JP2022165435A - Raw material filling machine for foamed plastic - Google Patents

Raw material filling machine for foamed plastic Download PDF

Info

Publication number
JP2022165435A
JP2022165435A JP2021070740A JP2021070740A JP2022165435A JP 2022165435 A JP2022165435 A JP 2022165435A JP 2021070740 A JP2021070740 A JP 2021070740A JP 2021070740 A JP2021070740 A JP 2021070740A JP 2022165435 A JP2022165435 A JP 2022165435A
Authority
JP
Japan
Prior art keywords
raw material
discharge valve
valve body
cylindrical body
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021070740A
Other languages
Japanese (ja)
Other versions
JP6910625B1 (en
Inventor
廣司 可児
Koji Kani
賢士 可児
Kenji Kani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bestec Corp
Original Assignee
Bestec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bestec Corp filed Critical Bestec Corp
Priority to JP2021070740A priority Critical patent/JP6910625B1/en
Application granted granted Critical
Publication of JP6910625B1 publication Critical patent/JP6910625B1/en
Publication of JP2022165435A publication Critical patent/JP2022165435A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

In a conventional material filling machine, a material is filled from a direction perpendicular to a mold (roughly perpendicular), so a Teflon(registered trademark) coating to improve mold release and a grainy finish to improve appearance are sometimes damaged by repetitive material filling. In addition, a filling process consists of two steps: material filling and blowback, in which excess material is returned to a hopper. In the conventional material filling machine, compressed air is emitted from a same air outlet hole in both processes. Therefore, in order to achieve complete blowback, more compressed air than necessary is emitted in the filling process.CONSTITUTION: In this invention, a raw material is filled in a direction parallel to a wall thickness of a foamed plastic molded product (roughly horizontal), so there is no risk of mold damage, etc. In addition, a configuration is such that minimum necessary compressed air is emitted during raw material filling, and the compressed air from a separate path is added during a blowback process.SELECTED DRAWING: Figure 1

Description

本発明は、発泡プラスチック成形用金型のキャビティ内に圧縮空気によって発泡プラスチックの原料を充填するための発泡プラスチックの原料充填機に関するものである。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a foamed plastic raw material filling machine for filling a foamed plastic raw material into a cavity of a mold for molding foamed plastic with compressed air.

発泡プラスチック(発泡スチロール、発泡ポリプロピレン、発泡ポリエチレン等)の成形は、発泡プラスチックの原料を発泡プラスチックの原料充填機(以下、「原料充填機」という)で発泡プラスチック成形用金型(以下、「金型」という)のキャビティ内にインジェクション(射出)して充填することにより行われている。この金型の材料としては、成形工程において蒸気加熱し、水等で冷却し形成されるため、耐食性や熱伝導が高い等の観点からアルミニウムが広く使用されており、また、発泡プラスチック成形品の離型の向上のためのテフロン(登録商標)コーティング等の表面処理が施されていることが多い。 Molding of foamed plastic (polystyrene foam, foamed polypropylene, foamed polyethylene, etc.) is carried out by inserting the foamed plastic raw material into a foamed plastic raw material filling machine (hereinafter referred to as "raw material filling machine") into a mold for molding foamed plastic (hereinafter referred to as "mold ) is filled by injection into the cavity. Aluminum is widely used as the material for this mold because it is formed by heating with steam and cooling with water, etc. in the molding process. Surface treatments such as Teflon (registered trademark) coating are often applied to improve mold release.

原料充填機としては、様々な種類のものが知られているが、例えば、特許文献1に記載の「原料充填機」がある。特許文献1に係る発明は、予備発泡粒子原料を発泡成形金型内へ充填するための原料充填機であって、前記金型内に縮径された充填用開口部2を有するとともに内外両筒1a、1bからなり該内外両筒1a、1b間に原料給送用エア通路3を設けた原料供給管1を開口し、該原料供給管1の後方には充填用開口部2の開閉用ピストン5を作動するシリンダ4と、該シリンダ4に隣設して軸方向に平行な原料流通路6とを穿設してなる一体成形部材40を連結し、該原料流通路6の先端部を原料供給管1に連通するとともに後端部を原料供給口7に連通した構成を採用している。 Various types of raw material filling machines are known. The invention according to Patent Document 1 is a raw material filling machine for filling a raw material of pre-expanded particles into a foam molding mold, which has a filling opening 2 with a reduced diameter in the mold and has both inner and outer cylinders. A raw material supply pipe 1 consisting of 1a and 1b and having a raw material supply air passage 3 between the inner and outer cylinders 1a and 1b is opened. 5 and an integrally formed member 40 formed by drilling a raw material flow passage 6 adjacent to the cylinder 4 and parallel to the axial direction. A structure is adopted in which it communicates with the supply pipe 1 and communicates with the raw material supply port 7 at its rear end.

特開平6-71771号公報JP-A-6-71771

しかし、特許文献1に係る発明においては、内外両筒間に形成された原料給送用エア通路へ吹き込まれる原料給送用エアによって、原料供給管の充填用開口部より金型内へ原料を充填する構成であるため、金型の素材を公知公用の素材であるアルミニウムとした場合、他の金属と比較して柔らかいので、金型内に原料が充填用エアにより吹き込まれると、金型の表面(キャビティ面)の繰り返し当たる部分の損傷や表面処理の剥離等が生じる場合がある。また、外装美観の向上を目的として、製品となる発泡プラスチック成形品にシボ模様が施されることがあるが、金型内のシボ加工用の加工面に損傷が生じる場合がある。 However, in the invention according to Patent Document 1, the raw material is supplied into the mold from the filling opening of the raw material supply pipe by the raw material feeding air blown into the raw material feeding air passage formed between the inner and outer cylinders. Since it is a filling structure, if the material of the mold is aluminum, which is a publicly known and widely used material, it is softer than other metals. Damage to the portion of the surface (cavity surface) that repeatedly hits, peeling of the surface treatment, etc. may occur. Further, in order to improve the appearance of the exterior, a textured pattern is sometimes applied to a foamed plastic molded product, which may damage the textured surface in the mold.

そこで、本発明は上記問題を回避するため、軸方向に対して略水平に原料を吐出させることにより金型の表面(キャビティ面)に直接に当てず、金型の表面損傷を回避する発泡プラスチックの原料充填機を提供するものである。 Therefore, in order to avoid the above problems, the present invention is a plastic foam that avoids damage to the surface of the mold by discharging the raw material substantially horizontally with respect to the axial direction so that it does not directly hit the surface of the mold (cavity surface). is to provide a raw material filling machine.

請求項1の発明は、発泡プラスチック成形用金型のキャビティ内へ圧縮空気を介して原料を充填する発泡プラスチックの原料充填機であって、吐出口を開口した外筒ノズル部が前端に連接された外筒体と、外筒体内に前後動可能に収納され、外筒ノズル部の吐出口から出没自在の吐出弁体部を前端に連接された内筒体と、内筒体の後方が摺動自在に挿通され、かつ、内部をピストン運動するピストン体が嵌着固定された内筒体を前後動させる駆動手段と、一方側が駆動手段の前方に連接され、他方側が外筒体の後方に挿入固定された圧縮空気導入部と、駆動手段の後方に連接された原料供給管と、を備え、吐出弁体部の外周には、複数の吐出穴及び軸心方向に傾斜する複数の傾斜穴を穿設し、原料供給管から内筒体内及び吐出弁体部内に圧入供給された原料が、圧縮空気導入部から外筒体内周と内筒体外周の隙間内の間に形成した流路を通過し、傾斜穴から吐出弁体部内に流入される圧縮空気を介して、外筒ノズル部の吐出口から突出された状態の吐出弁体部の吐出穴から吐出される構成の発泡プラスチックの原料充填機である。 The invention of claim 1 is a foamed plastic material filling machine for filling a material into a cavity of a mold for molding foamed plastic via compressed air, wherein an outer cylinder nozzle portion having an opening for discharge is connected to a front end thereof. an outer cylindrical body, an inner cylindrical body which is housed in the outer cylindrical body so as to be movable back and forth, and which is connected to the front end of a discharge valve body portion which can be retracted from the discharge port of the outer cylinder nozzle portion; A drive means for moving back and forth the inner cylindrical body which is movably inserted and in which a piston body that performs piston movement is fitted and fixed, and one side of which is connected to the front of the driving means and the other side of which is connected to the rear of the outer cylindrical body. A compressed air introduction part inserted and fixed, and a raw material supply pipe connected to the rear of the driving means are provided, and a plurality of discharge holes and a plurality of inclined holes inclined in the axial direction are provided on the outer periphery of the discharge valve body. and the raw material press-fitted into the inner cylinder and the discharge valve body from the raw material supply pipe forms a flow path formed between the inner circumference of the outer cylinder and the outer circumference of the inner cylinder from the compressed air introduction part. The foamed plastic raw material is discharged from the discharge hole of the discharge valve body projecting from the discharge port of the outer cylinder nozzle part through the compressed air that flows into the discharge valve body from the inclined hole. Filling machine.

請求項2の発明は、発泡プラスチック成形用金型のキャビティ内へ圧縮空気を介して原料を充填する発泡プラスチックの原料充填機であって、吐出口を開口した外筒ノズル部が前端に連接された外筒体と、外筒体内に前後動可能に収納され、外筒ノズル部の吐出口から出没自在の吐出弁体部を前端に連接された内筒体と、内筒体の後方が摺動自在に挿通され、かつ、内部をピストン運動するピストン体が嵌着固定された内筒体を前後動させる駆動手段と、一方側が駆動手段の前方に連接され、他方側が外筒体の後方に挿入固定された圧縮空気導入部と、駆動手段の後方に連接された原料供給管と、を備え、吐出弁体部の外周には、複数の吐出穴及び軸心方向に傾斜する複数の傾斜穴を穿設し、軸方向に非貫通の複数の溝を備え、外筒ノズル部の吐出口を吐出弁体部で封止した状態において、吐出弁体部内及び内筒体内に圧入供給された原料が、圧縮空気導入部から外筒体内周と内筒体外周の隙間内の間に形成した流路を通過し、溝及び傾斜穴から吐出弁体部内に流入した圧縮空気を介して、原料供給管側へブローバックされる構成の発泡プラスチックの原料充填機である。 According to a second aspect of the invention, there is provided a foamed plastic raw material filling machine for filling a raw material into a cavity of a foamed plastic molding mold through compressed air, wherein an outer cylinder nozzle portion having a discharge port is connected to a front end thereof. an outer cylindrical body, an inner cylindrical body which is housed in the outer cylindrical body so as to be movable back and forth, and which is connected to the front end of a discharge valve body portion which can be retracted from the discharge port of the outer cylinder nozzle portion; A drive means for moving back and forth the inner cylindrical body which is movably inserted and in which a piston body that performs piston movement is fitted and fixed, and one side of which is connected to the front of the driving means and the other side of which is connected to the rear of the outer cylindrical body. A compressed air introduction part inserted and fixed, and a raw material supply pipe connected to the rear of the driving means are provided, and a plurality of discharge holes and a plurality of inclined holes inclined in the axial direction are provided on the outer periphery of the discharge valve body. , and provided with a plurality of non-penetrating grooves in the axial direction, and in a state where the discharge port of the outer cylinder nozzle is sealed by the discharge valve body, the raw material is press-fitted into the discharge valve body and the inner cylinder. The raw material is supplied via the compressed air that has flowed from the compressed air introduction portion through the flow path formed between the inner circumference of the outer cylinder and the outer circumference of the inner cylinder and flowed into the discharge valve body from the groove and the inclined hole. This is a raw material filling machine for foamed plastic that blows back to the tube side.

請求項3の発明は、吐出弁体部の外周に径を複数段に異ならせて外周環状段部を形成し、外筒ノズル部の内周に径を複数段に異ならせて内周環状段部を形成し、請求項1に記載の前記状態においては、外周環状段部と内周環状段部が当接状態とされ、請求項2に記載の前記状態においては、外周環状段部と内周環状段部が離間状態とされることを特徴とした、請求項1又は請求項2に記載の発泡プラスチックの原料充填機である。 In the third aspect of the invention, the diameter of the discharge valve body is varied in a plurality of steps to form an outer peripheral annular stepped portion, and the inner periphery of the outer cylinder nozzle portion is varied in diameter in a plurality of steps to form an inner peripheral annular stepped portion. In the state described in claim 1, the outer peripheral annular stepped portion and the inner peripheral annular stepped portion are in contact with each other, and in the state described in claim 2, the outer peripheral annular stepped portion and the inner peripheral annular stepped portion The raw material filling machine for plastic foam according to claim 1 or 2, characterized in that the circumferential annular stepped portion is in a spaced state.

請求項4の発明は、請求項2に記載の状態においては、外筒ノズル部の前端面と吐出弁体部の前端面が略面一となる構成であることを特徴とした、請求項2又は請求項3に記載の発泡プラスチックの原料充填機である。 The invention according to claim 4 is characterized in that, in the state according to claim 2, the front end surface of the outer cylinder nozzle portion and the front end surface of the discharge valve body portion are substantially flush with each other. Alternatively, it is the raw material filling machine for foamed plastic according to claim 3 .

請求項5の発明は、請求項2に記載の前記状態においては、外筒ノズル部の前端面及び吐出弁体部の前端面が、発泡プラスチック成形用金型の前記キャビティ側の面と略面一となる構成であることを特徴とした、請求項1乃至請求項4のいずれか1項に記載の発泡プラスチックの原料充填機である。 According to the invention of claim 5, in the state of claim 2, the front end surface of the outer cylinder nozzle portion and the front end surface of the discharge valve body portion are substantially on the same surface as the cavity side surface of the mold for molding plastic foam. The raw material filling machine for plastic foam according to any one of claims 1 to 4, characterized in that it has a single configuration.

請求項1の発明によれば、原料充填時において、原料が吐出弁体部の軸方向に対して略水平に吐出されるため、金型の表面(キャビティ面)に原料が直接に当たらず、金型の表面損傷を回避することができる。 According to the first aspect of the invention, when the raw material is charged, the raw material is discharged substantially horizontally with respect to the axial direction of the discharge valve body. Surface damage of the mold can be avoided.

請求項2の発明によれば、原料充填時には必要最低限の圧縮空気を出し、原料充填後のブローバック時においては、吐出弁体部に設けられた傾斜穴からの圧縮空気の他、別経路となる溝からの圧縮空気がプラスされる構造であるため、圧縮空気の削減ができる。 According to the invention of claim 2, the minimum necessary amount of compressed air is emitted when filling the raw material, and at the time of blowback after filling the raw material, the compressed air from the inclined hole provided in the discharge valve body portion and another path Compressed air can be reduced because it is a structure in which compressed air from the groove is added.

請求項3の発明によれば、簡易な構成によりシーリング効果が期待でき、これにより原料充填時における原料の吐出効率が上昇する。また、ブローバック時における圧縮空気を溝への導くことができる。 According to the invention of claim 3, a sealing effect can be expected with a simple structure, and as a result, the discharge efficiency of the raw material at the time of charging the raw material is increased. In addition, compressed air can be guided to the groove during blowback.

請求項4又は請求項5の発明の発明によれば、発泡プラスチックの成形品を外観良く成形することができる。 According to the invention of claim 4 or 5, it is possible to form a foamed plastic molded article with good appearance.

前動限界位置(原料充填時)における本発明の断面図である。FIG. 4 is a cross-sectional view of the present invention at a forward movement limit position (at the time of raw material filling); 図1の一部拡大断面図であり、圧縮空気及び原料の流れを図示したものである。FIG. 2 is a partially enlarged cross-sectional view of FIG. 1 illustrating the flow of compressed air and raw material; 図2のA-A断面図である。FIG. 3 is a cross-sectional view taken along the line AA of FIG. 2; 後動限界位置(原料充填完了後ブローバック時)における本発明の断面図である。FIG. 4 is a cross-sectional view of the present invention at a rear movement limit position (at the time of blowback after completion of raw material filling); 図4の一部拡大断面図であり、圧縮空気及び原料の流れを図示したものである。5 is a partially enlarged cross-sectional view of FIG. 4 illustrating the flow of compressed air and raw material; FIG. 図5のB-B断面図である。FIG. 6 is a cross-sectional view taken along the line BB of FIG. 5; 外筒ノズル部の側面図である。It is a side view of an outer cylinder nozzle part. 図7の断面図である。FIG. 8 is a cross-sectional view of FIG. 7; 吐出弁体部の側面図である。It is a side view of a discharge valve body part. 図9の断面図である。FIG. 10 is a cross-sectional view of FIG. 9; 原料充填時における本発明を使用した構成概略図である。1 is a schematic diagram of a configuration using the present invention during raw material filling; FIG. ブローバック時における本発明を使用した構成概略図である。Fig. 2 is a schematic diagram of a configuration using the present invention during blowback; 原料充填時における本発明を使用した要部概略図である。FIG. 2 is a schematic diagram of a main part using the present invention at the time of raw material filling; ブローバック時における本発明を使用した要部概略図である。FIG. 4 is a schematic diagram of a main part using the present invention during blowback; 本発明を使用した金型の加熱時及び冷却時の構成概略図である。FIG. 3 is a schematic diagram of the configuration of a mold using the present invention during heating and cooling; 本発明を使用した離型時の構成概略図である。FIG. 4 is a schematic diagram of the configuration when releasing from a mold using the present invention; 従来例の原料充填機による原料充填時の概略図である。It is a schematic diagram at the time of raw material filling by the raw material filling machine of a conventional example. 従来例の原料充填機によるブローバック時の概略図である。It is a schematic diagram at the time of blowback by the raw material filling machine of a conventional example.

本発明は、発泡プラスチック(成形品)100の原料X(予備発泡粒等)を発泡プラスチック成形用の金型80のキャビティ85内に、充填エア等の圧縮空気(加圧気体)を介して充填するための発泡プラスチック100の原料充填機1であり、その主な構成は、外筒体10、外筒ノズル部20、内筒体30、吐出弁体部40、圧縮空気導入部50、駆動手段60、原料供給管70等を備えている。そして、原料供給管70の充填口71から圧入された原料Xを、外筒ノズル部20の開口した吐出口22aより突出した状態の吐出弁体部40の吐出穴48から圧縮空気を介して吐出する構成である。なお、キャビティ85とは、原料Xを充填して射出成形品である発泡プラスチック100を形成するための金型(オス型81及びメス型82)内の空間のことである。 In the present invention, raw material X (pre-expanded grains, etc.) for foamed plastic (molded product) 100 is filled into cavity 85 of mold 80 for foamed plastic molding via compressed air (pressurized gas) such as filling air. It is a raw material filling machine 1 for foamed plastic 100 for filling, and its main configuration is an outer cylinder body 10, an outer cylinder nozzle part 20, an inner cylinder body 30, a discharge valve body part 40, a compressed air introduction part 50, and a driving means. 60, a raw material supply pipe 70, and the like. Then, the raw material X press-fitted from the filling port 71 of the raw material supply pipe 70 is discharged via compressed air from the discharge hole 48 of the discharge valve body portion 40 protruding from the open discharge port 22a of the outer cylinder nozzle portion 20. It is a configuration that The cavity 85 is a space in the mold (male mold 81 and female mold 82) for filling the raw material X to form the foamed plastic 100, which is an injection-molded product.

以下、実施形態について説明する。なお、発泡プラスチック100の原料Xは、ビーズ状の物が好適であるが、ストロー状のもの等であってもよい。便宜上、以下単に「原料X」とする。発泡プラスチック成形用の金型80は、以下、単に「金型80」とし、発泡プラスチックの原料充填機1は、単に「原料充填機1」とする。また、本発明において、「前」とは吐出弁体部40側を示し、「後」とは原料供給管70側を示す。なお、図中、圧縮空気の流れを矢印で図示する場合がある。 Embodiments will be described below. The raw material X of the foamed plastic 100 is preferably in the form of beads, but may be in the form of straws or the like. For the sake of convenience, it will simply be referred to as "raw material X" hereinafter. The mold 80 for molding foamed plastic is hereinafter referred to simply as "mold 80", and the raw material filling machine 1 for foamed plastic is simply referred to as "raw material filling machine 1". Further, in the present invention, "front" indicates the discharge valve body portion 40 side, and "rear" indicates the raw material supply pipe 70 side. In the drawings, arrows may indicate the flow of compressed air.

外筒体10は、前後動可能な内筒体30を収納する中空の筒体である。外筒体10の後方を圧縮空気導入部50と連接している。また、原料充填機1を金型80へ取り付けるための取付具15を外周13に嵌着している。 The outer cylindrical body 10 is a hollow cylindrical body that accommodates an inner cylindrical body 30 that can move back and forth. The rear portion of the outer cylindrical body 10 is connected to the compressed air introduction portion 50 . Also, a fixture 15 for mounting the raw material filling machine 1 to the mold 80 is fitted to the outer periphery 13 .

外筒体10の前端10aには外筒ノズル部20が連接している。連接に関してはどのような連接構造でもよいが、例えば、内周12又は外周13に螺子溝が螺刻された外筒体10と、螺子溝が螺刻された外筒ノズル部20を螺合することが望ましい。 An outer cylinder nozzle portion 20 is connected to the front end 10 a of the outer cylinder body 10 . Regarding the connection, any connection structure can be used. is desirable.

外筒ノズル部20は、外筒体10と連接する筒状部であり、連接部21と、連接部21に連なる本体部22とに部位を分類できる(図7、図8参照)。連接部21は、外筒体10と連接する箇所であるため、外筒ノズル部20の後方に位置する。連接部21は、例えば、外筒体10と螺合する構成の場合は、上述のように、螺子溝を螺刻する構成が挙げられる。本体部22には、吐出弁体部40を出没可能とする吐出口22aを開口している。 The outer cylinder nozzle part 20 is a cylindrical part connected to the outer cylinder body 10, and can be classified into a connecting part 21 and a body part 22 connected to the connecting part 21 (see FIGS. 7 and 8). The connecting portion 21 is positioned behind the outer cylinder nozzle portion 20 because it is a portion connected to the outer cylinder body 10 . For example, when the connecting portion 21 is configured to be screwed with the outer cylindrical body 10, the connecting portion 21 may be configured to have a screw groove as described above. The body portion 22 has a discharge port 22a that allows the discharge valve body portion 40 to appear and retract.

また、外筒ノズル部20の内周27に内周環状段部23を形成する。たとえば、外筒ノズル部20の内周径を複数段に異ならせる。具体的には、外筒ノズル部20の内周27形状を小径部分27aと大径部分27bとの少なくとも2つの径を有する形状に形成し、これら小径部分27aと大径部分27bの境が内周環状段部23とする構成が挙げられる。外筒体10内において内筒体30が前後動することにより外筒ノズル部20の小径部分27aを吐出弁体部40の出没部46の外周40bが摺動する。 In addition, an inner peripheral annular stepped portion 23 is formed on the inner periphery 27 of the outer cylinder nozzle portion 20 . For example, the inner diameter of the outer cylinder nozzle portion 20 is varied in a plurality of stages. Specifically, the inner circumference 27 of the outer cylinder nozzle portion 20 is formed into a shape having at least two diameters, a small-diameter portion 27a and a large-diameter portion 27b, and the boundary between the small-diameter portion 27a and the large-diameter portion 27b is formed inside. A configuration using the circumferential annular stepped portion 23 may be mentioned. As the inner cylindrical body 30 moves back and forth within the outer cylindrical body 10 , the outer periphery 40 b of the protruding/retracting portion 46 of the discharge valve body portion 40 slides on the small diameter portion 27 a of the outer cylindrical nozzle portion 20 .

また、金型80内の蒸気効率を高める等の目的で、本体部22の外周28に前端10a側から後端側(連接部21側)にかけてスリット22bを形成してもよい。スリット22bはテーパー状で、前端10a側では深く、後端側に近づくに従って浅くなる構成が挙げられる。このスリット22bの数は問わず、例えば、複数個形成し、前端10a視放射状に形成してもよい。なお、外筒体10の前端10aに外筒ノズル部20を螺合する構成等の場合、外筒体10の前端10aに外筒ノズル部20を締め付けるため、また、外筒体10の前端10aに締め付けている外筒ノズル部20を脱着するため、スパナやレンチ等の締め付け工具の先端が係合できるような窪み(不図示)を本体部に備えてもよい。 For the purpose of increasing the steam efficiency in the mold 80, etc., a slit 22b may be formed in the outer periphery 28 of the body portion 22 from the front end 10a side to the rear end side (connecting portion 21 side). The slit 22b is tapered, deep on the front end 10a side, and becomes shallower toward the rear end side. The number of slits 22b is not limited. In addition, in the case of a configuration in which the outer cylinder nozzle portion 20 is screwed to the front end 10a of the outer cylinder 10, the front end 10a of the outer cylinder 10 is tightened to tighten the outer cylinder nozzle portion 20 to the front end 10a of the outer cylinder 10. In order to attach and detach the outer cylinder nozzle portion 20 that is tightened, the main body portion may be provided with a recess (not shown) with which the tip of a tightening tool such as a spanner or wrench can be engaged.

外筒体10内の気密性を保つために外筒ノズル部20にはパッキン(不図示)が設けられる。具体的には、連接部21と本体部22との境部分にパッキンを装着するための周溝21aを形成し、この周溝21aにパッキンを嵌着する。 A packing (not shown) is provided in the outer cylinder nozzle portion 20 in order to keep the inside of the outer cylinder 10 airtight. Specifically, a circumferential groove 21a for mounting the packing is formed in the boundary portion between the connecting portion 21 and the body portion 22, and the packing is fitted into the circumferential groove 21a.

内筒体30は、外筒体10内に前後動可能に収納され、内部を原料搬送路とし、原料充填時には原料Xを前端30a側に、また、後述するブローバック時には後端30b側に圧送可能な中空の筒体であり、内筒体30の後方が駆動手段60に摺動自在に挿通されている。駆動手段60内における内筒体30の外周33との関係については、駆動手段60の内部をピストン運動するピストン体65が内筒体30に嵌着固定されることによって内筒体30とピストン体65を一体化している。したがって、ピストン体65が前動すれば内筒体30も前動し、ピストン体65が後動すれば内筒体30も後動する。さらには、内部を原料搬送路としているため、原料供給管70と連通する。 The inner cylindrical body 30 is accommodated in the outer cylindrical body 10 so as to be movable back and forth, and the interior thereof serves as a raw material conveying path, and the raw material X is pressure-fed to the front end 30a side during raw material filling and to the rear end 30b side during blowback, which will be described later. The rear portion of the inner cylindrical body 30 is slidably inserted into the driving means 60 . Regarding the relationship between the inner cylindrical body 30 and the outer circumference 33 in the driving means 60, the inner cylindrical body 30 and the piston body 30 are fixed by fitting and fixing the piston body 65, which performs piston movement inside the driving means 60, to the inner cylindrical body 30. 65 are integrated. Therefore, when the piston body 65 moves forward, the inner cylindrical body 30 also moves forward, and when the piston body 65 moves backward, the inner cylindrical body 30 also moves backward. Furthermore, since the inside is used as the raw material conveying path, it communicates with the raw material supply pipe 70 .

駆動手段60の後方に原料供給管70が連接されており、原料供給管70と内筒体30が内部において連通しているが、外筒体10に対する内筒体30の後動限界位置Zにおいては、内筒体30の後端30bが駆動手段60の後端よりも突出する。このように、内筒体30の後方は原料供給管70内において摺動する。 A raw material supply pipe 70 is connected to the rear of the driving means 60, and the raw material supply pipe 70 and the inner cylindrical body 30 communicate with each other. , the rear end 30b of the inner cylindrical body 30 protrudes from the rear end of the driving means 60. As shown in FIG. In this manner, the rear portion of the inner cylindrical body 30 slides inside the raw material supply pipe 70 .

そして、この移動体である内筒体30の前端30aには吐出弁体部40が連接されている(図9、図10参照)。吐出弁体部40は、内筒体30の前端30aに連接された、下端部が開放された有天井の円筒形状部であり、内筒体30と連接する連接部41と、連接部41に連なる本体部42と、本体部42に連なる出没部46とに部位を分類できる。 A discharge valve body portion 40 is connected to the front end 30a of the inner cylindrical body 30, which is the moving body (see FIGS. 9 and 10). The discharge valve body part 40 is a cylindrical part with an open bottom end, which is connected to the front end 30a of the inner cylindrical body 30, and has a ceiling. The parts can be classified into a continuous main body portion 42 and a retractable portion 46 continuous with the main body portion 42 .

連接に関してはどのような連接構造でもよいが、例えば、内周32又は外周33に螺子溝が螺刻された内筒体30と、連接部41に螺子溝が螺刻された吐出弁体部40を螺合することが望ましい。 Regarding the connection, any connection structure may be used. should be screwed together.

連接部41は、内筒体30と連接する箇所であるため、吐出弁体部40の最後方に位置する。連接部41は、例えば、内筒体30と螺合する構成の場合は、上述のように、連接部41に螺子溝を螺刻する構成が挙げられる。 The connecting portion 41 is positioned at the rearmost portion of the discharge valve body portion 40 because it is a portion that connects with the inner cylindrical body 30 . For example, when the connecting portion 41 is configured to be screwed with the inner cylindrical body 30 , the connecting portion 41 may be formed with a screw groove as described above.

本体部42は、連接部41と出没部46との間、換言すると、吐出弁体部40の略中腹に位置する。吐出弁体部40の外周40bに外周環状段部43を形成する。例えば、吐出弁体部40の外周径を複数段に異ならせる。本体部42の外径は出没部46の外径よりも大径とすることにより少なくとも2つの径を有する形状に形成し、本体部42には出没部46との境に外周環状段部43を形成する構成が挙げられる。 The body portion 42 is located between the connecting portion 41 and the retractable portion 46 , in other words, approximately halfway up the discharge valve body portion 40 . An outer circumferential annular stepped portion 43 is formed on the outer circumference 40 b of the discharge valve body portion 40 . For example, the outer diameter of the discharge valve body portion 40 is varied in a plurality of steps. The outer diameter of the body portion 42 is made larger than the outer diameter of the projected/retracted portion 46 to form a shape having at least two diameters. The structure to form is mentioned.

そして、本体部42の外周40bには、軸心方向に向かって傾斜する複数の傾斜穴45が穿設されており、この傾斜穴45から圧縮空気である充填エアが吐出弁体部40内へ流入される構成である。傾斜穴45の形状、大きさ、傾斜角度、数の多少も問わない。傾斜穴45の数は、均一に充填エアを流入させるため、例えば、6~10個を等間隔に穿設するのが望ましい。 A plurality of inclined holes 45 inclined toward the axial direction are formed in the outer periphery 40 b of the body portion 42 . It is an inflow configuration. The shape, size, angle of inclination, and number of the inclined holes 45 do not matter. It is desirable that the number of inclined holes 45 is, for example, 6 to 10 at equal intervals in order to allow the filling air to flow uniformly.

出没部46は、外筒ノズル部20の前端面25に開口した吐出口22aから出没(一部)する箇所であるため、吐出弁体部40の最前方に位置する。この出没部46の外周40b側面には圧縮空気によって原料Xを吐出するための吐出穴48が複数穿設されている。吐出穴48の形状、大きさ、数の多少も問わない。吐出穴48が複数穿設された場合は、吐出穴48と吐出穴48との間に隔壁42aが残ることとなる。 The retractable portion 46 is located at the forefront of the discharge valve body portion 40 because it is a portion that appears and retracts (partially) from the discharge port 22 a that opens in the front end surface 25 of the outer cylinder nozzle portion 20 . A plurality of discharge holes 48 for discharging the raw material X by means of compressed air are formed in the side surface of the outer periphery 40b of the projection/retraction portion 46. As shown in FIG. The shape, size and number of the discharge holes 48 are not limited. When a plurality of discharge holes 48 are formed, the partition wall 42a remains between the discharge holes 48 and 48 .

さらには、出没部46の外周40bには軸方向に非貫通の複数の溝47を備えている(図9等参照)。この溝47は、非貫通であれば、横長楕円形状の他、どのような形状であってもよい。また、溝47の深さ、数の多少も問わないが、数に関しては、2~3か所程が望ましい。 Furthermore, the outer periphery 40b of the protruding/retracting portion 46 is provided with a plurality of non-penetrating grooves 47 in the axial direction (see FIG. 9, etc.). The groove 47 may have any shape other than a horizontally elongated elliptical shape as long as it is non-penetrating. Also, the depth and number of the grooves 47 are not limited, but the number is preferably about 2 to 3.

外筒体10内の気密性を保つために吐出弁体部40の前方にはパッキン(不図示)が設けられる。具体的には、吐出弁体部40の前方にパッキンを装着するための周溝49を形成し、この周溝49にパッキンを嵌着する。 A packing (not shown) is provided in front of the discharge valve body portion 40 in order to keep the inside of the outer cylindrical body 10 airtight. Specifically, a circumferential groove 49 for mounting the packing is formed in front of the discharge valve body portion 40, and the packing is fitted into the circumferential groove 49. As shown in FIG.

内筒体30は、外筒体10内に前後動可能に収納されており、外筒体10と内筒体30で二重筒構造を採用している。そして、外筒体10の内周12と内筒体30の外周33との間には流路35を形成し、空気圧送手段(不図示)からの圧縮空気が圧縮空気導入部50を介してこの流路35を通過する。空気圧送手段としては、例えば、エアコンプレッサが使用される。 The inner cylindrical body 30 is housed in the outer cylindrical body 10 so as to be movable back and forth, and the outer cylindrical body 10 and the inner cylindrical body 30 employ a double cylindrical structure. A flow path 35 is formed between the inner circumference 12 of the outer cylindrical body 10 and the outer circumference 33 of the inner cylindrical body 30, and compressed air from an air feeding means (not shown) passes through the compressed air introduction portion 50. It passes through this channel 35 . An air compressor, for example, is used as the air feeding means.

駆動手段60によって外筒体10内の内筒体30を前後動させる。この駆動手段60としては、例えば、電動モータや油圧シリンダ等を使用することも可能である。しかし、電動モータや油圧シリンダは複雑な電源装置や油圧発生装置等の特別な装置が必要な場合があるため、簡素なエアシリンダを使用することが望ましい。以下、エアシリンダの一例について説明する。 The driving means 60 moves the inner cylindrical body 30 inside the outer cylindrical body 10 back and forth. As the driving means 60, for example, an electric motor, a hydraulic cylinder, or the like can be used. However, since electric motors and hydraulic cylinders may require special devices such as complicated power supply devices and hydraulic pressure generators, it is desirable to use simple air cylinders. An example of the air cylinder will be described below.

エアシリンダは、本体60aと、エアコンプレッサ等の空気圧送手段から圧送された駆動エアが流入する前動用空気室62や後動用空気室67からなる室内を前後動するピストン体65を主な構成要素としている。図2等で図示したように、室内は、その前方を前壁体68、後方を後壁体63としている。なお、本体60a内には、内筒体30やピストン体65との各摺動部位に図示しないパッキンを具備している。 The main components of the air cylinder are a main body 60a and a piston body 65 that moves back and forth in a chamber consisting of a forward air chamber 62 and a rearward air chamber 67 into which driving air pressure-fed from an air pressure feeding means such as an air compressor flows. and As shown in FIG. 2 and the like, the interior of the room has a front wall 68 at the front and a rear wall 63 at the rear. In addition, packings (not shown) are provided at respective sliding portions with the inner cylindrical body 30 and the piston body 65 in the main body 60a.

駆動手段60の前側には後動用エア供給口66が穿設され、後側には前動用エア供給口61が穿設されている。すなわち、室内を軸方向に前後動するピストン体65を境に、ピストン体65より前側に後動用エア供給口66が、ピストン体65より後側に前動用エア供給口61が穿設されており、前動用エア供給口61と前動用空気室62が連通し、後動用エア供給口66と後動用空気室67が連通する。 A rearward-moving air supply port 66 is formed on the front side of the driving means 60, and a forward-moving air supply port 61 is formed on the rear side thereof. That is, with respect to the piston body 65 which moves back and forth in the axial direction in the chamber, a rearward movement air supply port 66 is formed in front of the piston body 65, and a forward movement air supply port 61 is formed in rear side of the piston body 65. , the forward-moving air supply port 61 and the forward-moving air chamber 62 communicate with each other, and the backward-moving air supply port 66 and the backward-moving air chamber 67 communicate with each other.

本体内の前動用空気室62や後動用空気室67へ駆動エアを供給するための前動用エア供給口61や後動用エア供給口66には、エアコンプレッサからの駆動エアを送るための供給管(不図示)が装着される。このように、前動用エア供給口61や後動用エア供給口66に供給管を装着するが、エルボ(L型配管継ぎ手)等を介して供給管を装着してもよい。 A supply pipe for sending driving air from an air compressor is provided to a forward air supply port 61 and a rearward air supply port 66 for supplying driving air to a forward air chamber 62 and a rearward air chamber 67 in the main body. (not shown) is attached. Although the supply pipes are attached to the forward-moving air supply port 61 and the rearward-moving air supply port 66 in this manner, the supply pipes may be attached via an elbow (L-shaped pipe joint) or the like.

駆動手段60の前方に圧縮空気導入部50が連接されている。具体的には、圧縮空気導入部50の一方側(後側)には駆動手段60が連接され、圧縮空気導入部50の他方側(前側)には外筒体10の後方が挿入固定されている。すなわち、外筒体10、圧縮空気導入部50、駆動手段60が軸方向に連接されている。駆動手段60と圧縮空気導入部50が別部材である場合、連接に関してはどのような連接構造でもよいが、例えば、内周又は外周に螺子溝が螺刻され、圧縮空気導入部50と駆動手段60を螺合することが望ましい。 A compressed air introduction portion 50 is connected to the front of the drive means 60 . Specifically, the driving means 60 is connected to one side (rear side) of the compressed air introduction portion 50, and the rear side of the outer cylindrical body 10 is inserted and fixed to the other side (front side) of the compressed air introduction portion 50. there is That is, the outer cylindrical body 10, the compressed air introduction portion 50, and the drive means 60 are connected in the axial direction. If the drive means 60 and the compressed air introduction part 50 are separate members, any connection structure may be used for connection. Threading 60 is desirable.

圧縮空気導入部50には充填エア供給口52が穿設されており、充填エア供給口52と充填空気室54が連通する。圧縮空気導入部50内の充填空気室54へ圧縮空気である充填エアを供給するための充填エア供給口52には、エアコンプレッサ等の空気圧送手段からの充填エアを送るための充填エア導入管(不図示)が装着される。このように、充填エア供給口52に充填エア導入管を装着するが、エルボ(L型配管継ぎ手)等を介して原料充填エア導入管を装着してもよい。 A filling air supply port 52 is formed in the compressed air introduction portion 50 , and the filling air supply port 52 and the filling air chamber 54 communicate with each other. A filling air supply port 52 for supplying the filling air, which is compressed air, to the filling air chamber 54 in the compressed air introduction part 50 is provided with a filling air introduction pipe for sending the filling air from an air feeding means such as an air compressor. (not shown) is attached. Although the filling air introduction pipe is attached to the filling air supply port 52 in this manner, the material filling air introduction pipe may be attached via an elbow (L-shaped piping joint) or the like.

前動用エア供給口61から前動用空気室62に駆動エアが入ることによって本体60a内部のピストン体65が前動する。そして、吐出弁体部40の外周環状段部43と外筒ノズル部20の内周環状段部23が当接することによってピストン体65の前動が停止し、この位置が外筒体10に対する内筒体30の前動限界位置Yとなる。前動限界位置Yにおいては、外筒ノズル部20の前端面25の開口した吐出口22aから出没部46の一部が突出した状態となっており(図1参照)、原料充填時の状態となる。原料充填時は、内筒体30が前動限界位置Yにあり、後述するように吐出弁体部40の外周環状段部43と外筒ノズル部20の内周環状段部23が当接しシーリング状態となっている。 When drive air enters the forward air chamber 62 from the forward air supply port 61, the piston body 65 inside the main body 60a moves forward. Then, when the outer annular stepped portion 43 of the discharge valve body portion 40 and the inner annular stepped portion 23 of the outer cylinder nozzle portion 20 come into contact with each other, the forward movement of the piston body 65 is stopped, and this position is the internal position relative to the outer cylinder body 10 . The front movement limit position Y of the cylindrical body 30 is reached. At the forward movement limit position Y, a part of the protruding/retracting portion 46 protrudes from the open discharge port 22a of the front end face 25 of the outer cylinder nozzle portion 20 (see FIG. 1), which is the same as the state at the time of raw material filling. Become. When the raw material is charged, the inner cylindrical body 30 is at the forward movement limit position Y, and as will be described later, the outer circumferential annular stepped portion 43 of the discharge valve body portion 40 and the inner circumferential annular stepped portion 23 of the outer cylinder nozzle portion 20 come into contact with each other for sealing. state.

吐出弁体部40の外周環状段部43と外筒ノズル部20の内周環状段部23が当接する前動限界位置Yの場合は、駆動手段60内部(室内)のピストン体65の前端面65aと前壁体68が当接されない構成となる。したがって、内筒体30の前動限界位置Yにおいては、ピストン体65の前端面65aと前壁体68との間に僅かなクリアランス69が形成される(図1参照)。 In the case of the forward motion limit position Y where the outer circumferential annular stepped portion 43 of the discharge valve body portion 40 and the inner circumferential annular stepped portion 23 of the outer cylinder nozzle portion 20 abut against each other, the front end surface of the piston body 65 inside the driving means 60 (inside the chamber) 65a and the front wall body 68 are not in contact with each other. Therefore, a slight clearance 69 is formed between the front end face 65a of the piston body 65 and the front wall body 68 at the forward movement limit position Y of the inner cylindrical body 30 (see FIG. 1).

後動用エア供給口66から後動用空気室67に駆動エアが入ることによって本体60a内部(室内)のピストン体65が後動する。そして、駆動手段60内部のピストン体65の後端面65bが後壁体63に当接することによってピストン体65の後動が停止し、この位置が外筒体10に対する内筒体30の後動限界位置Zとなる。後動限界位置Zにおいては、外筒ノズル部20の前端面25と吐出弁体部40の前端面44が略面一の状態となっている(図4参照)。また、後動限界位置Zにあっては、吐出弁体部40の外周環状段部43と外筒ノズル部20の内周環状段部23が離間状態となる。 The piston body 65 inside (inside) the main body 60a moves backward when the driving air enters the trailing air chamber 67 from the trailing air supply port 66 . When the rear end surface 65b of the piston body 65 inside the driving means 60 comes into contact with the rear wall body 63, the rearward movement of the piston body 65 is stopped. Position Z. At the rear movement limit position Z, the front end surface 25 of the outer cylinder nozzle portion 20 and the front end surface 44 of the discharge valve body portion 40 are substantially flush with each other (see FIG. 4). At the rear movement limit position Z, the outer annular stepped portion 43 of the discharge valve body portion 40 and the inner annular stepped portion 23 of the outer cylinder nozzle portion 20 are separated from each other.

本発明による発泡プラスチック100の成形は、金型80のキャビティ85内に本発明を利用してインジェクション(射出)作用で原料Xを充填し、その後、金型80をスチーム加熱及び冷却し、発泡プラスチック100を完成させる。この本発明を利用して発泡プラスチック100を成形する工程について説明する。原料Xの充填時においては図11で、原料Xの充填完了後のブローバック時においては図12で図示している。これら図11、図12では、本発明の他、原料Xが入ったホッパー90、原料Xが充填される金型80等各構成の概略を図示している。 Molding of the foamed plastic 100 according to the present invention is performed by filling the raw material X into the cavity 85 of the mold 80 by injection (injection) action using the present invention, and then steam-heating and cooling the mold 80 to form the foamed plastic. Complete 100. A process of molding the foamed plastic 100 using the present invention will be described. FIG. 11 shows the charging of the raw material X, and FIG. 12 shows the blowing back after the filling of the raw material X is completed. These FIGS. 11 and 12 show, in addition to the present invention, an outline of each configuration such as a hopper 90 containing raw material X, a mold 80 filled with raw material X, and the like.

まず、本発明の金型80(例えば、メス型82)への取り付けの一例について説明する。外筒体10をメス型82の裏面82aからメス型82内に挿通し、メス型82側のキャビティ85に通じる原料充填口83に外筒ノズル部20を装着する。そして、外筒体10の外周13に嵌着した取付具15を介してメス型82に本発明を取り付ける。これにより、メス型82への本発明の取り付けが完了する。なお、メス型82の原料充填口83に外筒ノズル部20を装着する際、外筒ノズル部20の前端面25とメス型82の表面82b(キャビティ85側の面)は略面一とするのが望ましい。また、オス型81の場合は、外筒ノズル部20の前端面25とオス型81の表面81bは略面一とするのが望ましい。 First, an example of attachment to the mold 80 (for example, the female mold 82) of the present invention will be described. The outer cylindrical body 10 is inserted into the female mold 82 from the back surface 82a of the female mold 82, and the outer cylinder nozzle portion 20 is attached to the raw material filling port 83 communicating with the cavity 85 on the female mold 82 side. Then, the present invention is attached to the female die 82 via the fixture 15 fitted to the outer circumference 13 of the outer cylindrical body 10 . This completes the attachment of the present invention to female mold 82 . When the outer cylinder nozzle portion 20 is attached to the raw material filling port 83 of the female mold 82, the front end surface 25 of the outer cylinder nozzle portion 20 and the surface 82b of the female mold 82 (the surface on the cavity 85 side) are substantially flush with each other. is desirable. In the case of the male mold 81, it is desirable that the front end surface 25 of the outer cylinder nozzle portion 20 and the surface 81b of the male mold 81 are substantially flush with each other.

金型80装着後は、原料充填機1を最初の状態、すなわち、駆動手段60の前動用空気室62への駆動エアの供給により内筒体30を前動させ、吐出弁体部40の出没部46の一部が外筒ノズル部20の前端面25よりも前方へ突出させた状態とする(図1参照)。この場合の外筒ノズル部20と吐出弁体部40の内部状態は、吐出弁体部40の外周環状段部43と外筒ノズル部20の内周環状段部23が当接した状態となっており、換言すると加圧されたシーリング状態となっている。この時点においては、室内のピストン体65及びピストン体65に嵌着された内筒体30は前動限界位置Yにある。 After the mold 80 is mounted, the raw material filling machine 1 is placed in the initial state, that is, the inner cylindrical body 30 is moved forward by supplying driving air to the forward movement air chamber 62 of the driving means 60, and the discharge valve body portion 40 appears and retracts. A part of the portion 46 projects forward from the front end surface 25 of the outer cylinder nozzle portion 20 (see FIG. 1). In this case, the internal state of the outer cylinder nozzle portion 20 and the discharge valve body portion 40 is such that the outer circumferential annular stepped portion 43 of the discharge valve body portion 40 and the inner circumferential annular stepped portion 23 of the outer cylinder nozzle portion 20 are in contact with each other. In other words, it is in a pressurized sealing state. At this point, the piston body 65 in the chamber and the inner cylindrical body 30 fitted to the piston body 65 are at the forward movement limit position Y. As shown in FIG.

内筒体30が前動限界位置Y、すなわち、吐出弁体部40の出没部46の一部を外筒ノズル部20の前端面25よりも前方へ突出させた状態で、エアコンプレッサ(不図示)からホッパー90へ空気を圧入する。 With the inner cylindrical body 30 at the forward movement limit position Y, that is, with a part of the retractable portion 46 of the discharge valve body portion 40 protruding forward from the front end surface 25 of the outer cylinder nozzle portion 20, the air compressor (not shown) is operated. ) into the hopper 90 .

ホッパー90からの原料Xの流れは、エアコンプレッサとホッパー90との間には、加圧弁91を備えており、加圧弁91をONの状態とすることによって開弁し、ホッパー90内に所定の圧力が加わることによって、ホッパー90から原料供給ホース75等を介して本発明の原料供給管70内、内筒体30内、吐出弁体部40内へ圧入供給される。また当然、ホッパー90内の加圧を減少させる排気弁92をもホッパー90に連設しており、原料Xの充填時においては、排気弁92をOFFの状態とすることによって閉弁している。 A pressurization valve 91 is provided between the air compressor and the hopper 90, and the flow of the material X from the hopper 90 is opened by turning on the pressurization valve 91, and a predetermined When pressure is applied, the raw material is press-fitted and supplied from the hopper 90 through the raw material supply hose 75 and the like into the raw material supply pipe 70, the inner cylindrical body 30, and the discharge valve body portion 40 of the present invention. Naturally, an exhaust valve 92 for reducing the pressurization in the hopper 90 is also connected to the hopper 90, and is closed by turning off the exhaust valve 92 when the raw material X is filled. .

内筒体30内、吐出弁体部40内へ原料Xが供給されると、次に圧縮空気である充填エアの充填を開始する。エアコンプレッサからの充填エアの流れは、本発明の圧縮空気導入部50の充填エア供給口52、充填空気室54を介して外筒体10内周12と内筒体30外周33の隙間内の間の流路35に流入され、この流路35を通過する。原料充填時においては、吐出弁体部40の外周環状段部43と外筒ノズル部20の内周環状段部23が当接したシーリング状態であるため、充填エアは、吐出弁体部40の本体部42に穿設した傾斜穴45から吐出弁体部40内へ流入する。この時点では、吐出弁体部40内へは傾斜穴45からのみ充填エアが流入する。そして、外筒ノズル部20の吐出口22aから突出した状態の吐出弁体部40の吐出穴48から、原料Xが圧縮空気を介して吐出される(図2参照)。 After the raw material X is supplied into the inner cylindrical body 30 and the discharge valve body portion 40, filling of filling air, which is compressed air, is started. The flow of charged air from the air compressor flows through the gap between the inner periphery 12 of the outer cylindrical body 10 and the outer periphery 33 of the inner cylindrical body 30 through the charged air supply port 52 and the charged air chamber 54 of the compressed air introduction portion 50 of the present invention. It flows into the intermediate channel 35 and passes through this channel 35 . At the time of raw material filling, since the outer circumferential annular stepped portion 43 of the discharge valve body portion 40 and the inner circumferential annular stepped portion 23 of the outer cylinder nozzle portion 20 are in a sealing state in contact, the filling air flows into the discharge valve body portion 40. It flows into the discharge valve body portion 40 through an inclined hole 45 bored in the main body portion 42 . At this point, the charging air flows into the discharge valve body portion 40 only from the inclined hole 45 . Then, the raw material X is discharged via compressed air from the discharge hole 48 of the discharge valve body portion 40 protruding from the discharge port 22a of the outer cylinder nozzle portion 20 (see FIG. 2).

図2で図示したように、傾斜穴45から流入した充填エアは、一点鎖線の方向(軸心方向)へ進み、そして、外筒ノズル部20の前端面25から一部突出した状態の吐出弁体部40の出没部46の吐出穴48から原料Xと共に吐出される。このように本発明では、吐出弁体部40の出没部46の外周40b側面に穿設された吐出穴48から原料Xが吐出される。すなわち、吐出弁体部40の軸方向に対して側面から充填エアを介して原料Xが吐出される。 As shown in FIG. 2, the charging air flowing in from the inclined hole 45 advances in the direction of the dashed line (axial direction), and the discharge valve partially protrudes from the front end face 25 of the outer cylinder nozzle portion 20. It is discharged together with the raw material X from the discharge hole 48 of the retractable portion 46 of the body portion 40 . As described above, in the present invention, the raw material X is discharged from the discharge hole 48 formed in the side surface of the outer periphery 40b of the retractable portion 46 of the discharge valve body portion 40. As shown in FIG. That is, the raw material X is discharged from the side surface of the discharge valve body portion 40 in the axial direction through the filling air.

図17で図示した従来例の原料充填機Eの場合、原料Xを吐出する充填口C1が前端に穿設されているため、原料Xが軸方向に対し略垂直に吐出される。しかし、本発明の原料充填機1の場合、吐出弁体部40の軸方向に対して側面に吐出穴48が穿設されているため、原料Xが軸方向に対し略水平に吐出される。 In the case of the conventional raw material filling machine E shown in FIG. 17, since the filling port C1 for discharging the raw material X is provided at the front end, the raw material X is discharged substantially perpendicularly to the axial direction. However, in the case of the raw material filling machine 1 of the present invention, since the discharge hole 48 is bored in the side surface of the discharge valve body portion 40 with respect to the axial direction, the raw material X is discharged substantially horizontally with respect to the axial direction.

以上により、オス型81とメス型82で形成されるキャビティ85内へ充填エアを介し、成形品となる発泡プラスチック100の肉厚方向から徐々に原料が充填され(図13等参照)、充填が完了する。 As described above, the cavity 85 formed by the male mold 81 and the female mold 82 is gradually filled with the raw material from the thickness direction of the foamed plastic 100 (see FIG. 13, etc.) via the filling air. complete.

原料Xの充填が完了した後は、エアコンプレッサからホッパー90へエアの圧入を停止し、加圧弁91をOFFの状態とすることによって閉弁し、かつ、排気弁92をONの状態とすることによって開弁させ、これによりホッパー90内を大気圧化する。これにより、ホッパー90から原料Xの圧入供給を停止する。 After the filling of the raw material X is completed, the air compressor 90 is stopped from injecting air into the hopper 90, the pressurization valve 91 is turned off to close it, and the exhaust valve 92 is turned on. The valve is opened by , and the pressure inside the hopper 90 is thereby brought to atmospheric pressure. As a result, the injection supply of the raw material X from the hopper 90 is stopped.

次に、エアコンプレッサ等の空気圧送手段からエアシリンダの後動用エア供給口66、これに連通するエアシリンダ内の後動用空気室67へ駆動エアを供給し、エアシリンダ内のピストン体65及びピストン体65に嵌着された内筒体30が後動限界位置Zまで移動する。これによって内筒体30の前端30aの吐出弁体部40が外筒体10の前端10aの外筒ノズル部20の開口した吐出口22aを封止(閉塞)する。この外筒体10に対する内筒体30の後動限界位置Zにおいては、外筒ノズル部20の前端面25及び吐出弁体部40の前端面44が、金型80のキャビティ85側の面(表面82b)又はコア86側の面(表面81b)と略面一となる構成であることが望ましい。 Next, driving air is supplied from an air feeding means such as an air compressor to the rearward movement air supply port 66 of the air cylinder and the rearward movement air chamber 67 in the air cylinder communicating with the rearward movement air supply port 66, and the piston body 65 and the piston in the air cylinder are supplied. The inner cylindrical body 30 fitted to the body 65 moves to the rear movement limit position Z. As a result, the discharge valve body portion 40 at the front end 30 a of the inner cylinder 30 seals (closes) the open discharge port 22 a of the outer cylinder nozzle portion 20 at the front end 10 a of the outer cylinder 10 . At the rearward movement limit position Z of the inner cylinder 30 with respect to the outer cylinder 10, the front end surface 25 of the outer cylinder nozzle portion 20 and the front end surface 44 of the discharge valve body portion 40 are aligned with the surface of the mold 80 on the cavity 85 side ( It is desirable that the surface 82b) or the surface (surface 81b) on the side of the core 86 be substantially flush with each other.

外筒体10に対して内筒体30が後動限界位置Zにある場合は、外筒体10の吐出口22aを吐出弁体部40によって封止(閉塞)しているため、原料Xは勿論のこと、充填エアも吐出口22aから吐出することがなくなる。この状態において充填エア供給口52から充填エアを充填し続けると、充填エアがUターンして吐出弁体部40内及び内筒体30内を逆流し、これら吐出弁体部40内及び内筒体30内に残存する原料Xが、Uターンした充填エアの流れによって原料供給ホース75内の原料Xと共にホッパー90内に環流されるブローバック(吹き戻し)がなされる(図12、図14参照)。このブローバックについて主に内部構造を基に説明する。 When the inner cylindrical body 30 is at the rear movement limit position Z with respect to the outer cylindrical body 10, the discharge port 22a of the outer cylindrical body 10 is sealed (closed) by the discharge valve body portion 40, so the raw material X is Needless to say, the charging air is also not discharged from the discharge port 22a. If the filling air continues to be filled from the filling air supply port 52 in this state, the filling air makes a U-turn and flows backward through the discharge valve body portion 40 and the inner cylinder 30. The raw material X remaining in the body 30 is blown back into the hopper 90 together with the raw material X in the raw material supply hose 75 by the U-turned filling air flow (see FIGS. 12 and 14). ). This blowback will be explained mainly based on the internal structure.

外筒体10に対して内筒体30が後動限界位置Zにある場合の外筒ノズル部20内部における傾斜穴45及び溝47の位置関係について説明すると、傾斜穴45は、外筒ノズル部20の大径部分27bに面する。また、溝47は、吐出弁体部40の溝47の一部(後端側)は大径部分27bに面し、吐出弁体部40の溝47の一部(先端側)は外筒ノズル部20内の小径部分27aに面する。 The positional relationship between the inclined hole 45 and the groove 47 inside the outer cylinder nozzle portion 20 when the inner cylinder 30 is at the rear movement limit position Z with respect to the outer cylinder 10 will be described. 20 facing the large diameter portion 27b. A portion of the groove 47 of the discharge valve body portion 40 (rear end side) faces the large diameter portion 27b, and a portion of the groove 47 of the discharge valve body portion 40 (front end side) faces the outer cylinder nozzle. It faces a small diameter portion 27a in the portion 20. As shown in FIG.

上記のような位置関係により、流路35を通過し、大径部分27bに面する傾斜穴45から流入した充填エアが吐出弁体部40内へ流入することにより内筒体30へブローバックされる(図5参照)。また、流路35、そして、吐出弁体部40の本体部42の外周40bを通過した充填エアは、大径部分27bに面する溝47の一部(後端側)から小径部分27aに面する溝47の一部(先端側)に通過し、さらには、吐出弁体部40の出没部46の吐出穴48から吐出弁体部40内に流入し、内筒体30、原料供給管70側へブローバックされる。 Due to the positional relationship as described above, the charging air that has passed through the flow path 35 and flowed from the inclined hole 45 facing the large diameter portion 27b flows into the discharge valve body portion 40 and is blown back to the inner cylindrical body 30. (see Figure 5). Also, the filling air that has passed through the flow path 35 and the outer periphery 40b of the main body portion 42 of the discharge valve body portion 40 flows from a portion (rear end side) of the groove 47 facing the large diameter portion 27b to the small diameter portion 27a. It passes through a part (front end side) of the groove 47 , furthermore flows into the discharge valve body portion 40 from the discharge hole 48 of the protruding and recessed portion 46 of the discharge valve body portion 40 , the inner cylindrical body 30 and the raw material supply pipe 70 . Blowback to the side.

以上により、この逆流された充填エアによって吐出弁体部40、内筒体30、原料供給管70、原料供給ホース75等の内部の余分な原料Xがホッパー90へとブローバックされる。 As described above, excess raw material X inside the discharge valve body portion 40, the inner cylindrical body 30, the raw material supply pipe 70, the raw material supply hose 75, and the like is blown back to the hopper 90 by the back-flowing filling air.

そして、金型80内の加熱や冷却を行うことで、発泡プラスチック100の成形品が形成される。図15では、原料充填後の金型80の加熱時及び冷却時を図示している。 Then, by heating and cooling the inside of the mold 80, a molded product of the foamed plastic 100 is formed. FIG. 15 illustrates heating and cooling of the mold 80 after filling the raw material.

そして、発泡プラスチック100成形品が成形後は、図16で図示するように、発泡プラスチック100成形品を金型80から離型する。メス型82に取り付けている本発明は、原料充填時の時のように吐出弁体部40が外筒ノズル部20の開口した吐出口22aより出没させることができるため、メス型82から発泡プラスチック100の成形品を押し出すことによって金型80から離型することができる。したがって、本発明の吐出弁体部40が発泡プラスチック100成形体のエジェクトピンを兼ねる。 After the foamed plastic 100 molded product is molded, the foamed plastic 100 molded product is released from the mold 80 as shown in FIG. In the present invention attached to the female mold 82, the discharge valve body 40 can be retracted from the open discharge port 22a of the outer cylinder nozzle part 20 as in the case of filling the raw material. Mold 80 can be released from mold 80 by extruding 100 molded articles. Therefore, the discharge valve body portion 40 of the present invention also serves as an eject pin for the foamed plastic 100 molding.

ホッパー90からの原料Xの充填方法としては、主に、大気圧化状態のホッパー90から空気圧のインジェクションにより充填を行う大気圧充填と、加圧可能なタンク状のホッパー90から一定圧力をかけて充填を行う加圧充填の二種類あるが、近年は原料充填時間が短く、また、細部の充填効率が良い加圧充填が主流となっている。 As a method of filling the material X from the hopper 90, there are mainly atmospheric pressure filling in which filling is performed by injecting air pressure from the hopper 90 under atmospheric pressure, and constant pressure is applied from the pressurizable tank-like hopper 90. There are two types of pressure filling for filling, but in recent years, pressure filling has become mainstream because it takes a short time to fill raw materials and has good filling efficiency for details.

しかし、加圧充填の場合、金型80内への原料Xの充填完了後、余った原料Xをホッパー90に戻すブローバックの際、タンク状のホッパー90では体積も小さく排気も十分に取りにくく、また、従来例の原料充填機Eでは、充填エアの出口C2(図17参照)とブローバックエアの出口C2(図18参照)が同じ出口(空気吹出穴)C2の一箇所であるため、充填エアの量を原料Xの充填のためでなくブローバックの勢いを増すために多くしなければならず、原料充填時に必要な量の倍程度になることがある。 However, in the case of pressurized filling, when the remaining raw material X is returned to the hopper 90 after the filling of the raw material X into the mold 80 is completed, the volume of the tank-shaped hopper 90 is small and it is difficult to sufficiently remove the exhaust gas. Also, in the raw material filling machine E of the conventional example, the filling air outlet C2 (see FIG. 17) and the blowback air outlet C2 (see FIG. 18) are the same outlet (air blowing hole) C2, so The amount of charging air must be increased not for charging the raw material X but for increasing the momentum of the blowback, which may be double the amount required at the time of charging the raw material.

この点、本発明の原料充填機1は、原料充填完了後には吐出弁体部40が後動し、原料充填時に使用したエアに加え、吐出弁体部40に設けられた傾斜穴45及び別経路となる溝47の二箇所を通じ充填エアが吐出弁体部40、内筒体30へ流入し、余り原料をタンク状のホッパー90に戻すことができる。すなわち、出没部46の外周40bには、原料充填時における充填エアの入口である傾斜穴45とは別に、ブローバック用の充填エアの入口として、軸方向に非貫通の溝47を備えており、二箇所の入口からの充填エアでブローバックを行うことができる。したがって、従来例の原料充填機Eと比較して充填工程での充填エア使用量を大幅に少なくでき、圧縮空気の削減になる。 In this regard, in the raw material filling machine 1 of the present invention, after the raw material filling is completed, the discharge valve body portion 40 moves backward, and in addition to the air used at the time of raw material filling, the inclined hole 45 provided in the discharge valve body portion 40 and another Filled air flows into the discharge valve body 40 and the inner cylindrical body 30 through the two grooves 47 serving as paths, and the surplus material can be returned to the tank-shaped hopper 90 . That is, the outer periphery 40b of the protruding portion 46 is provided with an axially non-penetrating groove 47 as an inlet of filling air for blowback, in addition to the inclined hole 45 which is an inlet of filling air at the time of raw material filling. , the blowback can be done with charging air from two inlets. Therefore, compared with the conventional raw material filling machine E, the amount of filling air used in the filling process can be greatly reduced, resulting in reduction of compressed air.

本発明のような外筒ノズル部20から吐出弁体部40が出没する構造以外の構造の従来例の原料充填機E(図17、図18参照)は、原料充填直後においては金型80へ原料Xを充填する充填口C1部分の原料の過充填、すなわち、密度が異常に高くなる「密の状態C(図18参照)」が起き、その部分に関して金型80蒸気の透過性が悪くなることによる加熱不足、原料Xの高密度による冷却不足で発泡プラスチック100の成形品が不良品になることがあった。 In the conventional raw material filling machine E (see FIGS. 17 and 18) having a structure other than the structure in which the discharge valve element 40 emerges and retracts from the outer cylinder nozzle portion 20 as in the present invention, the mold 80 is filled immediately after the raw material filling. Overfilling of the raw material in the filling port C1 portion where the raw material X is filled, that is, a “dense state C (see FIG. 18)” in which the density is abnormally high occurs, and the vapor permeability of the mold 80 deteriorates with respect to that portion. Due to insufficient heating and insufficient cooling due to the high density of the raw material X, the molded product of the foamed plastic 100 may become defective.

しかし、本発明は原料充填時において吐出弁体部40が発泡プラスチック100成形品の肉厚内に突出しているが、原料Xの充填が終了すると、発泡プラスチック100成形品の外面(裏面)まで吐出弁体部40が没入するため、吐出弁体部40があった部分の原料の充填密度が低い「疎の状態S(図5参照)」となり、次の金型80の加熱工程でこの疎の状態Sの近傍の充填密度の比較的高い部分から疎の状態Sの部分へ原料を補われることにより、発泡プラスチック100成形品の密度が平均化され不良品になることがない。 However, in the present invention, the discharge valve body portion 40 protrudes into the thickness of the foamed plastic 100 molded product at the time of filling the raw material, but when the filling of the raw material X is completed, the discharge valve body portion 40 is discharged to the outer surface (back surface) of the foamed plastic 100 molded product. Since the valve body part 40 is immersed, the filling density of the raw material in the portion where the discharge valve body part 40 was is low, and the raw material is in a "sparse state S (see FIG. 5)". By supplementing the raw material from the relatively high filling density portion near the state S to the sparse state S portion, the density of the foamed plastic 100 molded product is evened out, and the product does not become a defective product.

以上、各実施形態に基づき本発明を説明したが、本発明は、上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、変更を加えてもよいし、各実施形態に記載の技術、または、その他の公知や周知の技術を組み合わせるようにしてもよい。 Although the present invention has been described above based on each embodiment, the present invention is not limited to the above-described embodiments, and modifications may be made without departing from the scope of the present invention. You may make it combine the technique described in a form, or another well-known or well-known technique.

なお、各図において各実施形態を示したが、図を分かり易くする等のために、一部構成を省略、簡略化、透視化した部分を含むため、本発明は図示した実施形態のみに限定されるものではない。 In addition, although each drawing shows each embodiment, the present invention is limited only to the illustrated embodiments because some configurations are omitted, simplified, and transparent for the sake of easy understanding of the drawings. not to be

各実施形態で説明した「連接」は、他の部材を介在させてもよいし、また、一体成形されていてもよい。具体的には、外筒体10と外筒ノズル部20、内筒体30と吐出弁体部40、駆動手段60と圧縮空気導入部50、駆動手段60と原料供給管70が一体成形されていてもよい。 The "connection" described in each embodiment may be interposed by another member, or may be integrally formed. Specifically, the outer cylinder body 10 and the outer cylinder nozzle portion 20, the inner cylinder body 30 and the discharge valve body portion 40, the drive means 60 and the compressed air introduction portion 50, the drive means 60 and the raw material supply pipe 70 are integrally formed. may

外筒ノズル部20の内周径を複数段に異ならせなくても凸部等を備えたり、また、外筒ノズル部20の内周27に別部材等を介在させることにより内周環状段部23と同じ効果を奏する段部を形成してもよい。また、本体部42の外径を出没部46の外径よりも大径とせず凸部等を備えたり、また、外周40bに別部材等を介在させることにより外周環状段部43と同じ効果を奏する段部を形成してもよい。 Even if the inner diameter of the outer cylinder nozzle portion 20 is not varied in a plurality of steps, the inner circumference annular stepped portion can be provided by providing a convex portion or the like, or by interposing a separate member or the like on the inner circumference 27 of the outer cylinder nozzle portion 20. A stepped portion having the same effect as 23 may be formed. In addition, the same effect as that of the outer peripheral annular stepped portion 43 can be obtained by providing a convex portion or the like instead of making the outer diameter of the main body portion 42 larger than the outer diameter of the retractable portion 46, or by interposing a separate member or the like on the outer peripheral portion 40b. You may form the stepped part which plays.

1:発泡プラスチックの原料充填機(原料充填機)
10:外筒体
10a:前端
12:内周
13:外周
15:取付具
20:外筒ノズル部
21:連接部
21a:周溝
22:本体部
22a:吐出口
22b:スリット
23:内周環状段部
25:前端面
27:内周
27a:小径部分
27b:大径部分
28:外周
30:内筒体
30a:前端
30b:後端
32:内周
33:外周
35:流路
40:吐出弁体部
40b:外周
41:連接部
42:本体部
42a:隔壁
43:外周環状段部
44:前端面
45:傾斜穴
46:出没部
47:溝
48:吐出穴
49:周溝
50:圧縮空気導入部
52:充填エア供給口
54:充填空気室
60:駆動手段
60a:本体
61:前動用エア供給口
62:前動用空気室
63:後壁体
65:ピストン体
65a:前端面
65b:後端面
66:後動用エア供給口
67:後動用空気室
68:前壁体
69:クリアランス
70:原料供給管
71:充填口
75:原料供給ホース
80:発泡プラスチック成形用金型(金型)
81:オス型
81b:表面
82:メス型
82a:裏面
82b:表面
83:原料充填口
85:キャビティ
90:ホッパー
91:加圧弁
92:排気弁
100:発泡プラスチック(成形品)
C:密の状態
C1:充填口
C2:出口
E:従来例の原料充填機
S:疎の状態
X:発泡プラスチックの原料(原料)
Y:前動限界位置
Z:後動限界位置

1: Raw material filling machine for foamed plastic (raw material filling machine)
10: Outer cylinder 10a: Front end 12: Inner periphery 13: Outer periphery 15: Mounting tool 20: Outer cylinder nozzle part 21: Connecting part 21a: Circumferential groove 22: Body part 22a: Discharge port 22b: Slit 23: Inner circumference annular step Part 25: Front end surface 27: Inner circumference 27a: Small diameter part 27b: Large diameter part 28: Outer circumference 30: Inner cylindrical body 30a: Front end 30b: Rear end 32: Inner circumference 33: Outer circumference 35: Flow path 40: Discharge valve body part 40b: outer periphery 41: connecting portion 42: main body portion 42a: partition wall 43: outer peripheral annular stepped portion 44: front end surface 45: inclined hole 46: protruding portion 47: groove 48: discharge hole 49: peripheral groove 50: compressed air introduction portion 52 : Filling air supply port 54: Filling air chamber 60: Driving means 60a: Main body 61: Forward air supply port 62: Forward air chamber 63: Rear wall 65: Piston body 65a: Front end surface 65b: Rear end surface 66: Rear Moving air supply port 67: Backward moving air chamber 68: Front wall body 69: Clearance 70: Raw material supply pipe 71: Filling port 75: Raw material supply hose 80: Foamed plastic molding mold (mold)
81: male mold 81b: front surface 82: female mold 82a: back surface 82b: front surface 83: raw material filling port 85: cavity 90: hopper 91: pressure valve 92: exhaust valve 100: plastic foam (molded product)
C: dense state C1: filling port C2: outlet E: conventional raw material filling machine S: sparse state X: raw material of plastic foam (raw material)
Y: Forward movement limit position Z: Backward movement limit position

Claims (5)

発泡プラスチック成形用金型のキャビティ内へ圧縮空気を介して原料を充填する発泡プラスチックの原料充填機であって、
吐出口を開口した外筒ノズル部が前端に連接された外筒体と、
前記外筒体内に前後動可能に収納され、前記外筒ノズル部の前記吐出口から出没自在の吐出弁体部を前端に連接された内筒体と、
前記内筒体の後方が摺動自在に挿通され、かつ、内部をピストン運動するピストン体が嵌着固定された前記内筒体を前後動させる駆動手段と、
一方側が前記駆動手段の前方に連接され、他方側が前記外筒体の後方に挿入固定された圧縮空気導入部と、
前記駆動手段の後方に連接された原料供給管と、を備え、
前記吐出弁体部の外周には、複数の吐出穴及び軸心方向に傾斜する複数の傾斜穴を穿設し、
前記原料供給管から前記内筒体内及び前記吐出弁体部内に圧入供給された前記原料が、前記圧縮空気導入部から前記外筒体内周と前記内筒体外周の隙間内の間に形成した流路を通過し、前記傾斜穴から前記吐出弁体部内に流入される前記圧縮空気を介して、前記外筒ノズル部の前記吐出口から突出された状態の前記吐出弁体部の前記吐出穴から吐出される構成の発泡プラスチックの原料充填機。
A raw material filling machine for foam plastic that fills a raw material into a cavity of a mold for molding foamed plastic via compressed air,
an outer cylindrical body having a front end connected to an outer cylindrical nozzle portion having a discharge port;
an inner cylindrical body that is housed in the outer cylindrical body so as to be movable back and forth, and that has a front end connected to a discharge valve body portion that can be retracted from the discharge port of the outer cylindrical nozzle portion;
a driving means for moving back and forth the inner cylindrical body which is slidably inserted in the rear of the inner cylindrical body and in which a piston body that performs piston movement is fitted and fixed;
a compressed air introduction part having one side connected to the front of the driving means and the other side inserted and fixed to the rear of the outer cylindrical body;
a raw material supply pipe connected to the rear of the driving means,
A plurality of discharge holes and a plurality of inclined holes inclined in the axial direction are bored in the outer periphery of the discharge valve body,
The raw material press-fitted and supplied from the raw material supply pipe into the inner cylindrical body and the discharge valve body forms a flow from the compressed air introduction portion between the outer circumference of the outer cylinder and the outer circumference of the inner cylinder. From the discharge hole of the discharge valve body projecting from the discharge port of the outer cylinder nozzle through the compressed air that passes through the passage and flows into the discharge valve body from the inclined hole. A raw material filling machine for foamed plastics with a discharge configuration.
発泡プラスチック成形用金型のキャビティ内へ圧縮空気を介して原料を充填する発泡プラスチックの原料充填機であって、
吐出口を開口した外筒ノズル部が前端に連接された外筒体と、
前記外筒体内に前後動可能に収納され、前記外筒ノズル部の前記吐出口から出没自在の吐出弁体部を前端に連接された内筒体と、
前記内筒体の後方が摺動自在に挿通され、かつ、内部をピストン運動するピストン体が嵌着固定された前記内筒体を前後動させる駆動手段と、
一方側が前記駆動手段の前方に連接され、他方側が前記外筒体の後方に挿入固定された圧縮空気導入部と、
前記駆動手段の後方に連接された原料供給管と、を備え、
前記吐出弁体部の外周には、複数の吐出穴及び軸心方向に傾斜する複数の傾斜穴を穿設し、軸方向に非貫通の複数の溝を備え、
前記外筒ノズル部の前記吐出口を前記吐出弁体部で封止した状態において、
前記吐出弁体部内及び前記内筒体内に圧入供給された前記原料が、前記圧縮空気導入部から前記外筒体内周と前記内筒体外周の隙間内の間に形成した流路を通過し、前記溝及び前記傾斜穴から前記吐出弁体部内に流入した前記圧縮空気を介して、前記原料供給管側へブローバックされる構成の発泡プラスチックの原料充填機。
A raw material filling machine for foam plastic that fills a raw material into a cavity of a mold for molding foamed plastic via compressed air,
an outer cylindrical body having a front end connected to an outer cylindrical nozzle portion having a discharge port;
an inner cylindrical body that is housed in the outer cylindrical body so as to be movable back and forth, and that has a front end connected to a discharge valve body portion that can be retracted from the discharge port of the outer cylindrical nozzle portion;
a driving means for moving back and forth the inner cylindrical body which is slidably inserted in the rear of the inner cylindrical body and in which a piston body that performs piston movement is fitted and fixed;
a compressed air introduction part having one side connected to the front of the driving means and the other side inserted and fixed to the rear of the outer cylindrical body;
a raw material supply pipe connected to the rear of the driving means,
A plurality of discharge holes and a plurality of inclined holes inclined in the axial direction are formed in the outer periphery of the discharge valve body portion, and a plurality of non-penetrating grooves are provided in the axial direction,
In a state in which the discharge port of the outer cylinder nozzle portion is sealed by the discharge valve body portion,
the raw material press-fitted into the discharge valve body portion and the inner cylindrical body passes from the compressed air introduction portion through a flow path formed between the inner periphery of the outer cylinder and the outer periphery of the inner cylinder; A raw material filling machine for plastic foam, wherein the compressed air flowing into the discharge valve body through the groove and the inclined hole is blown back toward the raw material supply pipe.
前記吐出弁体部の外周に径を複数段に異ならせて外周環状段部を形成し、
前記外筒ノズル部の内周に径を複数段に異ならせて内周環状段部を形成し、
請求項1に記載の前記状態においては、前記外周環状段部と前記内周環状段部が当接状態とされ、
請求項2に記載の前記状態においては、前記外周環状段部と前記内周環状段部が離間状態とされることを特徴とした、請求項1又は請求項2に記載の発泡プラスチックの原料充填機。
forming an outer peripheral annular stepped portion with a plurality of different diameters on the outer periphery of the discharge valve body;
forming an inner circumferential annular stepped portion by varying the diameter in a plurality of steps on the inner circumference of the outer cylinder nozzle portion;
In the state according to claim 1, the outer annular stepped portion and the inner annular stepped portion are in contact with each other,
In the state described in claim 2, the outer peripheral annular stepped portion and the inner peripheral annular stepped portion are separated from each other. machine.
請求項2に記載の前記状態においては、前記外筒ノズル部の前端面と前記吐出弁体部の前端面が略面一となる構成であることを特徴とした、請求項2又は請求項3に記載の発泡プラスチックの原料充填機。
In the state according to claim 2, the front end surface of the outer cylinder nozzle portion and the front end surface of the discharge valve body portion are substantially flush with each other. The raw material filling machine for foamed plastic described in .
請求項2に記載の前記状態においては、前記外筒ノズル部の前端面及び前記吐出弁体部の前端面が、前記発泡プラスチック成形用金型の前記キャビティ側の面と略面一となる構成であることを特徴とした、請求項1乃至請求項4のいずれか1項に記載の発泡プラスチックの原料充填機。

In the state according to claim 2, the front end surface of the outer cylinder nozzle portion and the front end surface of the discharge valve body portion are substantially flush with the cavity-side surface of the plastic foam molding mold. The raw material filling machine for plastic foam according to any one of claims 1 to 4, characterized in that:

JP2021070740A 2021-04-20 2021-04-20 Foam plastic raw material filling machine Active JP6910625B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021070740A JP6910625B1 (en) 2021-04-20 2021-04-20 Foam plastic raw material filling machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021070740A JP6910625B1 (en) 2021-04-20 2021-04-20 Foam plastic raw material filling machine

Publications (2)

Publication Number Publication Date
JP6910625B1 JP6910625B1 (en) 2021-07-28
JP2022165435A true JP2022165435A (en) 2022-11-01

Family

ID=76967709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021070740A Active JP6910625B1 (en) 2021-04-20 2021-04-20 Foam plastic raw material filling machine

Country Status (1)

Country Link
JP (1) JP6910625B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7533909B1 (en) 2024-04-06 2024-08-14 有限会社ベステック Foam plastic raw material filling machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7533909B1 (en) 2024-04-06 2024-08-14 有限会社ベステック Foam plastic raw material filling machine

Also Published As

Publication number Publication date
JP6910625B1 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
US5198177A (en) Method of making a hollow molded product
CN1997496A (en) Injection molding machine and injection molding method
JP2022165435A (en) Raw material filling machine for foamed plastic
KR100350749B1 (en) Production apparatus of expansion-molded article, and production method of expansion-molded article
JPH0549449B2 (en)
JP2013512131A (en) Clamping device
CN108698280B (en) Method for manufacturing the injection moulding apparatus of pipe and for manufacturing pipe
US7914727B2 (en) Method and device for producing a plastic component with an internal hollow space
JP2012153086A (en) Hollow body molding apparatus
JP2008260245A (en) Injection molding die and method of manufacturing foamed molding using it
JPH0796534A (en) Short filler for foam molding machine
KR101913796B1 (en) Raw material supply apparatus of foaming machine
JPH08174551A (en) Raw material filling machine for foam molding machine
JP7533909B1 (en) Foam plastic raw material filling machine
JP3205113B2 (en) Raw material filling equipment in foam molding
JP3302465B2 (en) Raw material filling machine for foam molding
JPH0139328B2 (en)
JP2004209804A (en) Mold for molding foamed molded article and foam molding apparatus using the mold
CN113977845B (en) Injection head valve structure of expected foaming injection machine
CN108290331A (en) Coldplate component for injection molding machine
CN109070417B (en) Method and device for producing a pipe from thermoplastic plastic by injection molding
US9339960B2 (en) Apparatus for injection molding elongated objects
JP6546021B2 (en) Expanded particle packing device
JPH07299835A (en) Pressure fluid introducing and discharge apparatus
JP3249842B2 (en) Raw material filling machine for synthetic resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210420

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210629

R150 Certificate of patent or registration of utility model

Ref document number: 6910625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250