JP2022176552A - Angle measurement system and angle measurement method - Google Patents

Angle measurement system and angle measurement method Download PDF

Info

Publication number
JP2022176552A
JP2022176552A JP2021083041A JP2021083041A JP2022176552A JP 2022176552 A JP2022176552 A JP 2022176552A JP 2021083041 A JP2021083041 A JP 2021083041A JP 2021083041 A JP2021083041 A JP 2021083041A JP 2022176552 A JP2022176552 A JP 2022176552A
Authority
JP
Japan
Prior art keywords
angle
ultrasonic wave
ultrasonic
measured
sound pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021083041A
Other languages
Japanese (ja)
Inventor
祐也 市毛
Yuya Ichige
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2021083041A priority Critical patent/JP2022176552A/en
Publication of JP2022176552A publication Critical patent/JP2022176552A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

To provide an angle measurement system that is not susceptible to disturbance.SOLUTION: An angle measurement system comprises: an ultrasonic wave element 10 that includes a vibrating disc, transmits an ultrasonic wave to a surface to be measured 30, and receives the ultrasonic wave reflected on the surface to be measured 30; and an angle calculation unit 301 that calculates the angle of the surface to be measured 30 based on the sound pressure of the received ultrasonic wave and the radius of the disc included in the ultrasonic wave element 10.SELECTED DRAWING: Figure 1

Description

本発明は、角度測定システム及び角度測定方法に関する。 The present invention relates to an angle measurement system and an angle measurement method.

電波、赤外線、可視光、紫外線、及び放射線などの電磁波を用いて、対象物の角度や対象物までの距離を非接触で測定する技術が提案されている(例えば、特許文献1、2参照。)。 Techniques for non-contact measurement of the angle of an object and the distance to the object using electromagnetic waves such as radio waves, infrared rays, visible light, ultraviolet rays, and radiation have been proposed (see Patent Documents 1 and 2, for example). ).

国際公開第2019/131840号WO2019/131840 特許第6401594号公報Japanese Patent No. 6401594

しかし、例えば、電波は、工場内のノイズや無線機器などの影響を受けやすい。また、例えば、赤外線は、太陽光や蛍光灯の影響を受けやすい。このように、電磁波は、環境的な外乱の影響を受けやすい。そのため、電磁波を用いて対象物の角度や対象物までの距離を非接触で測定する技術は、環境的な外乱の影響を受けやすいという問題がある。そこで、本発明は、外乱の影響を受けにくい角度測定システム及び角度測定方法を提供することを目的の一つとする。 However, for example, radio waves are susceptible to noise in factories, radio equipment, and the like. Further, for example, infrared rays are easily affected by sunlight and fluorescent lamps. Thus, electromagnetic waves are susceptible to environmental disturbances. Therefore, the technology for non-contact measurement of the angle of an object and the distance to the object using electromagnetic waves has the problem of being susceptible to environmental disturbances. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an angle measurement system and an angle measurement method that are less susceptible to disturbances.

本発明の態様によれば、振動する円盤を備え、測定対象面に超音波を送信し、測定対象面で反射された超音波を受信する超音波素子と、受信された超音波の音圧と、超音波素子が備える円盤の半径と、に基づき、測定対象面の角度を算出する角度算出部と、を備える、角度測定システムが提供される。 According to an aspect of the present invention, an ultrasonic element that includes a vibrating disk, transmits ultrasonic waves to a surface to be measured, and receives ultrasonic waves reflected by the surface to be measured; and sound pressure of the received ultrasonic waves. , the radius of a disk provided with an ultrasonic element, and an angle calculation unit that calculates the angle of the measurement target surface based on the angle measurement system.

上記の角度測定システムにおいて、角度が、超音波の中心軸に対して垂直な方向に対する角度であってもよい。 In the angle measurement system described above, the angle may be an angle with respect to a direction perpendicular to the central axis of the ultrasonic wave.

上記の角度測定システムにおいて、超音波素子が、測定対象面に垂直に入射して測定対象面で反射された超音波を受信してもよい。 In the angle measurement system described above, the ultrasonic element may receive ultrasonic waves that are perpendicularly incident on the surface to be measured and reflected from the surface to be measured.

上記の角度測定システムにおいて、測定対象面において、超音波が全反射してもよい。 In the angle measurement system described above, the ultrasonic waves may be totally reflected on the surface to be measured.

上記の角度測定システムにおいて、超音波素子と測定対象面との間の距離が、レイリー距離の半分より長くてもよい。 In the angle measurement system described above, the distance between the ultrasonic element and the surface to be measured may be longer than half the Rayleigh distance.

上記の角度測定システムにおいて、角度算出部が、受信された超音波の伝播距離を算出し、角度算出部が、さらに伝播距離に基づき、測定対象面の角度を算出してもよい。 In the angle measurement system described above, the angle calculator may calculate the propagation distance of the received ultrasonic waves, and the angle calculator may further calculate the angle of the measurement target plane based on the propagation distance.

上記の角度測定システムにおいて、角度算出部が、さらに超音波素子が備える円盤の振幅に基づき、測定対象面の角度を算出してもよい。 In the angle measurement system described above, the angle calculation unit may further calculate the angle of the measurement target surface based on the amplitude of the disk provided in the ultrasonic element.

上記の角度測定システムにおいて、測定対象面の角度が0のときに超音波素子が測定対象面に超音波を送信し、測定対象面で反射され、超音波素子で受信された超音波の音圧を角度が0のときの超音波の音圧として、角度算出部が、さらに角度が0のときの超音波の音圧に基づき、測定対象面の角度を算出してもよい。 In the above angle measurement system, when the angle of the measurement target surface is 0, the ultrasonic element transmits ultrasonic waves to the measurement target surface, is reflected by the measurement target surface, and is received by the ultrasonic element Sound pressure of ultrasonic waves is the sound pressure of the ultrasonic waves when the angle is 0, and the angle calculation unit may further calculate the angle of the measurement target surface based on the sound pressure of the ultrasonic waves when the angle is 0.

上記の角度測定システムにおいて、測定対象面の角度が0のときに超音波素子が測定対象面に超音波を送信し、測定対象面で反射され、超音波素子で受信された超音波の伝播距離を角度が0のときの超音波の伝播距離として、角度算出部が、さらに角度が0のときの超音波の伝播距離に基づき、測定対象面の角度を算出してもよい。 In the above angle measurement system, when the angle of the measurement target surface is 0, the ultrasonic element transmits ultrasonic waves to the measurement target surface, is reflected by the measurement target surface, and is received by the ultrasonic element. is the propagation distance of the ultrasonic wave when the angle is 0, the angle calculation unit may further calculate the angle of the measurement target surface based on the propagation distance of the ultrasonic wave when the angle is 0.

上記の角度測定システムにおいて、角度算出部が、さらに超音波の波数、超音波の媒体の密度、超音波の伝播速度、及び超音波の角周波数からなる群から選択される少なくとも1つに基づき、測定対象面の角度を算出してもよい。 In the above angle measurement system, the angle calculation unit is further based on at least one selected from the group consisting of the wave number of the ultrasonic wave, the density of the medium of the ultrasonic wave, the propagation speed of the ultrasonic wave, and the angular frequency of the ultrasonic wave, The angle of the surface to be measured may be calculated.

上記の角度測定システムにおいて、J1を一次のベッセル関数、kを超音波の波数、aを超音波素子が備える振動する円盤の半径、θが測定対象面の角度、pθrを受信された超音波の音圧、2L’を超音波の伝播距離、jを虚数単位、ρを超音波の媒体の密度、cを超音波の伝播速度、V0を円盤の振幅として、角度算出部が、下記(1)式に基づき、角度を算出してもよい。

Figure 2022176552000002
In the angle measurement system described above, J1 is the first-order Bessel function, k is the wave number of the ultrasonic wave, a is the radius of the vibrating disc provided with the ultrasonic element, θ is the angle of the surface to be measured, and p θr is the received ultrasonic wave. Assuming that the sound pressure of the sound wave, 2L′ is the propagation distance of the ultrasonic wave, j is the imaginary unit, ρ is the density of the ultrasonic medium, c is the propagation speed of the ultrasonic wave, and V 0 is the amplitude of the disk, the angle calculation unit performs the following (1) You may calculate an angle based on Formula.
Figure 2022176552000002

上記の角度測定システムが、角度θの値と、(1)式の左辺の値と、の関係を保存するテーブル記憶装置をさらに備えていてもよい。 The above angle measurement system may further include a table storage device that stores the relationship between the value of the angle θ and the value of the left side of equation (1).

上記の角度測定システムにおいて、角度算出部が、(1)式の右辺の値を算出し、算出した右辺の値に最も近似する左辺の値を与える角度θの値をテーブル記憶装置から読み出してもよい。 In the angle measurement system described above, even if the angle calculation unit calculates the value of the right side of equation (1) and reads out from the table storage device the value of the angle θ that gives the value of the left side that is closest to the calculated value of the right side. good.

上記の角度測定システムにおいて、J1を一次のベッセル関数、kを超音波の波数、aを超音波素子が備える振動する円盤の半径、θが測定対象面の角度、pθrを受信された超音波の音圧、L’を超音波の伝播距離の半分、jを虚数単位、cを超音波の伝播速度、pを角度θが0のときの超音波の音圧、2Lを角度θが0のときの超音波の伝播距離、ωを超音波の角周波数として、角度算出部が、下記(2)式に基づき、角度を算出してもよい。

Figure 2022176552000003
In the angle measurement system described above, J1 is the first-order Bessel function, k is the wave number of the ultrasonic wave, a is the radius of the vibrating disc provided with the ultrasonic element, θ is the angle of the surface to be measured, and p θr is the received ultrasonic wave. Sound pressure of sound wave, L′ is half the propagation distance of ultrasonic wave, j is imaginary unit, c is propagation speed of ultrasonic wave, p is sound pressure of ultrasonic wave when angle θ is 0, 2L is sound pressure of ultrasonic wave when angle θ is 0. The angle calculation unit may calculate the angle based on the following equation (2), where ω is the angular frequency of the ultrasonic wave and the propagation distance of the ultrasonic wave at .
Figure 2022176552000003

上記の角度測定システムが、角度θの値と、(2)式の左辺の値と、の関係を保存するテーブル記憶装置をさらに備えていてもよい。 The above angle measurement system may further include a table storage device that stores the relationship between the value of the angle θ and the value of the left side of equation (2).

上記の角度測定システムにおいて、角度算出部が、(2)式の右辺の値を算出し、右辺の値に最も近似する左辺の値を与える角度θの値をテーブル記憶装置から読み出してもよい。 In the above angle measurement system, the angle calculator may calculate the value of the right side of equation (2), and read from the table storage device the value of the angle θ that gives the value of the left side that is closest to the value of the right side.

上記の角度測定システムが、超音波素子が備える円盤の半径の所定の値、超音波素子が備える円盤の振幅の所定の値、角度が0のときの超音波の音圧の所定の値、角度が0のときの超音波の伝播距離の所定の値、超音波の波数の所定の値、超音波の媒体の密度の所定の値、超音波の伝播速度の所定の値、及び超音波の角周波数の所定の値からなる群から選択される少なくとも1つを保存するパラメーター記憶装置をさらに備えていてもよい。 The above-mentioned angle measurement system has a predetermined value of the radius of the disc provided with the ultrasonic element, a predetermined value of the amplitude of the disc provided with the ultrasonic element, a predetermined value of the sound pressure of the ultrasonic wave when the angle is 0, the angle is 0, a given value of the propagation distance of the ultrasonic wave, a given value of the wave number of the ultrasonic wave, a given value of the density of the ultrasonic medium, a given value of the propagation speed of the ultrasonic wave, and the angle of the ultrasonic wave A parameter storage device may be further provided for storing at least one selected from a group of predetermined values of frequency.

また、本発明の態様によれば、円盤を振動させて測定対象面に超音波を送信し、測定対象面で反射した超音波を受信することと、受信した超音波の音圧と、円盤の半径と、に基づき、測定対象面の角度を算出することと、を含む、角度測定方法が提供される。 Further, according to the aspect of the present invention, the disk is vibrated to transmit ultrasonic waves to the surface to be measured, receive the ultrasonic waves reflected by the surface to be measured, the sound pressure of the received ultrasonic waves, and the vibration of the disk. and calculating an angle of a surface to be measured based on the radius.

上記の角度測定方法において、角度が、超音波の中心軸に対して垂直な方向に対する角度であってもよい。 In the angle measurement method described above, the angle may be an angle relative to a direction perpendicular to the central axis of the ultrasonic wave.

上記の角度測定方法において、超音波を送信する超音波素子が、振動する円盤を備えていてもよい。 In the angle measurement method described above, the ultrasonic element that transmits ultrasonic waves may comprise a vibrating disc.

上記の角度測定方法において、測定対象面に垂直に入射して測定対象面で反射された超音波を受信してもよい。 In the above-described angle measurement method, ultrasonic waves that are perpendicularly incident on the measurement target surface and reflected by the measurement target surface may be received.

上記の角度測定方法において、測定対象面において、超音波が全反射してもよい。 In the angle measurement method described above, the ultrasonic waves may be totally reflected on the surface to be measured.

上記の角度測定方法において、超音波素子と測定対象面との間の距離が、レイリー距離の半分より長くてもよい。 In the above angle measurement method, the distance between the ultrasonic element and the surface to be measured may be longer than half the Rayleigh distance.

上記の角度測定方法が、受信された超音波の伝播距離を算出することをさらに含み、さらに伝播距離に基づき、測定対象面の角度を算出してもよい。 The above angle measurement method may further include calculating the propagation distance of the received ultrasonic waves, and the angle of the measurement target plane may be calculated based on the propagation distance.

上記の角度測定方法において、さらに円盤の振幅に基づき、測定対象面の角度を算出してもよい。 In the above angle measurement method, the angle of the measurement target plane may be calculated based on the amplitude of the disk.

上記の角度測定方法において、測定対象面の角度が0のときに測定対象面に超音波を送信し、測定対象面で反射され、受信された超音波の音圧を角度が0のときの超音波の音圧として、さらに角度が0のときの超音波の音圧に基づき、測定対象面の角度を算出してもよい。 In the above angle measurement method, when the angle of the measurement target surface is 0, ultrasonic waves are transmitted to the measurement target surface, and the sound pressure of the received ultrasonic waves reflected by the measurement target surface is As the sound pressure of the sound wave, the angle of the surface to be measured may be calculated based on the sound pressure of the ultrasonic wave when the angle is 0.

上記の角度測定方法において、測定対象面の角度が0のときに測定対象面に超音波を送信し、測定対象面で反射され、受信された超音波の伝播距離を角度が0のときの超音波の伝播距離として、さらに角度が0のときの超音波の伝播距離に基づき、測定対象面の角度を算出してもよい。 In the above angle measurement method, an ultrasonic wave is transmitted to the surface to be measured when the angle of the surface to be measured is 0, and the propagation distance of the received ultrasonic wave reflected by the surface to be measured is measured by the ultrasonic wave when the angle is 0. As the propagation distance of the sound wave, the angle of the surface to be measured may be calculated based on the propagation distance of the ultrasonic wave when the angle is 0.

上記の角度測定方法において、さらに超音波の波数、超音波の媒体の密度、超音波の伝播速度、及び超音波の角周波数からなる群から選択される少なくとも1つに基づき、測定対象面の角度を算出してもよい。 In the above angle measurement method, the angle of the surface to be measured is further based on at least one selected from the group consisting of the wave number of the ultrasonic wave, the density of the medium of the ultrasonic wave, the propagation speed of the ultrasonic wave, and the angular frequency of the ultrasonic wave. may be calculated.

上記の角度測定方法において、J1を一次のベッセル関数、kを超音波の波数、aを超音波素子が備える振動する円盤の半径、θが測定対象面の角度、pθrを受信された超音波の音圧、2L’を超音波の伝播距離、jを虚数単位、ρを超音波の媒体の密度、cを超音波の伝播速度、V0を円盤の振幅として、下記(3)式に基づき、角度を算出してもよい。

Figure 2022176552000004
In the above angle measurement method, J1 is the first-order Bessel function, k is the wave number of ultrasonic waves, a is the radius of the vibrating disk provided by the ultrasonic element, θ is the angle of the surface to be measured, and p θr is the received ultrasonic wave. The sound pressure of the sound wave, 2L' is the propagation distance of the ultrasonic wave, j is the imaginary unit, ρ is the density of the ultrasonic medium, c is the propagation speed of the ultrasonic wave, and V0 is the amplitude of the disk. Based on this, the angle may be calculated.
Figure 2022176552000004

上記の角度測定方法が、角度θの値と、(3)式の左辺の値と、の関係を取得することをさらに含んでいてもよい。 The above angle measurement method may further include obtaining the relationship between the value of the angle θ and the value of the left side of the equation (3).

上記の角度測定方法が、(3)式の右辺の値を算出し、算出した右辺の値に最も近似する左辺の値を与える角度θの値を上記関係から特定することをさらに含んでいてもよい。 The above angle measurement method may further include calculating the value of the right side of equation (3) and specifying from the above relationship the value of the angle θ that gives the value of the left side that is closest to the calculated value of the right side. good.

上記の角度測定方法において、J1を一次のベッセル関数、kを超音波の波数、aを超音波素子が備える振動する円盤の半径、θが測定対象面の角度、pθrを受信された超音波の音圧、L’を超音波の伝播距離の半分、jを虚数単位、cを超音波の伝播速度、pを角度θが0のときの超音波の音圧、2Lを角度θが0のときの超音波の伝播距離、ωを超音波の角周波数として、下記(4)式に基づき、角度を算出してもよい。

Figure 2022176552000005
In the above angle measurement method, J1 is the first-order Bessel function, k is the wave number of ultrasonic waves, a is the radius of the vibrating disk provided by the ultrasonic element, θ is the angle of the surface to be measured, and p θr is the received ultrasonic wave. Sound pressure of sound wave, L′ is half the propagation distance of ultrasonic wave, j is imaginary unit, c is propagation speed of ultrasonic wave, p is sound pressure of ultrasonic wave when angle θ is 0, 2L is sound pressure of ultrasonic wave when angle θ is 0. The angle may be calculated based on the following equation (4), where ω is the angular frequency of the ultrasonic wave and the propagation distance of the ultrasonic wave at .
Figure 2022176552000005

上記の角度測定方法が、角度θの値と、(4)式の左辺の値と、の関係を取得することをさらに含んでいてもよい。 The angle measurement method described above may further include obtaining a relationship between the value of the angle θ and the value of the left side of Equation (4).

上記の角度測定方法が、(4)式の右辺の値を算出し、右辺の値に最も近似する左辺の値を与える角度θの値を上記関係から特定することをさらに含んでいてもよい。 The above angle measurement method may further include calculating the value of the right side of equation (4) and specifying from the above relationship the value of the angle θ that gives the value of the left side that is closest to the value of the right side.

上記の角度測定方法が、超音波素子が備える円盤の半径の所定の値、超音波素子が備える円盤の振幅の所定の値、角度が0のときの超音波の音圧の所定の値、角度が0のときの超音波の伝播距離の所定の値、超音波の波数の所定の値、超音波の媒体の密度の所定の値、超音波の伝播速度の所定の値、及び超音波の角周波数の所定の値からなる群から選択される少なくとも1つを取得することをさらに含んでいてもよい。 The above angle measurement method includes a predetermined value of the radius of the disc provided with the ultrasonic element, a predetermined value of the amplitude of the disc provided with the ultrasonic element, a predetermined value of the sound pressure of the ultrasonic wave when the angle is 0, and the angle is 0, a given value of the propagation distance of the ultrasonic wave, a given value of the wave number of the ultrasonic wave, a given value of the density of the ultrasonic medium, a given value of the propagation speed of the ultrasonic wave, and the angle of the ultrasonic wave It may further comprise obtaining at least one selected from a group of predetermined values of frequency.

本発明によれば、外乱の影響を受けにくい角度測定システム及び角度測定方法を提供可能である。 According to the present invention, it is possible to provide an angle measurement system and an angle measurement method that are less susceptible to disturbances.

図1は、第1実施形態に係る角度測定システムを示す模式図である。FIG. 1 is a schematic diagram showing an angle measurement system according to the first embodiment. 図2は、第1実施形態に係る角度測定システムを示す模式図である。FIG. 2 is a schematic diagram showing the angle measurement system according to the first embodiment. 図3は、超音波の伝播距離と音圧との関係の例を示すグラフである。FIG. 3 is a graph showing an example of the relationship between the propagation distance of ultrasonic waves and the sound pressure. 図4は、第2実施形態に係る角度測定システムを示す模式図である。FIG. 4 is a schematic diagram showing an angle measurement system according to the second embodiment.

以下、本発明の実施形態について図面を参照して説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。ただし、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined by referring to the following description. In addition, it is a matter of course that there are portions with different dimensional relationships and ratios between the drawings.

(第1実施形態)
第1実施形態に係る角度測定システムは、図1に示すように、振動する円盤を備え、測定対象面30に超音波を送信し、測定対象面30で反射された超音波を受信する超音波素子10と、受信された超音波の音圧と、超音波素子10が備える円盤の半径と、に基づき、測定対象面30の角度を算出する角度算出部301と、を備える。
(First embodiment)
As shown in FIG. 1, the angle measurement system according to the first embodiment includes a vibrating disk, which transmits ultrasonic waves to a surface 30 to be measured and receives ultrasonic waves reflected by the surface 30 to be measured. and an angle calculator 301 that calculates the angle of the measurement target plane 30 based on the sound pressure of the received ultrasonic waves and the radius of the disk provided in the ultrasonic element 10 .

超音波素子10は、例えば、振動しない基板11に固定されている。超音波素子10は、例えば、半径aの剛円板を備える。剛円板は、面に対して垂直方向に振幅V0で振動し、超音波を発する。超音波は、例えば、周波数が20kHz以上の音波である。超音波素子10の剛円板の面に対して垂直な方向をx方向として、超音波は、x方向と平行な方向を中心軸として伝播する。また、超音波素子10は、超音波を受信し、受信した超音波の音圧を検出するように構成されている。 The ultrasonic element 10 is fixed to, for example, a non-vibrating substrate 11 . The ultrasonic element 10 comprises, for example, a rigid disk of radius a. The rigid disc vibrates with an amplitude V 0 perpendicular to the plane and emits ultrasonic waves. Ultrasonic waves are, for example, sound waves with a frequency of 20 kHz or more. The direction perpendicular to the surface of the rigid disk of the ultrasonic element 10 is defined as the x direction, and the ultrasonic wave propagates with the central axis parallel to the x direction. Further, the ultrasonic element 10 is configured to receive ultrasonic waves and detect the sound pressure of the received ultrasonic waves.

測定対象面30は、例えば、金属、樹脂、及びガラス等からなる固体である。通常、空気と固体との音響インピーダンスの差は大きいため、測定対象面30で、超音波は、音圧を実質的に減少することなく、反射される。図2に示すように、測定対象面30が傾いていない場合、測定対象面30は、x方向において超音波素子10から距離Lの位置に配置されている。 The measurement target surface 30 is a solid made of metal, resin, glass, or the like, for example. Since the difference in acoustic impedance between air and solids is usually large, the ultrasonic waves are reflected at the measurement target surface 30 without substantially reducing the sound pressure. As shown in FIG. 2, when the measurement target surface 30 is not tilted, the measurement target surface 30 is arranged at a distance L from the ultrasonic element 10 in the x direction.

超音波素子10が発した超音波の中心軸上の音圧pは、下記(5)式で与えられる。

Figure 2022176552000006
A sound pressure p on the central axis of the ultrasonic waves emitted by the ultrasonic element 10 is given by the following equation (5).
Figure 2022176552000006

(5)式において、ρは超音波の媒体の密度、cは超音波の伝播速度、kは超音波の波数、lは超音波素子10からの伝播距離を表す。波数kは、下記(6)式で与えられる。
k=ω/c (6)
(6)式において、ωは角周波数を表す。
In equation (5), ρ is the density of the ultrasonic medium, c is the propagation speed of the ultrasonic wave, k is the wave number of the ultrasonic wave, and l is the propagation distance from the ultrasonic element 10 . Wavenumber k is given by the following equation (6).
k = ω/c (6)
(6), ω represents an angular frequency.

図3は、媒体が空気であり、剛円板の半径aが2cmであり、角周波数ωが40kHzであり、剛円板の振幅V0が1mmである場合の音圧pの算出値と、超音波の伝播距離lと、の関係を示すグラフである。この場合、lが0.05mより小さい近距離場では、音圧pは、0と2ρcV0の間を振幅するが、lが大きい遠距離場では、音圧pは距離lに反比例して小さくなる。一般に、遠距離場において、超音波の音圧pは、下記(7)式で近似可能である。
P≒ρωQ/2πx (7)
(7)式におけるQは、下記(8)式で与えられる
Q=πa2V0 (8)
FIG. 3 shows the calculated sound pressure p when the medium is air, the radius a of the rigid disc is 2 cm, the angular frequency ω is 40 kHz, and the amplitude V0 of the rigid disc is 1 mm, It is a graph which shows the relationship between the propagation distance l of an ultrasonic wave and. In this case, in the near field where l is less than 0.05 m, the sound pressure p oscillates between 0 and 2ρcV 0 , whereas in the far field where l is large the sound pressure p decreases inversely with the distance l. Become. Generally, in the far field, the sound pressure p of ultrasonic waves can be approximated by the following equation (7).
P≈ρωQ/2πx (7)
Q in the formula (7) is given by the following formula (8)
Q= πa2V0 ( 8 )

近距離場と遠距離場の境目となる距離を、レイリー距離という。レイリー距離R0は、下記(9)式で与えられる。
R0=a2/(2k) (9)
実施形態において、図2に示す超音波素子10と測定対象面30との間の距離Lは、レイリー距離の半分より長い。
The distance between the near field and the far field is called the Rayleigh distance. The Rayleigh distance R 0 is given by the following equation (9).
R 0 =a 2 /(2k) (9)
In embodiments, the distance L between the ultrasonic element 10 and the measurement target surface 30 shown in FIG. 2 is longer than half the Rayleigh distance.

図2に示す測定対象面30で全反射して超音波素子10に戻ってきた超音波の伝播距離lは2Lであるため、超音波素子10に戻ってきた超音波の音圧は、(7)及び(8)式より、下記(10)式で与えられる。

Figure 2022176552000007
Since the propagation distance l of the ultrasonic wave returned to the ultrasonic element 10 after being totally reflected by the measurement target surface 30 shown in FIG. 2 is 2L, the sound pressure of the ultrasonic wave returned to the ultrasonic element 10 is ) and (8), it is given by the following equation (10).
Figure 2022176552000007

再び図1を参照して、x方向に対して垂直な方向をy方向とし、xy平面に対して垂直な方向をz方向とする。測定対象面30がz方向と平行な回転軸を中心としてy方向に対してθ度傾いた場合、超音波素子10から発せられ、中心軸からθ度方向に進行した超音波が、測定対象面30に垂直に入射する。ここで、超音波素子10から発せられ、中心軸からθ度方向に進行した超音波が、測定対象面30に垂直に入射するまでの伝播距離をL’として、測定対象面30に垂直に入射した超音波の音圧pθhは、下記(11)式で与えられる。

Figure 2022176552000008
Referring to FIG. 1 again, the direction perpendicular to the x direction is the y direction, and the direction perpendicular to the xy plane is the z direction. When the surface to be measured 30 is tilted by θ degrees with respect to the y direction about the rotation axis parallel to the z direction, the ultrasonic waves emitted from the ultrasonic element 10 and traveling in the direction of θ degrees from the central axis are projected onto the surface to be measured. 30 at normal incidence. Here, the ultrasonic wave emitted from the ultrasonic element 10 and traveling in the direction of θ degrees from the central axis is vertically incident on the measurement target surface 30, where L′ is the propagation distance until the ultrasonic wave is vertically incident on the measurement target surface 30. The sound pressure p θh of the ultrasonic waves obtained is given by the following equation (11).
Figure 2022176552000008

(11)式において、jは虚数単位、J1は一次のベッセル関数を表す。 (11), j represents an imaginary unit and J 1 represents a first-order Bessel function.

超音波素子10から発せられ、中心軸からθ度方向に進行し、測定対象面30で全反射して超音波素子10に戻ってきた超音波の音圧pθrは、下記(12)式で与えられる。なお、測定対象面30に垂直とは異なる角度で入射した超音波は、超音波素子10とは実質的に異なる位置に向かって反射される。

Figure 2022176552000009
The sound pressure p θr of the ultrasonic wave emitted from the ultrasonic element 10, traveling in the direction of θ degrees from the central axis, totally reflected by the measurement target surface 30, and returning to the ultrasonic element 10 is expressed by the following equation (12). Given. An ultrasonic wave incident on the measurement target surface 30 at an angle different from the perpendicular is reflected toward a position substantially different from the ultrasonic element 10 .
Figure 2022176552000009

(12)式を変形すると、下記(13)式が得られる。

Figure 2022176552000010
By modifying the formula (12), the following formula (13) is obtained.
Figure 2022176552000010

超音波の音圧pθrは、超音波素子10で検出可能である。超音波の伝播距離2L’は、例えば、受信した超音波の波形から算出可能である。超音波の伝播距離2L’は、例えば、超音波を送信してから受信するまでの時間と、超音波の伝播速度cから算出してもよい。超音波の波数k、超音波素子10の剛円盤の半径a、超音波の媒体の密度ρ、超音波の伝播速度c、及び超音波素子10の剛円盤の振幅V0のそれぞれの値は、通常、一定であり、予め取得可能、あるいは既知である。したがって、(13)式に基づいて、測定対象面30の傾きの角度θを算出可能である。 The ultrasonic sound pressure p θr can be detected by the ultrasonic element 10 . The propagation distance 2L' of ultrasonic waves can be calculated, for example, from the waveform of the received ultrasonic waves. The propagation distance 2L' of the ultrasonic waves may be calculated from, for example, the time from transmission of the ultrasonic waves to reception of the ultrasonic waves and the propagation speed c of the ultrasonic waves. The wave number k of the ultrasonic wave, the radius a of the rigid disc of the ultrasonic element 10, the density ρ of the medium of the ultrasonic wave, the propagation speed c of the ultrasonic wave, and the amplitude V 0 of the rigid disc of the ultrasonic element 10 are, respectively, Usually constant, pre-obtainable or known. Therefore, the inclination angle θ of the measurement target surface 30 can be calculated based on the equation (13).

角度算出部301は、例えば、コンピューターシステム300に含まれる。角度算出部301は、例えば、超音波素子10に電気的に接続されている。角度算出部301は、超音波素子10から、超音波の音圧pθrを受け取る。また、角度算出部301は、超音波の伝播距離2L’を算出する。なお、角度算出部301は、送信した超音波の角周波数とは異なる角周波数の超音波を受信した場合、異なる角周波数の超音波をノイズとして除去してもよい。また、角度算出部301は、送信した超音波の波形を平均化して、ノイズを除去してもよい。 The angle calculator 301 is included in the computer system 300, for example. The angle calculator 301 is electrically connected to the ultrasonic element 10, for example. The angle calculator 301 receives the ultrasonic sound pressure p θr from the ultrasonic element 10 . The angle calculator 301 also calculates the propagation distance 2L' of the ultrasonic waves. In addition, when receiving an ultrasonic wave having an angular frequency different from that of the transmitted ultrasonic wave, the angle calculation unit 301 may remove the ultrasonic wave having a different angular frequency as noise. Also, the angle calculation unit 301 may average the waveform of the transmitted ultrasonic waves to remove noise.

角度算出部301には、例えば、パラメーター記憶装置401が電気的に接続されている。パラメーター記憶装置401は、超音波の波数k、超音波素子10の剛円盤の半径a、超音波の媒体の密度ρ、超音波の伝播速度c、及び超音波素子10の剛円盤の振幅V0のそれぞれの所定の値を保存する。 For example, the parameter storage device 401 is electrically connected to the angle calculator 301 . The parameter storage device 401 stores the wavenumber k of the ultrasonic wave, the radius a of the rigid disk of the ultrasonic element 10, the density ρ of the medium of the ultrasonic wave, the propagation speed c of the ultrasonic wave, and the amplitude V 0 of the rigid disk of the ultrasonic element 10. store a predetermined value for each of the .

角度算出部301は、パラメーター記憶装置401から、超音波の波数k、超音波素子10の剛円盤の半径a、超音波の媒体の密度ρ、超音波の伝播速度c、及び超音波素子10の剛円盤の振幅V0のそれぞれの所定の値を読み出し、上記(13)式に基づいて、測定対象面30の傾きの角度θを算出する。なお、上記(13)式に基づいて、測定対象面30の傾きの角度θを算出する場合、上記(13)式を変形してもよい。例えば、上記(6)式を用いて、波数kをω/cに置換してもよい。 The angle calculation unit 301 obtains from the parameter storage device 401 the wavenumber k of the ultrasonic wave, the radius a of the rigid disk of the ultrasonic element 10, the density ρ of the medium of the ultrasonic wave, the propagation speed c of the ultrasonic wave, and the Each predetermined value of the amplitude V 0 of the rigid disk is read out, and the inclination angle θ of the measurement target surface 30 is calculated based on the above equation (13). When calculating the inclination angle θ of the measurement target surface 30 based on the above equation (13), the above equation (13) may be modified. For example, the wave number k may be replaced with ω/c using the above equation (6).

例えば、建設現場や工場の生産ラインにおいて、測定対象面の角度を計測する場合、測定対象面が高所にあると、人手による角度の測定は、危険が生じ、また足場を組むのは煩雑である。これに対し、第1実施形態に係る角度測定システムは、非接触で測定対象面の角度を計測することが可能であるため、測定対象面が、作業者の手の届かない場所に位置していても、測定対象面の角度を測定することが可能である。また、超音波は、環境的な外乱の影響を受けにくい。そのため、第1実施形態に係る角度測定システムによれば、環境的な外乱の影響を受けにくい角度の測定が可能である。 For example, when measuring the angle of a surface to be measured at a construction site or a production line in a factory, if the surface to be measured is in a high place, manual measurement of the angle can be dangerous, and scaffolding is complicated. be. On the other hand, since the angle measurement system according to the first embodiment can measure the angle of the surface to be measured without contact, the surface to be measured is located out of reach of the operator. However, it is possible to measure the angle of the measurement target surface. Also, ultrasound is less susceptible to environmental disturbances. Therefore, according to the angle measurement system according to the first embodiment, it is possible to measure angles that are less susceptible to environmental disturbances.

(第2実施形態)
第2実施形態に係る角度測定システムは、図4に示すように、角度算出部301に電気的に接続されたテーブル記憶装置402をさらに備える。テーブル記憶装置402は、予め取得された、測定対象面30の傾きの角度θと、上記(13)式の左辺と、の関係を保存する。例えば、テーブル記憶装置402は、測定対象面30の傾きの角度θの離散的な値と、角度θのそれぞれの値に対応する上記(13)式の左辺の離散的な値と、の関係を保存する。
(Second embodiment)
The angle measurement system according to the second embodiment further includes a table storage device 402 electrically connected to the angle calculator 301, as shown in FIG. The table storage device 402 stores the previously obtained relationship between the inclination angle θ of the measurement target surface 30 and the left side of the above equation (13). For example, the table storage device 402 stores the relationship between the discrete values of the tilt angle θ of the measurement target surface 30 and the discrete values of the left side of the above equation (13) corresponding to the respective values of the angle θ. save.

第2実施形態において、角度算出部301は、上記(13)式の右辺の値を算出する。さらに、角度算出部301は、上記(13)式の右辺の値に最も近似する左辺の値を与える測定対象面30の傾きの角度θを、テーブル記憶装置402から読み出す。第2実施形態に係る角度測定システムの他の構成要素は、第1実施形態と同様である。第2実施形態によれば、予め算出した上記(13)式の左辺の値を利用するため、測定時における測定対象面30の傾きの角度θの算出時間を抑制することが可能である。 In the second embodiment, the angle calculator 301 calculates the value of the right side of Equation (13) above. Further, the angle calculator 301 reads from the table storage device 402 the tilt angle θ of the measurement target surface 30 that gives the value of the left side that is closest to the value of the right side of the above equation (13). Other components of the angle measurement system according to the second embodiment are the same as those of the first embodiment. According to the second embodiment, since the value of the left side of the formula (13) is calculated in advance, it is possible to reduce the calculation time of the tilt angle θ of the measurement target surface 30 during measurement.

(第3実施形態)
(10)式と(13)式から、下記(14)式が得られる。

Figure 2022176552000011
(Third Embodiment)
The following formula (14) is obtained from the formulas (10) and (13).
Figure 2022176552000011

超音波の角周波数ωの値は、通常、一定であり、予め取得可能、あるいは既知である。角度θが0のときの超音波の音圧pは、予め取得可能である。角度θが0のときの超音波の伝播距離2Lは、予め取得可能である。 The value of the ultrasonic angular frequency ω is usually constant and can be obtained in advance or known. The ultrasonic sound pressure p when the angle θ is 0 can be obtained in advance. The propagation distance 2L of ultrasonic waves when the angle θ is 0 can be obtained in advance.

第3実施形態において、図1に示すパラメーター記憶装置401は、超音波の伝播速度c、角度θが0のときの超音波の音圧p、角度θが0のときの超音波の伝播距離2L、超音波の角周波数ω、超音波素子10の剛円盤の半径a、及び超音波の波数kのそれぞれの所定の値を保存する。 In the third embodiment, the parameter storage device 401 shown in FIG. 1 stores the propagation speed c of the ultrasonic wave, the sound pressure p of the ultrasonic wave when the angle θ is 0, and the propagation distance 2L of the ultrasonic wave when the angle θ is 0. , the ultrasonic angular frequency ω, the radius a of the rigid disk of the ultrasonic element 10, and the ultrasonic wave number k.

角度算出部301は、超音波素子10から、超音波の音圧pθrを受け取る。また、角度算出部301は、超音波の伝播距離2L’を算出する。また、角度算出部301は、パラメーター記憶装置401から、超音波の伝播速度c、角度θが0のときの超音波の音圧p、角度θが0のときの超音波の伝播距離2L、超音波の角周波数ω、超音波素子10の剛円盤の半径a、及び超音波の波数kのそれぞれの所定の値を読み出し、上記(14)式に基づいて、測定対象面30の傾きの角度θを算出する。なお、上記(14)式に基づいて、測定対象面30の傾きの角度θを算出する場合、上記(14)式を変形してもよい。例えば、上記(6)式を用いて、波数kをω/cに置換してもよい。あるいは、角周波数ωを、kcに置換してもよい。第3実施形態に係る角度測定システムの他の構成要素は、第1実施形態と同様である。 The angle calculator 301 receives the ultrasonic sound pressure p θr from the ultrasonic element 10 . The angle calculator 301 also calculates the propagation distance 2L' of the ultrasonic waves. Further, the angle calculation unit 301 obtains from the parameter storage device 401 the propagation speed c of the ultrasonic wave, the sound pressure p of the ultrasonic wave when the angle θ is 0, the propagation distance 2L of the ultrasonic wave when the angle θ is 0, the ultrasonic wave Predetermined values for the angular frequency ω of the sound wave, the radius a of the rigid disc of the ultrasonic element 10, and the wave number k of the ultrasonic wave are read out, and the tilt angle θ of the measurement target surface 30 is calculated based on the above equation (14) Calculate When calculating the inclination angle θ of the measurement target surface 30 based on the above equation (14), the above equation (14) may be modified. For example, the wave number k may be replaced with ω/c using the above equation (6). Alternatively, the angular frequency ω may be replaced with kc. Other components of the angle measurement system according to the third embodiment are the same as those of the first embodiment.

(第4実施形態)
第4実施形態に係る角度測定システムは、第2実施形態と同様に、図4に示すように、テーブル記憶装置402を備える。第4実施形態において、角度算出部301は、上記(14)式の右辺の値を算出する。さらに、角度算出部301は、上記(14)式の右辺の値に最も近似する左辺の値を与える測定対象面30の傾きの角度θを、テーブル記憶装置402から読み出す。
(Fourth embodiment)
The angle measurement system according to the fourth embodiment includes a table storage device 402, as shown in FIG. 4, as in the second embodiment. In the fourth embodiment, the angle calculator 301 calculates the value of the right side of the above equation (14). Furthermore, the angle calculator 301 reads from the table storage device 402 the inclination angle θ of the measurement target surface 30 that gives the value of the left side that is closest to the value of the right side of the above equation (14).

上記のように本発明を実施形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかになるはずである。本発明はここでは記載していない様々な実施形態等を包含するということを理解すべきである。 While the invention has been described by way of embodiments as above, the description and drawings forming part of this disclosure should not be understood to limit the invention. Various alternative embodiments, implementations and operational techniques should become apparent to those skilled in the art from this disclosure. It should be understood that the present invention includes various embodiments and the like not described here.

10・・・超音波素子、11・・・基板、30・・・測定対象面、300・・・コンピューターシステム、301・・・角度算出部、401・・・パラメーター記憶装置、402・・・テーブル記憶装置 DESCRIPTION OF SYMBOLS 10... Ultrasonic element, 11... Substrate, 30... Measurement object surface, 300... Computer system, 301... Angle calculation part, 401... Parameter storage device, 402... Table Storage device

Claims (10)

振動する円盤を備え、測定対象面に超音波を送信し、前記測定対象面で反射された前記超音波を受信する超音波素子と、
受信された前記超音波の音圧と、前記円盤の半径と、に基づき、前記測定対象面の角度を算出する角度算出部と、
を備える、角度測定システム。
an ultrasonic element that includes a vibrating disk, transmits ultrasonic waves to a surface to be measured, and receives the ultrasonic waves reflected from the surface to be measured;
an angle calculation unit that calculates the angle of the measurement target surface based on the sound pressure of the received ultrasonic waves and the radius of the disk;
An angle measurement system comprising:
前記角度算出部が、受信された前記超音波の伝播距離を算出し、
前記角度算出部が、さらに前記伝播距離に基づき、前記測定対象面の前記角度を算出する、請求項1に記載の角度測定システム。
The angle calculation unit calculates the propagation distance of the received ultrasonic waves,
2. The angle measurement system according to claim 1, wherein said angle calculator calculates said angle of said surface to be measured based on said propagation distance.
前記角度算出部が、さらに前記円盤の振幅に基づき、前記測定対象面の前記角度を算出する、請求項1又は2に記載の角度測定システム。 3. The angle measurement system according to claim 1, wherein said angle calculator further calculates said angle of said surface to be measured based on the amplitude of said disk. 前記角度が0のときに前記超音波素子が前記測定対象面に前記超音波を送信し、前記測定対象面で反射され、前記超音波素子で受信された前記超音波の音圧を前記角度が0のときの前記超音波の音圧として、
前記角度算出部が、さらに前記角度が0のときの前記超音波の音圧に基づき、前記測定対象面の前記角度を算出する、請求項1から3のいずれか1項に記載の角度測定システム。
When the angle is 0, the ultrasonic element transmits the ultrasonic wave to the surface to be measured, is reflected by the surface to be measured, and the sound pressure of the ultrasonic wave received by the ultrasonic element is As the sound pressure of the ultrasonic wave at 0,
The angle measurement system according to any one of claims 1 to 3, wherein the angle calculator calculates the angle of the surface to be measured based on the sound pressure of the ultrasonic wave when the angle is 0. .
前記角度が0のときに前記超音波素子が前記測定対象面に前記超音波を送信し、前記測定対象面で反射され、前記超音波素子で受信された前記超音波の伝播距離を前記角度が0のときの前記超音波の伝播距離として、
前記角度算出部が、さらに前記角度が0のときの前記超音波の前記伝播距離に基づき、前記測定対象面の前記角度を算出する、請求項1から3のいずれか1項に記載の角度測定システム。
When the angle is 0, the ultrasonic element transmits the ultrasonic wave to the surface to be measured, is reflected by the surface to be measured, and is received by the ultrasonic element. As the propagation distance of the ultrasonic wave when 0,
4. The angle measurement according to any one of claims 1 to 3, wherein the angle calculator further calculates the angle of the surface to be measured based on the propagation distance of the ultrasonic wave when the angle is 0. system.
前記角度算出部が、さらに前記超音波の波数、前記超音波の媒体の密度、前記超音波の伝播速度、及び前記超音波の角周波数からなる群から選択される少なくとも1つに基づき、前記測定対象面の前記角度を算出する、請求項1から5のいずれか1項に記載の角度測定システム。 The angle calculation unit further performs the measurement based on at least one selected from the group consisting of the wave number of the ultrasonic wave, the density of the medium of the ultrasonic wave, the propagation speed of the ultrasonic wave, and the angular frequency of the ultrasonic wave. 6. An angle measurement system according to any one of claims 1 to 5, wherein the angle of the object plane is calculated. 1を一次のベッセル関数、kを前記超音波の波数、aを前記円盤の半径、θが前記測定対象面の前記角度、pθrを受信された前記超音波の前記音圧、2L’を前記超音波の伝播距離、jを虚数単位、ρを前記超音波の媒体の密度、cを前記超音波の伝播速度、V0を前記円盤の振幅として、前記角度算出部が、下記(1)式に基づき、前記角度を算出する、請求項1に記載の角度測定システム。
Figure 2022176552000012
J is the first-order Bessel function, k is the wavenumber of the ultrasonic wave, a is the radius of the disk, θ is the angle of the surface to be measured, p θr is the sound pressure of the received ultrasonic wave, and 2L′ is Where the propagation distance of the ultrasonic wave, j is an imaginary unit, ρ is the density of the medium of the ultrasonic wave, c is the propagation speed of the ultrasonic wave, and V0 is the amplitude of the disk, the angle calculation unit performs the following (1) 2. The angle measurement system of claim 1, wherein the angle is calculated based on a formula.
Figure 2022176552000012
1を一次のベッセル関数、kを前記超音波の波数、aを前記円盤の半径、θが前記測定対象面の前記角度、pθrを受信された前記超音波の前記音圧、L’を前記超音波の伝播距離の半分、jを虚数単位、cを前記超音波の伝播速度、pを角度θが0のときの超音波の音圧、2Lを角度θが0のときの超音波の伝播距離、ωを超音波の角周波数として、前記角度算出部が、下記(2)式に基づき、前記角度を算出する、請求項1に記載の角度測定システム。
Figure 2022176552000013
J is the first-order Bessel function, k is the wavenumber of the ultrasonic wave, a is the radius of the disk, θ is the angle of the surface to be measured, p θr is the sound pressure of the received ultrasonic wave, and L′ is Half the propagation distance of the ultrasonic wave, j is the imaginary unit, c is the propagation speed of the ultrasonic wave, p is the sound pressure of the ultrasonic wave when the angle θ is 0, and 2L is the ultrasonic wave when the angle θ is 0. 2. The angle measurement system according to claim 1, wherein the angle calculation unit calculates the angle based on the following equation (2), where ω is the angular frequency of ultrasonic waves.
Figure 2022176552000013
円盤を振動させて測定対象面に超音波を送信し、前記測定対象面で反射した前記超音波を受信することと、
受信した前記超音波の音圧と、前記円盤の半径と、に基づき、前記測定対象面の角度を算出することと、
を含む、角度測定方法。
Transmitting ultrasonic waves to a surface to be measured by vibrating a disk, and receiving the ultrasonic waves reflected by the surface to be measured;
calculating the angle of the surface to be measured based on the sound pressure of the received ultrasonic waves and the radius of the disk;
angle measurement methods, including
受信された前記超音波の伝播距離を算出することをさらに含み、
さらに前記伝播距離に基づき、前記測定対象面の前記角度を算出する、請求項9に記載の角度測定方法。
further comprising calculating a propagation distance of the received ultrasound;
10. The angle measuring method according to claim 9, further comprising calculating the angle of the measurement target surface based on the propagation distance.
JP2021083041A 2021-05-17 2021-05-17 Angle measurement system and angle measurement method Pending JP2022176552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021083041A JP2022176552A (en) 2021-05-17 2021-05-17 Angle measurement system and angle measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021083041A JP2022176552A (en) 2021-05-17 2021-05-17 Angle measurement system and angle measurement method

Publications (1)

Publication Number Publication Date
JP2022176552A true JP2022176552A (en) 2022-11-30

Family

ID=84234213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021083041A Pending JP2022176552A (en) 2021-05-17 2021-05-17 Angle measurement system and angle measurement method

Country Status (1)

Country Link
JP (1) JP2022176552A (en)

Similar Documents

Publication Publication Date Title
US10215613B2 (en) System and method for non-intrusive and continuous level measurement of a liquid
CN110383014B (en) Apparatus and method for measuring flow velocity of fluid in pipe
JP2010521015A (en) DIGITAL PEN SYSTEM, TRANSMITTER DEVICE, RECEIVER DEVICE, AND THEIR MANUFACTURING METHOD AND USING METHOD
US20130233080A1 (en) System for detecting and locating a disturbance in a medium, and corresponding method and computer program
US11879815B2 (en) Non-contact non-destructive inspection system, signal processing device, and non-contact non-destructive inspection method
JP6674263B2 (en) Deformation detection device
JP5633059B2 (en) Ultrasonic flaw detection sensitivity setting method and ultrasonic flaw detection apparatus
JP2022176552A (en) Angle measurement system and angle measurement method
JP5827809B2 (en) Ultrasonic probe and method for measuring circumference of tubular object
KR101421137B1 (en) Ultrasonic level meter
JPH0354409A (en) Ultrasonic wave detector
JP2000028722A (en) Method and apparatus for distance measurement by laser beam
JP4969191B2 (en) Tube expansion confirmation inspection device
RU2460078C1 (en) Method of measuring angular velocity
WO2017141402A1 (en) Ultrasonic transmission/reception apparatus, wall member, and method for attaching ultrasonic sensor to wall member
JPH0798240A (en) Ultrasonic water level measurement method and device
JP3036172B2 (en) Liquid level detector in pressure vessel
JP2019023590A (en) Ultrasonic probe and ultrasonic flaw detection device
KR102179231B1 (en) Ultrasonic wave apparatus for measure of distance
GB2560930A (en) A method for transmitting and/or receiving an optical signal
JPH05142356A (en) Ultrasonic substance detector
RU2457436C1 (en) Gyroscope sensor
JP2007205906A (en) Distance-measuring equipment and autonomously travelling device
Li et al. Cancellation of parametric-effect-induced error in airborne ultrasound Doppler velocimetry
JP4376204B2 (en) Sonic velocity distribution measuring apparatus, sonic velocity distribution measuring method, program, and computer-readable storage medium