JP2022170841A - Manufacturing method and manufacturing facility for cold-rolled steel sheet - Google Patents
Manufacturing method and manufacturing facility for cold-rolled steel sheet Download PDFInfo
- Publication number
- JP2022170841A JP2022170841A JP2021077081A JP2021077081A JP2022170841A JP 2022170841 A JP2022170841 A JP 2022170841A JP 2021077081 A JP2021077081 A JP 2021077081A JP 2021077081 A JP2021077081 A JP 2021077081A JP 2022170841 A JP2022170841 A JP 2022170841A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- temperature
- cold
- steel plate
- width
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 44
- 239000010960 cold rolled steel Substances 0.000 title claims abstract description 32
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 247
- 239000010959 steel Substances 0.000 claims abstract description 247
- 238000010438 heat treatment Methods 0.000 claims abstract description 94
- 238000005096 rolling process Methods 0.000 claims abstract description 60
- 238000005097 cold rolling Methods 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims description 18
- 229910000976 Electrical steel Inorganic materials 0.000 abstract description 30
- 230000007613 environmental effect Effects 0.000 abstract description 7
- 229910052710 silicon Inorganic materials 0.000 description 43
- 238000002474 experimental method Methods 0.000 description 17
- 238000005452 bending Methods 0.000 description 11
- 238000005336 cracking Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- 238000011144 upstream manufacturing Methods 0.000 description 8
- 238000005520 cutting process Methods 0.000 description 6
- 238000005304 joining Methods 0.000 description 6
- 239000002436 steel type Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000000137 annealing Methods 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/74—Temperature control, e.g. by cooling or heating the rolls or the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/004—Heating the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B2001/221—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by cold-rolling
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metal Rolling (AREA)
- Control Of Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
本発明は、冷延鋼板の製造方法及び製造設備に関する。 The present invention relates to a method and equipment for manufacturing cold-rolled steel sheets.
従来、冷間圧延においては、ゼンジミアミル等の単スタンドのリバースミル、又は、複数スタンドを有するタンデムミルが用いられているが、いずれにしても1パス目の圧延機入側の鋼板温度は室温である場合が多い。ところで、Si含有量の高い珪素鋼板(電磁鋼板)の冷間圧延においては、鋼板温度が低い場合、鋼板の脆性破断が生じやすくなる。このときの破断形態としては、鋼板の幅方向端部から破断する場合や幅方向中央部から破断する場合等があるが、いずれも破断対策としては、冷間圧延時の鋼板温度を高くすることが有効である。このような背景から、冷間圧延前に珪素鋼板を加熱することにより珪素鋼板の破断を抑制する方法が提案されている。例えば特許文献1には、圧延機入側で指定した目標温度になるように鋼板の幅方向端部を加熱する方法が記載されている。また、特許文献2には、鋼板の全域を均一に加熱して圧延する方法が記載されている。
Conventionally, in cold rolling, a single-stand reverse mill such as a Sendzimir mill or a tandem mill with multiple stands has been used. There are many cases. By the way, in the cold rolling of a silicon steel sheet (electromagnetic steel sheet) having a high Si content, when the steel sheet temperature is low, brittle fracture of the steel sheet tends to occur. At this time, there are cases where the steel sheet breaks at the ends in the width direction or at the center in the width direction. is valid. Against this background, a method has been proposed for suppressing breakage of the silicon steel sheet by heating the silicon steel sheet before cold rolling. For example,
上記のように、Si含有量の高い珪素鋼板を冷間圧延する際に脆性破断が発生することを抑制する技術が提案されている。しかしながら、鋼板の幅方向端部だけを加熱する技術では、幅方向中央部付近の鋼板温度が低いために幅方向中央部の脆性破断が発生する可能性がある。また、鋼板の幅方向全域に亘って均一に加熱する技術では、必要以上のエネルギーを投じて鋼板全体を加熱している可能性があり、SDGs(持続可能な開発目標)の観点から見直す余地があると考えられる。 As described above, techniques for suppressing the occurrence of brittle fracture during cold rolling of silicon steel sheets with a high Si content have been proposed. However, with the technique of heating only the widthwise end portions of the steel sheet, brittle fracture may occur at the widthwise central portion due to the low temperature of the steel sheet near the widthwise central portion. In addition, there is a possibility that the technology that heats the steel plate uniformly across the entire width of the steel plate is heating the entire steel plate with more energy than necessary, and there is room for review from the perspective of SDGs (Sustainable Development Goals). It is believed that there is.
本発明は、上記課題に鑑みてなされたものであって、その目的は、低環境負荷、且つ、安定的に珪素鋼板を圧延可能な冷延鋼板の製造方法及び製造設備を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide a cold-rolled steel sheet manufacturing method and manufacturing equipment capable of stably rolling a silicon steel sheet with low environmental load. .
本発明の発明者らは、上記目的を達成するために、鋭意研究した結果、破断抑制温度(破断の抑制効果が高い鋼板温度)が幅方向中央部と比べて幅方向端部の方が高いことを見出した。そこで、発明者らは、鋼板の幅方向全域に亘って加熱するトランスバース式全幅加熱装置の出力を適切に制御して使用することが、破断抑制及び環境面で非常に有効であると考え、以下の発明を想到するに至った。 In order to achieve the above object, the inventors of the present invention conducted extensive research and found that the fracture suppression temperature (steel plate temperature at which the fracture suppression effect is high) is higher at the widthwise ends than at the widthwise central portion. I found out. Therefore, the inventors believe that appropriately controlling the output of a transverse-type full-width heating device that heats the entire width of the steel plate and using it is very effective in preventing breakage and in terms of the environment. The following invention has been conceived.
本発明に係る冷延鋼板の製造方法は、鋼板の幅方向全域に亘って鋼板を加熱するトランスバース式全幅加熱装置と、前記トランスバース式全幅加熱装置に対して圧延方向下流側に配置された、前記鋼板を圧延する冷間圧延機と、を用いた冷延鋼板の製造方法であって、前記冷間圧延機の入側において鋼板の幅方向中央部の温度よりも幅方向端部の温度が高くなるように、前記トランスバース式全幅加熱装置を用いて鋼板を加熱するステップを含むことを特徴とする。 A method for manufacturing a cold-rolled steel sheet according to the present invention includes a transverse full-width heating device that heats the steel plate over the entire width direction of the steel sheet, and a transverse full-width heating device arranged downstream in the rolling direction with respect to the transverse full-width heating device. , a cold rolling mill for rolling the steel sheet, and a method for manufacturing a cold-rolled steel sheet, wherein the temperature at the widthwise end portion of the steel sheet is higher than the temperature at the widthwise central portion of the steel sheet at the entry side of the cold rolling mill heating the steel plate using the transverse full-width heating device so that the
本発明に係る冷延鋼板の製造方法は、上記発明において、前記冷間圧延機の入側における鋼板の幅方向中央部及び幅方向端部の温度が、鋼板のSi含有量に応じて変化することを特徴とする。 In the method for manufacturing a cold-rolled steel sheet according to the present invention, in the above-described invention, the temperatures of the widthwise central portion and the widthwise end portions of the steel sheet on the entry side of the cold rolling mill change according to the Si content of the steel sheet. It is characterized by
本発明に係る冷延鋼板の製造方法は、上記発明において、前記冷間圧延機の入側における鋼板の幅方向中央部及び幅方向端部の温度が、Si含有量αにより変化する下記数式(1),(2)により算出される温度であることを特徴とする。
本発明に係る冷延鋼板の製造設備は、鋼板の幅方向全域に亘って鋼板を加熱するトランスバース式全幅加熱装置と、前記トランスバース式全幅加熱装置に対して圧延方向下流側に配置された、前記鋼板を圧延する冷間圧延機と、を備え、前記トランスバース式全幅加熱装置は、前記冷間圧延機の入側において鋼板の幅方向中央部の温度よりも幅方向端部の温度が高くなるように、鋼板を加熱することを特徴とする。 The cold-rolled steel sheet manufacturing equipment according to the present invention includes a transverse full-width heating device that heats the steel plate over the entire width direction of the steel plate, and a transverse full-width heating device arranged downstream in the rolling direction with respect to the transverse full-width heating device. and a cold rolling mill for rolling the steel sheet, wherein the transverse full-width heating device is configured such that the temperature of the widthwise end portion of the steel sheet is higher than the temperature of the widthwise center portion of the steel sheet on the entry side of the cold rolling mill. It is characterized by heating the steel plate so that it becomes higher.
本発明に係る冷延鋼板の製造設備は、上記発明において、前記トランスバース式全幅加熱装置が、鋼板のSi含有量に応じて前記冷間圧延機の入側における鋼板の幅方向中央部及び幅方向端部の温度を変化させることを特徴とする。 In the cold-rolled steel sheet manufacturing facility according to the present invention, in the above invention, the transverse full-width heating device heats the widthwise central portion and the width of the steel sheet on the entrance side of the cold rolling mill according to the Si content of the steel sheet. It is characterized by changing the temperature of the direction end.
本発明に係る冷延鋼板の製造設備は、上記発明において、前記トランスバース式全幅加熱装置が、前記冷間圧延機の入側における鋼板の幅方向中央部及び幅方向端部の温度を、Si含有量αにより変化する下記数式(1),(2)により算出される温度に加熱することを特徴とする。
本発明に係る冷延鋼板の製造設備は、上記発明において、前記トランスバース式全幅加熱装置は、前記冷間圧延機の入側から10m以内の位置に設置されていることを特徴とする。 The cold-rolled steel sheet manufacturing facility according to the present invention is characterized in that, in the above invention, the transverse full-width heating device is installed at a position within 10 m from the entry side of the cold rolling mill.
本発明に係る冷延鋼板の製造方法及び製造設備によれば、低環境負荷、且つ、安定的に珪素鋼板を圧延することができる。 According to the cold-rolled steel sheet manufacturing method and manufacturing equipment according to the present invention, a silicon steel sheet can be stably rolled with low environmental load.
以下、図面を参照して、本発明の一実施形態である冷延鋼板の製造方法及び製造設備について説明する。なお、以下に示す実施形態における構成要素には、当業者が置換可能、且つ、容易なもの、あるいは実質的に同一のものが含まれる。 BEST MODE FOR CARRYING OUT THE INVENTION A method and equipment for manufacturing a cold-rolled steel sheet according to an embodiment of the present invention will be described below with reference to the drawings. Components in the embodiments shown below include components that can be easily replaced by those skilled in the art, or components that are substantially the same.
〔構成〕
まず、図1を参照して、本発明の一実施形態である冷延鋼板の製造設備の構成について説明する。
〔Constitution〕
First, referring to FIG. 1, the configuration of a cold-rolled steel sheet manufacturing facility according to an embodiment of the present invention will be described.
図1は、本発明の一実施形態である冷延鋼板の製造設備の構成を示す模式図である。図1に示すように、本発明の一実施形態である冷延鋼板の製造設備(以下、「製造設備」と略記)は、複数スタンドを有する連続式タンデム圧延ラインであり、ペイオフリール1、接合装置2、ルーパー3、全幅加熱装置4、温度計(板温計測装置)5、冷間タンデム圧延機6、切断機(切断装置)7、及びテンションリール8を備えている。
FIG. 1 is a schematic diagram showing the configuration of a cold-rolled steel sheet manufacturing facility according to an embodiment of the present invention. As shown in FIG. 1, a cold-rolled steel sheet manufacturing facility (hereinafter abbreviated as "manufacturing facility") according to one embodiment of the present invention is a continuous tandem rolling line having a plurality of stands. A
ペイオフリール1は、鋼板Sを払出す装置である。製造設備はペイオフリール1を複数備えていてもよい。この場合、複数のペイオフリールはそれぞれ異なる鋼板Sを払出す。
The
接合装置2は、ペイオフリール1から先に払出された鋼板(先行材)の尾端部とペイオフリール1から後に払出された鋼板(後行材)の先端部とを接合して接合鋼板を形成する装置である。接合装置2としては、レーザ溶接機が好適に使用される。
The joining
ルーパー3は、接合装置2によって鋼板同士が接合されるまでの間(接合が完了するまでの間)、冷間タンデム圧延機6による冷間圧延を継続できるように鋼板Sを貯留する装置である。
The
全幅加熱装置4は、鋼板Sの幅方向及び圧延方向(長手方向)全域に亘って鋼板Sを加熱する装置である。全幅加熱装置4は、鋼板Sの幅方向に温度勾配ができ、鋼板Sの幅方向中央部の温度よりも鋼板Sのエッジ部(幅方向端部)の温度を高くすることが可能なトランスバース式誘導加熱装置によって構成されている。なお、全幅加熱装置4は、冷間タンデム圧延機6の入側での鋼板Sの幅方向中央部及びエッジ部の温度がそれぞれ以下に示す数式(1)及び数式(2)により算出される鋼板SのSi含有量に応じた温度TC及び温度TEとなるように鋼板Sを加熱することが望ましい。これにより、鋼板Sの脆性破断及びエッジ部割れを効果的に抑制することができる。
The full-
温度計5は、鋼板Sの表面温度を計測する装置である。温度計5は、冷間タンデム圧延機6の入側直近に設置することが望ましい。但し、実際には、温度計5により測定される鋼板温度をそのまま使用するのではなく、温度計5から冷間タンデム圧延機6の入側までの間に低下する鋼板温度を補償した値を使用することで実用に供する。
The
冷間タンデム圧延機6は、全幅加熱装置4により加熱された鋼板Sの板厚を目標板厚とするために鋼板Sを冷間圧延する装置である。本実施形態では、冷間タンデム圧延機6は5台のスタンドを備えているが、スタンドの台数は特に限定されない。また、本実施形態では、冷間タンデム圧延機6は、1スタンドに4本のロールを有する4Hiと呼ばれる形式をとっているが、これに限るものではなく、例えば6Hi等の他の形式も適用することができる。
The cold
切断機7は、冷間圧延後の鋼板Sを切断する装置である。 The cutting machine 7 is a device for cutting the steel plate S after cold rolling.
テンションリール8は、切断機7によって切断された鋼板Sを巻き取る装置である。テンションリール8の形式は限定されることはなく、例えばカローゼルテンションリールでもよい。また、製造設備はテンションリール8を複数備えてもよい。この場合、複数のテンションリール8は複数の鋼板Sを連続的に巻取る。
The
製造設備が備える装置は、上述した装置に限定されない。製造設備は、全幅加熱装置4と冷間タンデム圧延機6の入側とが10m以内にこの順に配置(より好ましくは隣接配置)されていればよい。そのため、圧延機は、タンデム式圧延機ではなく、リバース式圧延機でもよい。この場合、1パス目に全幅加熱装置4と圧延機とがこの順に配置されるようにする。また、冷間圧延工程とその前工程である酸洗工程とを連続化させることも可能であり、ルーパー3と冷間タンデム圧延機6との間に鋼板Sを酸洗する酸洗装置を配置してもよい。
Devices included in the manufacturing facility are not limited to the devices described above. The manufacturing equipment may be such that the full
〔加熱工程〕
次に、本発明の一実施形態である冷延鋼板の製造方法の特徴である、全幅加熱装置4による鋼板Sの加熱工程について説明する。なお、全幅加熱装置4は鋼板Sの上面及び下面の少なくとも一方を加熱するが、上面及び下面の両方を加熱することがより好ましい。
[Heating process]
Next, a heating process of the steel sheet S by the full-
本実施形態の鋼板Sの加熱工程では、全幅加熱装置4が、温度計5によって測定された鋼板Sの温度、全幅加熱装置4の出側における鋼板Sの目標温度、鋼板Sが全幅加熱装置4を通過する時間(すなわち加熱時間)、及び鋼板Sの板厚に基づいて、全幅加熱装置4の目標温度を決定する。なお、全幅加熱装置4によって加熱される鋼板Sの目標温度は、温度計5と全幅加熱装置4との間の距離、及び温度計5と冷間タンデム圧延機6との間の距離を考慮した温度に設定する必要がある。例えば全幅加熱装置4から冷間タンデム圧延機6までの距離が非常に短い場合、全幅加熱装置4の出側における鋼板Sの目標温度を全幅加熱装置4によって加熱される鋼板Sの目標温度としてもさほど問題はない。一方、全幅加熱装置4、温度計5、及び冷間タンデム圧延機6のうちのいずれか一つでも距離が離れている場合には、冷間タンデム圧延機6の入側に鋼板Sが到達するまでの温度降下を考慮して全幅加熱装置4によって加熱される鋼板Sの目標温度を設定する必要がある。但し、環境負荷の観点からは、鋼板加熱に用いるエネルギー量は小さいことが望ましく、全幅加熱装置4及び温度計5は冷間タンデム圧延機6に可能な限り近接させることが望ましい。
In the heating process of the steel plate S of the present embodiment, the temperature of the steel plate S measured by the
ここで、本発明の発明者らは、5台のスタンドを有するタンデム圧延機によって珪素鋼板を冷間圧延した際の破断率を調査した。その結果、Si含有量の高い珪素鋼板では、Si含有量の低い珪素鋼板と比較して破断率が高いことがわかった。また、破断原因を調査した結果、#1std(以下、鋼板の搬送方向の上流側からN台目のスタンドを「#Nstd」と表記する)や#2std等の上流側での破断と#4stdや#5std等の下流側での破断とではその原因が異なることがわかった。すなわち、上流側での破断、特に#1stdの直下や出側における破断に関しては、腹伸びや耳伸び等の鋼板形状の局所的な絞りや、通板ロールや形状検出器での曲げ変形が原因となっていると推定された。#1stdの圧下率は、全スタンドの中で最も高いことが一般的であり、急激な鋼板の形状変化によって破断原因を生み出しやすいと考えられる。また、上流側での破断についてさらに調査を行った結果、季節によって破断率(破断発生率)が異なり、例えば冬季は夏季に比べて破断率が高く、外気温(圧延工場内の温度)が破断率に影響を与えていることが推定された。一方、下流側での破断については、上流側のスタンドで作られたエッジ部割れが進行して破断につながるというケースが確認できた。このため、破断が発生する場所と原因は異なるが、いずれの破断も#1std入側における鋼板温度を高くすることで抑制できると考えた。 Here, the inventors of the present invention investigated the fracture rate when a silicon steel sheet was cold-rolled by a tandem rolling mill having five stands. As a result, it was found that silicon steel sheets with a high Si content had a higher fracture rate than silicon steel sheets with a low Si content. In addition, as a result of investigating the cause of breakage, breakage on the upstream side such as #1std (hereinafter, the Nth stand from the upstream side in the conveying direction of the steel plate is denoted as "#Nstd"), #2std, etc., and #4std, etc. It was found that the cause was different from the breakage on the downstream side of #5std. In other words, fractures on the upstream side, especially those directly below #1 std and on the delivery side, are caused by local contraction of the steel plate shape such as belly stretch and edge stretch, and bending deformation by the threading roll and shape detector. It was estimated that The rolling reduction of #1 std is generally the highest among all the stands, and it is considered that a sudden change in the shape of the steel sheet is likely to cause breakage. In addition, as a result of further investigation on the rupture on the upstream side, the rupture rate (fracture occurrence rate) differs depending on the season. presumed to affect the rate. On the other hand, regarding the fracture on the downstream side, it was confirmed that edge cracks created in the stand on the upstream side progressed and led to fracture. For this reason, although the locations and causes of fractures are different, it was thought that all fractures could be suppressed by increasing the temperature of the steel sheet on the entry side of #1 std.
上記の推察を検証すべく、まず、実験室規模で鋼板に曲げ歪を付与した場合の耐曲げ割れ性を評価した。本実験の耐曲げ割れ性は、上述した上流側のスタンドでの通板ロールや形状検出器での曲げ変形による脆性破断と相関があると考えられるためである。供試材として、板厚がそれぞれ2mmであり、Si含有量が1.8mass%、2.8mass%、3.3mass%、3.7mass%(以下、Si含有量がMmass%の珪素鋼板のことを「M%Si鋼」と表記する)である4種類の珪素鋼板を800℃で焼鈍した(熱延板焼鈍に相当)。そして、焼鈍後の珪素鋼板を酸洗し、せん断機を用いて24mm幅及び250mm長さの供試材を切り出した。その後、両端面を各2mm研削することによりせん断した際に生じた加工歪を除去した。これにより、エッジ部破断の発生を抑制した。なお、実際の連続冷間圧延ラインでは、1.8%Si鋼及び2.8%Si鋼は、脆性破断が発生しにくい鋼種である。一方、3.3%Si鋼及び3.7%Si鋼は、特に上流側のスタンドにおいて数%程度の頻度で脆性破断が発生する鋼種である。通常、冷間圧延においては、圧延機入側の鋼板温度は工場内温度と同程度になり、冬季は15℃前後になる。 In order to verify the above conjecture, first, bending crack resistance was evaluated when bending strain was applied to a steel plate on a laboratory scale. This is because the resistance to bending cracking in this experiment is thought to be correlated with brittle fracture due to bending deformation at the sheet threading roll and the shape detector at the upstream stand described above. As test materials, the plate thickness is 2 mm, and the Si content is 1.8 mass%, 2.8 mass%, 3.3 mass%, and 3.7 mass% (hereinafter referred to as a silicon steel sheet with a Si content of Mmass% is referred to as “M% Si steel”) were annealed at 800° C. (corresponding to hot-rolled sheet annealing). Then, the silicon steel sheet after annealing was pickled, and a test material having a width of 24 mm and a length of 250 mm was cut out using a shearing machine. After that, both end faces were ground by 2 mm each to remove processing strain caused by shearing. This suppressed the occurrence of edge breakage. In an actual continuous cold rolling line, the 1.8% Si steel and the 2.8% Si steel are steel types in which brittle fracture is unlikely to occur. On the other hand, 3.3% Si steel and 3.7% Si steel are steel types in which brittle fracture occurs at a frequency of about several percent, especially in the upstream stand. Normally, in cold rolling, the steel sheet temperature at the entry side of the rolling mill is about the same as the temperature in the factory, and is around 15°C in winter.
そこで、珪素鋼板の耐曲げ割れ性について、鋼板温度が15℃~45℃の範囲であるときの温度依存性を調査した。本実験では、まず、2mm厚の鋼板を圧下率50%で圧延して1mm厚の鋼板を製作した。これは#1stdを模擬している。次に、通板ロールや形状検出器での鋼板の曲げ変形を模擬してローラレベラに通板した。そして、鋼板に曲げ変形を付与して耐曲げ割れ性を評価した。ローラレベラは直径50mmのワークロールを上下で11本有し、ロール間隔は60mmである。鋼板表面への曲げ応力は、上ワークロールの締込み量を変化させることにより任意の値を付与できる。本実験では、鋼板温度を10℃刻み、ロール締込み量を0.5mm刻みで種々変化させ、鋼板の破断限界を整理した。破断した際の締込み量が大きいほど、冷間圧延ラインでも破断し難くなると考える。図2は、本実験で得られた結果を示す。なお、実際の連続圧延機での破断性を鑑みて、本実験条件においては締込み量4.0mmまで破断することなく通板することができれば、実際の連続圧延機でも破断しないと考え、締込み量4.0mmでの破断未発生を本実験の目標値とした。 Therefore, the temperature dependence of the bending crack resistance of silicon steel sheets was investigated when the steel sheet temperature was in the range of 15°C to 45°C. In this experiment, first, a steel plate with a thickness of 2 mm was rolled at a rolling reduction of 50% to produce a steel plate with a thickness of 1 mm. This simulates #1std. Next, the steel plate was passed through a roller leveler by simulating the bending deformation of the steel plate by a threading roll and a shape detector. Then, bending deformation was applied to the steel plate to evaluate bending crack resistance. The roller leveler has 11 upper and lower work rolls with a diameter of 50 mm, and the roll interval is 60 mm. An arbitrary value can be given to the bending stress on the surface of the steel sheet by changing the tightening amount of the upper work roll. In this experiment, the steel sheet temperature was changed in increments of 10° C. and the roll clamping amount was varied in increments of 0.5 mm, and the rupture limit of the steel sheet was arranged. It is considered that the larger the tightening amount at the time of breakage, the more difficult it is to break even in a cold rolling line. FIG. 2 shows the results obtained in this experiment. Considering the breakability in an actual continuous rolling mill, if the strip can be threaded without breaking up to a tightening amount of 4.0 mm under the conditions of this experiment, it is considered that the actual continuous rolling mill will not break. The target value for this experiment was that no breakage occurred at a loading depth of 4.0 mm.
図2に示すように、Si含有量毎に比較すると、1.8%Si鋼では、鋼板の温度(15~45℃)によらず、締込み量4.0mmまで破断は生じなかった。また、2.8%Si鋼では、鋼板温度が15℃であるときに、締込み量3.5mmで破断が生じたが、25℃以上では締込み量4.0mmまで破断が生じなかった。また、3.3%Si鋼では、鋼板温度が15℃であるときに締込み量1.5mm、25℃であるときには締込み量3.0mmで破断が生じた。しかしながら、鋼板温度が35℃以上であるときは締込み量4.0mmまで破断が生じなかった。また、3.7%Si鋼では、鋼板温度が15℃であるときは締込み量1.0mm、25℃であるときには1.5mm、35℃であるときには2.5mmで破断が生じた。鋼板温度を45℃にすると締込み量4.0mmまで破断が生じなかった。上記の実験の結果、Si含有量は、鋼板の耐破断性への影響が大きく、Si含有量が高いほど、鋼板が破断しやすいことが確認できた。これは、実際の連続冷間圧延機での破断の実態とも合致する。特に3.3%Si鋼、3.7%Si鋼では、鋼板の温度を変更しながら実験を行った結果、温度が高いほど脆性破断を抑制することができた。 As shown in FIG. 2, when compared with each Si content, the 1.8% Si steel did not break up to a tightening amount of 4.0 mm regardless of the temperature of the steel plate (15 to 45° C.). In the 2.8% Si steel, when the steel plate temperature was 15°C, breakage occurred at a tightening amount of 3.5 mm, but at 25°C or higher, breakage did not occur up to a tightening amount of 4.0 mm. In the 3.3% Si steel, fracture occurred at a tightening amount of 1.5 mm when the steel plate temperature was 15°C and at a tightening amount of 3.0 mm at 25°C. However, when the steel plate temperature was 35° C. or higher, no breakage occurred up to a tightening amount of 4.0 mm. In the 3.7% Si steel, fracture occurred at a tightening amount of 1.0 mm when the steel plate temperature was 15°C, 1.5 mm at 25°C, and 2.5 mm at 35°C. When the steel plate temperature was 45° C., no breakage occurred up to a tightening amount of 4.0 mm. As a result of the above experiment, it was confirmed that the Si content has a large effect on the fracture resistance of the steel sheet, and that the higher the Si content, the easier the steel sheet fractures. This agrees with the actual state of breakage in an actual continuous cold rolling mill. In particular, in the case of 3.3% Si steel and 3.7% Si steel, as a result of conducting experiments while changing the temperature of the steel plate, brittle fracture could be suppressed as the temperature increased.
図3は、本実験結果を基に鋼板のSi含有量に応じた脆性破断抑制に必要な鋼板温度を推定した結果を示す。図中の近似曲線は以下に示す数式(3)で表せられる。本実験では、1.8%Si鋼については、鋼板温度が15℃でも締込み量4.0mmまで脆性破断が生じなかったので、全幅加熱装置4による鋼板加熱は不要と考える。しかしながら、2.8%Si鋼については、鋼板温度が15℃であるときは締込み量3.5mmで破断が生じたので、鋼板温度が低くなる時期には全幅加熱装置4による鋼板加熱が必要だと考える。ゆえに、数式(3)中のSi含有量α[%]の値は実用的にはα>2程度と考えるとよい。また、数式(3)より算出される鋼板温度TCminは必要最低温度であり、破断抑制の観点からはこの温度以上となればよい。但し、鋼板温度が高くなりすぎると、鋼板形状や潤滑性に影響を及ぼすようになるので、鋼板温度は200℃以下とする。また、Si含有量αの上限値4.5%は、後述する鋼板エッジ部の温度が200℃以下となる範囲より設定した。 FIG. 3 shows the result of estimating the steel plate temperature necessary for suppressing brittle fracture according to the Si content of the steel plate based on the results of this experiment. The approximation curve in the drawing is represented by the following formula (3). In this experiment, brittle fracture did not occur in the 1.8% Si steel even at a steel plate temperature of 15° C. up to a tightening amount of 4.0 mm. However, with the 2.8% Si steel, when the steel plate temperature was 15°C, the fracture occurred at a tightening amount of 3.5 mm. I think so. Therefore, the value of the Si content α [%] in the formula (3) is practically considered to be about α>2. Further, the steel plate temperature T Cmin calculated from the formula (3) is the minimum required temperature, and from the viewpoint of suppression of breakage, this temperature or higher is sufficient. However, if the steel sheet temperature becomes too high, the steel sheet shape and lubricity are affected, so the steel sheet temperature is set to 200° C. or less. Moreover, the upper limit of 4.5% of the Si content α was set from a range in which the temperature of the steel plate edge portion, which will be described later, is 200° C. or less.
次に、鋼板エッジ部割れが原因の破断を抑制するために、実験室規模で鋼板を圧延してエッジ部割れの発生有無を評価した。本実験は、圧延方向上流側で生じたエッジ部割れが、圧延方向下流側のスタンドに進んでいくにつれて拡大していき破断するという破断形態に関して取り組むものであり、上流側スタンドでのエッジ部割れを完全に抑制することができれば、鋼板エッジ部割れによる破断を抑制できると考えた。供試材として、板厚がそれぞれ2mmであり、1.8%Si鋼、2.8%Si鋼、3.3%Si鋼、3.7%Si鋼である4種類の珪素鋼板を20mm幅及び250mm長さに切り出し、800℃で焼鈍した(熱延板焼鈍に相当)。そして、焼鈍後の珪素鋼板を酸洗した。この時の鋼板エッジ部の状態は、実際の連続冷間圧延機入側での状態に近いと考えることができる。 Next, in order to suppress fractures caused by steel plate edge cracks, steel plates were rolled on a laboratory scale to evaluate the presence or absence of edge cracks. In this experiment, the edge crack that occurred on the upstream side in the rolling direction expanded and fractured as it progressed to the stand on the downstream side in the rolling direction. If it is possible to completely suppress the cracking of the edge of the steel sheet, it is possible to suppress the breakage due to the edge cracking. As test materials, four types of silicon steel plates, 1.8% Si steel, 2.8% Si steel, 3.3% Si steel, and 3.7% Si steel, each having a thickness of 2 mm, were cut to a width of 20 mm. and 250 mm long and annealed at 800° C. (equivalent to hot-rolled sheet annealing). Then, the silicon steel sheet after annealing was pickled. It can be considered that the state of the steel plate edge portion at this time is close to the actual state at the entry side of the continuous cold rolling mill.
なお、実際の連続冷間圧延ラインでは、1.8%Si鋼は、鋼板エッジ部割れが発生しにくい鋼種である。一方、3.3%Si鋼、3.7%Si鋼は、数%程度の頻度で鋼板エッジ部割れが発生する鋼種である。通常、冷間圧延においては、圧延機入側の鋼板温度は工場内温度と同程度になり、冬季は15℃前後になる。そこで、珪素鋼板の耐エッジ部割れ性について、鋼板温度が15℃~65℃の範囲であるときの温度依存性を調査した。本実験では、#1stdを模擬して、w20×L250mmの供試材を圧下率50%で圧延した際の鋼板両端面(長手方向)に発生する割れ(1mm以上のクラック)の個数で耐エッジ部割れ性を評価した。なお、各Si量及び各温度での圧延回数は5回ずつであり、エッジ割れの個数は5回の平均値である。また、鋼板温度は10℃間隔とした。図4は、本実験で得られた結果を示す。 In an actual continuous cold rolling line, the 1.8% Si steel is a steel type in which cracks at the steel plate edges are less likely to occur. On the other hand, 3.3% Si steel and 3.7% Si steel are steel types in which steel plate edge cracks occur at a frequency of about several percent. Normally, in cold rolling, the steel sheet temperature at the entry side of the rolling mill is about the same as the temperature in the factory, and is around 15°C in winter. Therefore, the temperature dependence of the edge crack resistance of silicon steel sheets was investigated when the steel sheet temperature was in the range of 15°C to 65°C. In this experiment, simulating #1 std, the number of cracks (cracks of 1 mm or more) generated on both end surfaces (longitudinal direction) of the steel plate when a test material of w20 × L250 mm was rolled at a rolling reduction of 50%. Part crackability was evaluated. The number of times of rolling at each Si amount and each temperature was 5 times, and the number of edge cracks was the average value of 5 times. Moreover, the steel plate temperature was made into the interval of 10 degreeC. FIG. 4 shows the results obtained in this experiment.
図4に示すように、鋼板温度15℃の場合、Si含有量毎に比較すると、1.8%Si鋼では、両端面共にエッジ部割れは一つも生じなかった。2.8%Si鋼では、両端面合計で7個のエッジ部割れが発生した。3.3%Si鋼では、両端面合計で15個、3.7%Si鋼では、30個のエッジ部割れが発生した。鋼板温度が25℃の場合は、1.8%Si鋼に加えて2.8%Si鋼でも、両端面合計のエッジ部割れ個数は0個となった。一方で、3.3%Si鋼では11個、3.7%Si鋼では27個となった。鋼板温度が35℃の場合には、1.8%Si鋼及び2.8%Si鋼において、両端面合計のエッジ部割れ個数は0個となった。一方で、3.3%Si鋼では、両端面合計で5個、3.7%Si鋼では、20個のエッジ部割れが生じた。鋼板温度が45℃の場合には、1.8%Si鋼及び2.8%Si鋼に加えて3.3%Si鋼でも、両端面合計のエッジ部割れ個数は0個となった。一方で、3.7%Si鋼では10個のエッジ部割れが生じた。鋼板温度が55℃の場合は、1.8%Si鋼及び2.8%Si鋼に加えて3.3%Si鋼でも、両端面合計のエッジ部割れ個数は0個となった。一方で、3.7%Si鋼では3個のエッジ部割れが生じた。鋼板温度が65℃の場合には、1.8%Si鋼、2.8%Si鋼、及び3.3%Si鋼に加えて3.7%Si鋼でも、両端面合計のエッジ部割れ個数は0個となった。上記の実験の結果から、Si含有量は、耐エッジ部割れ性への影響が大きく、Si含有量が高いほど、鋼板エッジ部割れが生じやすいいことが確認できた。これは、実際の連続冷間圧延機での鋼板エッジ部割れの実態とも一致する。 As shown in FIG. 4, when the steel sheet temperature was 15° C., no edge cracks occurred on both end surfaces of the 1.8% Si steel when compared with each Si content. In the 2.8% Si steel, seven edge cracks occurred in total on both end faces. In the 3.3% Si steel, 15 edge cracks occurred in total on both end faces, and in the 3.7% Si steel, 30 edge cracks occurred. When the steel plate temperature was 25° C., the total number of edge cracks on both end surfaces was 0 for both the 1.8% Si steel and the 2.8% Si steel. On the other hand, the 3.3% Si steel had 11 and the 3.7% Si steel had 27. When the steel plate temperature was 35° C., the total number of edge cracks on both end surfaces was 0 for the 1.8% Si steel and the 2.8% Si steel. On the other hand, in the 3.3% Si steel, a total of 5 edge cracks occurred in both end faces, and in the 3.7% Si steel, 20 edge cracks occurred. When the steel plate temperature was 45° C., the total number of edge cracks on both end surfaces was 0 for the 1.8% Si steel, the 2.8% Si steel, and the 3.3% Si steel. On the other hand, 10 edge cracks occurred in the 3.7% Si steel. When the steel plate temperature was 55° C., the total number of edge cracks on both end surfaces was 0 for the 1.8% Si steel, the 2.8% Si steel, and the 3.3% Si steel. On the other hand, 3 edge cracks occurred in the 3.7% Si steel. When the steel plate temperature is 65 ° C., the number of edge cracks on the total of both end faces is became 0. From the results of the above experiments, it was confirmed that the Si content has a large effect on the edge crack resistance, and that the higher the Si content, the more easily the steel plate edge cracks occur. This agrees with the reality of steel plate edge cracks in an actual continuous cold rolling mill.
図5は、本実験結果を基に鋼板のSi含有量に応じた鋼板エッジ部割れ抑制に必要な温度を推定した結果を示す。図中の近似曲線は以下に示す数式(4)で表せられる。本実験では、1.8%Si鋼については、鋼板温度が15℃でも鋼板エッジ部割れが生じなかったので、全幅加熱装置4による鋼板加熱は不要と考える。しかしながら、2.8%Si鋼については、鋼板温度が15℃であるときは鋼板エッジ部割れが生じたので、鋼板温度が低くなる時期には全幅加熱装置4による鋼板加熱が必要だと考える。ゆえに、数式(4)中のSi含有量α[%]は実用的にはα>2程度と考えると良い。また、数式(4)より算出される鋼板温度TEminは必要最低温度であり、破断抑制の観点からはこの温度以上となればよい。但し、鋼板温度が高くなりすぎると、鋼板形状や潤滑性に影響を及ぼすようになるので、鋼板温度は200℃以下とする。また、Si含有量αの上限値4.5%は、数式(4)より算出される鋼板エッジ部の温度が200℃以下となる範囲より設定した。なお、鋼板の加熱範囲は鋼板のエッジ部より30mm以上の範囲とする。これは、鋼板エッジ部割れに影響を及ぼすのは、冷間圧延における幅広がりの影響範囲であり、その範囲はおおよそ鋼板のエッジ部より30mm程度と言われているためである。
FIG. 5 shows the result of estimating the temperature necessary for suppressing edge cracking of the steel sheet according to the Si content of the steel sheet based on the results of this experiment. The approximation curve in the drawing is represented by the following formula (4). In this experiment, the 1.8% Si steel did not suffer edge cracks even at a steel plate temperature of 15° C., so it is considered unnecessary to heat the steel plate by the full-
上述した2つの実験より、鋼板の幅方向中央部からの破断とエッジ部からの破断の抑制に必要な鋼板の加熱温度は異なることがわかる。例えば、3.7%Si鋼の場合、幅方向中央部からの破断抑制に必要な温度は45℃以上であり、エッジ部割れ抑制に必要な温度は65℃以上である。以上のように、珪素鋼板の破断を抑制するためには、Si含有量に応じた加熱量にすることに加え、同一鋼種においても幅方向中央部に比べてエッジ部の温度を高くするという鋼板の幅方向に温度勾配をつける必要があることが判明し、本発明を想到するに至った。なお、同一の設備でSi含有量の異なる複数の鋼板が搬送される場合、加熱装置6は、先行材及び後行材のSi含有量を示す情報を取得し、その情報に基づいて目標温度を変更、決定すればよい。また、本実施形態では、圧延対象材を珪素鋼板として説明したが、鋼板の種類は限定されない。珪素鋼板以外に本発明の技術が好適に適用できる鋼板としては、例えば高強度鋼板や高合金鋼板が挙げられる。
From the two experiments described above, it can be seen that the steel plate heating temperature required to suppress breakage from the center in the width direction of the steel plate and the breakage from the edge portion are different. For example, in the case of 3.7% Si steel, the temperature required to suppress breakage from the center in the width direction is 45°C or higher, and the temperature required to suppress edge cracking is 65°C or higher. As described above, in order to suppress the breakage of the silicon steel sheet, in addition to setting the amount of heating according to the Si content, the temperature of the edge portion is higher than that of the center portion in the width direction even for the same steel type. It was found that it was necessary to provide a temperature gradient in the width direction of the film, and the present invention was conceived. When a plurality of steel plates with different Si contents are conveyed by the same equipment, the
以上説明したように、本発明の一実施形態である冷延鋼帯の製造設備及び製造方法によれば、鋼板Sの幅方向に温度勾配をつけることができる全幅加熱装置4を用いて幅方向中央部からの破断とエッジ部割れの抑制に必要な温度を適切にコントロールし、鋼板の破断を抑制する。従って、本発明の一実施形態である冷延鋼帯の製造設備及び冷延鋼帯の製造方法によれば、珪素鋼板を冷間圧延する際に、必要最小限のエネルギーで鋼板の破断を抑制することができるので、環境負荷は最小限で珪素鋼板を安定的に冷間圧延することができる。 As described above, according to the cold-rolled steel strip manufacturing facility and manufacturing method according to one embodiment of the present invention, the width direction is The temperature required to suppress fracture from the center and edge cracks is controlled appropriately to suppress fracture of the steel plate. Therefore, according to the cold-rolled steel strip manufacturing facility and the cold-rolled steel strip manufacturing method according to one embodiment of the present invention, when the silicon steel sheet is cold-rolled, breakage of the steel sheet is suppressed with the minimum necessary energy. Therefore, the silicon steel sheet can be stably cold rolled with minimum environmental load.
本発明の効果を示す実施例について説明する。本実施例では、冷間圧延機の入側に全幅加熱装置4が設置されており、圧延機入側の鋼板温度を任意の温度に設定できるようになっている。そして、5スタンドの冷間タンデム圧延機によって、所定の板厚に仕上げた。本実施例で使用した鋼種は全て珪素鋼板で、Si含有量により3グループに分けた。具体的には、Si含有量が1.0mass%から2.0mass%のグループ、2.0mass%から3.0mass%のグループ、3.0mass%から3.5mass%のグループの3グループである。いずれのグループも圧延前板厚は1.8mmから2.4mm、圧延後板厚は0.3mmから0.5mmである。Si含有量の違いによる破断率を調査するために、グループにより板厚に偏りが出ないように注意した。各グループで200コイルの破断率を調査した。なお、外気温(工場内の温度)は15℃程度であった。調査したコイルと条件を表1に示す。鋼板温度は、圧延機入側に設置されている温度計を用いて測定した。
An example showing the effects of the present invention will be described. In this embodiment, a full-
〔参考例〕
全幅加熱装置によって鋼板を加熱しない場合、つまり、圧延機入側の鋼板温度が15℃程度になる場合の例を示している。Si含有量が1.0mass%から2.0mass%の200コイルの破断率は0%であった。一方で、Si含有量が2.0mass%から3.0mass%の200コイルの破断率は1%、3.0mass%から3.5mass%の200コイルの破断率は3%であった。
[Reference example]
An example is shown in which the steel plate is not heated by the full-width heating device, that is, the steel plate temperature at the entry side of the rolling mill is about 15°C. The rupture rate of 200 coils with a Si content of 1.0 mass% to 2.0 mass% was 0%. On the other hand, the rupture rate of 200 coils with an Si content of 2.0 mass% to 3.0 mass% was 1%, and the rupture rate of 200 coils with an Si content of 3.0 mass% to 3.5 mass% was 3%.
〔発明例1〕
上記数式(1),(2)より珪素鋼板のSi含有量に応じた冷間タンデム圧延機入側の鋼板温度を算出し、これに基づいて全幅加熱装置により鋼板を加熱した場合の例を示している。冷間タンデム圧延機と全幅加熱装置との間の距離は10mである。本発明例では、幅方向中央部の温度よりエッジ部の温度の方が高い。Si含有量が1.0mass%から2.0mass%の200コイル(幅中央17℃、エッジ部18℃)の破断率は0%であった。また、Si含有量が2.0mass%から3.0mass%の200コイル(幅中央30℃、エッジ部35℃)の破断率も0%、3.0mass%から3.5mass%の200コイル(幅中央45℃、エッジ部60℃)の破断率も0%であった。本発明に基づき珪素鋼板を加熱することで鋼板の破断を大幅に低減できることが確認された。
[Invention Example 1]
An example in which the steel plate temperature at the entry side of the cold tandem rolling mill is calculated according to the Si content of the silicon steel plate from the above formulas (1) and (2) and the steel plate is heated by the full-width heating device based on this is shown. ing. The distance between the cold tandem mill and the full width heating device is 10m. In the example of the present invention, the temperature of the edge portion is higher than the temperature of the central portion in the width direction. The rupture rate of 200 coils (width center 17° C., edge portion 18° C.) having an Si content of 1.0 mass % to 2.0 mass % was 0%. In addition, the fracture rate of 200 coils with Si content of 2.0 mass% to 3.0 mass% (
〔発明例2〕
上記数式(1),(2)より珪素鋼板のSi含有量に応じた冷間タンデム圧延機入側の鋼板温度を算出し、これに基づいて全幅加熱装置により鋼板を加熱した場合の例を示している。冷間タンデム圧延機と全幅加熱装置との間の距離は1mである。つまり、発明例1と比較して、冷間タンデム圧延機と全幅加熱装置との間の距離が短くなっている。その他の条件は発明例1と同じである。本発明例では、Si含有量が1.0mass%から2.0mass%の200コイル(幅中央17℃、エッジ部18℃)の破断率は0%であった。また、Si含有量が2.0mass%から3.0mass%の200コイル(幅中央30℃、エッジ部35℃)の破断率も0%、3.0mass%から3.5mass%の200コイル(幅中央45℃、エッジ部60℃)の破断率も0%であった。破断率だけに着目すると、Si含有量が3.5mass%になるまで破断を抑制できており、発明例1と同じであるが、エネルギー使用量は発明例1と比較して大幅に低減できており、発明例2の優位性が確認できた。ゆえに、エネルギー使用量低減(耐環境性)の観点からは、冷間タンデム圧延機と全幅加熱装置との間の距離は近いほど望ましいということが確認できた。
[Invention Example 2]
An example in which the steel plate temperature at the entry side of the cold tandem rolling mill is calculated according to the Si content of the silicon steel plate from the above formulas (1) and (2) and the steel plate is heated by the full-width heating device based on this is shown. ing. The distance between the cold tandem mill and the full width heating device is 1 m. In other words, compared to Invention Example 1, the distance between the cold tandem rolling mill and the full width heating device is shorter. Other conditions are the same as in Invention Example 1. In the present invention example, the fracture rate of 200 coils (width center 17° C., edge portion 18° C.) having an Si content of 1.0 mass % to 2.0 mass % was 0%. In addition, the fracture rate of 200 coils with Si content of 2.0 mass% to 3.0 mass% (
〔比較例1〕
上記数式(1),(2)より珪素鋼板のSi含有量に応じた圧延機入側の鋼板温度を算出し、これに基づいて全幅加熱装置により鋼板を加熱した場合の例を示している。冷間タンデム圧延機と全幅加熱装置との間の距離は20mである。つまり、発明例1の条件のうち、冷間タンデム圧延機と全幅加熱装置との間の距離を長くした例である。冷間タンデム圧延機と全幅加熱装置との間の距離が長いため、全幅加熱装置の能力の上限値まで使用しても数式(1),(2)より算出した圧延機入側の鋼板温度にすることができなかった。Si含有量が1.0mass%から2.0mass%の200コイル(幅中央15℃、エッジ部15℃)の破断率は0%、Si含有量が2.0mass%から3.0mass%の200コイル(幅中央25℃、エッジ部30℃)の破断率も0%であった。一方、Si含有量が3.0mass%から3.5mass%の200コイル(幅中央40℃、エッジ部50℃)の破断率は1%であった。冷間タンデム圧延機と全幅加熱装置との間の距離は短い方が望ましく、全幅加熱装置の能力の上限まで使用しても上記数式(1),(2)より算出される鋼板温度を確保できない距離に設置した場合、高Si鋼ほど破断が発生しやすくなることを確認できた。
[Comparative Example 1]
An example is shown in which the steel plate temperature at the entry side of the rolling mill is calculated according to the Si content of the silicon steel plate from the above equations (1) and (2), and the steel plate is heated by the full-width heating device based on this. The distance between the cold tandem mill and the full width heating device is 20 m. That is, this is an example in which the distance between the cold tandem rolling mill and the full-width heating device was increased among the conditions of Invention Example 1. Since the distance between the cold tandem rolling mill and the full-width heating device is long, even if the upper limit of the full-width heating device is used, the steel plate temperature at the entrance side of the rolling mill calculated from formulas (1) and (2) couldn't. The rupture rate of 200 coils with a Si content of 1.0 mass% to 2.0 mass% (
〔比較例2〕
上記数式(1),(2)より算出した珪素鋼板のSi含有量に応じた圧延機入側の鋼板温度よりも各々30%程度低温になるように全幅加熱装置により鋼板を加熱した場合の例を示している。その他の条件は発明例1と同じである。Si含有量が1.0mass%から2.0mass%の200コイル(幅中央15℃、エッジ部15℃)の破断率は0%、Si含有量が2.0mass%から3.0mass%の200コイル(幅中央20℃、エッジ部25℃)の破断率も0%であった。一方、Si含有量が3.0mass%から3.5mass%の200コイル(幅中央30℃、エッジ部40℃)の破断率は1.5%であった。上記数式(1),(2)より算出される鋼板温度より低温の場合、高Si鋼ほど破断が発生しやすくなることを確認できた。
[Comparative Example 2]
Example of the case where the steel plate is heated by the full-width heating device so that the steel plate temperature at the entry side of the rolling mill is about 30% lower than the steel plate temperature at the entry side of the rolling mill according to the Si content of the silicon steel plate calculated from the above formulas (1) and (2). is shown. Other conditions are the same as in Invention Example 1. The rupture rate of 200 coils with a Si content of 1.0 mass% to 2.0 mass% (
〔比較例3〕
ソレノイド式全幅加熱装置を用いた場合の例を示している。ソレノイド式全幅加熱装置では、鋼板の幅方向に温度勾配をつけることはできない。ソレノイド式全幅加熱装置により加熱する鋼板の温度は数式(1)より算出した。つまり、エッジ部割れの抑制に必要と考える温度は確保できず、さらに、エッジ部は幅方向中央部と比較して鋼板温度が低下しやすいため、エッジ部の温度は幅方向中央部の温度と比べて低温となっている。Si含有量が1.0mass%から2.0mass%の200コイル(幅中央17℃、エッジ部16℃)の破断率は0%であった。一方で、Si含有量が2.0mass%から3.0mass%の200コイル(幅中央30℃、エッジ部25℃)の破断率は0.5%、3.0mass%から3.5mass%の200コイル(幅中央45℃、エッジ部35℃)の破断率は2%であった。破断したコイルの破断形態を調査したところ、幅方向中央部からの破断は抑制できていたが、エッジ部割れによる破断を抑制できていなかった。
[Comparative Example 3]
An example of using a solenoid type full-width heating device is shown. A solenoid type full-width heating device cannot create a temperature gradient in the width direction of the steel plate. The temperature of the steel sheet heated by the solenoid type full-width heating device was calculated from the formula (1). In other words, the temperature required to suppress edge cracking cannot be ensured, and the steel sheet temperature at the edge tends to be lower than at the center in the width direction. It is relatively low temperature. The rupture rate of 200 coils (width center 17° C., edge portion 16° C.) having an Si content of 1.0 mass % to 2.0 mass % was 0%. On the other hand, the rupture rate of 200 coils (
〔比較例4〕
ソレノイド式全幅加熱装置を用いた場合の例を示している。ソレノイド式全幅加熱装置により加熱する鋼板の温度は数式(2)より算出した。つまり、エッジ部割れの抑制に必要だと考える温度にエッジ部の温度がなるように幅方向全域に亘って鋼板を加熱した。Si含有量が1.0mass%から2.0mass%の200コイル(幅中央20℃、エッジ部18℃)の破断率は0%、Si含有量が2.0mass%から3.0mass%の200コイル(幅中央40℃、エッジ部35℃)の破断率も0%、Si含有量が3.0mass%から3.5mass%の200コイル(幅中央70℃、エッジ部60℃)の破断率も0%であった。しかしながら、鋼板の幅方向中央部は破断抑制の観点からは必要以上に加熱されており、環境負荷を考えた際には投入エネルギー量を低減することが望ましい。
[Comparative Example 4]
An example of using a solenoid type full-width heating device is shown. The temperature of the steel sheet heated by the solenoid-type full-width heating device was calculated from Equation (2). That is, the steel plate was heated over the entire width direction so that the temperature of the edge portion reached the temperature considered necessary for suppressing edge cracking. The rupture rate of 200 coils with a Si content of 1.0 mass% to 2.0 mass% (
〔比較例5〕
全幅加熱装置は使用せず、鋼板の幅方向両端部のみを加熱するエッジ部加熱装置を用いた場合の例を示している。エッジ部加熱装置により加熱する鋼板の幅方向両端部の温度は数式(2)より算出した。Si含有量が1.0mass%から2.0mass%の200コイル(幅中央15℃、エッジ部35℃)の破断率は0%であった。一方、Si含有量が2.0mass%から3.0mass%の200コイル(幅中央15℃、エッジ部35℃)の破断率は0.5%、Si含有量が3.0mass%から3.5mass%の200コイル(幅中央15℃、エッジ部60℃)の破断率は2%であった。破断したコイルの破断形態を調査したところ、エッジ部割れによる破断は抑制できていたが、幅方向中央部からの破断を抑制できていなかった。
[Comparative Example 5]
An example is shown in which a full-width heating device is not used, but an edge heating device that heats only both ends in the width direction of a steel plate is used. The temperature of both ends in the width direction of the steel sheet heated by the edge heating device was calculated from Equation (2). The rupture rate of 200 coils (
以上示したように、本発明を適用し、鋼板を冷間タンデム圧延機の入側で加熱することにより鋼板の破断を抑制できることが確認された。特に、Si含有量が3mass%以上である珪素鋼板の場合には、鋼板を適切な温度に加熱することにより鋼板の破断を大幅に低減できるため、生産性の向上及び歩留まりの向上を達成することができる。 As described above, it was confirmed that by applying the present invention and heating the steel sheet on the entry side of the cold tandem rolling mill, it is possible to suppress breakage of the steel sheet. In particular, in the case of a silicon steel sheet having a Si content of 3 mass% or more, heating the steel sheet to an appropriate temperature can greatly reduce the breakage of the steel sheet, so that productivity and yield can be improved. can be done.
以上、本発明に係る冷延鋼帯の製造設備および冷延鋼帯の製造方法について、発明を実施するための形態および実施例により具体的に説明したが、本発明の趣旨はこれらの記載に限定されるものではなく、特許請求の範囲に基づいて広く解釈されなければならない。また、これらの記載に基づいて種々変更、改変等したものも本発明の趣旨に含まれることは言うまでもない。 As described above, the cold-rolled steel strip manufacturing facility and the cold-rolled steel strip manufacturing method according to the present invention have been specifically described with the embodiments and examples for carrying out the invention. It should not be limited and should be interpreted broadly based on the scope of the claims. In addition, it goes without saying that various changes and modifications based on these descriptions are also included in the gist of the present invention.
1 ペイオフリール
2 接合装置
3 ルーパー
4 全幅加熱装置
5 温度計
6 冷間タンデム圧延機
7 切断機
8 テンションリール
S 鋼板
REFERENCE SIGNS
Claims (7)
前記冷間圧延機の入側において鋼板の幅方向中央部の温度よりも幅方向端部の温度が高くなるように、前記トランスバース式全幅加熱装置を用いて鋼板を加熱するステップを含むことを特徴とする冷延鋼板の製造方法。 A transverse full-width heating device that heats the steel plate over the entire width direction of the steel plate, a cold rolling mill that rolls the steel plate and is arranged downstream in the rolling direction with respect to the transverse full-width heating device, A method for manufacturing a cold-rolled steel sheet using
A step of heating the steel plate using the transverse full-width heating device so that the temperature of the widthwise end portion of the steel plate is higher than the temperature of the widthwise center portion of the steel plate on the entry side of the cold rolling mill. A method for producing a cold-rolled steel sheet.
前記トランスバース式全幅加熱装置に対して圧延方向下流側に配置された、前記鋼板を圧延する冷間圧延機と、を備え、
前記トランスバース式全幅加熱装置は、前記冷間圧延機の入側において鋼板の幅方向中央部の温度よりも幅方向端部の温度が高くなるように、鋼板を加熱することを特徴とする冷延鋼板の製造設備。 a transverse full-width heating device that heats the steel plate over the entire width of the steel plate;
A cold rolling mill for rolling the steel plate, which is arranged downstream in the rolling direction with respect to the transverse full-width heating device,
The transverse-type full-width heating device heats the steel sheet so that the temperature at the ends in the width direction of the steel sheet is higher than the temperature at the center in the width direction of the steel sheet on the entry side of the cold rolling mill. Rolled steel sheet manufacturing equipment.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021077081A JP7111216B1 (en) | 2021-04-30 | 2021-04-30 | Cold-rolled steel sheet manufacturing method and manufacturing equipment |
MX2023012623A MX2023012623A (en) | 2021-04-30 | 2021-12-15 | Method for manufacturing cold-rolled steel sheet, and manufacturing facility. |
PCT/JP2021/046322 WO2022230230A1 (en) | 2021-04-30 | 2021-12-15 | Method for manufacturing cold-rolled steel sheet, and manufacturing facility |
KR1020237037081A KR20230160928A (en) | 2021-04-30 | 2021-12-15 | Manufacturing method and manufacturing equipment for cold rolled steel sheets |
US18/286,881 US20240189881A1 (en) | 2021-04-30 | 2021-12-15 | Manufacturing method and manufacturing equipment of cold-rolled steel sheet |
EP21939385.7A EP4306230A1 (en) | 2021-04-30 | 2021-12-15 | Method for manufacturing cold-rolled steel sheet, and manufacturing facility |
CN202180097473.6A CN117241899A (en) | 2021-04-30 | 2021-12-15 | Method and apparatus for manufacturing cold-rolled steel sheet |
TW110148476A TWI799028B (en) | 2021-04-30 | 2021-12-23 | Manufacturing method and manufacturing equipment of cold-rolled steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021077081A JP7111216B1 (en) | 2021-04-30 | 2021-04-30 | Cold-rolled steel sheet manufacturing method and manufacturing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP7111216B1 JP7111216B1 (en) | 2022-08-02 |
JP2022170841A true JP2022170841A (en) | 2022-11-11 |
Family
ID=82693700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021077081A Active JP7111216B1 (en) | 2021-04-30 | 2021-04-30 | Cold-rolled steel sheet manufacturing method and manufacturing equipment |
Country Status (8)
Country | Link |
---|---|
US (1) | US20240189881A1 (en) |
EP (1) | EP4306230A1 (en) |
JP (1) | JP7111216B1 (en) |
KR (1) | KR20230160928A (en) |
CN (1) | CN117241899A (en) |
MX (1) | MX2023012623A (en) |
TW (1) | TWI799028B (en) |
WO (1) | WO2022230230A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115555401B (en) * | 2022-11-01 | 2023-10-13 | 海安华诚新材料有限公司 | Oriented silicon steel primary cold rolling equipment with high cold rolling efficiency |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0523724A (en) * | 1991-07-15 | 1993-02-02 | Nkk Corp | Warm rolling equipment for steel sheet |
CN101550480A (en) * | 2008-03-31 | 2009-10-07 | 鞍钢股份有限公司 | Method for producing oriented silicon steel by using acid pickling continuous rolling mill |
JP2012148310A (en) * | 2011-01-19 | 2012-08-09 | Jfe Steel Corp | Method for heating steel plate edge part |
JP2021030239A (en) * | 2019-08-15 | 2021-03-01 | 日本製鉄株式会社 | Cold tandem rolling equipment and cold tandem rolling method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5486261B2 (en) | 2009-10-08 | 2014-05-07 | 三菱日立製鉄機械株式会社 | Cold rolling equipment and rolling method for electrical steel sheet |
JP6020475B2 (en) * | 2014-01-20 | 2016-11-02 | Jfeスチール株式会社 | Cold rolling equipment |
JP6447710B2 (en) * | 2015-03-26 | 2019-01-09 | 東芝三菱電機産業システム株式会社 | Temperature calculation method, temperature calculation device, heating control method, and heating control device |
JP6429059B1 (en) * | 2017-02-28 | 2018-11-28 | Jfeスチール株式会社 | Cold rolling mill and cold rolling method |
-
2021
- 2021-04-30 JP JP2021077081A patent/JP7111216B1/en active Active
- 2021-12-15 US US18/286,881 patent/US20240189881A1/en active Pending
- 2021-12-15 EP EP21939385.7A patent/EP4306230A1/en active Pending
- 2021-12-15 MX MX2023012623A patent/MX2023012623A/en unknown
- 2021-12-15 WO PCT/JP2021/046322 patent/WO2022230230A1/en active Application Filing
- 2021-12-15 KR KR1020237037081A patent/KR20230160928A/en unknown
- 2021-12-15 CN CN202180097473.6A patent/CN117241899A/en active Pending
- 2021-12-23 TW TW110148476A patent/TWI799028B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0523724A (en) * | 1991-07-15 | 1993-02-02 | Nkk Corp | Warm rolling equipment for steel sheet |
CN101550480A (en) * | 2008-03-31 | 2009-10-07 | 鞍钢股份有限公司 | Method for producing oriented silicon steel by using acid pickling continuous rolling mill |
JP2012148310A (en) * | 2011-01-19 | 2012-08-09 | Jfe Steel Corp | Method for heating steel plate edge part |
JP2021030239A (en) * | 2019-08-15 | 2021-03-01 | 日本製鉄株式会社 | Cold tandem rolling equipment and cold tandem rolling method |
Also Published As
Publication number | Publication date |
---|---|
WO2022230230A1 (en) | 2022-11-03 |
US20240189881A1 (en) | 2024-06-13 |
CN117241899A (en) | 2023-12-15 |
TW202243766A (en) | 2022-11-16 |
TWI799028B (en) | 2023-04-11 |
MX2023012623A (en) | 2023-11-08 |
EP4306230A1 (en) | 2024-01-17 |
JP7111216B1 (en) | 2022-08-02 |
KR20230160928A (en) | 2023-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022230230A1 (en) | Method for manufacturing cold-rolled steel sheet, and manufacturing facility | |
WO2009101941A1 (en) | Method for cold-rolling of steel plate and cold-rolling facility | |
JP5691231B2 (en) | Cold rolling method | |
JP7192378B2 (en) | Rolling equipment and steel plate rolling method | |
JP7111217B1 (en) | Cold-rolled steel sheet manufacturing method and manufacturing equipment | |
JP7311764B2 (en) | Cold tandem rolling equipment and cold tandem rolling method | |
JP6922873B2 (en) | Temperable rolling method, temper rolling equipment and steel sheet manufacturing method | |
JP7126076B2 (en) | Cold-rolled steel strip manufacturing facility and cold-rolled steel strip manufacturing method | |
JP2015193027A (en) | Manufacturing method of hot rolled steel plate | |
TWI766459B (en) | Temper rolling method of cold rolled steel sheet | |
JP3793515B2 (en) | Steel sheet hot rolling method and apparatus | |
JP2018094608A (en) | Draft leveling control device and draft leveling control method | |
JP2004076159A (en) | Breakage preventing treatment method of high chromium high carbon steel strip at continuous treatment and continuous treatment apparutus of steel strip | |
JP2022095311A (en) | Cold rolled steel plate manufacturing method | |
JP2015167967A (en) | Setup condition deciding method in cold rolling | |
JPH0760303A (en) | Cold rolling equipment of steel strip | |
PL237690B1 (en) | Method for producing strip from waste steel sheets | |
JP2005205454A (en) | METHOD FOR HOT-ROLLING CONTINUOUSLY-CAST SLAB OF HIGH-Ni ALLOY STEEL | |
JPH09262614A (en) | Method for rolling joint part between rolled stocks in continuous hot finish rolling | |
JPS5827004B2 (en) | Continuous cold rolling equipment | |
JPH09235623A (en) | Production of hot rolled steel plate excellent in surface characteristic and acid pickling property by continuous hot rolling process | |
JP2004050183A (en) | Method and device for hot-rolling steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220317 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220317 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20220317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220412 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220526 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220621 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220704 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7111216 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |