JP2022176741A - temperature measuring device - Google Patents

temperature measuring device Download PDF

Info

Publication number
JP2022176741A
JP2022176741A JP2021083319A JP2021083319A JP2022176741A JP 2022176741 A JP2022176741 A JP 2022176741A JP 2021083319 A JP2021083319 A JP 2021083319A JP 2021083319 A JP2021083319 A JP 2021083319A JP 2022176741 A JP2022176741 A JP 2022176741A
Authority
JP
Japan
Prior art keywords
piezoelectric substrate
antenna
temperature
comb
shaped electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021083319A
Other languages
Japanese (ja)
Inventor
耕一 永井
Koichi Nagai
直文 日野
Naofumi Hino
正一 梶原
Shoichi Kajiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2021083319A priority Critical patent/JP2022176741A/en
Publication of JP2022176741A publication Critical patent/JP2022176741A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

To provide a temperature measuring device capable of improving reliability by reducing effects of a distance between antennas and a temperature of a piezoelectric substrate and effects of noise that does not pass through the piezoelectric substrate even when the distance between the antennas for wireless transmission/reception changes continuously and even when the temperature of the piezoelectric substrate changes continuously.SOLUTION: A temperature measuring device 10 uses a surface acoustic wave of a piezoelectric substrate 1 to measure a temperature via radio in a non-powered manner. Temperature calculation means 75 of a measurement unit 3 is configured to translate electrical signals received by a receiving antenna 5 for a measurement unit from a frequency domain into a time domain, to determine a time range to be analyzed on the basis of, time delayed due to propagation through the piezoelectric substrate as surface acoustic waves, and calculate the temperature of the piezoelectric substrate within the determined analysis time range.SELECTED DRAWING: Figure 1

Description

本発明は、無線通信によって表面弾性波を利用して温度を測定する無線温度測定装置に関するものである。 TECHNICAL FIELD The present invention relates to a wireless temperature measuring device that measures temperature using surface acoustic waves through wireless communication.

近年、様々な工業製品もしくは家電の組み立て製造工程、又はそれらの製品の構成部品となる各種電子部品、各種の電池、もしくは、電子部品が実装された基板などのデバイス製造工程において、熱処理のための炉も多様化し、それぞれの機能が大幅に向上している。 In recent years, in the assembly manufacturing process of various industrial products or home appliances, or in the manufacturing process of devices such as various electronic parts, various batteries, or substrates on which electronic parts are mounted, which are the constituent parts of those products, heat treatment Furnaces have also diversified, and the functions of each have greatly improved.

また、被加熱物の温度管理が製品の性能に大きく影響するようになって来ている。 Moreover, the temperature control of the object to be heated has come to greatly affect the performance of the product.

一般的に、小型の炉又は被加熱物を搬送する速度が非常に遅い炉の場合は、被加熱物の温度推移について、炉内に熱電対を取り付けて、炉外の計測部と接続したまま計測することが可能な場合がある。 In general, in the case of a small furnace or a furnace in which the object to be heated is transported very slowly, a thermocouple is attached inside the furnace to monitor the temperature transition of the object to be heated, and it is connected to the measurement part outside the furnace. It may be possible to measure

しかし、搬送距離の長い大型の炉、搬送速度が著しく速い炉、又は搬送経路にシャッターなどの構造物がある場合などは、炉内の熱電対を炉外の計測部と接続した状態での温度測定が困難な場合が多い。このような炉で熱電対を使用する場合、短い熱電対を無線ユニットに接続して無線ユニットとともに炉内に投入し、熱電対の情報を無線で炉外の計測部に送信する方法、あるいは前記の無線ユニット内にデータ記憶装置を搭載しておいて、熱電対の情報等を記憶させておき、無線ユニットを炉外に搬出した後に、記憶装置からデータ情報を抜き出す方法もある。しかし、炉内の温度によっては無線で送信する際の送信器又はデータの記憶装置等の駆動電源となる電池、又は、送信器又は記憶装置そのものの耐熱温度を超えてしまい、使用できない場合も非常に多い。そのため、耐熱温度の低い電池、送信器、又は記憶装置等を搭載しない無線計測センサとして、圧電基板の表面弾性波を利用して温度を測定するセンシング技術が用いられ、例えば特許文献1の方式が知られている。 However, in the case of a large furnace with a long transport distance, a furnace with an extremely fast transport speed, or a structure such as a shutter in the transport path, the temperature when the thermocouple inside the furnace is connected to the measurement part outside the furnace Measurement is often difficult. When using a thermocouple in such a furnace, a method of connecting a short thermocouple to a wireless unit and inserting it into the furnace together with the wireless unit to wirelessly transmit the thermocouple information to the measurement unit outside the furnace, or There is also a method in which a data storage device is mounted in the wireless unit to store information such as thermocouple information, and the data information is extracted from the storage device after the wireless unit is carried out of the furnace. However, depending on the temperature inside the furnace, it may exceed the heat resistance temperature of the battery used as the drive power source for the transmitter or data storage device when transmitting wirelessly, or the transmitter or storage device itself, and it may not be possible to use it. many in Therefore, a sensing technology that measures temperature using surface acoustic waves of a piezoelectric substrate is used as a wireless measurement sensor that does not include a battery, a transmitter, or a storage device that has a low heat resistance. Are known.

図10は特許文献1の従来の温度測定装置20についての説明図である。特許文献1には、圧電基板上に櫛歯状電極を設けた無線、無給電の温度測定装置の一例について記載されている。特許文献1の温度測定装置20は、圧電効果を示す圧電体で構成されるとともに表面弾性波を伝播可能な圧電基板21と、無線送信される駆動信号を受信するとともに応答信号を無線送信するために電波と高周波電気信号とを相互に変換するアンテナ22と、表面弾性波変換手段である第1櫛歯状電極23と、外部から受ける物理量に応じてインピーダンスが変化するインピーダンス変化型センサ25と、インピーダンス変化型センサ25における一方の端子に接続された状態の第2櫛歯状電極24とを備えている。第2櫛歯状電極24が、表面弾性波変換手段である第1櫛歯状電極23によって励振された前記表面弾性波を反射する表面弾性波反射手段を備えており、インピーダンス変化型センサ25のインピーダンスの変動の影響を受けた表面弾性波の特性について分析をすることで、温度測定を行うとしている。 FIG. 10 is an explanatory diagram of a conventional temperature measuring device 20 disclosed in Patent Document 1. As shown in FIG. Patent Literature 1 describes an example of a wireless, non-powered temperature measuring device in which comb-shaped electrodes are provided on a piezoelectric substrate. The temperature measurement device 20 of Patent Document 1 includes a piezoelectric substrate 21 that is composed of a piezoelectric material that exhibits a piezoelectric effect and that can propagate surface acoustic waves, and a piezoelectric substrate 21 that receives a wirelessly transmitted drive signal and wirelessly transmits a response signal. an antenna 22 that converts between radio waves and high-frequency electric signals; a first comb-shaped electrode 23 that is surface acoustic wave conversion means; and a second comb-shaped electrode 24 connected to one terminal of the variable impedance sensor 25 . The second comb-shaped electrode 24 has surface acoustic wave reflection means for reflecting the surface acoustic wave excited by the first comb-shaped electrode 23 which is the surface acoustic wave conversion means. Temperature measurement is performed by analyzing surface acoustic wave characteristics affected by impedance fluctuations.

また、櫛歯状電極を用いた無線、無給電の温度測定装置において、無線のアンテナ間距離が変動することによる影響を除く手段の一例として、特許文献2の方法が知られている。図11は特許文献2の従来の温度測定装置30についての説明図である。特許文献2の温度測定装置30は、圧電基板31、第1櫛歯状電極32、第2櫛歯状電極33、第3櫛歯状電極34、及び測定器35を含んでいる。第1櫛歯状電極32は、外部アンテナ36に対する電波の送受信を行うためのアンテナ37に電気的に接続されており、圧電基板31に位置している。第2櫛歯状電極33は、外部からの物理量に応じて変化するインピーダンスを有するセンサ38に電気的に接続されており、第1櫛歯状電極32に対向して圧電基板31上に位置している。第3櫛歯状電極34は、第1櫛歯状電極32に対向して圧電基板31上に位置している。測定器35は、外部アンテナ36による電波の送信から、第1櫛歯状電極32及び第2櫛歯状電極33間における表面弾性波の伝播を経て、外部アンテナ36による電波の受信までの時間と、外部アンテナ36による電波の送信から、第1櫛歯状電極32及び第3櫛歯状電極34間における表面弾性波の伝播を経て、外部アンテナ36による電波の受信までの時間との差を測定することで無線での距離の変動の影響を除くとしている。 In addition, in a wireless, non-powered temperature measuring device using pectinate electrodes, the method of Patent Document 2 is known as an example of means for eliminating the influence of fluctuations in the distance between wireless antennas. FIG. 11 is an explanatory diagram of a conventional temperature measuring device 30 disclosed in Patent Document 2. As shown in FIG. A temperature measuring device 30 of Patent Document 2 includes a piezoelectric substrate 31 , a first comb-shaped electrode 32 , a second comb-shaped electrode 33 , a third comb-shaped electrode 34 , and a measuring device 35 . The first comb-shaped electrode 32 is electrically connected to an antenna 37 for transmitting and receiving radio waves to and from an external antenna 36 and is located on the piezoelectric substrate 31 . The second comb-shaped electrode 33 is electrically connected to a sensor 38 having an impedance that changes according to a physical quantity from the outside, and is positioned on the piezoelectric substrate 31 so as to face the first comb-shaped electrode 32 . ing. The third comb-shaped electrode 34 is positioned on the piezoelectric substrate 31 so as to face the first comb-shaped electrode 32 . The measuring device 35 measures the time from the transmission of radio waves by the external antenna 36 to the reception of radio waves by the external antenna 36 through the propagation of surface acoustic waves between the first comb-shaped electrode 32 and the second comb-shaped electrode 33, and the , the time from the transmission of radio waves by the external antenna 36 to the reception of radio waves by the external antenna 36 through the propagation of surface acoustic waves between the first comb-shaped electrode 32 and the third comb-shaped electrode 34 . By doing so, the effects of distance fluctuations in wireless are eliminated.

特開2012-255706号公報JP 2012-255706 A 特開2020-112466号公報Japanese Patent Application Laid-Open No. 2020-112466

しかしながら、前記特許文献1の構成では、インピーダンス変化型センサ25のインピーダンスの変動の影響情報について分析をする際、移動によるアンテナ間の距離の変動の影響は考慮しておらず、さらには、無線での電気信号の送受信において受信してしまう炉の壁面などからの反射波を始めとする不要な電気信号、いわゆるノイズの影響を受けるが、この電気的なノイズを除去することが困難であるという課題を有している。 However, in the configuration of Patent Document 1, when analyzing the influence information of the impedance variation of the impedance variable sensor 25, the influence of the distance variation between the antennas due to movement is not taken into consideration. It is affected by unnecessary electrical signals such as reflected waves from the walls of the furnace that are received during the transmission and reception of electrical signals, so-called noise, and the problem is that it is difficult to remove this electrical noise. have.

また、前記特許文献2の構成では、圧電基板31上を伝播する表面弾性波の伝播距離の異なる反射波を利用してアンテナ36,37間距離の変動による伝播時間の影響を打ち消すとしている。しかし、特にアンテナ36,37間距離が連続的に変動する場合は、炉内の状況が刻々と変化し、そのため、圧電基板31を経由せずに炉の壁面などで反射してアンテナ37で受信する電気的なノイズの状況も刻々と変動するが、このノイズの影響を正確に除去するための構成としては不十分であるといった課題を有している。 Further, in the configuration of Patent Document 2, reflected waves with different propagation distances of the surface acoustic waves propagating on the piezoelectric substrate 31 are used to cancel the influence of the propagation time due to the variation in the distance between the antennas 36 and 37 . However, especially when the distance between the antennas 36 and 37 changes continuously, the situation inside the furnace changes every moment. The state of the electrical noise generated also fluctuates from moment to moment.

本発明は、前記従来の課題を解決するもので、無線で送受信するアンテナ間距離が連続的に変動し、かつ圧電基板の温度が連続的に変化する場合であっても、アンテナ間距離及び圧電基板の温度による影響と、圧電基板を経由しないノイズの影響を低減することで信頼性を向上することができる温度測定装置を提供することを目的とする。 The present invention solves the above-described conventional problems, and even when the distance between antennas for wireless transmission and reception changes continuously and the temperature of the piezoelectric substrate changes continuously, the distance between the antennas and the piezoelectric It is an object of the present invention to provide a temperature measuring device capable of improving reliability by reducing the influence of substrate temperature and the influence of noise that does not pass through a piezoelectric substrate.

前記目的を達成するために、本発明の1つの態様にかかる温度測定装置は、
高周波の電気信号を無線で送信する計測部用の送信アンテナ及び受信を行う計測部用の受信アンテナを備えた計測部と、
前記計測部との間で電気信号を送受信する圧電基板用のアンテナを備えた圧電基板と、
前記圧電基板上に設けられ、前記計測部の前記計測部用の送信アンテナから受信した電気信号を前記圧電基板上に表面弾性波として励振し、かつ前記圧電基板上を伝播する表面弾性波を電気信号に変換する櫛歯状電極と、を備える温度測定装置であって、
直線状の搬送経路上を搬送される前記圧電基板の前記搬送経路の上流側に前記計測部用の送信アンテナと前記計測部用の受信アンテナとのいずれか一方が配置され、前記搬送経路の下流側に前記計測部用の送信アンテナと前記計測部用の受信アンテナとのいずれか他方が配置され、
前記計測部は、前記計測部用の受信アンテナで受信した電気信号を周波数領域から時間領域に変換し、前記圧電基板を表面弾性波として伝播することで遅延した時間に基づいて分析対象時間の範囲を決定し、決定した前記分析対象時間の範囲での前記圧電基板の温度を算出する温度算出手段を備える。
In order to achieve the above object, a temperature measuring device according to one aspect of the present invention comprises:
a measuring unit including a transmitting antenna for the measuring unit that wirelessly transmits a high-frequency electrical signal and a receiving antenna for the measuring unit that receives the signal;
a piezoelectric substrate including an antenna for the piezoelectric substrate that transmits and receives electrical signals to and from the measurement unit;
An electric signal received from a transmission antenna for the measurement unit of the measurement unit provided on the piezoelectric substrate is excited on the piezoelectric substrate as a surface acoustic wave, and the surface acoustic wave propagating on the piezoelectric substrate is generated as an electric signal. A temperature measuring device comprising a comb-shaped electrode that converts into a signal,
Either one of the transmitting antenna for the measuring section and the receiving antenna for the measuring section is arranged upstream of the conveying path of the piezoelectric substrate conveyed on the linear conveying path, and downstream of the conveying path. Either the transmitting antenna for the measuring unit or the receiving antenna for the measuring unit is arranged on the side,
The measurement unit converts the electrical signal received by the receiving antenna for the measurement unit from the frequency domain to the time domain, and the range of time to be analyzed based on the time delayed by propagating the piezoelectric substrate as a surface acoustic wave. and calculating the temperature of the piezoelectric substrate within the determined analysis target time range.

以上のように、本発明の前記態様にかかる温度測定装置によれば、温度測定対象である圧電基板が移動し、計測部と圧電基板との距離が連続して変化する環境下において、計測部から送信された電気信号を受信して圧電基板上の櫛歯状電極で表面弾性波として励振する。この表面弾性波が圧電基板上を伝播する際に温度影響の情報を周波数特性として有した状態で、櫛歯状電極で電気信号に変換されて計測部に送信される。このとき、距離による時間遅延が一定のため、圧電基板に到達せずに計測部が受信するような反射波などの時間遅延をノイズとして区別することができ、圧電基板の温度を分析するために圧電基板上を表面弾性波として通過した電気信号を選択的に分析対象として圧電基板の温度を温度算出手段で算出することが出来る。 As described above, according to the temperature measuring device according to the aspect of the present invention, the piezoelectric substrate, which is the object of temperature measurement, moves and the distance between the measuring unit and the piezoelectric substrate changes continuously. An electric signal transmitted from the piezoelectric substrate is received and excited as a surface acoustic wave by comb-like electrodes on the piezoelectric substrate. When this surface acoustic wave propagates on the piezoelectric substrate, it is converted into an electrical signal by the comb-shaped electrodes and transmitted to the measuring unit while having information of temperature influence as a frequency characteristic. At this time, since the time delay due to distance is constant, it is possible to distinguish time delays such as reflected waves that are received by the measurement unit without reaching the piezoelectric substrate as noise. The temperature of the piezoelectric substrate can be calculated by the temperature calculating means by selectively analyzing the electrical signal that has passed through the piezoelectric substrate as a surface acoustic wave.

よって、無線で送受信するアンテナ間距離が連続的に変動し、かつ圧電基板の温度が連続的に変化する場合であっても、アンテナ間距離及び圧電基板の温度による影響と、圧電基板を経由しないノイズの影響を低減することで信頼性を向上することができる。 Therefore, even if the distance between the antennas for wireless transmission and reception changes continuously and the temperature of the piezoelectric substrate changes continuously, the effect of the distance between the antennas and the temperature of the piezoelectric substrate and the fact that the piezoelectric substrate does not pass the Reliability can be improved by reducing the influence of noise.

本発明の実施の形態における温度測定装置の説明図Explanatory drawing of a temperature measuring device according to an embodiment of the present invention 本発明の実施の形態における温度測定装置の詳細な説明図Detailed explanatory diagram of the temperature measuring device according to the embodiment of the present invention 本発明の実施の形態における不要なノイズの発生についての説明図Explanatory diagram of generation of unnecessary noise in the embodiment of the present invention 本発明の実施の形態における分析対象時間の決定方法の説明図Explanatory diagram of a method for determining analysis target time according to the embodiment of the present invention 本発明の実施の形態における温度測定装置の位置関係の説明図Explanatory drawing of the positional relationship of the temperature measuring device according to the embodiment of the present invention. 本発明の実施の形態の第1変形例における温度測定装置の説明図Explanatory drawing of the temperature measuring device in the first modified example of the embodiment of the present invention 本発明の実施の形態の第1変形例における温度測定装置の詳細な説明図Detailed explanatory diagram of the temperature measuring device in the first modified example of the embodiment of the present invention 垂直偏波及び水平偏波の説明図Explanatory diagram of vertical polarization and horizontal polarization 本発明の実施の形態の第2変形例における温度測定装置の説明図Explanatory drawing of the temperature measuring device in the second modified example of the embodiment of the present invention 従来の温度測定装置を示す説明図Explanatory drawing showing a conventional temperature measuring device 従来の温度測定装置を示す説明図Explanatory diagram showing a conventional temperature measuring device

以下、本発明の実施の形態について、図面を参照しながら説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態)
図1は、本発明の実施形態における温度測定装置10の説明図である。
(embodiment)
FIG. 1 is an explanatory diagram of a temperature measuring device 10 according to an embodiment of the invention.

温度測定装置10は、圧電基板1と、計測部3と、櫛歯状電極8,9とを備えている。 A temperature measuring device 10 includes a piezoelectric substrate 1 , a measuring section 3 , and comb-like electrodes 8 and 9 .

計測部3は、高周波の電気信号を送信する計測部用の送信アンテナ4を備える送信器4aと、高周波の電気信号を受信する計測部用の受信アンテナ5を備える受信器5aと備えて、計測本体部3aに送信器4aと受信器5aとがそれぞれ接続されている。計測本体部3aは、高周波の電気信号の送受信を制御する。
圧電基板1は、計測部用の送信アンテナ4から送信された電気信号を受信するための圧電基板用の受信アンテナ2aと、計測部用の受信アンテナ5に電気信号を送信するための圧電基板用の送信アンテナ2bとを備えている。無線及び無給電の状態で温度測定対象である圧電基板1が炉7の中を搬送経路6に沿って搬送される際、計測本体部3aに接続されている計測部用の送信アンテナ4と計測部用の受信アンテナ5とは、炉7の外でかつ、圧電基板1が直線的に移動する搬送経路6の例えば上流側端部と下流側端部とにそれぞれ設置されている。ここで、計測部用の送信アンテナ4と計測部用の受信アンテナ5とは、搬送経路6の上流側と下流側とにそれぞれ設置されている態様に限らず、逆に、搬送経路6の下流側と上流側とにそれぞれ設置されている態様でもよい。
The measurement unit 3 includes a transmitter 4a having a transmission antenna 4 for the measurement unit that transmits a high-frequency electrical signal, and a receiver 5a that has a reception antenna 5 for the measurement unit that receives the high-frequency electrical signal. A transmitter 4a and a receiver 5a are connected to the main body 3a. The measurement main unit 3a controls transmission and reception of high-frequency electrical signals.
The piezoelectric substrate 1 includes a piezoelectric substrate receiving antenna 2a for receiving an electrical signal transmitted from a transmitting antenna 4 for the measuring section, and a piezoelectric substrate for transmitting an electrical signal to a receiving antenna 5 for the measuring section. and a transmitting antenna 2b. When the piezoelectric substrate 1 whose temperature is to be measured is conveyed along the conveying path 6 in the furnace 7 in a wireless and non-powered state, the transmission antenna 4 for the measurement section connected to the measurement body section 3a and the measurement The receiving antennas 5 for the parts are installed outside the furnace 7 and at, for example, the upstream end and the downstream end of the transport path 6 along which the piezoelectric substrate 1 moves linearly. Here, the transmitting antenna 4 for the measuring section and the receiving antenna 5 for the measuring section are not limited to being installed on the upstream side and the downstream side of the conveying route 6 respectively. A mode in which they are respectively installed on the side and the upstream side may also be used.

櫛歯状電極8,9は、第一の櫛歯状電極8及び第二の櫛歯状電極9として圧電基板1上に設けられ、計測部3の計測部用の送信アンテナ4から受信した電気信号を圧電基板1上に表面弾性波として励振し、かつ圧電基板1上を伝播する表面弾性波を電気信号に変換する。 Comb-shaped electrodes 8 and 9 are provided on the piezoelectric substrate 1 as a first comb-shaped electrode 8 and a second comb-shaped electrode 9, and transmit electricity received from the transmission antenna 4 for the measuring section 3 of the measuring section 3. A signal is excited as a surface acoustic wave on the piezoelectric substrate 1, and the surface acoustic wave propagating on the piezoelectric substrate 1 is converted into an electric signal.

さらに、温度測定装置10は、計測本体部3aに接続された温度算出手段75を備えている。温度算出手段75は、計測本体部3a内に配置されてもよいし、計測本体部3a外に配置されてもよい。温度算出手段75は、計測部用の受信アンテナ5で受信した電気信号を周波数領域から時間領域に変換し、圧電基板1を表面弾性波として伝播することで遅延した時間に基づいて分析対象時間の範囲を決定し、決定した分析対象時間の範囲での圧電基板1の温度を算出する。すなわち、温度算出手段75は、圧電基板1上に設けられた櫛歯状電極8,9の間隔の変化などの要因によって、表面弾性波の周波数特性が変化することから、この表面弾性波の周波数特性の変化を圧電基板1の温度と関連付けることが可能であり、高周波の電気信号を分析することで、圧電基板1の温度を算出する。 Furthermore, the temperature measuring device 10 includes a temperature calculating means 75 connected to the measuring body 3a. The temperature calculation means 75 may be arranged inside the measurement main body 3a, or may be arranged outside the measurement main body 3a. The temperature calculation means 75 converts the electric signal received by the receiving antenna 5 for the measurement unit from the frequency domain to the time domain, and calculates the analysis target time based on the time delayed by propagating the piezoelectric substrate 1 as a surface acoustic wave. A range is determined, and the temperature of the piezoelectric substrate 1 within the determined analysis target time range is calculated. That is, the temperature calculation means 75 calculates the frequency of the surface acoustic wave because the frequency characteristics of the surface acoustic wave change due to factors such as a change in the spacing between the comb-shaped electrodes 8 and 9 provided on the piezoelectric substrate 1 . The change in properties can be associated with the temperature of the piezoelectric substrate 1, and the temperature of the piezoelectric substrate 1 is calculated by analyzing the high-frequency electrical signal.

以下、本発明の実施形態における温度測定装置10をさらに詳細に説明する。 The temperature measurement device 10 according to the embodiment of the present invention will be described in further detail below.

図2は本発明の実施形態における温度測定装置10の詳細な説明図である。前記したように、圧電基板1には、計測部3との間で電気信号を受信するための圧電基板用の受信アンテナ2a及び送信するための圧電基板用の送信アンテナ2bが設けられている。また、受信アンテナ2aは、圧電基板1上の例えば長手方向の一端側に設けられた第一の櫛歯状電極8と電気的に接続されており、送信アンテナ2bは、圧電基板1上の例えば長手方向の他端側に設けられた第二の櫛歯状電極9と電気的に接続されている。この第一の櫛歯状電極8と第二の櫛歯状電極9とは、圧電基板1上で互いに対向する位置に配置されている。 FIG. 2 is a detailed explanatory diagram of the temperature measuring device 10 according to the embodiment of the present invention. As described above, the piezoelectric substrate 1 is provided with the piezoelectric substrate receiving antenna 2a for receiving an electric signal from the measuring unit 3 and the piezoelectric substrate transmitting antenna 2b for transmitting the electric signal. The receiving antenna 2a is electrically connected to a first comb-shaped electrode 8 provided on the piezoelectric substrate 1, for example, at one end in the longitudinal direction. It is electrically connected to the second comb-shaped electrode 9 provided on the other end side in the longitudinal direction. The first comb-shaped electrode 8 and the second comb-shaped electrode 9 are arranged on the piezoelectric substrate 1 at positions facing each other.

計測部3では、所定の周波数、例えば電波法で特定小電力となる420~430MHz、又は、RFIDの915~930MHzの範囲の周波数を含む高周波を掃引する形で、電気信号を送信器4aの送信アンテナ4から無線で送信する。 The measurement unit 3 sweeps a predetermined frequency, for example, 420 to 430 MHz, which is specified low power under the Radio Law, or a high frequency including a frequency in the range of 915 to 930 MHz for RFID, and transmits an electric signal from the transmitter 4a. It is transmitted wirelessly from the antenna 4 .

計測本体部3aに接続されている送信器4aの送信アンテナ4から送信される高周波の電気信号を、圧電基板1の受信アンテナ2aで受信して、圧電基板1上に第一の櫛歯状電極8で表面弾性波として励振する。 A high-frequency electrical signal transmitted from the transmitting antenna 4 of the transmitter 4a connected to the measurement main body 3a is received by the receiving antenna 2a of the piezoelectric substrate 1, and the first comb-shaped electrode is formed on the piezoelectric substrate 1. At 8, it is excited as a surface acoustic wave.

その後、励振された表面弾性波が、圧電基板1上を伝播して第二の櫛歯状電極9に到達して再び電気信号に変換されて、圧電基板1の送信アンテナ2bから送信する。 After that, the excited surface acoustic wave propagates on the piezoelectric substrate 1, reaches the second comb-shaped electrode 9, is converted into an electrical signal again, and is transmitted from the transmission antenna 2b of the piezoelectric substrate 1. FIG.

この送信アンテナ2bから送信される電気信号を、計測本体部3aに接続されている受信器5aの受信アンテナ5で受信する。 The electrical signal transmitted from the transmitting antenna 2b is received by the receiving antenna 5 of the receiver 5a connected to the measuring body 3a.

受信アンテナ5で受信した、この電気信号を、計測本体部3aに接続された温度算出手段(温度算出部)75で、分析対象時間の範囲で、分析することで、圧電基板1の温度を温度算出手段75で算出する。なお、計測部3での分析対象時間の決定方法についての詳細は後述する。 The temperature calculation means (temperature calculation unit) 75 connected to the measurement main unit 3a analyzes the electrical signal received by the reception antenna 5 within the analysis target time range, thereby calculating the temperature of the piezoelectric substrate 1. Calculated by the calculating means 75 . The details of how the measurement unit 3 determines the time to be analyzed will be described later.

上述した構成によれば、以下の作用により、距離の変化の影響受けることなく、圧電基板1上を表面弾性波として伝播した高周波の電気信号だけを抽出して分析することが可能となるため、圧電基板1と計測部3との各アンテナ4,2a,5,2bとの間の距離が連続的に変化する状況においても、温度測定装置10の温度測定精度を向上することが出来る。 According to the above-described configuration, it is possible to extract and analyze only high-frequency electrical signals propagated as surface acoustic waves on the piezoelectric substrate 1 without being affected by changes in distance due to the following effects. Even when the distances between the piezoelectric substrate 1 and the antennas 4, 2a, 5, 2b of the measuring unit 3 change continuously, the temperature measurement accuracy of the temperature measuring device 10 can be improved.

図3は、計測部3から送信される高周波の電気信号の伝播についての説明図である。一般的な空間における無線での送受信については、計測本体部3aに接続される送信器4aの送信アンテナ4と圧電基板1の受信アンテナ2aとの間だけの送受信だけでなく、送信アンテナ4から送信された電気信号71は、送信アンテナ4の周囲の各方位に伝播し、送信アンテナ4の周囲に存在する金属壁面13を始めとする様々な物体によっても反射される。その反射信号の強度のレベルは様々であるが、反射された電気信号は、受信器5aの受信アンテナ5に到達して、不要な電気信号、いわゆる反射ノイズ11として受信される。その他に不要な電気信号として代表的なものは、送信アンテナ4から受信アンテナ5に直接伝播する直接波12などである。温度算出手段75で圧電基板1の温度を高精度に分析するためには、圧電基板1に到達して第一の櫛歯状電極8で表面弾性波として励起され、圧電基板1上を表面弾性波として伝播して、温度の影響を周波数特性として受けた上で、対向する第二の櫛歯状電極9に到達して再び電気信号に変換され、圧電基板1から送信されて戻ってくる反射波の電気信号のみを温度算出手段75で抽出して温度算出手段75で分析する必要がある。そのため、温度算出手段75において、この圧電基板1を表面弾性波として通過していない反射ノイズ11及び直接波12については、分析の対象としないように、出来る限り除去する必要がある。 FIG. 3 is an explanatory diagram of propagation of a high-frequency electrical signal transmitted from the measurement unit 3. As shown in FIG. Regarding wireless transmission and reception in general space, not only transmission and reception between the transmission antenna 4 of the transmitter 4a connected to the measurement main body 3a and the reception antenna 2a of the piezoelectric substrate 1, but also transmission from the transmission antenna 4 The generated electric signal 71 propagates in each direction around the transmitting antenna 4 and is also reflected by various objects such as the metal wall 13 existing around the transmitting antenna 4 . Although the intensity level of the reflected signal varies, the reflected electrical signal reaches the receiving antenna 5 of the receiver 5a and is received as an unnecessary electrical signal, so-called reflected noise 11. FIG. Other typical unnecessary electrical signals include direct waves 12 that propagate directly from the transmitting antenna 4 to the receiving antenna 5 . In order for the temperature calculation means 75 to analyze the temperature of the piezoelectric substrate 1 with high accuracy, the piezoelectric substrate 1 is reached and excited by the first comb-shaped electrode 8 as a surface acoustic wave, and the surface elastic wave is generated on the piezoelectric substrate 1 . After propagating as a wave and receiving the influence of temperature as a frequency characteristic, it reaches the opposing second comb-shaped electrode 9 and is converted into an electrical signal again, transmitted from the piezoelectric substrate 1 and reflected back. Only the electric signal of the wave needs to be extracted by the temperature calculation means 75 and analyzed by the temperature calculation means 75 . Therefore, the reflection noise 11 and the direct wave 12 that do not pass through the piezoelectric substrate 1 as surface acoustic waves must be removed as much as possible in the temperature calculation means 75 so as not to be analyzed.

図4は、温度算出手段75において、ノイズ11を除去して必要な電気信号を抽出するための説明図である。計測部3と圧電基板1との送受信は、高周波の電気信号、つまり周波数領域での情報のやり取りとなるが、この情報を逆フーリエ変換することで、時間領域の情報として扱うことが出来る。時間領域に変換することで、空間を通過して送受信される電気信号と、圧電基板1上を表面弾性波として通過して送受信される電気信号との間に時間的な遅延が発生する。発明者による実験の結果、圧電基板1上を通過する際の遅延時間は約200nsであり、空間距離に換算すると、約60mの空間伝播に相当する。時間領域の情報において、この圧電基板1上を表面弾性波が通過する際の遅延時間を利用して、圧電基板1上を通過して戻ってくる電気信号を、分析対象時間として抽出することが可能となる。 FIG. 4 is an explanatory diagram for removing the noise 11 and extracting a necessary electric signal in the temperature calculating means 75. As shown in FIG. The transmission/reception between the measurement unit 3 and the piezoelectric substrate 1 is an exchange of high-frequency electrical signals, that is, information in the frequency domain. By inverse Fourier transforming this information, it can be treated as information in the time domain. By converting to the time domain, a time delay occurs between the electrical signal transmitted and received through space and the electrical signal transmitted and received through the piezoelectric substrate 1 as a surface acoustic wave. As a result of an experiment conducted by the inventor, the delay time when passing over the piezoelectric substrate 1 was about 200 ns, which corresponds to spatial propagation of about 60 m when converted to a spatial distance. In the time domain information, by utilizing the delay time when the surface acoustic wave passes over the piezoelectric substrate 1, the electrical signal returning after passing over the piezoelectric substrate 1 can be extracted as the time to be analyzed. It becomes possible.

具体的には、図4において、周波数領域の情報を逆フーリエ変換する(図4の(1)から(2)を参照。)ことによって時間領域の情報を得る。 Specifically, in FIG. 4, information in the time domain is obtained by inverse Fourier transforming the information in the frequency domain (see (1) to (2) in FIG. 4).

次いで、得られた時間領域の情報の中から、圧電基板1上を通過して遅延した所定の時間幅のデータだけを切り出す(図4の(2)及び(3)を参照。)。 Next, from the obtained information in the time domain, only the data of a predetermined time width delayed through the piezoelectric substrate 1 is cut out (see (2) and (3) in FIG. 4).

この切り出された時間領域の情報について、フーリエ変換によって周波数領域に変換する(図4の(3)から(4)を参照。)ことで、圧電基板1を表面弾性波として通過して戻ってくる電気信号だけについて周波数領域で分析することが可能となる。 This cut out information in the time domain is transformed into the frequency domain by Fourier transform (see (3) to (4) in FIG. 4), so that the surface acoustic wave passes through the piezoelectric substrate 1 and returns. Only electrical signals can be analyzed in the frequency domain.

以上のように、反射ノイズを除去するためには、時間領域において圧電基板1を経由した情報についてのみ正確に抽出する必要があるが、この時間領域における分析対象時間は、アンテナ間の距離によっても変化するため、従来は、ノイズと同様にこのアンテナ間の距離による時間遅延も取り除く必要がある。しかしながら、これについては、本実施形態では、以下のように、取り除く必要が無いことが分かった。 As described above, in order to remove reflection noise, it is necessary to accurately extract only the information that has passed through the piezoelectric substrate 1 in the time domain. Since it varies, it is conventionally necessary to remove this time delay due to the distance between the antennas as well as the noise. However, it was found that this need not be removed in the present embodiment as follows.

図5は、本発明の実施形態における温度測定装置10の位置関係の説明図である。計測部3の送信アンテナ4から送信された高周波の電気信号は、空間を伝播して圧電基板1の受信アンテナ2aに到達し、圧電基板1上で表面弾性波として伝播し、送信アンテナ2bから送信されて再び空間を伝播して計測部3の受信アンテナ5が受信する。このとき、高周波の電気信号が送信アンテナ4から受信アンテナ5に至るまでの空間を伝播する全体の距離を見てみる。搬送経路6沿いで、圧電基板1が送信アンテナ4から距離A1の位置にあるときと、圧電基板1が送信アンテナ4から距離A1から進んで距離A2の位置にあるときとで、空間を伝播する距離の合計は、A1+B1=A2+B2となるため、圧電基板1が搬送経路6のどの位置にあったとしても、空間を伝播する距離は同じとなり、すなわち、空間を伝播することによる時間遅延は変化しないことになる。 FIG. 5 is an explanatory diagram of the positional relationship of the temperature measuring device 10 according to the embodiment of the present invention. A high-frequency electrical signal transmitted from the transmitting antenna 4 of the measuring unit 3 propagates through space, reaches the receiving antenna 2a of the piezoelectric substrate 1, propagates on the piezoelectric substrate 1 as a surface acoustic wave, and is transmitted from the transmitting antenna 2b. Then, it propagates through the space again and is received by the receiving antenna 5 of the measuring unit 3 . At this time, let us look at the total distance over which the high-frequency electrical signal propagates through space from the transmitting antenna 4 to the receiving antenna 5 . Along the conveying path 6, the space is propagated when the piezoelectric substrate 1 is at the position of the distance A1 from the transmitting antenna 4 and when the piezoelectric substrate 1 is at the position of the distance A2 from the transmitting antenna 4 from the distance A1. Since the total distance is A1+B1=A2+B2, regardless of the position of the piezoelectric substrate 1 on the transport path 6, the distance propagated through space is the same, that is, the time delay due to propagation through space does not change. It will be.

よって、時間領域での遅延時間を考慮した分析対象時間については、圧電基板1の移動によって変化しないため、測定の初期条件として最適化した分析対象時間のまま、分析をすればよいことになる。 Therefore, since the analysis target time considering the delay time in the time domain does not change due to the movement of the piezoelectric substrate 1, the analysis can be performed with the analysis target time optimized as the initial conditions for measurement.

なお、圧電基板1の受信アンテナ2aで電気信号を受信し、表面弾性波として圧電基板1上を伝播した後に圧電基板1の送信アンテナ2bから電気信号として送信するまでの間に、圧電基板1自身が移動する距離の影響について検討してみる。発明者が実験によって圧電基板1を表面弾性波が通過するためにかかる時間を測定した結果は約100nsであった。このことから、圧電基板1の一般的な搬送速度を鑑みると、100nsの間での移動距離は無視することができる。 Note that the piezoelectric substrate 1 receives an electrical signal from the receiving antenna 2a of the piezoelectric substrate 1, propagates it on the piezoelectric substrate 1 as a surface acoustic wave, and then transmits the electrical signal from the transmitting antenna 2b of the piezoelectric substrate 1 as an electrical signal. Let us consider the effect of the distance traveled by . The inventor measured the time required for the surface acoustic wave to pass through the piezoelectric substrate 1 through an experiment, and the result was about 100 ns. For this reason, considering the general transport speed of the piezoelectric substrate 1, the movement distance within 100 ns can be ignored.

なお、圧電基板1の温度による表面弾性波への影響については、温度が変化することによる周波数特性の変化、例えば具体的には温度の変化による圧電基板1自体の膨張若しくは収縮、又は、それに伴う圧電基板1上に設けられた第一の櫛歯状電極8と第二の櫛歯状電極9との間隔の変化などの要因によって、表面弾性波の周波数特性が変化する。この表面弾性波の周波数特性の変化を圧電基板1の温度と関連付けることが可能であるために、高周波の電気信号を分析することで、圧電基板1の温度を温度算出手段75で測定することができる。 Regarding the influence of the temperature of the piezoelectric substrate 1 on the surface acoustic wave, changes in frequency characteristics due to changes in temperature, for example, expansion or contraction of the piezoelectric substrate 1 itself due to changes in temperature, or The frequency characteristics of the surface acoustic wave change due to factors such as a change in the distance between the first comb-shaped electrode 8 and the second comb-shaped electrode 9 provided on the piezoelectric substrate 1 . Since the change in the frequency characteristics of the surface acoustic waves can be associated with the temperature of the piezoelectric substrate 1, the temperature of the piezoelectric substrate 1 can be measured by the temperature calculating means 75 by analyzing the high-frequency electrical signal. can.

以上のように、本実施形態によれば、温度測定対象である圧電基板1が移動し、計測部3と圧電基板1との距離が連続して変化する環境下において、計測部3から送信された電気信号71を受信して圧電基板1上の第一の櫛歯状電極8で表面弾性波として励振する。この表面弾性波が圧電基板1上を伝播する際に温度影響の情報を周波数特性として有した状態で、第二の櫛歯状電極9で電気信号に変換されて計測部3に送信される。このとき、距離による時間遅延が一定のため、圧電基板1に到達せずに計測部3が受信するような反射波などの時間遅延をノイズ11として区別することができ、圧電基板1の温度を分析するために圧電基板1上を表面弾性波として通過した電気信号を選択的に分析対象として圧電基板1の温度を温度算出手段75で算出することが出来る。 As described above, according to the present embodiment, in an environment where the piezoelectric substrate 1 to be measured for temperature moves and the distance between the measuring unit 3 and the piezoelectric substrate 1 changes continuously, The electric signal 71 is received and excited as a surface acoustic wave by the first comb-shaped electrode 8 on the piezoelectric substrate 1 . When this surface acoustic wave propagates on the piezoelectric substrate 1 , it is converted into an electric signal by the second comb-shaped electrode 9 and transmitted to the measurement unit 3 while having temperature influence information as a frequency characteristic. At this time, since the time delay due to the distance is constant, time delays such as reflected waves received by the measurement unit 3 without reaching the piezoelectric substrate 1 can be distinguished as noise 11, and the temperature of the piezoelectric substrate 1 can be determined. The temperature of the piezoelectric substrate 1 can be calculated by the temperature calculating means 75 by selectively analyzing the electrical signal that has passed through the piezoelectric substrate 1 as a surface acoustic wave for analysis.

よって、無線で送受信するアンテナ4,2a,5,2b間距離が連続的に変動し、かつ圧電基板1の温度が連続的に変化する場合であっても、アンテナ4,2a,5,2b間距離及び圧電基板1の温度による影響と、圧電基板1を経由しないノイズ11の影響を低減することで、信頼性を向上することができる。
(変形例)
なお、図1の構成は高周波の表面弾性波による圧電基板1の通過特性S21を利用した構成であるが、変形例として、図6に示すような反射特性S11を利用した構成も可能である。図6の構成は、計測部3の送信アンテナ4と受信アンテナ5とを結ぶ搬送経路6に沿って圧電基板1が移動し、圧電基板1には送受信アンテナ14が設けてある。
Therefore, even if the distance between the antennas 4, 2a, 5, 2b for wireless transmission and reception changes continuously and the temperature of the piezoelectric substrate 1 changes continuously, the distance between the antennas 4, 2a, 5, 2b Reliability can be improved by reducing the effects of the distance and the temperature of the piezoelectric substrate 1 and the effects of the noise 11 that does not pass through the piezoelectric substrate 1 .
(Modification)
The configuration of FIG. 1 utilizes the transmission characteristics S21 of the piezoelectric substrate 1 due to high-frequency surface acoustic waves, but as a modification, a configuration utilizing the reflection characteristics S11 shown in FIG. 6 is also possible. In the configuration of FIG. 6, the piezoelectric substrate 1 moves along the transport path 6 connecting the transmitting antenna 4 and the receiving antenna 5 of the measuring unit 3, and the piezoelectric substrate 1 is provided with the transmitting/receiving antenna 14. As shown in FIG.

図7は、図6の本発明の実施形態の変形例における温度測定装置10Bの詳細な説明図である。圧電基板1には、計測部3と電気信号を送信あるいは受信するための送受信アンテナ14が設けられている。送受信アンテナ14は、圧電基板1上に設けられた櫛歯状電極15と電気的に接続されている。圧電基板1上において、この櫛歯状電極15と対向する位置に、反射器16が配置されている。 FIG. 7 is a detailed explanatory diagram of the temperature measuring device 10B in a modification of the embodiment of the invention of FIG. The piezoelectric substrate 1 is provided with a measuring section 3 and a transmitting/receiving antenna 14 for transmitting or receiving an electric signal. The transmitting/receiving antenna 14 is electrically connected to a comb-shaped electrode 15 provided on the piezoelectric substrate 1 . A reflector 16 is arranged on the piezoelectric substrate 1 at a position facing the comb-shaped electrode 15 .

このような構成によれば、計測本体部3aに接続されている送信器4aの送信アンテナ4から送信される高周波の電気信号を、送受信アンテナ14で受信して、圧電基板1上に櫛歯状電極15で表面弾性波として励振したのち、励振された表面弾性波が圧電基板1上を伝播して反射器16で反射され、櫛歯状電極15に到達して、再び電気信号に変換されて、送受信アンテナ14から送信する。 According to such a configuration, a high-frequency electric signal transmitted from the transmitting antenna 4 of the transmitter 4a connected to the measurement main body 3a is received by the transmitting/receiving antenna 14, and a comb-shaped electric signal is formed on the piezoelectric substrate 1. After being excited by the electrode 15 as a surface acoustic wave, the excited surface acoustic wave propagates on the piezoelectric substrate 1, is reflected by the reflector 16, reaches the comb-shaped electrode 15, and is converted into an electric signal again. , is transmitted from the transmitting/receiving antenna 14 .

送受信アンテナ14から送信された、この電気信号を、計測本体部3aに接続されている受信器5aの受信アンテナ5で受信する。 This electrical signal transmitted from the transmitting/receiving antenna 14 is received by the receiving antenna 5 of the receiver 5a connected to the measurement main body 3a.

受信アンテナ5で受信された、この電気信号を温度算出手段75で分析することで、圧電基板1の温度を温度算出手段75で算出する。 The temperature calculation means 75 calculates the temperature of the piezoelectric substrate 1 by analyzing the electric signal received by the receiving antenna 5 .

なお、反射特性S11を利用することで、圧電基板1上での表面弾性波の伝播による遅延時間は通過特性S21を利用する場合の2倍となるため、より時間遅延の出力波形は明確になる。 By using the reflection characteristic S11, the delay time due to the propagation of the surface acoustic wave on the piezoelectric substrate 1 is doubled compared to when the transmission characteristic S21 is used, so the output waveform of the time delay becomes clearer. .

上述した構成によれば、反射特性S11を利用する場合であっても、通過特性S21を利用する場合と同様に、距離の変化の影響受けることなく、圧電基板1上を通過した高周波の電気信号だけを抽出して分析することが可能となるため、圧電基板1と計測部3の各アンテナ間の距離が連続的に変化する状況においても、温度測定装置10Bの温度測定精度を維持することが出来る。つまり、反射特性S11を利用する場合においても、分析対象時間を決定する際の時間領域のデータにおいて、圧電基板1の移動による距離の変化の影響を受けることは無いため、分析対象時間は一定のままでよい。 According to the above-described configuration, even when the reflection characteristic S11 is used, the high-frequency electric signal passing through the piezoelectric substrate 1 is not affected by the change in distance, as in the case of using the transmission characteristic S21. Therefore, the temperature measurement accuracy of the temperature measurement device 10B can be maintained even when the distance between the piezoelectric substrate 1 and the antennas of the measurement unit 3 continuously changes. I can. That is, even when the reflection characteristic S11 is used, the time domain data for determining the analysis target time is not affected by the change in distance due to the movement of the piezoelectric substrate 1, so the analysis target time is constant. You can leave it.

なお、アンテナ間での高周波の電気信号の送受信を安定させるためには、通過特性S21を利用する場合は、偏波を利用することができる。図8はアンテナの配置による偏波の説明図である。図8の(a)に示すように、地面に対して垂直なアンテナ17による偏波を垂直偏波18と言い、図8の(b)に示すように、地面に対して水平なアンテナ17による偏波を水平偏波19と言う。マイクロ波より波長が長い(周波数が低い)場合は、送信する側と受信する側とでアンテナの偏波面を一致させないと、良好な通信ができないことがある。この際のロスを逆に利用するケースとして、垂直と水平とで分けることにより、お互いの干渉を減らすことができる。 In order to stabilize the transmission and reception of high-frequency electrical signals between antennas, polarized waves can be used when using the pass characteristic S21. FIG. 8 is an explanatory diagram of polarization due to the arrangement of antennas. As shown in FIG. 8(a), the polarized wave by the antenna 17 perpendicular to the ground is called the vertical polarized wave 18, and as shown in FIG. 8(b), the polarized wave by the antenna 17 horizontal to the ground is Polarization is called horizontal polarization 19 . If the wavelength is longer (lower frequency) than microwaves, good communication may not be possible unless the polarization planes of the antennas on the transmitting side and the receiving side are matched. As a case in which the loss at this time is used in reverse, mutual interference can be reduced by separating the vertical and horizontal.

図9の構成は、計測部3の送信アンテナ4を垂直方向(上下方向)沿いに立設して垂直偏波18となるように配置し、受信アンテナ5を水平方向沿いに配置して水平偏波19となるように配置する。一方、圧電基板1の受信アンテナ2aは垂直方向(上下方向)沿いに立設して垂直偏波18となるように配置し、圧電基板1の送信アンテナ2bは水平方向沿いに配置して水平偏波19となるように配置する。 In the configuration shown in FIG. 9, the transmitting antenna 4 of the measuring unit 3 is vertically (vertically) arranged so as to form a vertically polarized wave 18, and the receiving antenna 5 is arranged horizontally so as to be horizontally polarized. Arranged so as to form a wave 19 . On the other hand, the receiving antenna 2a of the piezoelectric substrate 1 is arranged vertically (vertical direction) and arranged so as to form a vertically polarized wave 18, and the transmitting antenna 2b of the piezoelectric substrate 1 is arranged along the horizontal direction and horizontally polarized. Arranged so as to form a wave 19 .

つまり、計測部3の送信アンテナ4から垂直偏波18を送信することで、圧電基板1の受信アンテナ2aは受信しやすいが、炉7の金属壁面などで反射したノイズ、又は、空間を経由して計測部3の受信アンテナ5に直接伝播する電気信号はロスが大きくなる。 In other words, by transmitting the vertically polarized wave 18 from the transmitting antenna 4 of the measuring unit 3, the receiving antenna 2a of the piezoelectric substrate 1 can easily receive it, but noise reflected by the metal wall surface of the furnace 7 or through space As a result, the electrical signal that propagates directly to the receiving antenna 5 of the measuring unit 3 has a large loss.

また、圧電基板1の送信アンテナ2bを水平偏波19となるように配置することで、圧電基板1を表面弾性波として伝播して、圧電基板1の送信アンテナ2bから送信された電気信号は水平偏波19となり、計測部3の受信アンテナ5でロスが少なく受信することが可能となる。 Further, by arranging the transmitting antenna 2b of the piezoelectric substrate 1 so as to produce a horizontally polarized wave 19, the piezoelectric substrate 1 is propagated as a surface acoustic wave, and the electric signal transmitted from the transmitting antenna 2b of the piezoelectric substrate 1 is transmitted horizontally. It becomes polarized wave 19 and can be received by the receiving antenna 5 of the measuring unit 3 with little loss.

これにより、圧電基板1を表面弾性波として伝播した、温度の分析に必要な電気信号だけをロスなく伝達することが可能となる。 As a result, it is possible to transmit only the electrical signal necessary for analyzing the temperature, which has propagated through the piezoelectric substrate 1 as a surface acoustic wave, without any loss.

なお、前記様々な実施形態又は変形例のうちの任意の実施形態又は変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。また、実施形態同士の組み合わせ又は実施例同士の組み合わせ又は実施形態と実施例との組み合わせが可能であると共に、異なる実施形態又は実施例の中の特徴同士の組み合わせも可能である。 By appropriately combining any of the various embodiments or modifications described above, the respective effects can be obtained. In addition, combinations of embodiments, combinations of examples, or combinations of embodiments and examples are possible, as well as combinations of features in different embodiments or examples.

本発明の前記態様にかかる温度測定装置は、連続で移動する温度測定対象物の温度を計測する際に、ノイズなどの影響を大幅に低減することができ、圧電基板の温度による周波数特性を高精度に分析することが可能となる。このため、本発明の前記態様は、無線、無給電において高精度に温度を測定するシステムとして、搬送を伴う工業製品又は家電製品の製造工程又は各種電子部品の製造工程における乾燥炉、キュア炉、又はリフロー炉などの各種熱処理を行う熱処理方法及び装置に適用できる。 The temperature measuring device according to the above aspect of the present invention can greatly reduce the influence of noise when measuring the temperature of a continuously moving temperature measurement object, and can improve the frequency characteristics due to the temperature of the piezoelectric substrate. Accurate analysis becomes possible. For this reason, the above aspect of the present invention is a system for measuring temperature with high accuracy wirelessly and without power supply. Alternatively, it can be applied to a heat treatment method and apparatus for performing various heat treatments such as a reflow furnace.

1 圧電基板
2a 受信アンテナ
2b 送信アンテナ
3 計測部
3a 計測本体部
4 送信アンテナ
4a 送信器
5 受信アンテナ
5a 受信器
6 搬送経路
7 炉
8 第一の櫛歯状電極
9 第二の櫛歯状電極
10、10B 温度測定装置
11 反射ノイズ
12 直接波
13 金属壁面
14 送受信アンテナ
15 櫛歯状電極
16 反射器
17 アンテナ
18 垂直偏波
19 水平偏波
20 温度測定装置
21 圧電基板
22 アンテナ
23 第1櫛歯状電極
24 第2櫛歯状電極
25 インピーダンス変化型センサ
30 温度測定装置
31 圧電基板
32 第1櫛歯状電極
33 第2櫛歯状電極
34 第3櫛歯状電極
35 測定器
36 外部アンテナ
37 アンテナ
38 センサ
71 計測部から送信された電気信号
75 温度算出手段
1 Piezoelectric substrate 2a Receiving antenna 2b Transmitting antenna 3 Measuring unit 3a Measuring body 4 Transmitting antenna 4a Transmitter 5 Receiving antenna 5a Receiver 6 Transport path 7 Furnace 8 First comb-shaped electrode 9 Second comb-shaped electrode 10 , 10B temperature measuring device 11 reflected noise 12 direct wave 13 metal wall surface 14 transmitting/receiving antenna 15 comb-like electrode 16 reflector 17 antenna 18 vertically polarized wave 19 horizontally polarized wave 20 temperature measuring device 21 piezoelectric substrate 22 antenna 23 first comb-like shape Electrode 24 Second comb-shaped electrode 25 Impedance variable sensor 30 Temperature measuring device 31 Piezoelectric substrate 32 First comb-shaped electrode 33 Second comb-shaped electrode 34 Third comb-shaped electrode 35 Measuring device 36 External antenna 37 Antenna 38 sensor 71 electrical signal transmitted from the measuring unit 75 temperature calculation means

Claims (2)

高周波の電気信号を無線で送信する計測部用の送信アンテナ及び受信を行う計測部用の受信アンテナを備えた計測部と、
前記計測部との間で電気信号を送受信する圧電基板用のアンテナを備えた圧電基板と、
前記圧電基板上に設けられ、前記計測部の前記計測部用の送信アンテナから受信した電気信号を前記圧電基板上に表面弾性波として励振し、かつ前記圧電基板上を伝播する表面弾性波を電気信号に変換する櫛歯状電極と、を備える温度測定装置であって、
直線状の搬送経路上を搬送される前記圧電基板の前記搬送経路の上流側に前記計測部用の送信アンテナと前記計測部用の受信アンテナとのいずれか一方が配置され、前記搬送経路の下流側に前記計測部用の送信アンテナと前記計測部用の受信アンテナとのいずれか他方が配置され、
前記計測部は、前記計測部用の受信アンテナで受信した電気信号を周波数領域から時間領域に変換し、前記圧電基板を表面弾性波として伝播することで遅延した時間に基づいて分析対象時間の範囲を決定し、決定した前記分析対象時間の範囲での前記圧電基板の温度を算出する温度算出手段を備える温度測定装置。
a measuring unit including a transmitting antenna for the measuring unit that wirelessly transmits a high-frequency electrical signal and a receiving antenna for the measuring unit that receives the signal;
a piezoelectric substrate including an antenna for the piezoelectric substrate that transmits and receives electrical signals to and from the measurement unit;
An electric signal received from a transmission antenna for the measurement unit of the measurement unit provided on the piezoelectric substrate is excited on the piezoelectric substrate as a surface acoustic wave, and the surface acoustic wave propagating on the piezoelectric substrate is generated as an electric signal. A temperature measuring device comprising a comb-shaped electrode that converts into a signal,
Either one of the transmitting antenna for the measuring section and the receiving antenna for the measuring section is arranged upstream of the conveying path of the piezoelectric substrate conveyed on the linear conveying path, and downstream of the conveying path. Either the transmitting antenna for the measuring unit or the receiving antenna for the measuring unit is arranged on the side,
The measurement unit converts the electrical signal received by the receiving antenna for the measurement unit from the frequency domain to the time domain, and the range of time to be analyzed based on the time delayed by propagating the piezoelectric substrate as a surface acoustic wave. and calculating the temperature of the piezoelectric substrate within the determined analysis target time range.
前記櫛歯状電極を構成しかつ前記圧電基板上に互いに対向して配置された第一の櫛歯状電極及び第二の櫛歯状電極と、
前記圧電基板用のアンテナを構成しかつ前記第一の櫛歯状電極に電気的に接続された第一のアンテナと、
前記圧電基板用のアンテナを構成しかつ前記第二の櫛歯状電極に電気的に接続された第二のアンテナと、を備え、前記第一の櫛歯状電極は、前記計測部の前記計測部用の送信アンテナから受信した電気信号を前記圧電基板上に表面弾性波として励振し、前記第二の櫛歯状電極は、前記圧電基板上を伝播する表面弾性波を電気信号に変換し、
前記第一のアンテナと前記第二のアンテナとは互いに異なる偏波面に配置され、
前記第一のアンテナは、前記第一のアンテナと電気信号を送受信する前記計測部用の送信アンテナ又は前記計測部用の受信アンテナのいずれか一方と同じ偏波面に配置され、
前記第二のアンテナは、前記第二のアンテナと電気信号を送受信する前記計測部用の送信アンテナ又は前記計測部用の受信アンテナの他方と同じ偏波面に配置されている、請求項1に記載の温度測定装置。
a first comb-shaped electrode and a second comb-shaped electrode that constitute the comb-shaped electrode and are arranged on the piezoelectric substrate so as to face each other;
a first antenna constituting an antenna for the piezoelectric substrate and electrically connected to the first comb-shaped electrode;
a second antenna that constitutes an antenna for the piezoelectric substrate and is electrically connected to the second comb-shaped electrode, wherein the first comb-shaped electrode An electric signal received from a transmission antenna for the unit is excited as a surface acoustic wave on the piezoelectric substrate, and the second comb-shaped electrode converts the surface acoustic wave propagating on the piezoelectric substrate into an electric signal,
the first antenna and the second antenna are arranged in planes of polarization different from each other;
The first antenna is arranged in the same plane of polarization as either the transmission antenna for the measurement unit or the reception antenna for the measurement unit that transmits and receives electrical signals to and from the first antenna,
2. The second antenna according to claim 1, wherein said second antenna is arranged in the same plane of polarization as the other of said transmitting antenna for said measuring unit and said receiving antenna for said measuring unit that transmits and receives an electric signal to and from said second antenna. temperature measuring device.
JP2021083319A 2021-05-17 2021-05-17 temperature measuring device Pending JP2022176741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021083319A JP2022176741A (en) 2021-05-17 2021-05-17 temperature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021083319A JP2022176741A (en) 2021-05-17 2021-05-17 temperature measuring device

Publications (1)

Publication Number Publication Date
JP2022176741A true JP2022176741A (en) 2022-11-30

Family

ID=84234272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021083319A Pending JP2022176741A (en) 2021-05-17 2021-05-17 temperature measuring device

Country Status (1)

Country Link
JP (1) JP2022176741A (en)

Similar Documents

Publication Publication Date Title
US11151337B2 (en) Low loss acoustic wave sensors and tags and high efficiency antennas and methods for remote activation thereof
JP5567894B2 (en) Surface acoustic wave sensor device
CN102052986A (en) Wireless passive surface acoustic wave (SAW) impedance load transducer
CN104990638B (en) A kind of chip based on radio temperature sensor
EP2418482A1 (en) Surface acoustic wave humidity sensor
CN113795750A (en) Measuring device, measuring system and measuring method
KR101904254B1 (en) Wireless temperature measument system
JP2022176741A (en) temperature measuring device
CN104406710A (en) SAW (Surface Acoustic Wave)-technology-based online monitoring system and monitoring method for running temperature of isolation switch in GIS
Aftab et al. A parallel plate dielectric resonator as a wireless passive strain sensor
Zhang et al. Multipath suppression with an absorber for UWB wind turbine blade deflection sensing systems
CN104458053A (en) GIS internal bus operating temperature online monitoring system and method based on acoustic surface wave technology
Niro et al. Design of a surface acoustic wave resonator for sensing platforms
TWI429921B (en) Method for characterizing dielectric loss tangent
JP2022176739A (en) temperature measuring device
US10345160B2 (en) Method for optimizing the design of a device comprising interrogation means and a remotely-interrogatable passive sensor
Kuypers et al. P1I-9 Passive 2.45 GHz TDMA based Multi-Sensor Wireless Temperature Monitoring System: Results and Design Considerations
Shvetsov et al. Quartz orientations for optimal power efficiency in wireless SAW temperature sensors
KR20140119278A (en) Method for non-contact, non-power and wireless measurement of temperature by surface acoustic wave
CN211783950U (en) Surface acoustic wave temperature sensor with time division and frequency division combined coding
RU2656021C1 (en) Device for measuring the length of extended metal product
WO2023248564A1 (en) Atmosphere state measurement device
RU2458319C1 (en) Displacement sensor on surface acoustic waves
RU2393444C1 (en) Detecting element of physical quantity sensor with reflecting structures
JP2007033093A (en) Antenna delay measuring method