JP2022173181A - Compound energy absorption layer, interposition layer structure, and manufacturing method of interposition layer structure - Google Patents

Compound energy absorption layer, interposition layer structure, and manufacturing method of interposition layer structure Download PDF

Info

Publication number
JP2022173181A
JP2022173181A JP2021157867A JP2021157867A JP2022173181A JP 2022173181 A JP2022173181 A JP 2022173181A JP 2021157867 A JP2021157867 A JP 2021157867A JP 2021157867 A JP2021157867 A JP 2021157867A JP 2022173181 A JP2022173181 A JP 2022173181A
Authority
JP
Japan
Prior art keywords
energy
cavity
absorbing
layer
energy absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021157867A
Other languages
Japanese (ja)
Other versions
JP6993040B1 (en
Inventor
新梅 項
Xinmei Xiang
紹林 張
Shao Lin Zhang
文天 崔
Wentian Cui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou University
Original Assignee
Guangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou University filed Critical Guangzhou University
Application granted granted Critical
Publication of JP6993040B1 publication Critical patent/JP6993040B1/en
Publication of JP2022173181A publication Critical patent/JP2022173181A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
    • B60R2019/1806Structural beams therefor, e.g. shock-absorbing
    • B60R2019/1833Structural beams therefor, e.g. shock-absorbing made of plastic material
    • B60R2019/1846Structural beams therefor, e.g. shock-absorbing made of plastic material comprising a cellular structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Vibration Dampers (AREA)

Abstract

To provide a compound energy absorption structure which is gradually destroyed when receiving a large impact force and can absorb a larger amount of energy when destroyed to increase energy absorption effect.SOLUTION: A compound energy absorption layer includes multiple energy absorption core layers 1 sequentially provided from the upper side to the lower side. Each energy absorption core layer 1 includes multiple energy absorption cavities which are provided partitioned from each other. The multiple energy absorption cavities located at a middle part of each energy absorption core layer 1 are provided sealed. The multiple energy absorption cavities located at edges of each energy absorption core layer 1 have openings. An included angle of an upper part of each energy absorption cavity is set as a first two face angle 115. The first two face angles 115 of the multiple energy absorption core layers 1 sequentially reduce from the upper side to the lower side. The first two face angle 115 of each energy absorption core layer 1 sequentially reduces from the upper side to the lower side.SELECTED DRAWING: Figure 1

Description

本発明はエネルギー吸収材料の技術分野に関し、特に複合エネルギー吸収層、介在層構造及び製造方法に関する。 The present invention relates to the technical field of energy absorbing materials, and more particularly to composite energy absorbing layers, intervening layer structures and manufacturing methods.

従来、動力車の台数が増加し、車両の衝撃事故の可能性が増加し続け、人々は自動車の安全保護性能にますます注目を集めている。車両の前端に位置する緩衝エネルギー吸収構造は、車両安全性能試験の結果に大きな影響を与えるため、耐衝撃性に優れたエネルギー吸収材料は、常に研究の重点である。 BACKGROUND OF THE INVENTION Conventionally, with the increasing number of motor vehicles and the ever-increasing possibility of vehicle impact accidents, people are paying more and more attention to the safety protection performance of automobiles. The shock-absorbing energy-absorbing structure located at the front end of the vehicle has a great impact on the results of vehicle safety performance tests, so energy-absorbing materials with excellent impact resistance are always the focus of research.

薄肉構造は、エネルギーを効率的に吸収することができるだけでなく、質量が軽く、車両衝撃性能を向上させるとともに、車両の燃料経済性を向上させることができ、従って、薄肉構造は、交通機関の衝撃システムに広く応用されている。ただし、従来の薄肉構造は、一般的に均一な構造であり、薄肉構造の最適な耐力面を衝撃力に正対する方向に設計し、衝撃荷重の作用下で高いエネルギー吸収効果を示すことができるが、荷重が大きく、薄肉構造のエネルギー負荷限界に達すると、均一な薄肉構造は、任意の断面位置でランダムに破壊され、ある断面が破壊された後、破壊されない部分の薄肉構造の最適な耐力面と力の作用方向との間の治具が変化するため、薄肉構造の最適な耐力面が力の作用方向に正対することができず、従って、ある断面が破壊された後、薄肉構造の全体的な耐圧強度が迅速に低下するため、エネルギー吸収効果が大幅に低下してしまう。 Thin-walled structures can not only absorb energy efficiently, but also have a low mass, improve vehicle impact performance, and improve the fuel economy of vehicles, thus thin-walled structures are useful for transportation. Widely applied in impact systems. However, the conventional thin-walled structure is generally a uniform structure, and the optimal load-bearing surface of the thin-walled structure can be designed in the direction facing the impact force to exhibit a high energy absorption effect under the action of the impact load. However, when the load is large and the energy load limit of the thin-walled structure is reached, the uniform thin-walled structure will randomly break at any cross-sectional position. Due to the change in fixture between the surface and the direction of force application, the optimal load-bearing surface of the thin-walled structure cannot face the direction of force application, and therefore, after a certain cross-section is broken, the thin-walled structure Since the overall compressive strength is rapidly degraded, the energy absorption effect is greatly degraded.

本発明が解決しようとする技術課題は、従来の薄肉構造が均一な構造を用い、ある断面が衝撃されて破壊された後、薄肉構造の全体的な耐圧強度が急速に低下し、エネルギー吸収効果が低下してしまうことである。 The technical problem to be solved by the present invention is that the conventional thin-walled structure uses a uniform structure, and after a certain section is impacted and broken, the overall compressive strength of the thin-walled structure is rapidly reduced, and the energy absorption effect is is that the

上記技術課題を解決するために、本発明は、複合エネルギー吸収層を提供し、複合エネルギー吸収層は、上から下へ順に設けられる複数層のエネルギー吸収芯層を含み、
各前記エネルギー吸収芯層は、いずれも、仕切りして設けられる複数のエネルギー吸収キャビティを含み、各前記エネルギー吸収芯層の中部に位置する複数の前記エネルギー吸収キャビティがいずれも密封して設けられ、各前記エネルギー吸収芯層のエッジに位置する複数の前記エネルギー吸収キャビティにいずれも開口を有し、
各前記エネルギー吸収キャビティの上部の夾角を第1二面角とし、複数層の前記エネルギー吸収芯層の第1二面角が上から下へ順に減少する。
To solve the above technical problems, the present invention provides a composite energy absorption layer, the composite energy absorption layer comprises multiple layers of energy absorption core layers arranged in order from top to bottom,
Each of the energy-absorbing core layers includes a plurality of partitioned energy-absorbing cavities, and the plurality of energy-absorbing cavities located in the middle of each of the energy-absorbing core layers are sealed, each of the plurality of energy absorbing cavities located at the edge of each of the energy absorbing core layers has an opening;
The included angle of the upper portion of each energy-absorbing cavity is defined as a first dihedral angle, and the first dihedral angles of the multiple energy-absorbing core layers decrease in order from top to bottom.

好適な技術案としては、各前記エネルギー吸収キャビティは、いずれも横形四角柱状であり、
前記横形四角柱状エネルギー吸収キャビティの4つの側面は、順に第1面板、第2面板、第3面板及び第4面板であり、前記第1面板及び前記第2面板が上部に位置し、前記第3面板及び前記第4面板が下部に位置し、前記第1面板と前記第2面板との間の夾角が前記第1二面角である。
As a suitable technical proposal, each of the energy absorption cavities has a horizontal quadrangular prism shape,
The four sides of the horizontal quadrangular prism-shaped energy absorption cavity are a first face plate, a second face plate, a third face plate and a fourth face plate in order, the first face plate and the second face plate are located on the top, and the third face plate is located on the top. The face plate and the fourth face plate are positioned at the lower portion, and the included angle between the first face plate and the second face plate is the first dihedral angle.

好適な技術案としては、中部に位置するエネルギー吸収キャビティを第1エネルギー吸収キャビティとし、前記第1エネルギー吸収キャビティに隣接し且つ前記第1エネルギー吸収キャビティの左上方に位置するエネルギー吸収キャビティを第2エネルギー吸収キャビティとし、前記第1エネルギー吸収キャビティに隣接し且つ前記第1エネルギー吸収キャビティの右上方に位置するエネルギー吸収キャビティを第3エネルギー吸収キャビティとし、前記第1エネルギー吸収キャビティに隣接し且つ前記第1エネルギー吸収キャビティの右下方に位置するエネルギー吸収キャビティを第4エネルギー吸収キャビティとし、前記第1エネルギー吸収キャビティに隣接し且つ前記第1エネルギー吸収キャビティの左下方に位置するエネルギー吸収キャビティを第5エネルギー吸収キャビティとし、
前記第1エネルギー吸収キャビティの第1面板と前記第2エネルギー吸収キャビティの第3面板が重なって設けられ、前記第1エネルギー吸収キャビティの第2面板と前記第3エネルギー吸収キャビティの第4面板が重なって設けられ、前記第1エネルギー吸収キャビティの第3面板と前記第4エネルギー吸収キャビティの第1面板が重なって設けられ、前記第1エネルギー吸収キャビティの第4面板と前記第5エネルギー吸収キャビティの第2面板が重なって設けられる。
As a preferred technical solution, the energy absorbing cavity located in the middle is the first energy absorbing cavity, and the energy absorbing cavity adjacent to the first energy absorbing cavity and located above and to the left of the first energy absorbing cavity is the second energy absorbing cavity. an energy absorbing cavity, an energy absorbing cavity adjacent to the first energy absorbing cavity and located above and to the right of the first energy absorbing cavity being a third energy absorbing cavity; The energy absorbing cavity positioned right below the first energy absorbing cavity is defined as a fourth energy absorbing cavity, and the energy absorbing cavity adjacent to the first energy absorbing cavity and positioned below and to the left of the first energy absorbing cavity is defined as a fifth energy absorbing cavity. as an absorption cavity,
A first faceplate of the first energy absorption cavity and a third faceplate of the second energy absorption cavity are provided overlapping, and a second faceplate of the first energy absorption cavity and a fourth faceplate of the third energy absorption cavity are overlapped. a third faceplate of the first energy absorption cavity and a first faceplate of the fourth energy absorption cavity are provided overlapping each other; and a fourth faceplate of the first energy absorption cavity and a first faceplate of the fifth energy absorption cavity A two-sided board is provided overlapping.

好適な技術案としては、一番下層のエネルギー吸収芯層に隣接するエネルギー吸収キャビティをそれぞれ左エネルギー吸収キャビティ及び右エネルギー吸収キャビティとし、前記左エネルギー吸収キャビティの第3面板と前記右エネルギー吸収キャビティの第4面板との間の夾角を第2二面角とし、前記第2二面角が前記最後層のエネルギー吸収芯層の第1二面角より小さい。 As a preferred technical solution, the energy-absorbing cavities adjacent to the lowest energy-absorbing core layer are the left energy-absorbing cavity and the right energy-absorbing cavity, respectively, and the third face plate of the left energy-absorbing cavity and the right energy-absorbing cavity are The included angle with the fourth face plate is defined as a second dihedral angle, and the second dihedral angle is smaller than the first dihedral angle of the last energy-absorbing core layer.

好適な技術案としては、前記エネルギー吸収芯層は、三層であり、前記第1エネルギー吸収芯層の二面角は、97°以下且つ93°以上であり、前記第2エネルギー吸収芯層の二面角は、84°以下且つ80°以上であり、前記第3エネルギー吸収芯層の二面角は、72°以下且つ68°以上であり、前記第2二面角は、60°以下であり且つ56°以上である。 As a preferred technical proposal, the energy-absorbing core layer has three layers, the dihedral angle of the first energy-absorbing core layer is 97° or less and 93° or more, and the second energy-absorbing core layer The dihedral angle is 84° or less and 80° or more, the dihedral angle of the third energy absorbing core layer is 72° or less and 68° or more, and the second dihedral angle is 60° or less. and greater than or equal to 56°.

好適な技術案としては、前記第1エネルギー吸収芯層の第1二面角は、95°であり、前記第2エネルギー吸収芯層の第1二面角は、82°であり、前記第3エネルギー吸収芯層の第1二面角は、70°であり、前記第2二面角は、58°である。 As a preferred technical solution, the first dihedral angle of the first energy-absorbing core layer is 95°, the first dihedral angle of the second energy-absorbing core layer is 82°, and the third The first dihedral angle of the energy absorbing core layer is 70° and the second dihedral angle is 58°.

上記の複合エネルギー吸収層を含む介在層構造であって、前記複合エネルギー吸収層の上部に上板が粘着して固定され、前記エネルギー吸収複合層の下部に下板が粘着して固定される。 An intervening layer structure including the above composite energy absorbing layer, wherein an upper plate is adhesively fixed to the upper part of the composite energy absorbing layer, and a lower plate is adhesively fixed to the lower part of the energy absorbing composite layer.

好適な技術案としては、前記上板及び前記下板は、いずれもアルミニウム合金板である。 As a preferred technical solution, both the upper plate and the lower plate are aluminum alloy plates.

上記の介在層構造の製造方法であって、
前記複合エネルギー吸収層の三次元デジタルモデルを構築するステップS1と、
前記複合エネルギー吸収層の三次元デジタルモデルに基づいて、複合エネルギー吸収層を3D印刷するステップS2と、
前記複合エネルギー吸収層の上部に上板を粘着し、前記複合エネルギー吸収層の下部に下板を粘着するステップS3とを含む。
A method for manufacturing the intervening layer structure described above,
a step S1 of constructing a three-dimensional digital model of the composite energy absorbing layer;
a step S2 of 3D printing a composite energy absorption layer based on the three-dimensional digital model of the composite energy absorption layer;
a step S3 of adhering an upper plate to the upper portion of the composite energy absorption layer and adhering a lower plate to the lower portion of the composite energy absorption layer.

好適な技術案としては、前記上板及び前記下板は、いずれもアルミニウム合金板であり、前記複合エネルギー吸収層の原料は、ナイロンパウダー粒子であり、3D印刷際の結晶化温度は、146℃であり、芯層密度は1010kg/mである。 As a preferred technical solution, the upper plate and the lower plate are both aluminum alloy plates, the raw material of the composite energy absorption layer is nylon powder particles, and the crystallization temperature during 3D printing is 146 ° C. and the core layer density is 1010 kg/m 3 .

好適な技術案としては、前記ステップS3の後に前記介在層構造に対して耐衝撃性試験を行う。 As a preferred technical solution, the intervening layer structure is subjected to an impact resistance test after step S3.

従来技術に比べて、本発明の実施例の複合エネルギー吸収層、介在層構造及び製造方法の有益な効果は以下のとおりである。
本発明の複合エネルギー吸収層は、上から下へ順に設けられる複数層のエネルギー吸収芯層を含み、各エネルギー吸収芯層は、いずれも、仕切りして設けられる複数のエネルギー吸収キャビティを含み、各エネルギー吸収芯層の中部に位置する複数の前記エネルギー吸収キャビティがいずれも密封して設けられ、各前記エネルギー吸収芯層のエッジに位置する複数の前記エネルギー吸収キャビティにいずれも開口を有し、各前記エネルギー吸収キャビティの上部の夾角を第1二面角とし、複数層の前記エネルギー吸収芯層の第1二面角が上から下へ順に減少する。各エネルギー吸収芯層の第1二面角は、上から下へ順に減少し、衝撃力がエネルギー吸収芯層に垂直な方向に本発明の複合エネルギー吸収層に作用するとき、二面角が最大の第1エネルギー吸収芯層が先ず破壊され、次に第2エネルギー吸収芯層が破壊され、このように続いて、最後層のエネルギー吸収芯層まで破壊される。破壊されたエネルギー吸収芯層が増加するとともに、第1二面角が減少し、エネルギー吸収芯層が生じたクッション力が徐々に増大し、従って、本実施例の複合エネルギー吸収層は、大きい衝撃力を受けると、段階的に破壊され、破壊されるとき、より多くのエネルギーを吸収でき、エネルギー吸収効果が高くなる。
Compared with the prior art, the beneficial effects of the composite energy absorbing layer, intervening layer structure and manufacturing method of the embodiments of the present invention are as follows.
The composite energy-absorbing layer of the present invention comprises a plurality of energy-absorbing core layers arranged in order from top to bottom, each energy-absorbing core layer comprising a plurality of partitioned energy-absorbing cavities. a plurality of energy-absorbing cavities located in the middle of the energy-absorbing core layer are all hermetically sealed; The included angle of the upper portion of the energy-absorbing cavity is defined as a first dihedral angle, and the first dihedral angles of the multiple energy-absorbing core layers decrease in order from top to bottom. The first dihedral angle of each energy-absorbing core layer decreases from top to bottom until the dihedral angle is maximized when an impact force acts on the composite energy-absorbing layers of the present invention in a direction perpendicular to the energy-absorbing core layers. The first energy absorbing core layer is destroyed first, then the second energy absorbing core layer, and so on until the last energy absorbing core layer. As the number of broken energy-absorbing core layers increases, the first dihedral angle decreases, and the cushioning force generated by the energy-absorbing core layers gradually increases, so that the composite energy-absorbing layer of this example has a large impact When subjected to force, it will be destroyed step by step, and when it is destroyed, it can absorb more energy, and the energy absorption effect will be higher.

本発明の実施例の複合エネルギー吸収層の構造模式図である。FIG. 3 is a structural schematic diagram of a composite energy absorption layer in an embodiment of the present invention; 本発明の実施例の複合エネルギー吸収層の第1エネルギー吸収芯層のエネルギー吸収キャビティの構造模式図である。FIG. 4 is a structural schematic diagram of the energy-absorbing cavity of the first energy-absorbing core layer of the composite energy-absorbing layer of the embodiment of the present invention; 本発明の実施例の複合エネルギー吸収層の第1エネルギー吸収芯層のエネルギー吸収キャビティの上部面板の構造模式図である。FIG. 4 is a structural schematic diagram of the upper face plate of the energy absorbing cavity of the first energy absorbing core layer of the composite energy absorbing layer of the embodiment of the present invention; 本発明の実施例の介在層構造の構造模式図である。FIG. 3 is a structural schematic diagram of an intervening layer structure in an embodiment of the present invention; 本発明の実施例の介在層構造の製造方法で介在層構造に対して耐衝撃性試験を行った結果である。It is the result of performing an impact resistance test on the intervening layer structure by the manufacturing method of the intervening layer structure of the example of the present invention.

以下、図面及び実施例を組み合わせ、本発明の具体的な実施形態についてさらに詳細に説明する。以下の実施例は、本発明を説明するためのものであるが、本発明の範囲を制限するものではない。 Hereinafter, specific embodiments of the present invention will be described in more detail by combining drawings and examples. The following examples are intended to illustrate the invention without, however, limiting its scope.

本発明の説明において、「上」、「下」、「左」、「右」、「頂」、「底」などの用語により指示される方位又は位置関係は、図面に示される方位又は位置関係に基づくものであり、本発明の説明及び説明の簡単化のために過ぎず、示される装置又は要素が特定方位を有したり、特定方位で構成又は操作されたりすることを指示又は示唆するものではなく、よって、本発明に対する限定としては理解されないことを理解すべきである。本発明では、「第1」、「第2」などの用語を適用して多様な情報を説明するが、これらの情報は、これらの用語に限定されるべきではない。これらの用語は、同タイプの情報を相互に区別するために用いられることを理解すべきである。例えば、本発明範囲から逸脱せずに、「第1」情報は、「第2」情報と命名されることが可能であり、同様に、「第2」情報も、「第1」情報と命名されることが可能である。 In the description of the present invention, orientations or positional relationships indicated by terms such as "top", "bottom", "left", "right", "top", "bottom" refer to the orientations or positional relationships shown in the drawings. and is merely for the purpose of describing and simplifying the description of the invention, and indicates or suggests that the device or elements shown have a particular orientation, or that they are configured or operated in a particular orientation. rather, and therefore should not be understood as a limitation on the present invention. In the present invention, terms such as 'first' and 'second' are used to describe various information, but these information should not be limited to these terms. It should be understood that these terms are used to distinguish similar types of information from each other. For example, "first" information could be termed "second" information, and similarly "second" information could be termed "first" information, without departing from the scope of the present invention. It is possible to be

本発明の好適な実施例の複合エネルギー吸収層であって、上から下へ順に設けられる複数層のエネルギー吸収芯層を含み、各エネルギー吸収芯層は、いずれも、仕切りして設けられる複数のエネルギー吸収キャビティを含み、各エネルギー吸収芯層の中部に位置する複数のエネルギー吸収キャビティがいずれも密封して設けられ、各エネルギー吸収芯層のエッジに位置する複数のエネルギー吸収キャビティにいずれも開口を有し、各エネルギー吸収キャビティの上部の夾角を第1二面角とし、複数層のエネルギー吸収芯層の第1二面角は、上から下へ順に減少する。 The composite energy-absorbing layer of the preferred embodiment of the present invention comprises a plurality of energy-absorbing core layers arranged in order from top to bottom, each energy-absorbing core layer comprising a plurality of partitioned energy-absorbing core layers. a plurality of energy-absorbing cavities located in the middle of each energy-absorbing core layer, including an energy-absorbing cavity, all hermetically disposed, and each of the plurality of energy-absorbing cavities located at the edge of each energy-absorbing core layer having openings; The top included angle of each energy-absorbing cavity is defined as a first dihedral angle, and the first dihedral angles of the multiple energy-absorbing core layers decrease from top to bottom.

エネルギー吸収芯層の層数及びエネルギー吸収芯層の厚さは、使用際の強度ニーズに応じて合理的に選択され、図1に示すように、三層のエネルギー吸収芯層が設けられることを例として、本発明の複合エネルギー吸収芯層について説明する。第1エネルギー吸収芯層1は、複数のエネルギー吸収キャビティ11を含み、エネルギー吸収キャビティ11の中部が中空構造であり、エネルギー吸収キャビティ11の上部夾角が第1エネルギー吸収芯層の第1二面角115であり、第2エネルギー吸収芯層2のエネルギー吸収キャビティ21の上部夾角が第2エネルギー吸収芯層の第1二面角215であり、第3エネルギー吸収芯層のエネルギー吸収キャビティ31の上部夾角が第3エネルギー吸収芯層の第1二面角315であり、第2エネルギー吸収芯層の第1二面角215が第1エネルギー吸収芯層の第1二面角115より小さく、第3エネルギー吸収芯層の第1二面角315が第2エネルギー吸収芯層の第1二面角215より小さい。 The number of layers of the energy-absorbing core layer and the thickness of the energy-absorbing core layer are rationally selected according to the strength needs in use, and as shown in FIG. As an example, the composite energy absorbing core layer of the present invention will be described. The first energy-absorbing core layer 1 includes a plurality of energy-absorbing cavities 11, the middle part of the energy-absorbing cavities 11 is a hollow structure, and the top included angle of the energy-absorbing cavities 11 is the first dihedral angle of the first energy-absorbing core layer 115, the upper included angle of the energy absorbing cavity 21 of the second energy absorbing core layer 2 is the first dihedral angle 215 of the second energy absorbing core layer, and the upper included angle of the energy absorbing cavity 31 of the third energy absorbing core layer is the first dihedral angle 315 of the third energy absorbing core layer, the first dihedral angle 215 of the second energy absorbing core layer is less than the first dihedral angle 115 of the first energy absorbing core layer, and the third energy The first dihedral angle 315 of the absorbing core layer is smaller than the first dihedral angle 215 of the second energy absorbing core layer.

衝撃力がエネルギー吸収芯層に垂直な方向に沿って本実施例の複合エネルギー吸収層に作用するとき、先ず第1二面角が最大の第1エネルギー吸収芯層が破壊され、そして、第2エネルギー吸収芯層が破壊され、このように続いて、最後層のエネルギー吸収芯層まで破壊される。また、破壊されたエネルギー吸収芯層が増加するとともに、エネルギー吸収芯層が生じたクッション力が徐々に増大し、従って、本実施例の複合エネルギー吸収層は、構造がコンパクトであり、大きい衝撃力を受けると、段階的に破壊され、破壊されるとき、より多くのエネルギーを吸収でき、エネルギー吸収効果がより高い。 When an impact force acts on the composite energy-absorbing layer of this embodiment along a direction perpendicular to the energy-absorbing core layer, the first energy-absorbing core layer having the largest first dihedral angle is broken first, and then the second energy-absorbing core layer is destroyed. The energy absorbing core layers are destroyed and so on until the last energy absorbing core layer is destroyed. In addition, as the number of broken energy-absorbing core layers increases, the cushioning force generated by the energy-absorbing core layers gradually increases. When hit, it will be destroyed step by step, and when destroyed, it can absorb more energy, and the energy absorption effect is higher.

好適には、エネルギー吸収芯層が十分な圧縮空間を有するとともに、高い圧縮強度を有することを保証するために、第1エネルギー吸収芯層の第1二面角15は、100°以下であり且つ90°以上であり、一番下端のエネルギー吸収芯層の第1二面角は、50°以上である。 Preferably, the first dihedral angle 15 of the first energy absorbing core layer is less than or equal to 100° and 90° or more, and the first dihedral angle of the lowermost energy-absorbing core layer is 50° or more.

各エネルギー吸収芯層のエネルギー吸収キャビティは、いずれも横形四角柱状であり、横形四角柱状エネルギー吸収キャビティの4つの側面は、順に第1面板、第2面板、第3面板及び第4面板であり、第1面板及び第2面板は、上部に位置し、第3面板及び第4面板が下部に位置し、第1面板及び第2面板との間の夾角は、第1二面角である。 The energy absorption cavity of each energy absorption core layer has a horizontal square prism shape, and the four side surfaces of the horizontal square prism energy absorption cavity are the first face plate, the second face plate, the third face plate and the fourth face plate in that order, The first face plate and the second face plate are located on the top, the third face plate and the fourth face plate are located on the bottom, and the included angle between the first face plate and the second face plate is the first dihedral angle.

図1に示すように、第1エネルギー吸収キャビティ11を例として、エネルギー吸収キャビティの構造について説明する。第1エネルギー吸収芯層のエネルギー吸収キャビティ11は、横に配置される四角柱状であり、四角柱状エネルギー吸収キャビティの4つの側面は、順に第1面板111、第2面板112、第3面板113及び第4面板114であり、そのうち、第1面板111及び第2面板112は、四角柱の上部に位置し、第1面板111及び第2面板112との間の夾角は、第1エネルギー吸収芯層の第1二面角115である。 As shown in FIG. 1, the structure of the energy absorption cavity will be described by taking the first energy absorption cavity 11 as an example. The energy-absorbing cavity 11 of the first energy-absorbing core layer is in the shape of a square prism arranged laterally, and the four sides of the square-pillar energy-absorbing cavity are sequentially formed by the first face plate 111, the second face plate 112, the third face plate 113 and the A fourth face plate 114, of which the first face plate 111 and the second face plate 112 are positioned on the top of the square prism, and the included angle between the first face plate 111 and the second face plate 112 is the first energy absorption core layer is the first dihedral angle 115 of .

さらに、本実施例では、図2、図3に示すように、第1エネルギー吸収キャビティ11は、前エネルギー吸収キャビティ11a及び後エネルギー吸収キャビティ11bを含み、前エネルギー吸収キャビティ11a及び後エネルギー吸収キャビティ11bは、いずれも四角柱状であり、前エネルギー吸収キャビティ11aの側稜が前後方向に沿って斜めに設けられ、後エネルギー吸収キャビティ11bの各側稜がそれぞれ対応する前エネルギー吸収キャビティ11aの各側稜と前後に対向して設けられ、前エネルギー吸収キャビティ11aの第1面板111aの後端が後エネルギー吸収キャビティ11bの第1面板111bの前端に密封接続され、前エネルギー吸収キャビティ11aの第2面板112aの後端が後エネルギー吸収キャビティ11bの第2面板112bの前端に密封接続され、前エネルギー吸収キャビティ11aの第3面板の後端が後エネルギー吸収キャビティ11bの第3面板の前端に密封接続され、前エネルギー吸収キャビティ11aの第4面板の後端が後エネルギー吸収キャビティ11bの第4面板の前端に密封接続され、好適には、前エネルギー吸収キャビティ11a及び後エネルギー吸収キャビティ11bが前後に対称的に設けられ、さらに、前エネルギー吸収キャビティ11aの第1面板と後エネルギー吸収キャビティ11bの第1面板との間の二面角が90°であり、前エネルギー吸収キャビティ11aの第4面板と後エネルギー吸収キャビティ11bの第4面板との間の二面角が90°である。 Further, in this embodiment, as shown in FIGS. 2 and 3, the first energy absorbing cavity 11 includes a front energy absorbing cavity 11a and a rear energy absorbing cavity 11b, and a front energy absorbing cavity 11a and a rear energy absorbing cavity 11b. are square poles, the side edges of the front energy absorption cavity 11a are provided obliquely along the front-rear direction, and the side edges of the rear energy absorption cavity 11b correspond to the respective side edges of the front energy absorption cavity 11a. The rear end of the first face plate 111a of the front energy absorption cavity 11a is sealingly connected to the front end of the first face plate 111b of the rear energy absorption cavity 11b, and the second face plate 112a of the front energy absorption cavity 11a. the rear end of which is sealingly connected to the front end of the second faceplate 112b of the rear energy absorption cavity 11b, the rear end of the third faceplate of the front energy absorption cavity 11a is sealingly connected to the front end of the third faceplate of the rear energy absorption cavity 11b, The rear end of the fourth faceplate of the front energy absorption cavity 11a is sealingly connected to the front end of the fourth faceplate of the rear energy absorption cavity 11b, preferably the front energy absorption cavity 11a and the rear energy absorption cavity 11b are symmetrically forward and backward. further, the dihedral angle between the first faceplate of the front energy absorption cavity 11a and the first faceplate of the rear energy absorption cavity 11b is 90°, and the fourth faceplate of the front energy absorption cavity 11a and the rear energy absorption The dihedral angle between the cavity 11b and the fourth face plate is 90°.

前エネルギー吸収キャビティ11a及び後エネルギー吸収キャビティ11bは、所定の傾斜角をなすように設けられ、所定の傾斜角をなすように設けられるエネルギー吸収キャビティの各面板が交差して設けられることで、異なる方向での作用力を受けるときのエネルギー吸収芯層の安定性を向上させ、エネルギー吸収芯層のエネルギー吸収効果をさらに向上させることができる。 The front energy absorption cavity 11a and the rear energy absorption cavity 11b are provided so as to form a predetermined inclination angle. It can improve the stability of the energy-absorbing core layer when receiving acting force in a direction, and further improve the energy-absorbing effect of the energy-absorbing core layer.

本実施例では、上下隣接するエネルギー吸収芯層の間の接続方式は、複数種あり、例えば、第1エネルギー吸収芯層1の下部に平坦板が接続され、平坦板の下方に第2エネルギー吸収芯層2が接続される。各エネルギー吸収キャビティの接続関係の説明の便利上のために、図1に示すように、中部に位置するエネルギー吸収芯層のエネルギー吸収キャビティを第1エネルギー吸収キャビティaとし、第1エネルギー吸収キャビティaに隣接し且つ第1エネルギー吸収キャビティaの左上方に位置するエネルギー吸収キャビティを第2エネルギー吸収キャビティbとし、第1エネルギー吸収キャビティaに隣接し且つ第1エネルギー吸収キャビティaの右上方に位置するエネルギー吸収キャビティを第3エネルギー吸収キャビティcとし、第1エネルギー吸収キャビティaに隣接し且つ第1エネルギー吸収キャビティaの右下方に位置するエネルギー吸収キャビティを第4エネルギー吸収キャビティdとし、第1エネルギー吸収キャビティaに隣接し且つ第1エネルギー吸収キャビティaの左下方に位置するエネルギー吸収キャビティを第5エネルギー吸収キャビティeとし、
第1エネルギー吸収キャビティaの第1面板と第2エネルギー吸収キャビティbの第3面板が重なって設けられ、第1エネルギー吸収キャビティaの第2面板と第3エネルギー吸収キャビティcの第4面板が重なって設けられ、第1エネルギー吸収キャビティaの第3面板と第4エネルギー吸収キャビティdの第1面板が重なって設けられ、第1エネルギー吸収キャビティaの第4面板と第5エネルギー吸収キャビティeの第2面板が重なって設けられ、エネルギー吸収キャビティ内がハニカム状であり、それによって、各エネルギー吸収芯層間の強固な接続を確保でき、また、材料を節約し、車両の軽量化の設計要求を満たす。
In this embodiment, there are a plurality of connection methods between vertically adjacent energy absorbing core layers. For example, a flat plate is connected under the first energy absorbing core layer 1, and a second energy absorbing core layer A core layer 2 is connected. For the convenience of explaining the connection relationship of each energy absorbing cavity, as shown in FIG. The energy absorbing cavity located above and to the left of the first energy absorbing cavity a is defined as a second energy absorbing cavity b, adjacent to the first energy absorbing cavity a and located above and to the right of the first energy absorbing cavity a. The energy absorbing cavity is defined as a third energy absorbing cavity c, the energy absorbing cavity adjacent to the first energy absorbing cavity a and located to the lower right of the first energy absorbing cavity a is defined as a fourth energy absorbing cavity d, and the first energy absorbing cavity is defined as The energy absorbing cavity adjacent to the cavity a and positioned to the left and below the first energy absorbing cavity a is a fifth energy absorbing cavity e;
The first face plate of the first energy absorption cavity a and the third face plate of the second energy absorption cavity b are overlapped, and the second face plate of the first energy absorption cavity a and the fourth face plate of the third energy absorption cavity c are overlapped. the third face plate of the first energy absorption cavity a and the first face plate of the fourth energy absorption cavity d are provided overlapping each other; the fourth face plate of the first energy absorption cavity a and the first face plate of the fifth energy absorption cavity e The two-sided plates are superimposed, and the energy-absorbing cavity has a honeycomb shape, which can ensure a strong connection between each energy-absorbing core layer, and also saves materials and meets the design requirements of vehicle weight reduction. .

図1に示すように、本実施例では、エネルギー吸収芯層は、三層であり、第3エネルギー吸収芯層に隣接するエネルギー吸収キャビティをそれぞれ左エネルギー吸収キャビティf及び右エネルギー吸収キャビティgとし、左エネルギー吸収キャビティfの第3面板と右エネルギー吸収キャビティgの第4面板との間の夾角を第3エネルギー吸収芯層の第2二面角36とし、第3エネルギー吸収芯層第2二面角36が第3エネルギー吸収芯層の第1二面角より小さい。 As shown in FIG. 1, in this embodiment, there are three energy-absorbing core layers, and the energy-absorbing cavities adjacent to the third energy-absorbing core layer are the left energy-absorbing cavity f and the right energy-absorbing cavity g, respectively; The included angle between the third faceplate of the left energy-absorbing cavity f and the fourth faceplate of the right energy-absorbing cavity g is the second dihedral angle 36 of the third energy-absorbing core layer, and the second dihedral angle of the third energy-absorbing core layer Angle 36 is less than the first dihedral angle of the third energy absorbing core layer.

第1エネルギー吸収芯層1の第1二面角は、97°以下且つ93°以上であり、第2エネルギー吸収芯層2の第1二面角は、84°以下且つ80°以上であり、第3エネルギー吸収芯層3の第1二面角は、72°以下且つ68°以上であり、第3エネルギー吸収芯層の3第2二面角36は、60°以下且つ56°以上である。 The first dihedral angle of the first energy-absorbing core layer 1 is 97° or less and 93° or more, the first dihedral angle of the second energy-absorbing core layer 2 is 84° or less and 80° or more, The first dihedral angle of the third energy absorbing core layer 3 is less than or equal to 72° and greater than or equal to 68°, and the third dihedral angle 36 of the third energy absorbing core layer is less than or equal to 60° and greater than or equal to 56°. .

好適には、第1エネルギー吸収芯層1の第1二面角15は、95°であり、第2エネルギー吸収芯層2の第1二面角25は、82°であり、第3エネルギー吸収芯層3の第1二面角35は、70°であり、第3エネルギー吸収芯層3の第2二面角36は、58°である。 Preferably, the first dihedral angle 15 of the first energy absorbing core layer 1 is 95°, the first dihedral angle 25 of the second energy absorbing core layer 2 is 82°, and the third energy absorbing The first dihedral angle 35 of the core layer 3 is 70° and the second dihedral angle 36 of the third energy absorbing core layer 3 is 58°.

各エネルギー吸収芯層の二面角が95°~58°であり、衝撃を受けると、エネルギー吸収芯層が大きい崩壊・収縮空間を有することができ、エネルギー吸収芯層が十分な強度を有することを保証し、従って、単位体積内のエネルギー吸収複合層がより多くのエネルギーを吸収でき、自動車の軽量化の要求を満たすことができ、単位体積で吸収できるエネルギーが増加することによって、車両の構造設計の選択性が多くなる。 Each energy-absorbing core layer has a dihedral angle of 95° to 58°, and when subjected to impact, the energy-absorbing core layer can have a large collapse/shrinkage space, and the energy-absorbing core layer has sufficient strength. , so that the energy-absorbing composite layer in a unit volume can absorb more energy, which can meet the light weight requirements of automobiles, and increase the energy that can be absorbed in a unit volume, thereby improving the structure of the vehicle. More design options.

介在層構造の実施例であって、図4に示すように、上記のエネルギー吸収複合層100、複合エネルギー吸収層100の上部に固定して粘着される上板200、及び複合エネルギー吸収層100の下部に固定して粘着される下板300を含み、そのうち、上板200及び下板300は、いずれもアルミニウム合金であり、各エネルギー吸収芯層のエネルギー吸収キャビティの肉厚がいずれも1CMであり、複合エネルギー吸収層が用いる材料は、ナイロンであり、ナイロン材料は、弾性が高く、エネルギー吸収効果に優れる。 An example of an intervening layer structure, as shown in FIG. It includes a bottom plate 300 fixed and adhered to the bottom, wherein the top plate 200 and the bottom plate 300 are both made of aluminum alloy, and the thickness of the energy absorption cavity of each energy absorption core layer is 1CM. , The material used for the composite energy absorption layer is nylon, and the nylon material has high elasticity and excellent energy absorption effect.

介在層構造の製造方法の好適な実施例であって、本実施例では、複合エネルギー吸収層に対して3D印刷で加工成形を行うステップは、複合エネルギー吸収層の三次元デジタルモデルを構築し、本実施例では、SolidWorksソフトウェアを用いてエネルギー吸収芯層構造を構築するステップS1と、複合エネルギー吸収層の三次元デジタルモデルに基づいて、複合エネルギー吸収層を3D印刷し、溶融堆積成形技術を用い、加工基板を固定し、粉末を敷いた後、設定された加工プロセスパラメータに基づいてエネルギー吸収芯層を印刷するステップS2と、複合エネルギー吸収層の上部に上板200を粘着し、複合エネルギー吸収層の下部に下板300を粘着し、エポキシ樹脂を配置し、印刷されたエネルギー吸収芯層を上下面板の接触面に十分に接着させ、エポキシが完全に硬化した後、製造済みの介在層構造を取得するステップS3とを含む。複合エネルギー吸収芯層の原料は、ナイロンパウダー粒子であり、3D印刷際の結晶化温度は、146℃であり、芯層密度は、1010kg/mであり、ステップS3の後に介在層構造に対して耐衝撃性試験を行う。 A preferred embodiment of a method for producing an intervening layer structure, wherein the step of 3D-printing the composite energy-absorbing layer comprises constructing a three-dimensional digital model of the composite energy-absorbing layer, In this embodiment, the step S1 of constructing the energy-absorbing core layer structure using SolidWorks software, and the composite energy-absorbing layer is 3D printed based on the three-dimensional digital model of the composite energy-absorbing layer, and the fusion deposition molding technology is used. , the step S2 of fixing the processing substrate, laying the powder, and then printing the energy-absorbing core layer according to the set processing process parameters; The bottom plate 300 is adhered to the bottom of the layer, the epoxy resin is placed, the printed energy-absorbing core layer is well adhered to the contact surfaces of the top and bottom plates, and the intervening layer structure that has been manufactured after the epoxy is completely cured. and a step S3 of obtaining . The raw material of the composite energy-absorbing core layer is nylon powder particles, the crystallization temperature during 3D printing is 146 ° C., the density of the core layer is 1010 kg / m 3 , and the intervening layer structure after step S3 and perform an impact resistance test.

図5は、介在層構造検体の、衝撃荷重作用での力-変位曲線図であり、図3から分かるように、持続的な衝撃力により、検体が圧縮され続け、4つの衝撃力ピークは、連続して発生し、この4つの衝撃力ピークは、それぞれ第1エネルギー吸収芯層11の第1面板及び第2面板、第2エネルギー吸収層12の第1面板及び第2面板、第3エネルギー吸収芯層13の第1面板及び第2面板、第3エネルギー吸収芯層13の第3面板及び第4面板が衝撃されて破壊されたときのエネルギー吸収過程を表し、試験で得られた力-変位曲線は、変形の9つの段階を表す。第1段階において、第1エネルギー吸収芯層11の第1面板及び第2面板が線形弾性変形するため、力が変位とともに徐々に増加し、第2段階において、第1エネルギー吸収芯層11の第1面板及び第2面板が湾曲・陥没し始め、それらの変位範囲が大きいため、介在層構造検体がこの段階において大きく変形し、ほとんどのエネルギーを吸収し、第3段階において、第2エネルギー吸収芯層12の第1面板及び第2面板が線形弾性変形し、力が変位とともに徐々に増加し、第4段階において、第2エネルギー吸収芯層12の第1面板及び第2面板が湾曲・陥没し始め、検体がほとんどのエネルギーを吸収し、第5段階において、第3エネルギー吸収芯層13の第1面板及び第2面板が線形弾性変形し、第6段階において、第3エネルギー吸収芯層13の第1面板及び第2面板が湾曲・陥没し始め、第7段階において、第3エネルギー吸収芯層13の第3面板及び第4面板が線形弾性変形し、第8段階において、第3エネルギー吸収芯層13の第3面板及び第4面板が湾曲・陥没し始め、第9段階において、各エネルギー吸収芯層のエネルギー吸収キャビティが全て陥没しており、エネルギー吸収を続けることが困難であるため、圧力が急激に上昇してしまう。 FIG. 5 is a force-displacement curve diagram of the intervening layer structure specimen under impact loading, as can be seen from FIG. These four impact force peaks occur in succession, respectively, the first and second face plates of the first energy-absorbing core layer 11, the first and second face plates of the second energy-absorbing layer 12, and the third energy-absorbing The force-displacement obtained in the test represents the energy absorption process when the first and second face plates of the core layer 13 and the third and fourth face plates of the third energy-absorbing core layer 13 are impacted and destroyed. The curves represent nine stages of deformation. In the first stage, since the first face plate and the second face plate of the first energy-absorbing core layer 11 undergo linear elastic deformation, the force gradually increases with the displacement. The first and second face plates begin to bend and collapse, and their displacement range is large, so the intervening layer structure specimen is greatly deformed at this stage and absorbs most of the energy, and in the third stage, the second energy absorption core The first and second face plates of the layer 12 undergo linear elastic deformation, the force gradually increases with the displacement, and in the fourth stage, the first and second face plates of the second energy-absorbing core layer 12 bend and collapse. Initially, the specimen absorbs most of the energy, in the fifth stage, the first and second face plates of the third energy-absorbing core layer 13 undergo linear elastic deformation, and in the sixth stage, the third energy-absorbing core layer 13 The first face plate and the second face plate begin to bend and collapse, the third face plate and the fourth face plate of the third energy absorption core layer 13 undergo linear elastic deformation in the seventh stage, and the third energy absorption core layer 13 undergoes linear elastic deformation in the eighth stage. The third and fourth faceplates of layer 13 begin to bend and collapse, and in the ninth stage, the energy absorption cavities of each energy absorption core layer are all collapsed, making it difficult to continue absorbing energy, so pressure rises sharply.

上記試験結果分かるように、衝撃力がエネルギー吸収芯層に垂直な方向に本実施例の介在層構造に作用するとき、第1二面角が最大の第1エネルギー吸収芯層の上部が先ず破壊され、次に第2エネルギー吸収芯層の上部が破壊され、次に第3エネルギー吸収芯層の上部が破壊され、第3エネルギー吸収芯層の下部が破壊され、また、破壊されたエネルギー吸収芯層が増加するとともに、エネルギー吸収芯層が生じたクッション力が徐々に増大し、従って、本実施例の複合エネルギー吸収層は、大きい衝撃力を受けると、段階的に破壊される。ある断面がランダムに破壊された後、薄肉構造全体の圧縮強度が急速に低下する状況がなく、よって、本実施例の介在層構造は、構造がコンパクトであり、構造設置が合理的であり、破壊されると、単位体積のエネルギー吸収層がより多くのエネルギーを吸収でき、エネルギー吸収効果に優れる。 As can be seen from the above test results, when the impact force acts on the intervening layer structure of this example in a direction perpendicular to the energy absorbing core layer, the upper portion of the first energy absorbing core layer with the largest first dihedral angle breaks first. and then the upper part of the second energy absorbing core layer is broken, then the upper part of the third energy absorbing core layer is broken, the lower part of the third energy absorbing core layer is broken, and the broken energy absorbing core As the layers increase, the cushioning force generated by the energy-absorbing core layer gradually increases, so that the composite energy-absorbing layer of this example breaks down step by step when subjected to a large impact force. After a cross-section is randomly broken, there is no situation where the compressive strength of the entire thin-walled structure is rapidly reduced, so the intervening layer structure of this embodiment has a compact structure and a reasonable structural installation, When broken, the unit volume energy absorption layer can absorb more energy, and the energy absorption effect is excellent.

なお、以上は本発明の好ましい実施形態に過ぎず、指摘すべきことは、当業者にとって、本発明の技術原理から逸脱することなく、さらにいくつかの改善や置換を行うことができ、これらの改善や置換も本発明の保護範囲と見なすべきである。 It should be noted that the above are only preferred embodiments of the present invention, and it should be pointed out that those skilled in the art can make further improvements and substitutions without departing from the technical principles of the present invention. Improvements and replacements should also be regarded as the protection scope of the present invention.

100 複合エネルギー吸収層
1 第1エネルギー吸収芯層
11 第1エネルギー吸収芯層のエネルギー吸収キャビティ
11a 第1エネルギー吸収芯層の前エネルギー吸収キャビティ
11b 第1エネルギー吸収芯層の後エネルギー吸収キャビティ
111 第1エネルギー吸収芯層の第1面板
111a 前エネルギー吸収キャビティの第1面板
111b 後エネルギー吸収キャビティの第1面板
112 第1エネルギー吸収芯層の第2面板
112a 前エネルギー吸収キャビティの第2面板
112b 後エネルギー吸収キャビティの第2面板
113 第1エネルギー吸収芯層の第3面板
114 第1エネルギー吸収芯層の第4面板
115 第1エネルギー吸収芯層の第1二面角
2 第2エネルギー吸収芯層
21 第2エネルギー吸収芯層のエネルギー吸収キャビティ
215 第2エネルギー吸収芯層の第1二面角
3 第3エネルギー吸収芯層
31 第3エネルギー吸収芯層のエネルギー吸収キャビティ
315 第3エネルギー吸収芯層の第1二面角
36 第3エネルギー吸収芯層の第2二面角
a 第1エネルギー吸収キャビティ
b 第2エネルギー吸収キャビティ
c 第3エネルギー吸収キャビティ
d 第4エネルギー吸収キャビティ
e 第5エネルギー吸収キャビティ
f 左エネルギー吸収キャビティ
g 右エネルギー吸収キャビティ
200 介在層構造上板
300 介在層構造下板
REFERENCE SIGNS LIST 100 composite energy absorbing layer 1 first energy absorbing core layer 11 energy absorbing cavity of first energy absorbing core layer 11a front energy absorbing cavity of first energy absorbing core layer 11b rear energy absorbing cavity of first energy absorbing core layer 111 first First face plate of energy absorbing core layer 111a First face plate of front energy absorbing cavity 111b First face plate of rear energy absorbing cavity 112 Second face plate of first energy absorbing core layer 112a Second face plate of front energy absorbing cavity 112b Rear energy absorbing Second faceplate of cavity 113 Third faceplate of first energy-absorbing core layer 114 Fourth faceplate of first energy-absorbing core layer 115 First dihedral angle of first energy-absorbing core layer 2 Second energy-absorbing core layer 21 Second energy absorbing cavity of energy absorbing core layer 215 first dihedral angle of second energy absorbing core layer 3 third energy absorbing core layer 31 energy absorbing cavity of third energy absorbing core layer 315 first two of third energy absorbing core layer Face angle 36 Second dihedral angle of third energy absorbing core layer a First energy absorbing cavity b Second energy absorbing cavity c Third energy absorbing cavity d Fourth energy absorbing cavity e Fifth energy absorbing cavity f Left energy absorbing cavity g right energy absorption cavity 200 intervening layer structure upper plate 300 interposing layer structure lower plate

Claims (10)

複合エネルギー吸収層であって、上から下へ順に設けられる複数層のエネルギー吸収芯層を含み、
各前記エネルギー吸収芯層は、いずれも、仕切りして設けられる複数のエネルギー吸収キャビティを含み、各前記エネルギー吸収芯層の中部に位置する複数の前記エネルギー吸収キャビティがいずれも密封して設けられ、各前記エネルギー吸収芯層のエッジに位置する複数の前記エネルギー吸収キャビティにいずれも開口を有し、
各前記エネルギー吸収キャビティの上部の夾角を第1二面角とし、複数層の前記エネルギー吸収芯層の第1二面角が上から下へ順に減少する、ことを特徴とする複合エネルギー吸収層。
a composite energy-absorbing layer, comprising a plurality of energy-absorbing core layers arranged in order from top to bottom;
Each of the energy-absorbing core layers includes a plurality of partitioned energy-absorbing cavities, and the plurality of energy-absorbing cavities located in the middle of each of the energy-absorbing core layers are sealed, each of the plurality of energy absorbing cavities located at the edge of each of the energy absorbing core layers has an opening;
A composite energy absorbing layer, wherein the included angle of the upper portion of each energy absorbing cavity is a first dihedral angle, and the first dihedral angles of the multiple energy absorbing core layers decrease in order from top to bottom.
各前記エネルギー吸収キャビティは、いずれも横形四角柱状であり、
前記横形四角柱状エネルギー吸収キャビティの4つの側面は、順に第1面板、第2面板、第3面板及び第4面板であり、前記第1面板及び前記第2面板が上部に位置し、前記第3面板及び前記第4面板が下部に位置し、前記第1面板と前記第2面板との間の夾角が前記第1二面角である、ことを特徴とする請求項1に記載の複合エネルギー吸収層。
each of the energy absorption cavities has a horizontal quadrangular prism shape,
The four sides of the horizontal quadrangular prism-shaped energy absorption cavity are a first face plate, a second face plate, a third face plate and a fourth face plate in order, the first face plate and the second face plate are located on the top, and the third face plate is located on the top. The compound energy absorption according to claim 1, characterized in that the face plate and the fourth face plate are positioned at the bottom, and the included angle between the first face plate and the second face plate is the first dihedral angle. layer.
中部に位置するエネルギー吸収キャビティを第1エネルギー吸収キャビティとし、前記第1エネルギー吸収キャビティに隣接し且つ前記第1エネルギー吸収キャビティの左上方に位置するエネルギー吸収キャビティを第2エネルギー吸収キャビティとし、前記第1エネルギー吸収キャビティに隣接し且つ前記第1エネルギー吸収キャビティの右上方に位置するエネルギー吸収キャビティを第3エネルギー吸収キャビティとし、前記第1エネルギー吸収キャビティに隣接し且つ前記第1エネルギー吸収キャビティの右下方に位置するエネルギー吸収キャビティを第4エネルギー吸収キャビティとし、前記第1エネルギー吸収キャビティに隣接し且つ前記第1エネルギー吸収キャビティの左下方に位置するエネルギー吸収キャビティを第5エネルギー吸収キャビティとし、
前記第1エネルギー吸収キャビティの第1面板と前記第2エネルギー吸収キャビティの第3面板が重なって設けられ、前記第1エネルギー吸収キャビティの第2面板と前記第3エネルギー吸収キャビティの第4面板が重なって設けられ、前記第1エネルギー吸収キャビティの第3面板と前記第4エネルギー吸収キャビティの第1面板が重なって設けられ、前記第1エネルギー吸収キャビティの第4面板と前記第5エネルギー吸収キャビティの第2面板が重なって設けられる、ことを特徴とする請求項2に記載の複合エネルギー吸収層。
The energy absorbing cavity located in the middle is defined as a first energy absorbing cavity, the energy absorbing cavity adjacent to the first energy absorbing cavity and located above and to the left of the first energy absorbing cavity is defined as a second energy absorbing cavity, The energy absorbing cavity adjacent to the first energy absorbing cavity and located on the upper right side of the first energy absorbing cavity is defined as a third energy absorbing cavity, and adjacent to the first energy absorbing cavity and on the lower right side of the first energy absorbing cavity. a fourth energy absorbing cavity, an energy absorbing cavity adjacent to the first energy absorbing cavity and located to the lower left of the first energy absorbing cavity is a fifth energy absorbing cavity;
A first faceplate of the first energy absorption cavity and a third faceplate of the second energy absorption cavity are provided overlapping, and a second faceplate of the first energy absorption cavity and a fourth faceplate of the third energy absorption cavity are overlapped. a third faceplate of the first energy absorption cavity and a first faceplate of the fourth energy absorption cavity are provided overlapping each other; and a fourth faceplate of the first energy absorption cavity and a first faceplate of the fifth energy absorption cavity 3. The composite energy absorption layer according to claim 2, wherein the two-sided plates are provided so as to overlap each other.
一番下層のエネルギー吸収芯層に隣接するエネルギー吸収キャビティをそれぞれ左エネルギー吸収キャビティ及び右エネルギー吸収キャビティとし、前記左エネルギー吸収キャビティの第3面板と前記右エネルギー吸収キャビティの第4面板との間の夾角を第2二面角とし、前記第2二面角が前記最後層のエネルギー吸収芯層の第1二面角より小さい、ことを特徴とする請求項2に記載の複合エネルギー吸収層。 The energy absorbing cavities adjacent to the lowermost energy absorbing core layer are defined as a left energy absorbing cavity and a right energy absorbing cavity, respectively, and between the third face plate of the left energy absorbing cavity and the fourth face plate of the right energy absorbing cavity. 3. The composite energy absorbing layer according to claim 2, wherein the included angle is a second dihedral angle, said second dihedral angle being smaller than the first dihedral angle of said last energy absorbing core layer. 前記エネルギー吸収芯層は、三層であり、前記第1エネルギー吸収芯層の二面角は、97°以下且つ93°以上であり、前記第2エネルギー吸収芯層の二面角は、84°以下且つ80°以上であり、前記第3エネルギー吸収芯層の二面角は、72°以下且つ68°以上であり、前記第2二面角は、60°以下であり且つ56°以上である、ことを特徴とする請求項4に記載の複合エネルギー吸収層。 The energy absorbing core layer has three layers, the dihedral angle of the first energy absorbing core layer is 97° or less and 93° or more, and the dihedral angle of the second energy absorbing core layer is 84°. or less and 80° or more, the dihedral angle of the third energy-absorbing core layer is 72° or less and 68° or more, and the second dihedral angle is 60° or less and 56° or more. 5. The composite energy absorption layer according to claim 4, characterized by: 前記第1エネルギー吸収芯層の第1二面角は、95°であり、前記第2エネルギー吸収芯層の第1二面角は、82°であり、前記第3エネルギー吸収芯層の第1二面角は、70°であり、前記第2二面角は、58°である、ことを特徴とする請求項5に記載の複合エネルギー吸収層。 The first dihedral angle of the first energy-absorbing core layer is 95°, the first dihedral angle of the second energy-absorbing core layer is 82°, and the first dihedral angle of the third energy-absorbing core layer is 82°. 6. The composite energy absorbing layer of claim 5, wherein the dihedral angle is 70[deg.] and the second dihedral angle is 58[deg.]. 請求項1~6のいずれかに記載の複合エネルギー吸収層を含む介在層構造であって、
前記複合エネルギー吸収層の上部に上板が粘着して固定され、前記エネルギー吸収複合層の下部に下板が粘着して固定される、ことを特徴とする介在層構造。
An intervening layer structure comprising the composite energy absorbing layer according to any one of claims 1 to 6,
An intervening layer structure, wherein an upper plate is adhesively fixed to an upper portion of said composite energy absorbing layer, and a lower plate is adhesively fixed to a lower portion of said energy absorbing composite layer.
前記複合エネルギー吸収層の三次元デジタルモデルを構築するステップS1と、
前記複合エネルギー吸収層の三次元デジタルモデルに基づいて、複合エネルギー吸収層の実体を3D印刷するステップS2と、
前記複合エネルギー吸収層の上部に上板200を粘着し、前記複合エネルギー吸収層の下部に下板300を粘着するステップS3とを含む、ことを特徴とする請求項7に記載の介在層構造の製造方法。
a step S1 of constructing a three-dimensional digital model of the composite energy absorbing layer;
a step S2 of 3D printing the substance of the composite energy absorption layer based on the three-dimensional digital model of the composite energy absorption layer;
8. The intermediate layer structure of claim 7, further comprising a step S3 of adhering an upper plate (200) to the upper portion of the composite energy absorption layer and adhering a lower plate (300) to the lower portion of the composite energy absorption layer. Production method.
前記上板及び前記下板は、いずれもアルミニウム合金板であり、
前記複合エネルギー吸収層の原料は、ナイロンパウダー粒子であり、3D印刷際の結晶化温度は、146℃であり、芯層密度は、1010kg/mである、ことを特徴とする請求項8に記載の介在層構造の製造方法。
The upper plate and the lower plate are both aluminum alloy plates,
9. The material of the composite energy absorption layer is nylon powder particles, the crystallization temperature during 3D printing is 146° C., and the density of the core layer is 1010 kg/m 3 . A method of manufacturing the described intervening layer structure.
前記ステップS3の後に前記介在層構造に対して耐衝撃性試験を行う、ことを特徴とする請求項8に記載の介在層構造の製造方法。 9. The method of manufacturing an intervening layer structure according to claim 8, wherein an impact resistance test is performed on the intervening layer structure after step S3.
JP2021157867A 2021-05-08 2021-09-28 Composite energy absorption layer, intervening layer structure and manufacturing method Active JP6993040B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110504028.9A CN113183564B (en) 2021-05-08 2021-05-08 Composite energy absorption layer, sandwich structure and preparation method
CN202110504028.9 2021-05-08

Publications (2)

Publication Number Publication Date
JP6993040B1 JP6993040B1 (en) 2022-01-13
JP2022173181A true JP2022173181A (en) 2022-11-18

Family

ID=76988558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021157867A Active JP6993040B1 (en) 2021-05-08 2021-09-28 Composite energy absorption layer, intervening layer structure and manufacturing method

Country Status (2)

Country Link
JP (1) JP6993040B1 (en)
CN (1) CN113183564B (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10169687A (en) * 1996-12-13 1998-06-23 Toyobo Co Ltd Resinmade shock absorber and shock absorbing method using it
JP2009083756A (en) * 2007-10-02 2009-04-23 Toyota Motor Corp Vehicular side member structure
CN102909907B (en) * 2012-10-26 2014-12-10 西安交通大学 Multilayer diamond lattice metal-foam aluminum compound sandwich board and production method thereof
CN109797688B (en) * 2019-01-28 2022-04-26 广州大学 Highway pier buffer stop
CN110315805A (en) * 2019-05-10 2019-10-11 国家能源投资集团有限责任公司 Thermoplastic core and device comprising the same
CN111391428A (en) * 2020-03-13 2020-07-10 广州大学 Energy-absorbing core layer, sandwich structure and preparation method
CN111993718B (en) * 2020-07-14 2023-07-25 清华大学苏州汽车研究院(相城) Composite sandwich board

Also Published As

Publication number Publication date
CN113183564A (en) 2021-07-30
CN113183564B (en) 2023-11-03
JP6993040B1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
US10753418B2 (en) Energy absorbing truss structures for mitigation of injuries from blasts and impacts
JP2019034557A (en) Composite material sandwich having high flexure rigidity
Jiang et al. Design of novel plug-type triggers for composite square tubes: enhancement of energy-absorption capacity and inducing failure mechanisms
US20060269738A1 (en) Composite materials
CN110744873A (en) 3D printing structure composite material sandwich board with negative Poisson ratio effect and processing method
US9890827B2 (en) Energy absorbing truss structures for mitigation of injuries from blasts and impacts
CN214873141U (en) Bionic honeycomb plate based on microcosmic woodpecker beak and 3D printer
JP2011530054A (en) Energy absorption structure
CN111391428A (en) Energy-absorbing core layer, sandwich structure and preparation method
CN105774052B (en) The core filled composite material of multiple-layer stacked curved surface scapus born of the same parents' structure
CN211251558U (en) 3D printing structure composite material sandwich board with negative Poisson ratio effect
CN109483962B (en) Automobile front panel with multi-layer sandwich composite structure and application of structure
JP2022173181A (en) Compound energy absorption layer, interposition layer structure, and manufacturing method of interposition layer structure
Pan et al. Low-velocity impact response of thermoplastic composite sandwich panels with the intersected corrugated core
CN114179451B (en) Preparation method of corrugated plate made of carbon fiber composite material
CN113681999A (en) Corrugated sandwich composite material structure based on coupling deformation failure mechanism
Qiang et al. Dynamic crushing behaviors of four kinds of auxetic structures
Boria Design Solutions to Improve CFRP Crash‐Box Impact Efficiency for Racing Applications
Gao et al. A study on fracture behavior at the composite plates of CFRP and aluminum bonded with sandwich type
CN112635964B (en) Slotted honeycomb wave-absorbing structure
CN211280928U (en) Automobile anti-collision beam and vehicle with same
CN210652996U (en) Automobile energy absorption piece, energy absorption box and automobile
Yao et al. Experimental and numerical study on the energy absorption of polyurethane foam filled metal/composite hybrid structures. Metals 2021; 11: 118
CN218625187U (en) Impact absorbing structure
CN215904614U (en) Threshold section bar and car

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210928

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211202

R150 Certificate of patent or registration of utility model

Ref document number: 6993040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150