50d are alternately laminated.

本実施形態において、図6A~図6Dに示すように、正極板20a及び負極板30aの積層面には固体電解質層40が形成されない。従って、正極タブ211及び負極タブ311の表面にも固体電解質層は形成されていない。このため、積層体1aの製造工程を簡略化できる。一方で、積層体1aにおいては、正極タブ211及び負極タブ311と、隣接するバイポーラ電極板との間の絶縁を確保する必要がある。 In this embodiment, as shown in FIGS. 6A to 6D, the solid electrolyte layer 40 is not formed on the stacking surfaces of the positive electrode plate 20a and the negative electrode plate 30a. Therefore, no solid electrolyte layer is formed on the surfaces of the positive electrode tab 211 and the negative electrode tab 311, either. Therefore, the manufacturing process of the laminate 1a can be simplified. On the other hand, in the laminate 1a, it is necessary to ensure insulation between the positive electrode tab 211 and the negative electrode tab 311 and the adjacent bipolar electrode plates.

バイポーラ電極板50c及び50dの構成を、それぞれ図7、図8に示す。図7、図8は、正極活物質層22が形成された積層面側から、それぞれバイポーラ電極板50c及び50dを視た図である。バイポーラ電極板50c及び50dの形状は、端面に凸部51b及び凹部52bが交互に形成された、互いに鏡像関係にある形状である。凸部51bには、固体電解質層40は形成されず、凹部52bには、固体電解質層40が形成される。積層体1aにおいてバイポーラ電極板50c及び50dは、図6A~図6Dに示すように交互に積層される。 The configurations of the bipolar electrode plates 50c and 50d are shown in FIGS. 7 and 8, respectively. 7 and 8 are diagrams of the bipolar electrode plates 50c and 50d, respectively, viewed from the lamination surface side on which the positive electrode active material layer 22 is formed. The shape of the bipolar electrode plates 50c and 50d is a shape having a mirror image relationship with each other, in which convex portions 51b and concave portions 52b are alternately formed on the end faces. Solid electrolyte layer 40 is not formed in convex portion 51b, and solid electrolyte layer 40 is formed in concave portion 52b. In the laminate 1a, the bipolar electrode plates 50c and 50d are alternately laminated as shown in FIGS. 6A-6D.

本実施形態において、正極板20aに隣接して配置されるバイポーラ電極板は、バイポーラ電極板50cであり、負極板30aに隣接して配置されるバイポーラ電極板は、バイポーラ電極板50dである。このため、本実施形態におけるバイポーラ電極板の積層数は偶数である。 In this embodiment, the bipolar electrode plate arranged adjacent to the positive electrode plate 20a is the bipolar electrode plate 50c, and the bipolar electrode plate arranged adjacent to the negative electrode plate 30a is the bipolar electrode plate 50d. Therefore, the number of stacked bipolar electrode plates in this embodiment is an even number.

バイポーラ電極板50cの端面に形成される凹部52bは、図5及び図7に示すように、幅T1を有する正極タブ211に対応する位置に配置される。同様に、バイポーラ電極板50dの端面に形成される凹部52bは、図5及び図7に示すように、幅T1を有する負極タブ311に対応する位置に配置される。凹部52bは、正極タブ211及び負極タブ311の幅よりも広い凹部であり、端面に固体電解質層40が形成される。これにより、正極タブ211と隣接するバイポーラ電極板50cとの間の絶縁、及び負極タブ311と隣接するバイポーラ電極板50dとの間の絶縁を確保できる。 A concave portion 52b formed in the end face of the bipolar electrode plate 50c is arranged at a position corresponding to the positive electrode tab 211 having a width T1, as shown in FIGS. Similarly, the concave portion 52b formed in the end face of the bipolar electrode plate 50d is arranged at a position corresponding to the negative electrode tab 311 having the width T1, as shown in FIGS. The concave portion 52b is a concave portion wider than the width of the positive electrode tab 211 and the negative electrode tab 311, and the solid electrolyte layer 40 is formed on the end face. Thereby, insulation between the positive electrode tab 211 and the adjacent bipolar electrode plate 50c and insulation between the negative electrode tab 311 and the adjacent bipolar electrode plate 50d can be ensured.

図5、図6A、及び図6Dに示すように、バイポーラ電極板50c及び50dの凸部51a同士の間に、積層方向から視て絶縁距離L1cを確保でき、積層断面から視て絶縁距離L1bを確保できる。 As shown in FIGS. 5, 6A, and 6D, an insulation distance L1c can be secured between the protrusions 51a of the bipolar electrode plates 50c and 50d when viewed from the stacking direction, and an insulation distance L1b can be secured when viewed from the stacking cross section. can be secured.

図5A、及び図5Dに示すように、正極板20及び負極板30における正極タブ211及び負極タブ311が配置されない端面と、凸部51aとの間には、積層断面から視て絶縁距離L2a及びL2bを確保できる。 As shown in FIGS. 5A and 5D , an insulation distance L2a and an insulation distance L2a and a L2b can be secured.

図5に示すように、正極タブ211と、バイポーラ電極板50cの凸部51aとの間に、積層方向から視て絶縁距離L3dを確保できる。負極タブ311と、バイポーラ電極板50dの凸部51aと、についても同様である。更に、図6Aに示すように、正極タブ211と、バイポーラ電極板50dの凸部51aとの間に、積層断面から視て絶縁距離L3bを確保できる。同様に、図6Cに示すように、負極タブ311と、バイポーラ電極板50cの凸部51aとの間に、積層断面から視て絶縁距離L3cを確保できる。即ち、正極板20a及び負極板30aと隣接するバイポーラ電極板の正極タブ211及び負極タブ311に対応する位置には、端面に固体電解質層40が形成された凹部52bが設けられている。これにより、正極板20a及び負極板30aが固体電解質層40を有していなくても、各バイポーラ電極板の凸部51aとの間に絶縁距離L3b、L3c、及びL3dを確保できる。 As shown in FIG. 5, an insulation distance L3d can be secured between the positive electrode tab 211 and the convex portion 51a of the bipolar electrode plate 50c when viewed from the stacking direction. The same applies to the negative electrode tab 311 and the convex portion 51a of the bipolar electrode plate 50d. Furthermore, as shown in FIG. 6A, an insulation distance L3b can be secured between the positive electrode tab 211 and the convex portion 51a of the bipolar electrode plate 50d when viewed from the lamination cross section. Similarly, as shown in FIG. 6C, an insulation distance L3c can be secured between the negative electrode tab 311 and the convex portion 51a of the bipolar electrode plate 50c when viewed from the lamination cross section. That is, recesses 52b having solid electrolyte layers 40 formed on end faces are provided at positions corresponding to the positive electrode tabs 211 and negative electrode tabs 311 of the bipolar electrode plate adjacent to the positive electrode plate 20a and the negative electrode plate 30a. As a result, even if the positive electrode plate 20a and the negative electrode plate 30a do not have the solid electrolyte layer 40, the insulation distances L3b, L3c, and L3d can be secured between them and the protrusions 51a of the respective bipolar electrode plates.

<固体電池の製造方法>
本実施形態に係る固体電池の製造方法は、図13に示すように、正極板製造工程S1aと、バイポーラ電極板製造工程S2aと、負極板製造工程S3aと、積層工程S4と、加圧工程S5と、を有する。
<Method for manufacturing solid-state battery>
As shown in FIG. 13, the solid-state battery manufacturing method according to the present embodiment comprises a positive electrode plate manufacturing step S1a, a bipolar electrode plate manufacturing step S2a, a negative electrode plate manufacturing step S3a, a stacking step S4, and a pressurizing step S5. and have

正極板製造工程S1a及び負極板製造工程S3aは、固体電解質塗工工程S13及びS33と、乾燥工程S14及びS34と、を有していないこと以外は、正極板製造工程S1及び負極板製造工程S3と同様の工程である。 The positive electrode plate manufacturing step S1a and the negative electrode plate manufacturing step S3a are similar to the positive electrode plate manufacturing step S1 and the negative electrode plate manufacturing step S3 except that they do not include the solid electrolyte coating steps S13 and S33 and the drying steps S14 and S34. It is the same process as

バイポーラ電極板製造工程S2aは、図13に示すように、極材塗工工程S21と、乾燥工程S22と、穴あけ工程S23aと、固体電解質塗工工程S24と、乾燥工程S25と、切断工程26と、をこの順に有する。バイポーラ電極板製造工程S2aの各工程は、穴あけ工程S23aが異なる点以外はバイポーラ電極板製造工程S2と同様の工程である。 The bipolar electrode plate manufacturing step S2a includes, as shown in FIG. , in that order. Each step of the bipolar electrode plate manufacturing step S2a is the same as the bipolar electrode plate manufacturing step S2 except that the hole drilling step S23a is different.

穴あけ工程S23aは、図11に示すように、両面にそれぞれ正極活物質層22及び負極活物質層32が形成されたシート状の集電板51に孔部を形成する工程である。孔部を形成する方法としては、第1実施形態と同様の方法を採用できる。穴あけ工程S23aは、穴あけ工程S23と同様に、図11に示すように、隣接する一列の孔部同士が互い違いになるように、孔部を形成する工程であることが好ましい。これにより、1枚のシート状の集電板51から、鏡像関係にある2種類の形状を有するバイポーラ電極板50c及び50dを製造することができる。 As shown in FIG. 11, the hole making step S23a is a step of forming holes in the sheet-like current collector plate 51 having the positive electrode active material layer 22 and the negative electrode active material layer 32 formed on both sides thereof. As a method for forming the holes, the same method as in the first embodiment can be adopted. As in the drilling step S23, the drilling step S23a is preferably a step of forming holes such that adjacent rows of holes are staggered, as shown in FIG. Thereby, from one sheet-like collector plate 51, the bipolar electrode plates 50c and 50d having two kinds of mirror-image shapes can be manufactured.

穴あけ工程S23aは、1枚のシート状の集電板51から、シートの流れ方向に沿って2列のバイポーラ電極板を製造できるように、集電板51に孔部を形成する。2列のバイポーラ電極板は、隣り合うバイポーラ電極板同士が互いに鏡像関係にある形状となるように製造される。 In the perforating step S23a, holes are formed in the current collector plate 51 so that two rows of bipolar electrode plates can be manufactured from one sheet-like current collector plate 51 along the flow direction of the sheet. The two rows of bipolar plates are manufactured such that adjacent bipolar plates are mirror images of each other.

以上、本発明の好ましい実施形態について説明したが、本発明は上記の実施形態に限定されず、適宜変更を加えたものも本発明の範囲に含まれる。第1実施形態の固体電池の製造方法に係る、バイポーラ電極板製造工程S2の穴あけ工程S23を、図9を用いて説明し、第2実施形態の固体電池の製造方法に係る、バイポーラ電極板製造工程S2aの穴あけ工程S23aを、図11を用いて説明した。上記に限定されない。図9に示す穴あけ工程、及び図11に示す穴あけ工程は、それぞれ穴あけ工程S23、穴あけ工程S23aのいずれにも適用できる。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and the scope of the present invention includes those with appropriate modifications. The drilling step S23 of the bipolar electrode plate manufacturing step S2 according to the solid-state battery manufacturing method of the first embodiment will be described with reference to FIG. The drilling step S23a of the step S2a has been described with reference to FIG. Not limited to the above. The drilling process shown in FIG. 9 and the drilling process shown in FIG. 11 can be applied to both the drilling process S23 and the drilling process S23a, respectively.

1、1a、1b 積層体
20、20a、20b 正極板
211 正極タブ(電極タブ)
30、30a、30b 負極板
311 負極タブ(電極タブ)
40 固体電解質層
50a、50b、50c、50d バイポーラ電極板
51a、51b 凸部
52a、52b 凹部
1, 1a, 1b laminate 20, 20a, 20b positive electrode plate 211 positive electrode tab (electrode tab)
30, 30a, 30b negative electrode plate 311 negative electrode tab (electrode tab)
40 Solid electrolyte layer 50a, 50b, 50c, 50d Bipolar electrode plate 51a, 51b Convex portion 52a, 52b Concave portion

Claims (8)

正極板と、1つ又は複数のバイポーラ電極板と、負極板とを積層させてなる積層体を含む固体電池であり、
前記バイポーラ電極板の積層面には、固体電解質層が形成される、固体電池。
A solid battery comprising a laminate obtained by laminating a positive electrode plate, one or more bipolar electrode plates, and a negative electrode plate,
A solid battery, wherein a solid electrolyte layer is formed on the laminated surface of the bipolar electrode plate.
前記バイポーラ電極板の端面の少なくとも一部には、固体電解質層が形成される、請求項1に記載の固体電池。 2. The solid state battery according to claim 1, wherein a solid electrolyte layer is formed on at least part of the end face of said bipolar electrode plate. 前記バイポーラ電極板は複数のバイポーラ電極板であり、
前記バイポーラ電極板の端面には、固体電解質層が形成される凹部と、固体電解質層が形成されない凸部と、が形成され、
隣接する前記バイポーラ電極板間において、前記凹部と前記凸部とは互い違いに配置される、請求項1又は2に記載の固体電池。
The bipolar electrode plate is a plurality of bipolar electrode plates,
An end face of the bipolar electrode plate is formed with a concave portion in which a solid electrolyte layer is formed and a convex portion in which a solid electrolyte layer is not formed,
3. The solid-state battery according to claim 1, wherein said concave portions and said convex portions are alternately arranged between said adjacent bipolar electrode plates.
前記正極板又は前記負極板に隣接して配置される前記バイポーラ電極板において、前記凹部は、前記正極板又は前記負極板から延出する電極タブに対応する位置に配置され、かつ前記電極タブの幅よりも広い、請求項3に記載の固体電池。 In the bipolar electrode plate arranged adjacent to the positive electrode plate or the negative electrode plate, the recess is arranged at a position corresponding to the electrode tab extending from the positive electrode plate or the negative electrode plate, and 4. The solid state battery of claim 3, wider than wide. 前記正極板及び前記負極板の積層面には、固体電解質層が形成される、請求項1~4のいずれかに記載の固体電池。 5. The solid state battery according to claim 1, wherein a solid electrolyte layer is formed on the laminated surface of said positive electrode plate and said negative electrode plate. 前記バイポーラ電極板は複数のバイポーラ電極板であり、隣接して配置される前記バイポーラ電極板の形状は、互いに鏡像関係にある、請求項1~5のいずれかに記載の固体電池。 6. The solid-state battery according to claim 1, wherein said bipolar electrode plate comprises a plurality of bipolar electrode plates, and the shapes of said bipolar electrode plates arranged adjacent to each other are mirror images of each other. バイポーラ電極板の製造工程を含む固体電池の製造方法であって、
前記バイポーラ電極板の製造工程は、
集電板の一方の面に正極材を塗工し、他方の面に負極材を塗工する極材塗工工程と、
電極材が塗工された前記集電板の一部に孔部を形成する穴あけ工程と、
電極材が塗工された前記集電板に固体電解質を塗工する固体電解質塗工工程と、
電極材が塗工された前記集電板を、前記孔部を含む切断線で切断することで、前記集電板の端縁に凹部が形成されるように前記集電板を切断する切断工程と、をこの順に備える、固体電池の製造方法。
A method for manufacturing a solid-state battery, including a step of manufacturing a bipolar electrode plate,
The manufacturing process of the bipolar electrode plate includes:
an electrode material coating step of coating one surface of the current collector with a positive electrode material and coating the other surface with a negative electrode material;
a drilling step of forming a hole in a part of the current collector coated with the electrode material;
a solid electrolyte coating step of coating a solid electrolyte on the current collector coated with the electrode material;
A cutting step of cutting the current collector plate coated with the electrode material along a cutting line including the hole, thereby cutting the current collector plate so as to form a recess in the edge of the current collector plate. and , in this order.
前記バイポーラ電極板の製造工程において、前記穴あけ工程は、隣接する一列の前記孔部同士が互い違いになるように、前記孔部を形成する工程であり、互いに鏡像関係にある2種類の形状の前記バイポーラ電極板が製造される、請求項7に記載の固体電池の製造方法。 In the manufacturing process of the bipolar electrode plate, the drilling step is a step of forming the holes so that adjacent rows of the holes are staggered. 8. The method of manufacturing a solid state battery according to claim 7, wherein bipolar electrode plates are manufactured.
JP2021087701A 2021-05-25 2021-05-25 Solid-state battery and manufacturing method of solid-state battery Pending JP2022180935A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021087701A JP2022180935A (en) 2021-05-25 2021-05-25 Solid-state battery and manufacturing method of solid-state battery
US17/664,223 US20220384802A1 (en) 2021-05-25 2022-05-20 Solid-state battery and method of manufacturing solid-state battery
CN202210564993.XA CN115395070A (en) 2021-05-25 2022-05-23 Solid-state battery and method for manufacturing solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021087701A JP2022180935A (en) 2021-05-25 2021-05-25 Solid-state battery and manufacturing method of solid-state battery

Publications (1)

Publication Number Publication Date
JP2022180935A true JP2022180935A (en) 2022-12-07

Family

ID=84115695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021087701A Pending JP2022180935A (en) 2021-05-25 2021-05-25 Solid-state battery and manufacturing method of solid-state battery

Country Status (3)

Country Link
US (1) US20220384802A1 (en)
JP (1) JP2022180935A (en)
CN (1) CN115395070A (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089421A (en) * 2010-10-21 2012-05-10 Sumitomo Electric Ind Ltd Method for manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery
KR101577881B1 (en) * 2011-05-27 2015-12-15 도요타 지도샤(주) Bipolar all-solid-state battery

Also Published As

Publication number Publication date
CN115395070A (en) 2022-11-25
US20220384802A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
JP6027136B2 (en) Electrode assembly manufacturing method and electrode assembly manufactured using the same
WO2016006420A1 (en) Method of manufacturing power storage device and method of manufacturing electrode
JP2014179217A (en) Method for manufacturing secondary battery, and secondary battery
JP2008053125A (en) Fully solid electric storage element
US11522227B2 (en) Secondary battery and comb-type electrode
JP7046185B2 (en) Positive electrode for solid-state battery, method for manufacturing positive electrode for solid-state battery, and solid-state battery
US20210020895A1 (en) Secondary battery and manufacturing method thereof
JP7061588B2 (en) Manufacturing method of all-solid-state battery and all-solid-state battery
JP7253399B2 (en) secondary battery
WO2020111166A1 (en) All-solid battery
JP2022180935A (en) Solid-state battery and manufacturing method of solid-state battery
US11652242B2 (en) Solid-state battery electrolyte layers
JP5429304B2 (en) Solid battery module
JP7238757B2 (en) All-solid battery
JP2022180893A (en) Solid-state battery and manufacturing method of solid-state battery
JP2018060699A (en) Manufacturing method for laminated secondary battery
JPH09320636A (en) Nonaqueous electrolyte secondary battery
WO2022176542A1 (en) Unit solid-state battery and method for producing unit solid-state battery
KR102083296B1 (en) Method of Preparing Battery Cell Comprising Electrode Having Hole
US20230207980A1 (en) Battery
KR102403673B1 (en) Electrode assembly, secondary battery and manufacturing method of electrode assembly
KR20240056050A (en) Electrode assembly, method for manufacturing thereof, and electrochemical device comprising the same
CN116365179A (en) Battery cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231128