JP2022174388A - Purifier for recovered polymerization solvent and method for purifying recovered polymerization solvent using the same - Google Patents

Purifier for recovered polymerization solvent and method for purifying recovered polymerization solvent using the same Download PDF

Info

Publication number
JP2022174388A
JP2022174388A JP2021080147A JP2021080147A JP2022174388A JP 2022174388 A JP2022174388 A JP 2022174388A JP 2021080147 A JP2021080147 A JP 2021080147A JP 2021080147 A JP2021080147 A JP 2021080147A JP 2022174388 A JP2022174388 A JP 2022174388A
Authority
JP
Japan
Prior art keywords
polymerization solvent
recovered
zeolite
polymerization
purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021080147A
Other languages
Japanese (ja)
Inventor
栄一 加地
Eiichi Kachi
保武 若林
Yasutake Wakabayashi
誠 曽根
Makoto Sone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2021080147A priority Critical patent/JP2022174388A/en
Publication of JP2022174388A publication Critical patent/JP2022174388A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

To provide a purifier which can efficiently remove contaminants and impurities in a recovered polymerization solvent that has been used for polymerization and a method for purifying a recovered polymerization solvent using the same.SOLUTION: A purifier for recovered polymerization solvents contains high silica zeolite selected from the group consisting of hydrogen cationic beta zeolite, hydrogen cationic ZSM-5 zeolite and hydrogen cationic Y-type zeolite. There is also provided a method for purifying a recovered polymerization solvent using the same.SELECTED DRAWING: None

Description

本発明は回収重合溶媒精製剤及びそれを用いた回収重合溶媒の精製方法に関するものであり、特に詳しくはチタン、マグネシウムおよびハロゲンを含有する固体触媒の存在下でオレフィンのスラリー重合に使用した回収重合溶媒であっても、その中に存在する影響物質・不純物を効率よく除去することのできる回収重合溶媒精製剤及びそれを用いた回収重合溶媒の精製方法に関する。 TECHNICAL FIELD The present invention relates to a refining agent for a recovered polymerization solvent and a method for refining a recovered polymerization solvent using the same. The present invention relates to a recovered polymerization solvent refining agent capable of efficiently removing influencing substances and impurities present in even a solvent, and a method for refining a recovered polymerization solvent using the same.

チタン、マグネシウムおよびハロゲンを含有する固体触媒である、いわゆるチグラー・ナッタ触媒やメタロセン系触媒などの重合触媒を用いて、重合溶媒中でオレフィンをスラリー重合する方法は広く行われている。工業的にスラリー重合を行う場合、コストおよび廃棄物量低減の観点から、生成ポリマーを分離した後の溶媒は回収され、重合に再利用することが一般的である。この生成ポリマーが分離された回収重合溶媒は、重合反応の原料残余、副生成物および触媒の分解物などの不純物を含み、これらは重合反応に様々な悪影響を与える影響物質となることが懸念されるため、一部のケースを除いてそのまま使用することは避けられている。 A method of slurry-polymerizing an olefin in a polymerization solvent using a polymerization catalyst such as a so-called Ziegler-Natta catalyst or a metallocene catalyst, which is a solid catalyst containing titanium, magnesium and halogen, is widely practiced. When slurry polymerization is carried out on an industrial scale, it is common to recover the solvent after separating the produced polymer and reuse it for polymerization from the viewpoint of cost and waste reduction. The recovered polymerization solvent from which the produced polymer is separated contains impurities such as residual raw materials, by-products, and decomposed products of the catalyst from the polymerization reaction. Therefore, it is avoided to use it as it is except for some cases.

すなわち、重合溶媒の精製は重合反応の制御に重要な意味を持ち、ポリマーメーカーは独自の精製技術を駆使して、重合反応への影響を低く抑える努力を行っている。近年、重合触媒の高活性化に伴う触媒使用量の低減が進み、また、より高付加価値ポリマー製造のためのメタロセン系触媒と従来のチグラー・ナッタ触媒とを併産(スイング運転)する形態が増えてきている。しかしながら、従来の精製法にて回収された溶媒では、高活性である反面、不純物耐性の低いメタロセン系触媒の性能を低下する状況となり易く、より高度の精製が可能な溶媒回収方法の開発が望まれていた。 In other words, refinement of the polymerization solvent has an important meaning in controlling the polymerization reaction, and polymer manufacturers are making full use of their own refining technology in an effort to minimize the influence on the polymerization reaction. In recent years, the amount of catalyst used has been reduced due to the high activity of polymerization catalysts, and there is a form of co-production (swing operation) of metallocene catalysts and conventional Ziegler-Natta catalysts for the production of higher value-added polymers. It is increasing. However, while the solvent recovered by the conventional purification method is highly active, it tends to degrade the performance of the metallocene catalyst, which has low resistance to impurities. was rare.

そして、溶媒に含まれる水分、あるいはアルキルハライドを除去精製する目的で、ゼオライトを使用することが提案されており、例えば、チグラー系またはワッカー系触媒を用いα-オレフィンの重合で得られる生成スラリーから回収した溶媒を、8Å以上の細孔を有する合成ゼオライト、好ましくモレキュラーシーブス10X、モレキュラーシーブス13Xで処理する方法(例えば特許文献1参照。)、また、ゼオライトのナトリウム陽イオンを鉄などの遷移金属イオンに交換することで、高い溶媒精製効果を得る方法(例えば特許文献2参照。)、更に、チグラー・ナッタ触媒の存在下にα-オレフィンをスラリー重合して得られるスラリーから分離された溶媒を、細孔径の異なる2種類のゼオライト、好ましくはモレキュラーシーブス10Xとモレキュラーシーブス3Aの組合せで接触処理することにより、従来除去できなかった微量の重合阻害不純物を除去する方法(例えば特許文献3参照)、等が提案されている。 Then, it has been proposed to use zeolite for the purpose of removing and refining the water contained in the solvent or the alkyl halide. A method of treating the recovered solvent with a synthetic zeolite having pores of 8 Å or more, preferably molecular sieves 10X or molecular sieves 13X (see, for example, Patent Document 1), or a sodium cation of zeolite is treated with a transition metal ion such as iron. A method of obtaining a high solvent refining effect (see, for example, Patent Document 2) by exchanging to A method of removing trace amounts of polymerization-inhibiting impurities that could not be removed conventionally by contacting two types of zeolites with different pore sizes, preferably a combination of molecular sieves 10X and molecular sieves 3A (see, for example, Patent Document 3), etc. is proposed.

特公昭57-56924号Japanese Patent Publication No. 57-56924 特公平1-58202号Japanese Patent Publication No. 1-58202 特公平6-17405号Japanese Patent Publication No. 6-17405

しかしながら、特許文献1~3のいずれの提案も、精製処理された溶媒をチグラー・ナッタ触媒のスラリー重合に再利用するものであり、例えばメタロセン系触媒に代表される高活性・高精密重合触媒の適用性には検討のなされていないものであり、本発明者らの検討によれば、メタロセン系触媒等に適用した際には活性の低下等が観測されるものであった。 However, all of the proposals in Patent Documents 1 to 3 are intended to reuse the purified solvent for slurry polymerization of the Ziegler-Natta catalyst, and for example, the production of highly active and highly precise polymerization catalysts typified by metallocene catalysts. The applicability has not been investigated, and according to the studies of the present inventors, a decrease in activity was observed when applied to metallocene catalysts and the like.

そこで、従来のチグラー・ナッタ触媒によるポリオレフィンと高活性・高精密重合を可能とするメタロセン系触媒に代表される高性能触媒によるポリオレフィンのスイング運転においても影響物質・不純物を効率よく除去することを可能とする回収重合溶媒精製剤、それを用いた精製方法の出現が望まれていた。 Therefore, it is possible to efficiently remove pollutants and impurities in the swing operation of polyolefins using conventional Ziegler-Natta catalysts and high-performance catalysts such as metallocene catalysts that enable high-activity and high-precision polymerization. It has been desired to develop a recovered polymerization solvent refining agent and a refining method using the same.

そこで、本発明者らは回収重合溶媒精製への高い要求に対応できる方法の確立を目指して検討を進め、特定の水素陽イオン型ハイシリカゼオライトを含む回収重合溶媒精製剤が、回収重合溶媒を効率よく精製することが可能となることを見出し、本発明を完成させるに至った。 Therefore, the present inventors proceeded with studies with the aim of establishing a method that can meet high demands for refining the recovered polymerization solvent, and found that a recovered polymerization solvent refining agent containing a specific hydrogen cation type high silica zeolite can be used to purify the recovered polymerization solvent. The present inventors have found that it is possible to purify efficiently, and have completed the present invention.

即ち、本発明は、水素陽イオン型ベータ型ゼオライト、水素陽イオン型ZSM-5型ゼオライト及び水素陽イオン型Y型ゼオライトからなる群より選択されるハイシリカゼオライトを含むことを特徴とする回収重合溶媒精製剤およびそれを用いた回収重合溶媒の精製方法に関するものである。 That is, the present invention is a recovery polymerization characterized by containing a high silica zeolite selected from the group consisting of a hydrogen cation type beta-type zeolite, a hydrogen cation type ZSM-5 type zeolite and a hydrogen cation type Y-type zeolite. The present invention relates to a solvent refining agent and a method for refining a recovered polymerization solvent using the same.

以下に本発明を詳細に説明する。 The present invention will be described in detail below.

本発明の回収重合溶媒精製剤は、水素陽イオン型ベータ型ゼオライト、水素陽イオン型ZSM-5型ゼオライト及び水素陽イオン型Y型ゼオライトからなる群より選択されるハイシリカゼオライトを含むものである。ここで、ゼオライトは結晶性アルミノケイ酸塩の総称で、一般式Me/XO・Al・mSiO・nHO(式中、Meはアルカリ金属又はアルカリ土類金属を示し、XはMeの原子価を示す)で表わされる化学組成を有し、またX線回折により識別することのできる独特の結晶構造を有するものである。このようなゼオライトの中でも、水素陽イオン型ベータ型ゼオライト、水素陽イオン型ZSM-5型ゼオライト、水素陽イオン型Y型ゼオライトに属するハイシリカゼオライト、特に水素陽イオン型Y型ゼオライトが、回収重合溶媒の精製に優れた性能を発揮するものであり、水素陽イオン型以外のもの、ベータ型ゼオライト、ZSM-5型ゼオライト、Y型ゼオライト以外の(ハイシリカ)ゼオライトは回収重合溶媒の精製が不十分なものとなる。 The recovered polymerization solvent refining agent of the present invention contains a high silica zeolite selected from the group consisting of hydrogen cation type beta zeolite, hydrogen cation type ZSM-5 type zeolite and hydrogen cation type Y zeolite. Here, zeolite is a general term for crystalline aluminosilicates, and has the general formula Me2 / XO.Al2O3.mSiO2.nH2O (wherein Me represents an alkali metal or an alkaline earth metal, and X represents (meaning the valence of Me) and has a unique crystal structure that can be identified by X-ray diffraction. Among such zeolites, hydrogen cation type beta zeolite, hydrogen cation type ZSM-5 type zeolite, high silica zeolite belonging to hydrogen cation type Y zeolite, especially hydrogen cation type Y zeolite, are recovered and polymerized. It exhibits excellent performance in refining solvents, and zeolites other than hydrogen cation type, beta-type zeolite, ZSM-5-type zeolite, and Y-type zeolite (high silica) zeolites are insufficient in refining the recovered polymerization solvent. become something.

該ハイシリカゼオライトのSiO/Al(モル比)に制限はなく、中でも特に優れた溶媒精製能を発揮することからSiO/Al=5~40のものが好ましく、特にSiO/Al=5~30、5~20、更には5~10のものが好ましい。一般に、SiO/Alのモル比が高いほどハイシリカゼオライトの酸強度が高くなることが知られているが、驚くべきことに、本発明の回収重合溶媒精製剤では、比較的低いSiO/Alのモル比を有するハイシリカゼオライトが優れた回収溶媒精製能を発揮する。 There are no restrictions on the SiO 2 /Al 2 O 3 (molar ratio ) of the high silica zeolite. SiO 2 /Al 2 O 3 =5-30, 5-20, more preferably 5-10. It is generally known that the higher the SiO 2 /Al 2 O 3 molar ratio, the higher the acid strength of high silica zeolite. A high-silica zeolite having a molar ratio of SiO 2 /Al 2 O 3 exhibits excellent ability to purify the recovered solvent.

本発明の回収重合溶媒精製剤を構成するハイシリカゼオライトは、不純物除去能、高耐久性、易再生性の付与を目的に、水素陽イオンの一部を遷移金属イオンで置換したハイシリカゼオライトであってもよく、例えば特公平1-58202号に記載の方法により調製が可能である。その交換率は回収重合溶媒種によって異なるが、一般には全水素陽イオン量の40%以下とすることが好ましく、特に1~20%、更には1~10%であることが好ましい。 The high-silica zeolite that constitutes the recovered polymerization solvent refining agent of the present invention is a high-silica zeolite in which a portion of the hydrogen cations are replaced with transition metal ions for the purpose of imparting impurity removal ability, high durability, and easy regenerative properties. For example, it can be prepared by the method described in JP-B-1-58202. Although the exchange rate varies depending on the species of the recovered polymerization solvent, it is generally preferably 40% or less of the total amount of hydrogen cations, particularly preferably 1 to 20%, more preferably 1 to 10%.

本発明の回収重合溶媒精製剤を構成するハイシリカゼオライトの形態については、特に制限はなく、一般的な粉末状、粒状、ペレット状などの形態が利用可能であり、特に操作上の観点から粒状ないしペレット状のものが好適で、精製能力の観点からは比表面積の大きな粉末状のものが優れている。なお、ペレット形状とする際には、さらにはシリカ、アルミナ、シリカアルミナ、粘土等のバインダーを含むものであってもよい。 The form of the high silica zeolite that constitutes the recovered polymerization solvent refining agent of the present invention is not particularly limited, and general forms such as powder, granules, and pellets can be used. Pellets or pellets are preferable, and from the viewpoint of refining ability, powder having a large specific surface area is excellent. In addition, when forming pellets, it may further contain a binder such as silica, alumina, silica-alumina, or clay.

本発明の回収重合溶媒精製剤を構成するハイシリカゼオライトは、一般的に知られる方法により入手可能である。また、市販品として入手したものであってもよく、例えば水素陽イオン型Y型ハイシリカゼオライトとして、(商品名)HSZ-330HUD1A(東ソー(株)製)、水素陽イオン型ベータ型ハイシリカゼオライトとして(商品名)HSZ-931HOD1A(東ソー(株)製)、水素陽イオン型ZSM-5型ハイシリカゼオライトとして、(商品名)HSZ-822HOD1A(東ソー(株)製)、(商品名)HSZ-840HOD1A(東ソー(株)製)、等を挙げることができる。 The high silica zeolite that constitutes the recovered polymerization solvent refining agent of the present invention can be obtained by a generally known method. In addition, it may be obtained as a commercial product, for example, as hydrogen cation type Y type high silica zeolite, (trade name) HSZ-330HUD1A (manufactured by Tosoh Corporation), hydrogen cation type beta type high silica zeolite As (trade name) HSZ-931HOD1A (manufactured by Tosoh Corporation), as hydrogen cation type ZSM-5 type high silica zeolite, (trade name) HSZ-822HOD1A (manufactured by Tosoh Corporation), (trade name) HSZ- 840HOD1A (manufactured by Tosoh Corporation), and the like.

本発明の回収重合溶媒精製剤は、重合反応終了後の回収重合溶媒と接触することにより重合阻害物質・不純物の除去・精製が可能となり、その際には、通常の精製工程である回収重合溶媒のろ過、蒸留、水分除去等を行った後の回収重合溶媒精製の最終段階で接触処理に供することが好ましい。このことは、通常の精製処理で除去できない阻害物質、不純物の除去を本発明の回収重合溶媒精製剤にて除去が可能であることを示すものである。 The recovered polymerization solvent refining agent of the present invention enables the removal and purification of polymerization inhibitors and impurities by contacting the recovered polymerization solvent after the completion of the polymerization reaction. It is preferable that the contact treatment is performed in the final stage of purification of the recovered polymerization solvent after filtration, distillation, water removal, and the like. This indicates that inhibitory substances and impurities that cannot be removed by ordinary purification treatments can be removed by the recovered polymerization solvent refining agent of the present invention.

そして、本発明の回収重合溶媒精製剤による回収重合溶媒としては、重合反応により回収された重合溶媒であれば如何なるものであってもよく、中でも副反応による副生成物、触媒に由来する金属含有物質を含むものに適しており、そのような重合反応としては、チグラー・ナッタ触媒の存在下、オレフィンの重合を行うスラリー重合を挙げることができる。 As the polymerization solvent recovered by the recovered polymerization solvent refining agent of the present invention, any polymerization solvent recovered from the polymerization reaction may be used. Suitable for those involving materials, such polymerization reactions include slurry polymerization, in which olefins are polymerized in the presence of a Ziegler-Natta catalyst.

この際のチグラー・ナッタ触媒としては、チタン,マグネシウムおよびハロゲンを含有する固体触媒を挙げることができ、適宜、触媒の活性化および/または不純物除害のための有機アルミニウム化合物と組み合わせて、オレフィン重合に使用されるものである。該固体触媒とは、更に詳しくは、マグネシウム化合物とハロゲン含有チタン化合物または該化合物と電子供与体との付加化合物を段階的または一次的に接触させることにより形成される複合固体で、このような触媒は様々に工夫を施された調製法が多く開発されている。しかし、本発明においては、特に限定されることなく公知の各種のものを用いた場合に適用することが可能である。具体的には、特公昭46-34092号,特開昭54-41985号,特開昭55-729号公報,特開昭55-13709号公報、特開昭57-12006号公報、特開昭57-141409号公報、特公平4-22163号公報などに開示された方法を挙げることが出来る。 The Ziegler-Natta catalysts in this case include solid catalysts containing titanium, magnesium and halogen, optionally in combination with an organoaluminum compound for activation of the catalyst and/or abatement of impurities, for olefin polymerization. is used for The solid catalyst is more particularly a composite solid formed by the stepwise or primary contact of a magnesium compound with a halogen-containing titanium compound or an adduct of said compound with an electron donor, and such a catalyst A number of preparation methods with various ingenuity have been developed. However, in the present invention, it is possible to apply when using various known ones without being particularly limited. Specifically, JP-B-46-34092, JP-A-54-41985, JP-A-55-729, JP-A-55-13709, JP-A-57-12006, JP-A-57 Methods disclosed in Japanese Patent Publication No. 57-141409, Japanese Patent Publication No. 4-22163, etc. can be mentioned.

また、オレフィンとしては、例えばエチレン、プロピレン、ブテン-1、ヘキセン-1、オクテン-1等のα-オレフィンを挙げることができる。 Examples of olefins include α-olefins such as ethylene, propylene, butene-1, hexene-1, and octene-1.

そして、スラリー重合の際の溶媒としては、炭化水素系溶媒であれば特に制限はない。例えばブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサンなどの環状構造を有する脂肪族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;等を挙げることができる。 The solvent for slurry polymerization is not particularly limited as long as it is a hydrocarbon solvent. Aliphatic hydrocarbons such as butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene; aliphatic hydrocarbons having a cyclic structure, such as cyclopentane, methylcyclopentane, cyclohexane, and methylcyclohexane; benzene, toluene, and xylene Aromatic hydrocarbons such as;

本発明の回収重合溶媒精製剤を接触する際の回収重合溶媒としては、精製の際の効率をより優れたものとするために、ろ過、蒸留、水分除去等を事前に行うことが好ましく、特にチグラー・ナッタ触媒の存在下、オレフィンの重合を行うスラリー重合を行ったものである場合は、以下の1)~4)に示す処理を行ったものであることが好ましい。
1)生成ポリマーを回収除去の後の溶媒を加水分解し、有機層を分離回収する。場合によっては、加水分解液の水層のpH調製を実施する。
2)1)で回収した有機層を水蒸気蒸留し、流出液から有機層を分液分離する。
3)2)で分離した有機層を単蒸留する。
4)3)で単蒸留した回収溶媒の脱水を目的とし、モレキュラーシーブス3A又は4Aによる接触処理する。
As for the recovered polymerization solvent when it is brought into contact with the recovered polymerization solvent refining agent of the present invention, it is preferable to perform filtration, distillation, water removal, etc. in advance in order to improve the efficiency of the purification, particularly. In the case of slurry polymerization for olefin polymerization in the presence of a Ziegler-Natta catalyst, it is preferable that the following treatments 1) to 4) have been carried out.
1) Hydrolyze the solvent after recovery and removal of the produced polymer, and separate and recover the organic layer. In some cases, the pH of the aqueous layer of the hydrolyzate is adjusted.
2) The organic layer recovered in 1) is subjected to steam distillation, and the organic layer is separated from the effluent.
3) Simple distillation of the organic layer separated in 2).
4) Contact treatment with molecular sieves 3A or 4A for the purpose of dehydration of the solvent recovered by simple distillation in 3).

そして、回収重合溶媒、前処理された回収重合溶媒と回収重合溶媒精製剤とを接触処理する際の条件は、特に制限はない。中でも、本発明の回収重合溶媒精製剤を構成するハイシリカゼオライトは疎水性でありながら、水分除去能も示すことから、処理の前に脱水処理により水分量を低減させておくことが望ましい。具体的には、カールフィッシャー法により測定された水分量を20ppm以下とすることが望ましい。また、処理温度は処理する回収重合溶媒の凝固点、沸点および粘性などを考慮して、-10℃~150℃の範囲で任意に設定することが出来る。基本的には、温度が高い方が好ましい結果を与えるが、通常25℃~50℃の範囲で処理することで十分な性能を得ることが出来る。また、回収重合溶媒と本発明の回収重合溶媒精製剤との接触処理にあたっては、回収重合溶媒精製剤が気泡を巻き込まないように留意すべきである。回収重合溶媒中へ回収重合溶媒精製剤を静的に浸漬する方法でも良いが、工業的な利用を考慮すれば回収重合溶媒精製剤を充填したカラムに回収重合溶媒をアップフローとなるように通過させることが好ましい。使用するカラム径,充填長さおよび通液する流速をパラメータとし、接触時間を調整することが出来る。接触時間は回収溶媒中の残留不純物量に依存するが、例えば、溶媒5Lとゼオライト10gを接触させる場合、接触時間は1秒~24時間の範囲で任意に調整できる。 There are no particular restrictions on the conditions for the contact treatment of the recovered polymerization solvent, the pretreated recovered polymerization solvent, and the recovered polymerization solvent refining agent. Among them, the high-silica zeolite that constitutes the recovered polymerization solvent-purifying agent of the present invention is hydrophobic but also exhibits the ability to remove water, so it is desirable to reduce the water content by dehydration treatment before the treatment. Specifically, it is desirable that the water content measured by the Karl Fischer method is 20 ppm or less. Further, the treatment temperature can be arbitrarily set in the range of -10°C to 150°C, taking into account the freezing point, boiling point, viscosity, etc. of the recovered polymerization solvent to be treated. Basically, the higher the temperature, the better results are obtained, but generally sufficient performance can be obtained by treating in the range of 25°C to 50°C. Further, in the contact treatment between the recovered polymerization solvent and the refining agent for the recovered polymerization solvent of the present invention, care should be taken so that air bubbles are not involved in the refining agent for the recovered polymerization solvent. A method of statically immersing the recovered polymerization solvent refining agent in the recovered polymerization solvent may be used, but in consideration of industrial use, the recovered polymerization solvent is passed through a column filled with the recovered polymerization solvent refining agent so as to be an upflow. It is preferable to let The contact time can be adjusted by using the column diameter, packed length, and flow rate as parameters. The contact time depends on the amount of residual impurities in the recovered solvent. For example, when 5 L of solvent and 10 g of zeolite are brought into contact, the contact time can be arbitrarily adjusted within the range of 1 second to 24 hours.

そして、本発明の回収重合溶媒精製剤は、定期的に、あるいは活性の低下が顕著となった場合に、窒素などの不活性ガスのフロー下に150℃~700℃の範囲の温度にて焼成処理することで、性能を回復させ、再生利用に供することが出来る。 Then, the recovered polymerization solvent refining agent of the present invention is calcined at a temperature in the range of 150 ° C. to 700 ° C. under the flow of an inert gas such as nitrogen periodically or when the decrease in activity becomes remarkable. By processing, the performance can be recovered and it can be used for recycling.

本発明の回収重合溶媒精製剤により精製された回収重合溶媒は、再度重合反応の際の重合溶媒として再利用してもポリマーの製造に影響することなく利用することが可能であり、チグラー・ナッタ触媒、メタロセン系触媒に代表されるオレフィン重合触媒存在下におけるオレフィンのスラリー重合の際の重合溶媒として再利用することが可能となる。そして、特に重合活性に優れ、精密重合に適したオレフィン重合触媒として知られているメタロセン系触媒によるオレフィンのスラリー重合にも適用可能なものとなる。また、各種反応の反応溶媒として再利用することもできる。 The recovered polymerization solvent purified by the recovered polymerization solvent refining agent of the present invention can be reused as a polymerization solvent in another polymerization reaction without affecting the production of the polymer. It can be reused as a polymerization solvent for slurry polymerization of olefin in the presence of an olefin polymerization catalyst represented by a catalyst such as a metallocene catalyst. Moreover, it can be applied to the slurry polymerization of olefins using a metallocene-based catalyst, which is known as an olefin polymerization catalyst suitable for precision polymerization, particularly excellent in polymerization activity. It can also be reused as a reaction solvent for various reactions.

本発明によれば、回収重合溶媒を効率的に精製することが可能となり、その産業的価値は極めて高いものである。 According to the present invention, it becomes possible to efficiently purify the recovered polymerization solvent, and its industrial value is extremely high.

以下に、実施例を示して本発明を更に詳細に説明するが、本発明はこれら実施例により制限されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these Examples.

なお、断りのない限り、用いた試薬等は市販品、あるいは既知の方法に従って合成したものを用いた。 Unless otherwise specified, reagents and the like used were commercial products or those synthesized according to known methods.

参考例1
特公平4-22163号に記載の方法に従い、チグラー・ナッタ触媒を調製し、エチレン重合を行うことにより重合後の重合溶媒を調製した。
Reference example 1
A Ziegler-Natta catalyst was prepared according to the method described in JP-B-4-22163, and ethylene was polymerized to prepare a polymerization solvent after polymerization.

(1)チグラー・ナッタ触媒の調製
攪拌装置を備えた1.6Lのオートクレーブにブタノール70g(0.94mol)を入れ、これにヨウ素0.55g、金属マグネシウム粉末11g(0.45mol)およびチタンテトラブトキシド61g(0.18mol)を加え、更に乾燥ヘキサン450mlを加えた後に80℃まで昇温し、発生する水素ガスを排除しながら窒素シール下で一時間攪拌した。続いて、120℃まで昇温して1時間反応を行い、マグネシウムおよびチタンを含む溶液を得た。
(1) Preparation of Ziegler-Natta catalyst 70 g (0.94 mol) of butanol was placed in a 1.6 L autoclave equipped with a stirrer, and 0.55 g of iodine, 11 g (0.45 mol) of metallic magnesium powder and titanium tetrabutoxide were added thereto. After adding 61 g (0.18 mol) of dry hexane and further adding 450 ml of dry hexane, the temperature was raised to 80° C., and the mixture was stirred for 1 hour under a nitrogen seal while removing generated hydrogen gas. Subsequently, the temperature was raised to 120° C. and the reaction was carried out for 1 hour to obtain a solution containing magnesium and titanium.

内容積500mlのフラスコにマグネシウム原子換算0.048モル相当量のマグネシウムおよびチタンを含む溶液を加え、45℃に昇温して、トリ-i-ブチルアルミニウム(0.048mol)のヘキサン溶液を1時間かけて加えた。すべてを加えた後、60℃で1時間攪拌した。次に、メチルヒドロポリシロキサン2.8ml(25℃における粘度30センチストークス,ケイ素0.048グラム原子)を加え、還流下に一時間反応した。45℃に冷却後、i-ブチルアルミニウムジクロライドの50%へキサン溶液82mlを2時間かけて加えた。すべてを加えた後、70℃で1時間攪拌を行った。生成物にヘキサンを加え、デカント法により15回の洗浄を行った。ヘキサンに懸濁した、チタン,マグネシウムおよびハロゲンを含有するチグラー・ナッタ触媒である固体触媒のスラリー(固体触媒9.5gを含む)を得た。その一部を採取し、元素分析したところ、乾燥固体は9.0重量%のTiを含むものであった。 A solution containing magnesium and titanium in an amount equivalent to 0.048 mol in terms of magnesium atoms was added to a flask with an internal volume of 500 ml, heated to 45°C, and a hexane solution of tri-i-butylaluminum (0.048 mol) was added for 1 hour. added over. After adding everything, it was stirred at 60° C. for 1 hour. Then 2.8 ml of methylhydropolysiloxane (30 centistoke viscosity at 25°C, 0.048 gram-atoms of silicon) was added and reacted for one hour under reflux. After cooling to 45° C., 82 ml of a 50% hexane solution of i-butylaluminum dichloride was added over 2 hours. After everything was added, stirring was performed at 70° C. for 1 hour. Hexane was added to the product and washing was performed 15 times by the decanting method. A slurry of solid catalyst, Ziegler-Natta catalyst containing titanium, magnesium and halogen, suspended in hexane, containing 9.5 g of solid catalyst was obtained. A part of it was sampled and subjected to elemental analysis to find that the dry solid contained 9.0% by weight of Ti.

(2)エチレン重合
撹拌装置、温度計および圧力計を備えた内容積20Lのステンレススチール製オートクレーブ内を十分窒素で置換し、ヘキサン12Lを仕込み、内温を80℃に調節した。その後、トリ-i-ブチルアルミニウム2.3g(12mmol)、前記(1)で得た固体触媒を含有するスラリーを順次添加した。オートクレーブ内圧を0.1MPaに窒素で調節した後、水素を0.5MPaとなるように加え、次いでオートクレーブ内圧が1.1MPaになるように、連続的にエチレンを加えながら1.5時間の重合を行った。重合終了後冷却し、ポリエチレンを含むスラリーを取り出し、濾過することで固形物を除去した、重合反応後の重合溶媒であるヘキサンを得た。
(2) Ethylene Polymerization The inside of a stainless steel autoclave with an internal volume of 20 L equipped with a stirrer, a thermometer and a pressure gauge was sufficiently purged with nitrogen, charged with 12 L of hexane, and the internal temperature was adjusted to 80°C. Then, a slurry containing 2.3 g (12 mmol) of tri-i-butylaluminum and the solid catalyst obtained in (1) above was sequentially added. After adjusting the internal pressure of the autoclave to 0.1 MPa with nitrogen, hydrogen was added to 0.5 MPa, and then polymerization was carried out for 1.5 hours while continuously adding ethylene so that the internal pressure of the autoclave was 1.1 MPa. gone. After completion of the polymerization, the slurry was cooled, and the slurry containing polyethylene was taken out and filtered to remove solids, thereby obtaining hexane as a polymerization solvent after the polymerization reaction.

(3)重合溶媒の前処理
(2)で取得した不純物を含む溶媒を、水と接触して加水分解し、分液して有機層を回収した。次いで、水蒸気蒸留により高沸点不純物を除去した。蒸留取得液を分液することで有機層を取得し、窒素雰囲気下に単蒸留を行った。更に、モレキュラーシーブ3Aにより脱水処理をすることで精製前回収重合溶媒であるヘキサン(以下、粗ヘキサンとする場合がある。)を取得した。粗ヘキサン中の含水量をカールフィッシャー法により測定したところ、10ppmであった。粗ヘキサンをガスクロマトグラフィーにて解析したところ、ヘキサン以外のピークが見られ、不純物の存在を確認した。
(3) Pretreatment of polymerization solvent The solvent containing impurities obtained in (2) was hydrolyzed by contacting with water, and separated to recover an organic layer. High boiling impurities were then removed by steam distillation. An organic layer was obtained by separating the obtained liquid by distillation, and simple distillation was performed under a nitrogen atmosphere. Furthermore, hexane (hereinafter sometimes referred to as crude hexane) as a recovered polymerization solvent before purification was obtained by dehydration treatment with molecular sieve 3A. The water content in the crude hexane was 10 ppm when measured by the Karl Fischer method. When crude hexane was analyzed by gas chromatography, peaks other than hexane were observed, confirming the presence of impurities.

実施例1
撹拌装置を備えた5Lのフラスコを窒素雰囲気下に参考例1により得られた粗ヘキサンを5L(3350g)導入し、ペレット形状の水素陽イオン型Y型ハイシリカゼオライト(東ソー(株)製、(商品名)HSZ-330HUD1A;SiO/Alモル比6、アルミナバインダー)を2.5g添加した。その後、室温下に攪拌しながら24時間放置した。精製済のヘキサンの水分量は6ppmに低下していた。また、ハイシリカゼオライトは僅かに黄色味を帯びていた。ガスクロマトグラフィーにて分析した結果、ヘキサン以外のピークは観察されなかった。評価結果等を表1に示す。
Example 1
5 L (3350 g) of crude hexane obtained in Reference Example 1 was introduced into a 5 L flask equipped with a stirring device under a nitrogen atmosphere, and pellet-shaped hydrogen cation type Y-type high silica zeolite (manufactured by Tosoh Corporation, ( 2.5 g of (trade name) HSZ-330HUD1A; SiO 2 /Al 2 O 3 molar ratio 6, alumina binder) was added. After that, the mixture was left at room temperature for 24 hours with stirring. The water content of purified hexane was reduced to 6 ppm. Also, the high silica zeolite was slightly yellowish. As a result of analysis by gas chromatography, no peaks other than hexane were observed. Table 1 shows the evaluation results and the like.

実施例2
直径2.2cmのクロマト用カラムにペレット形状の水素陽イオン型Y型ハイシリカゼオライト(東ソー(株)製、(商品名)HSZ-330HUD1A、SiO/Alモル比6、アルミナバインダー)を高さ20cmとなるように充填し、窒素置換を行った。この際のハイシリカゼオライトの充填密度は0.463g/cmで、ハイシリカゼオライトは34.7gの充填量であった。このカラムに、アップフローとなるように下部より参考例1により得た粗ヘキサンを窒素雰囲気下に流し、滞留時間を130秒と設定して精製ヘキサンを得た。ここでの通液量は5Lとした。ガスクロマトグラフィーにて分析した結果、ヘキサン以外のピークは観察されなかった。評価結果等を表1に示す。
Example 2
Pellet-shaped hydrogen cation type Y-type high silica zeolite (manufactured by Tosoh Corporation, (trade name) HSZ-330HUD1A, SiO 2 /Al 2 O 3 molar ratio 6, alumina binder) in a column for chromatography with a diameter of 2.2 cm. was filled to a height of 20 cm, and nitrogen substitution was performed. At this time, the packing density of the high silica zeolite was 0.463 g/cm 3 and the packing amount of the high silica zeolite was 34.7 g. Crude hexane obtained in Reference Example 1 was allowed to flow through the column under a nitrogen atmosphere from the bottom so as to form an upward flow, and the retention time was set to 130 seconds to obtain purified hexane. The amount of liquid flowed here was set to 5 L. As a result of analysis by gas chromatography, no peaks other than hexane were observed. Table 1 shows the evaluation results and the like.

実施例3
粗ヘキサンの滞留時間を40秒と設定した以外は、実施例2と同様にして精製ヘキサンを得た。ガスクロマトグラフィーにて分析した結果、ヘキサン以外のピークは観察されなかった。評価結果等を表1に示す。
Example 3
Purified hexane was obtained in the same manner as in Example 2, except that the retention time of crude hexane was set to 40 seconds. As a result of analysis by gas chromatography, no peaks other than hexane were observed. Table 1 shows the evaluation results and the like.

実施例4
粗ヘキサンの滞留時間を15秒と設定した以外は、実施例2と同様にして精製ヘキサンを得た。ガスクロマトグラフィーにて分析した結果、ヘキサン以外のピークは観察されなかった。評価結果等を表1に示す。
Example 4
Purified hexane was obtained in the same manner as in Example 2, except that the retention time of crude hexane was set to 15 seconds. As a result of analysis by gas chromatography, no peaks other than hexane were observed. Table 1 shows the evaluation results and the like.

実施例5
カラム部を50℃に温めた状態としたこと以外は、実施例4と同様にして精製ヘキサンを得た。ガスクロマトグラフィーにて分析した結果、ヘキサン以外のピークは観察されなかった。評価結果等を表1に示す。
Example 5
Purified hexane was obtained in the same manner as in Example 4, except that the column section was heated to 50°C. As a result of analysis by gas chromatography, no peaks other than hexane were observed. Table 1 shows the evaluation results and the like.

実施例6
ハイシリカゼオライトをペレット形状の水素陽イオンを有するベータ型ハイシリカゼオライト(東ソー(株)製、(商品名)HSZ-931HOD1A、SiO/Alモル比27、アルミナバインダー)としたこと以外は、実施例1と同様にして精製ヘキサンを得た。処理ヘキサンの水分量を測定したところ、水分量は7ppmに低下していた。ガスクロマトグラフィーにて分析した結果、ヘキサン以外のピークは観察されなかった。評価結果等を表1に示す。
Example 6
Except that the high-silica zeolite is a beta-type high-silica zeolite having pellet-shaped hydrogen cations (manufactured by Tosoh Corporation, (trade name) HSZ-931HOD1A, SiO 2 /Al 2 O 3 molar ratio 27, alumina binder) obtained purified hexane in the same manner as in Example 1. When the water content of the treated hexane was measured, the water content was reduced to 7 ppm. As a result of analysis by gas chromatography, no peaks other than hexane were observed. Table 1 shows the evaluation results and the like.

実施例7
ハイシリカゼオライトをペレット形状の水素陽イオン型ZSM-5型ハイシリカゼオライト(東ソー(株)製、(商品名)HSZ-822HOD1A、SiO/Alモル比23、アルミナバインダー)としたこと以外は、実施例1と同様にして精製ヘキサンを得た。処理ヘキサンの水分量を測定したところ、水分量は8ppmに低下していた。ガスクロマトグラフィーにて分析した結果、ヘキサン以外のピークは観察されなかった。評価結果等を表1に示す。
Example 7
The high silica zeolite is a pellet-shaped hydrogen cation type ZSM-5 type high silica zeolite (manufactured by Tosoh Corporation, (trade name) HSZ-822HOD1A, SiO 2 /Al 2 O 3 molar ratio 23, alumina binder) Except for this, purified hexane was obtained in the same manner as in Example 1. When the water content of the treated hexane was measured, the water content was reduced to 8 ppm. As a result of analysis by gas chromatography, no peaks other than hexane were observed. Table 1 shows the evaluation results and the like.

実施例8
ハイシリカゼオライトをペレット形状の水素陽イオン型ZSM-5型ハイシリカゼオライト(東ソー(株)製、(商品名)HSZ-840HOD1A、SiO/Alモル比40、アルミナバインダー)としたこと以外は、実施例1と同様にして精製ヘキサンを得た。処理ヘキサンの水分量を測定したところ、水分量は9ppmと僅かに低下していた。ガスクロマトグラフィーにて分析した結果、ヘキサン以外のピークは観察されなかった。評価結果等を表1に示す。
Example 8
The high silica zeolite is a pellet-shaped hydrogen cation type ZSM-5 type high silica zeolite (manufactured by Tosoh Corporation, (trade name) HSZ-840HOD1A, SiO 2 /Al 2 O 3 molar ratio 40, alumina binder) Except for this, purified hexane was obtained in the same manner as in Example 1. When the water content of the treated hexane was measured, the water content was slightly decreased to 9 ppm. As a result of analysis by gas chromatography, no peaks other than hexane were observed. Table 1 shows the evaluation results and the like.

実施例9
ハイシリカゼオライトをペレット形状の水素陽イオン型Y型ハイシリカゼオライト(東ソー(株)製、(商品名)HSZ-330HUD1C、SiO/Alモル比6、粘土バインダー)としたこと以外は、実施例4と同様にして精製ヘキサンを得た。ガスクロマトグラフィーにて分析した結果、ヘキサン以外のピークは観察されなかった。評価結果等を表1に示す。
Example 9
Except that the high silica zeolite is a pellet-shaped hydrogen cation type Y high silica zeolite (manufactured by Tosoh Corporation, (trade name) HSZ-330HUD1C, SiO 2 /Al 2 O 3 molar ratio 6, clay binder) , Purified hexane was obtained in the same manner as in Example 4. As a result of analysis by gas chromatography, no peaks other than hexane were observed. Table 1 shows the evaluation results and the like.

比較例1
ハイシリカゼオライトの代わりに、ゼオライト(東ソー(株)製、(商品名)ゼオラムF-9)を10g用いた以外は、実施例1と同様にして粗ヘキサンの精製を試みた。回収ヘキサンの水分量は5ppmと低減していたが、ガスクロマトグラフィーにて分析した結果、ヘキサン以外のピークが観察された。評価結果等を表1に示す。
Comparative example 1
Purification of crude hexane was attempted in the same manner as in Example 1, except that 10 g of zeolite (manufactured by Tosoh Corporation, (trade name) Zeolum F-9) was used instead of high silica zeolite. The water content of the recovered hexane was reduced to 5 ppm, but as a result of analysis by gas chromatography, peaks other than hexane were observed. Table 1 shows the evaluation results and the like.

比較例2
ハイシリカゼオライトの代わりに、水洗後に乾燥処理したモレキュラーシーブス10X(MS10X、富士フイルム和光純薬(株)製)およびモレキュラーシーブス3A(MS3A、富士フイルム和光純薬(株)製)を用い、この順番に接触処理したこと以外は、実施例1と同様にして粗ヘキサンの精製を試みた。回収ヘキサンの水分量は3ppmと低減していたが、ガスクロマトグラフィーにて分析した結果、ヘキサン以外のピークが観察された。評価結果等を表1に示す。
Comparative example 2
Instead of high silica zeolite, molecular sieves 10X (MS10X, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) and molecular sieves 3A (MS3A, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), which were washed with water and then dried, were used in this order. An attempt was made to purify crude hexane in the same manner as in Example 1, except that the contact treatment was carried out. The water content of the recovered hexane was reduced to 3 ppm, but as a result of analysis by gas chromatography, peaks other than hexane were observed. Table 1 shows the evaluation results and the like.

比較例3
ハイシリカゼオライトをペレット形状のナトリウム陽イオン型Y型ハイシリカゼオライト(東ソー(株)製、(商品名)HSZ-320NAD1C、SiO/Alモル比5.5、粘土バインダー)としたこと以外は、実施例1と同様にして粗ヘキサンの精製を試みた。回収ヘキサンの水分量を測定したところ、水分量は7ppmに低下していたが、ガスクロマトグラフィーにて分析した結果、ヘキサン以外のピークが観察された。評価結果等を表1に示す。
Comparative example 3
The high-silica zeolite is pellet-shaped sodium cation type Y-type high-silica zeolite (manufactured by Tosoh Corporation, (trade name) HSZ-320NAD1C, SiO 2 /Al 2 O 3 molar ratio 5.5, clay binder) Except for this, purification of crude hexane was attempted in the same manner as in Example 1. When the water content of the recovered hexane was measured, it was found to have decreased to 7 ppm, but as a result of analysis by gas chromatography, peaks other than hexane were observed. Table 1 shows the evaluation results and the like.

Figure 2022174388000001
Figure 2022174388000001

参考例2
購入ヘキサン(富士フイルム和光純薬(株)製,試薬特級)をガスクロマトグラフィーにて分析した結果、ヘキサン以外のピークは観察されなかった。
Reference example 2
Purchased hexane (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., reagent special grade) was analyzed by gas chromatography, and no peaks other than hexane were observed.

本発明の方法は、高密度ポリエチレン、線状低密度ポリエチレンをはじめとする各種のオレフィン重合ポリマーおよびオレフィン共重合ポリマーの製造において再利用される溶媒の精製に有効に利用することができる。 The method of the present invention can be effectively used to purify solvents that are reused in the production of various olefin polymers and copolymers, including high density polyethylene and linear low density polyethylene.

Claims (10)

水素陽イオン型ベータ型ゼオライト、水素陽イオン型ZSM-5型ゼオライト及び水素陽イオン型Y型ゼオライトからなる群より選択されるハイシリカゼオライトを含むことを特徴とする回収重合溶媒精製剤。 A recovery polymerization solvent purification agent comprising a high silica zeolite selected from the group consisting of a hydrogen cation type beta zeolite, a hydrogen cation type ZSM-5 type zeolite and a hydrogen cation type Y zeolite. ハイシリカゼオライトが、SiO/Alモル比5~10であり、ペレット形状を有するものであることを特徴とする請求項1に記載の回収重合溶媒精製剤。 2. The recovered polymerization solvent purification agent according to claim 1, wherein the high silica zeolite has a SiO 2 /Al 2 O 3 molar ratio of 5 to 10 and has a pellet shape. さらに、シリカ、アルミナ、シリカアルミナ及び粘土よりなる群より選択されるバインダーを含み、ペレット形状を有することを特徴とする請求項1又は2に記載の回収重合溶媒精製剤。 3. The recovered polymerization solvent refining agent according to claim 1, further comprising a binder selected from the group consisting of silica, alumina, silica-alumina and clay, and having a pellet shape. ハイシリカゼオライトが、遷移金属置換ゼオライトであることを特徴とする請求項1~3のいずれかに記載の回収重合溶媒精製剤。 The recovered polymerization solvent-purifying agent according to any one of claims 1 to 3, wherein the high silica zeolite is a transition metal-substituted zeolite. チグラー・ナッタ触媒の存在下、オレフィンのスラリー重合を行った際の回収重合溶媒の精製剤であることを特徴とする請求項1~4のいずれかに記載の回収重合溶媒精製剤。 5. The refining agent for a recovered polymerization solvent according to any one of claims 1 to 4, which is a refining agent for a recovered polymerization solvent when an olefin is slurry polymerized in the presence of a Ziegler-Natta catalyst. オレフィン重合反応後の回収重合溶媒を水素陽イオン型ベータ型ゼオライト、水素陽イオン型ZSM-5型ゼオライト及び水素陽イオン型Y型ゼオライトからなる群より選択されるハイシリカゼオライトで接触処理することを特徴とする回収重合溶媒の精製方法。 Contact treatment of the recovered polymerization solvent after the olefin polymerization reaction with high silica zeolite selected from the group consisting of hydrogen cation type beta zeolite, hydrogen cation type ZSM-5 type zeolite and hydrogen cation type Y type zeolite. A method for purifying a recovered polymerization solvent characterized by: オレフィン重合反応が、少なくともチタン,マグネシウムおよびハロゲンを含有する固体触媒の存在下、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、シクロペンタン、シクロヘキサンメチルシクロペンタンからなる群より選択される重合溶媒中でオレフィンをスラリー重合する反応であることを特徴とする請求項6に記載の回収重合溶媒の精製方法。 An olefin polymerization reaction is performed in which, in the presence of a solid catalyst containing at least titanium, magnesium and halogen, an olefin is polymerized in a polymerization solvent selected from the group consisting of pentane, hexane, heptane, octane, decane, cyclopentane, cyclohexanemethylcyclopentane. 7. The method for purifying a recovered polymerization solvent according to claim 6, wherein the reaction is slurry polymerization. 温度25~50℃、時間1秒~24時間の接触条件にて行うことを特徴とする請求項6又は7に記載の回収重合溶媒の精製方法。 8. The method for purifying a recovered polymerization solvent according to claim 6 or 7, wherein the contact conditions are a temperature of 25 to 50° C. and a time of 1 second to 24 hours. 接触処理をフローモードで行うことを特徴とする請求項6~8のいずれかに記載の回収重合溶媒の精製方法。 9. The method for purifying a recovered polymerization solvent according to any one of claims 6 to 8, wherein the contact treatment is carried out in a flow mode. 重合溶剤の脱水処理を行った後に、接触処理を行うことを特徴とする請求項6~9のいずれかに記載の回収重合溶媒の精製方法。 10. The method for purifying a recovered polymerization solvent according to any one of claims 6 to 9, wherein the contact treatment is performed after the dehydration treatment of the polymerization solvent.
JP2021080147A 2021-05-11 2021-05-11 Purifier for recovered polymerization solvent and method for purifying recovered polymerization solvent using the same Pending JP2022174388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021080147A JP2022174388A (en) 2021-05-11 2021-05-11 Purifier for recovered polymerization solvent and method for purifying recovered polymerization solvent using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021080147A JP2022174388A (en) 2021-05-11 2021-05-11 Purifier for recovered polymerization solvent and method for purifying recovered polymerization solvent using the same

Publications (1)

Publication Number Publication Date
JP2022174388A true JP2022174388A (en) 2022-11-24

Family

ID=84144508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021080147A Pending JP2022174388A (en) 2021-05-11 2021-05-11 Purifier for recovered polymerization solvent and method for purifying recovered polymerization solvent using the same

Country Status (1)

Country Link
JP (1) JP2022174388A (en)

Similar Documents

Publication Publication Date Title
US8071835B2 (en) Process to produce polyolefins using metallocene catalysts
US8076524B2 (en) Process for generating alpha olefin comonomers
KR100978979B1 (en) A high throughput process for manufacturing molecular sieves
JP4777260B2 (en) Kabasite type molecular sieves, their synthesis, and their use in converting oxydinate to olefin
KR100803993B1 (en) Production of propylene
WO2011019037A1 (en) Method for producing a catalyst
WO2005103092A1 (en) METHOD FOR PRODUCING α-OLEFIN POLYMER
JP2020514353A (en) Process for ethylene oligomerization to produce alpha olefins
KR101714805B1 (en) Catalyst for producing monocyclic aromatic hydrocarbons, and method for producing monocyclic aromatic hydrocarbons
CN109890503B (en) Process for dehydration of monohydric alcohols using modified crystalline aluminosilicates
TWI428317B (en) Producing method for propylene
JP5866005B2 (en) Method for isolating oligomerization product of olefin and decomposing oligomerization catalyst residue
CN103796748A (en) Integrated nitrile poison adsorption and desorption system
EP0619285A1 (en) Process for producing gasolines and jet fuel from N-butane
EA010152B1 (en) Molecular sieve catalyst composition, its making and use in conversion processes
AU7037887A (en) Process for reducing fouling in higher olefin plants
JP2022174388A (en) Purifier for recovered polymerization solvent and method for purifying recovered polymerization solvent using the same
JP3560610B2 (en) Catalytic cracking method and method for producing ZSM-5 catalyst used therein
CN1234806C (en) Catalytic pyrolysis process for producing petroleum hydrocarbon of ethylene and propylene
CN1065903C (en) Process for synchronously preparing low-carbon olefines and high aromatic-hydrocarbon gasoline
CN1019981C (en) Process for conversion of hydrocarbonaceous feedstock
RU2536472C2 (en) Olefins cracking catalyst and method of its production
MX2011009795A (en) Methods of preparing a polymerization catalyst.
JP2009161444A (en) Method for producing propylene
JP2022174387A (en) Method for producing olefinic polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240425