JP2022160093A - 電力変換装置および無接点電力伝送回路 - Google Patents

電力変換装置および無接点電力伝送回路 Download PDF

Info

Publication number
JP2022160093A
JP2022160093A JP2021064623A JP2021064623A JP2022160093A JP 2022160093 A JP2022160093 A JP 2022160093A JP 2021064623 A JP2021064623 A JP 2021064623A JP 2021064623 A JP2021064623 A JP 2021064623A JP 2022160093 A JP2022160093 A JP 2022160093A
Authority
JP
Japan
Prior art keywords
switching
inductor
phase
switching element
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021064623A
Other languages
English (en)
Inventor
宏治 繁内
Koji Shigeuchi
将紀 石垣
Masaki Ishigaki
賢樹 岡村
Sakaki Okamura
義信 杉山
Yoshinobu Sugiyama
豊 田内
Yutaka Tauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2021064623A priority Critical patent/JP2022160093A/ja
Publication of JP2022160093A publication Critical patent/JP2022160093A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

【課題】本発明の目的は、電力変換装置を単純化または小型化することである。【解決手段】第1スイッチング回路10および第2スイッチング回路20は、一端が共通に接続された上スイッチング素子SHおよび下スイッチング素子SLを含むスイッチングアームA1およびA2をそれぞれ備えている。第1スイッチング回路10は、スイッチングアームA1の上スイッチング素子SHおよび下スイッチング素子SLの接続点に一端が接続された1次巻線18を備えている。第2スイッチング回路20は、スイッチングアームA2の上スイッチング素子SHおよび下スイッチング素子SLの接続点に一端が接続された2次巻線22を備えている。1次巻線18の他端には第1直流電源12が接続され、2次巻線22の他端には第2直流電源26が接続されている。【選択図】図1

Description

本発明は、電力変換装置および無接点電力伝送回路に関し、特に、結合する複数のインダクタを用いた電力伝送技術に関する。
バッテリの出力電力を利用する技術、あるいは、バッテリを充電する技術につき広く研究が行われている。例えば、近年では、V2G(Vehicle to Grid)と呼ばれる技術につき研究が行われている。V2Gでは、電気自動車やハイブリッド自動車等の電動車両に搭載されたバッテリから商用電源システム等の電力系統に電力を供給し、電力系統からバッテリに電力を供給する。V2Gに関連する技術として、電動車両に搭載されたバッテリから一般家庭、オフィス等で用いられる電気機器に電力を供給するV2H(Vehicle to Home)と呼ばれる技術もある。
一般に、バッテリを用いる装置では、バッテリから出力された電力を調整して電力供給先の装置に出力し、あるいは、外部から供給された電力を調整してバッテリに出力する電力変換装置が用いられる。電力変換装置には、複数のスイッチング回路に加えて各スイッチング回路を結合させるトランスを用いることで、外部の装置に印加される電圧と、バッテリの出力電圧とを整合させるものがある。また、トランスを用いることで、ユーザが操作する部位をバッテリから絶縁する設計が行われることもある。さらに、トランスの1次巻線が設けられた装置と、トランスの2次巻線が設けられた装置とを個別に構成し、1次巻線側の装置と2次巻線側の装置とをコネクタによって着脱自在としたものもある。
以下の特許文献1~3および非特許文献1~3には、2つのスイッチング回路をトランスによって結合させる電力変換装置が記載されている。特許文献1および2に記載の電力変換装置では、1次巻線を有するコネクタと、2次巻線を有するコネクタとが結合することでトランスが構成される。特許文献3および非特許文献1~3に記載の電力変換装置は、トランスと昇圧用のインダクタを備えており、トランスの1次巻線側から2次巻線側に昇圧を伴う電力伝送を行う。
米国特許5341083号明細書 米国特許公開公報2017/179765号明細書 米国特許10263456号明細書
Hui Li, Fang Zheng Peng and J. S. Lawler, "A natural ZVS medium-power bidirectional DC-DC converter with minimum number of devices," in IEEE Transactions on Industry Applications, vol. 39, no. 2, pp. 525-535, March-April 2003, doi: 10.1109/TIA.2003.808965. R. N. M. de Oliveira, L. C. S. Mazza, D. S. Oliveira and H. M. Oliveira Filho, "A three-port three-phase isolated DC-DC converter feasible to PV connection on a DC distribution system," 2017 Brazilian Power Electronics Conference (COBEP), Juiz de Fora, 2017, pp. 1-6, doi: 10.1109/COBEP.2017.8257272. Wang, Zhan; Li, Hui, "Integrated three-port bidirectional DC-DC converter for renewable energy sources", Patent No. 10263456
特許文献3および非特許文献1~3に記載されているような、トランスに加えて昇圧用のインダクタを備える電力変換装置では、巻線の数が多くなり構造が複雑になってしまうことがある。また、電動車両の分野では、スペースの有効活用という観点から、トランスを含めた電力変換装置の小型化が望まれている。
本発明の目的は、電力変換装置を単純化または小型化することである。
本発明は、第1スイッチング回路と、第2スイッチング回路とを備え、前記第1スイッチング回路および前記第2スイッチング回路のそれぞれは、一端が共通に接続された上スイッチング素子および下スイッチング素子を含むスイッチングアームと、前記上スイッチング素子および前記下スイッチング素子の接続点に一端が接続されたインダクタと、を備え、前記第1スイッチング回路が備える前記インダクタと、前記第2スイッチング回路が備える前記インダクタとが結合し、前記第1スイッチング回路が備える前記インダクタの他端に第1電源または第1負荷が接続され、前記第2スイッチング回路が備える前記インダクタの他端に第2負荷または第2電源が接続されることを特徴とする。
また、本発明は、第1スイッチング回路と、第2スイッチング回路とを備え、前記第1スイッチング回路および前記第2スイッチング回路のそれぞれは、並列接続された複数のスイッチングアームであって、一端が共通に接続された上スイッチング素子および下スイッチング素子を、それぞれが含む複数のスイッチングアームと、各前記スイッチングアームに対応して設けられたインダクタであって、前記上スイッチング素子および前記下スイッチング素子の接続点に一端が接続されたインダクタと、を備え、各前記インダクタの他端が共通に接続されており、前記第1スイッチング回路が備える各前記インダクタと、前記第2スイッチング回路が備える各前記インダクタとが、対応するインダクタ同士で結合し、前記第1スイッチング回路が備える各前記インダクタの他端に共通の第1電源または第1負荷が接続され、前記第2スイッチング回路が備える各前記インダクタの他端に共通の第2負荷または第2電源が接続されることを特徴とする。
また、本発明は、第1スイッチング回路と、第2スイッチング回路とを備え、前記第1スイッチング回路および前記第2スイッチング回路のそれぞれは、並列接続された複数のスイッチングアームであって、一端が共通に接続された上スイッチング素子および下スイッチング素子を、それぞれが含む複数のスイッチングアームと、各前記スイッチングアームに対応して設けられたインダクタであって、前記上スイッチング素子および前記下スイッチング素子の接続点に一端が接続されたインダクタと、を備え、前記第1スイッチング回路が備える各前記インダクタと、前記第2スイッチング回路が備える各前記インダクタとが、対応するインダクタ同士で結合し、前記第1スイッチング回路が備える各前記インダクタの他端に個別に第1電源または第1負荷が接続され、前記第2スイッチング回路が備える各前記インダクタの他端に個別に第2負荷または第2電源が接続されることを特徴とする。
望ましくは、前記第1スイッチング回路が備える各前記インダクタと、前記第2スイッチング回路が備える各前記インダクタとが、相間非干渉トランスを構成する。
また、本発明は、無接点電力伝送回路において、一端が共通に接続された上スイッチング素子および下スイッチング素子を含むスイッチングアームと、前記上スイッチング素子および前記下スイッチング素子の接続点に一端が接続されたインダクタと、を備え、前記インダクタは、外部のスイッチング回路が有する外部インダクタに結合し、前記インダクタの他端に電源または負荷が接続されることを特徴とする。
望ましくは、前記インダクタの他端と、前記上スイッチング素子または前記下スイッチング素子の他端との間に設けられたコンデンサを備える。
望ましくは、前記上スイッチング素子の他端と、前記下スイッチング素子の他端との間に設けられたコンデンサを備える。
望ましくは、前記インダクタの他端と、前記上スイッチング素子の他端との間に設けられた上コンデンサと、前記インダクタの他端と前記下スイッチング素子の他端との間に設けられた下コンデンサと、を備える。
また、本発明は、無接点電力伝送回路において、並列接続された複数のスイッチングアームであって、一端が共通に接続された上スイッチング素子および下スイッチング素子を、それぞれが含む複数のスイッチングアームと、各前記スイッチングアームに対応して設けられたインダクタであって、前記上スイッチング素子および前記下スイッチング素子の接続点に一端が接続されたインダクタと、を備え、各前記インダクタの他端が共通に接続されており、各前記インダクタが、外部のスイッチング回路が有する複数の外部インダクタのうち対応するものに結合し、各前記インダクタの他端に共通の電源または負荷が接続されることを特徴とする。
また、本発明は、無接点電力伝送回路において、並列接続された複数のスイッチングアームであって、一端が共通に接続された上スイッチング素子および下スイッチング素子を、それぞれが含む複数のスイッチングアームと、各前記スイッチングアームに対応して設けられたインダクタであって、前記上スイッチング素子および前記下スイッチング素子の接続点に一端が接続されたインダクタと、を備え、各前記インダクタが、外部のスイッチング回路が有する複数の外部インダクタのうち対応するものに結合し、各前記インダクタの他端に個別に電源または負荷が接続されることを特徴とする。
望ましくは、各前記スイッチングアームおよび各前記インダクタに対応して設けられたコンデンサであって、対応する前記インダクタの他端と、対応する前記上スイッチング素子の他端との間の経路に挿入されたコンデンサを備える。
望ましくは、複数の前記スイッチングアームに対して共通に設けられたコンデンサであって、各前記インダクタの他端と、各前記上スイッチング素子または各前記下スイッチング素子の他端との間に設けられたコンデンサを備える。
望ましくは、複数の前記スイッチングアームに対して共通に設けられたコンデンサであって、各前記上スイッチング素子の他端と、各前記下スイッチング素子の他端との間に設けられたコンデンサを備える。
望ましくは、複数の前記スイッチングアームのそれぞれに対応して設けられた前記インダクタが、相間非干渉巻線構造を構成する。
本発明によれば、電力変換装置を単純化または小型化することができる。
本発明の第1実施形態に係る電力変換装置の構成を示す図である。 トランスがπ型等価回路に置き換えられた電力変換装置を示す図である。 図2に示された等価回路のうち、昇圧動作に寄与する部分を示す図である。 図2に示された等価回路のうち、電力伝送動作に寄与する部分を示す図である。 関連技術に係る電力変換装置の構成を示す図である。 動作波形の概形を示す図である。 本発明の第2実施形態に係る電力変換装置の構成を示す図である。 3相の相間非干渉トランスの構成例を示す図である。 3相の相間非干渉トランスの構成例を示す図である。 変形例に係る電力変換装置の構成を示す図である。 変形例に係る電力変換装置の構成を示す図である。 変形例に係る電力変換装置の構成を示す図である。 変形例に係る電力変換装置の構成を示す図である。 変形例に係る電力変換装置の構成を示す図である。 変形例に係る電力変換装置の構成を示す図である。 4相の相間非干渉トランスの構成例を示す図である。
各図を参照して本発明の各実施形態について説明する。複数の図面に示された同一の事項については同一の符号を付してその説明を省略する。本明細書における上下左右の用語は図面における方向を示す。方向を示すこれらの用語は説明の便宜上のものであり、各構成要素を配置する際の姿勢を限定するものではない。
図1には本発明の第1実施形態に係る電力変換装置1の構成が示されている。電力変換装置1は、磁気的に結合する第1スイッチング回路10および第2スイッチング回路20を備えている。第1スイッチング回路10に接続された第1直流電源12と、第2スイッチング回路20に接続された第2直流電源26との間で双方向に電力が伝送される。
第1直流電源12は、電力事業者が提供する商用電源システム(電源電力系統)に接続されたAC/DCコンバータであってよい。AC/DCコンバータは、商用電源システムから供給される交流電圧を直流電圧に変換し、その直流電圧を出力する。また、第1直流電源12は、二次電池を含む回路であってもよい。第2直流電源26もまた、二次電池を含む回路であってよいし、商用電源システムに接続されたAC/DCコンバータであってよい。第1直流電源12が二次電池を含み、その二次電池が充電される場合には、第1直流電源12は負荷として動作する。同様に、第2直流電源26が二次電池を含み、その二次電池が充電される場合には、第2直流電源26は負荷として動作する。
第1スイッチング回路10は、スイッチングアームA1、1次巻線18、コンデンサC1、正極端子14pおよび負極端子14nを備えている。スイッチングアームA1は、一端が共通に接続された上スイッチング素子SHおよび下スイッチング素子SLによって構成されている。すなわち、スイッチングアームA1は、直列接続された上スイッチング素子SHおよび下スイッチング素子SLによって構成されている。
各スイッチング素子には、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)が用いられてよい。スイッチング素子としてIGBTが用いられる場合、2つのスイッチング素子が直列接続されるとは、一方のエミッタ電極に他方のコレクタ電極が接続されることをいう。スイッチング素子としてMOSFETが用いられる場合、2つのスイッチング素子が直列接続されるとは、一方のソース電極に他方のドレイン電極が接続されることをいう。
スイッチング素子としてIGBTが用いられる場合、IGBTのエミッタ電極にアノード電極が接続され、コレクタ電極にカソード電極が接続されたダイオードをスイッチング素子が備える。スイッチング素子としてMOSFETが用いられる場合、MOSFETのソース電極にアノード電極が接続され、ドレイン電極にカソード電極が接続されたダイオードをスイッチング素子が備える。
1次巻線18の一端は、上スイッチング素子SHおよび下スイッチング素子SLの接続点に接続されている。1次巻線18の他端は正極端子14pに接続されている。コンデンサC1の一端は、上スイッチング素子SHの上端に接続され、コンデンサC1の他端は、1次巻線18の他端、すなわち正極端子14pに接続されている。下スイッチング素子SLの下端は負極端子14nに接続されている。正極端子14pには第1直流電源12の正極端子が接続され、負極端子14nには第1直流電源12の負極端子が接続される。
第2スイッチング回路20は、スイッチングアームA2、2次巻線22、コンデンサC2、正極端子24pおよび負極端子24nを備えている。第2スイッチング回路20は、第1スイッチング回路10と同様の構成を有している。スイッチングアームA2、2次巻線22、コンデンサC2、正極端子24pおよび負極端子24nは、それぞれ、スイッチングアームA1、1次巻線18、コンデンサC1、正極端子14pおよび負極端子14nに対応している。正極端子24pには第2直流電源26の正極端子が接続され、負極端子24nには第2直流電源26の負極端子が接続される。
1次巻線18および2次巻線22は結合し、トランス16を構成する。1次巻線18および2次巻線22は、接近および隔離自在であってよい。1次巻線18および2次巻線22のそれぞれの両端のうち、基準端とされる側には黒点が付されている。1次巻線18の基準端から流入する電流が増加したときには、2次巻線22の基準端を正とする誘導起電力が2次巻線22に発生する。2次巻線22の基準端から流入する電流が増加したときには、1次巻線18の基準端を正とする誘導起電力が1次巻線18に発生する。
このように、第1スイッチング回路10および第2スイッチング回路20のそれぞれは、一端が共通に接続された上スイッチング素子SHおよび下スイッチング素子SLを含むスイッチングアームを備えている。第1スイッチング回路10は、スイッチングアームA1の上スイッチング素子SHおよび下スイッチング素子SLの接続点に一端が接続されたインダクタとしての1次巻線18を備えている。第2スイッチング回路20は、スイッチングアームA2の上スイッチング素子SHおよび下スイッチング素子SLの接続点に一端が接続されたインダクタとしての2次巻線22を備えている。1次巻線18の他端には、第1電源または第1負荷としての第1直流電源12が接続されている。また、2次巻線22の他端には、第2負荷または第2電源としての第2直流電源26が接続されている。
第1スイッチング回路10におけるスイッチングアームA1の上スイッチング素子SHおよび下スイッチング素子SLは交互にオンオフする。すなわち、上スイッチング素子SHがオフからオンに切り替わったときに下スイッチング素子SLはオンからオフに切り替わり、上スイッチング素子SHがオンからオフに切り替わったときに下スイッチング素子SLはオフからオンに切り替わる。同様に、第2スイッチング回路20におけるスイッチングアームA2の上スイッチング素子SHおよび下スイッチング素子SLもまた交互にオンオフする。
第1スイッチング回路10から第2スイッチング回路20に伝送される電力P21は、次のように定まる。すなわち電力P21は、スイッチングアームA1の上スイッチング素子SHのデューティ比D、スイッチングアームA2の上スイッチング素子のデューティ比D、およびスイッチング位相差δによって定まる。ここでデューティ比とは、スイッチング周期に対するオン時間の比率をいう。スイッチング位相差δは、スイッチングアームA1に対するスイッチングアームA2のスイッチング位相の遅れをいう。デューティ比D、Dおよびスイッチング位相差δについては、スイッチング位相差δが正の方向に大きい程、電力P21が大きくなるような数値範囲がある。
図2には、トランス16がπ型等価回路に置き換えられたときの電力変換装置1が示されている。π型等価回路は、シリーズインダクタ28、第1シャントインダクタ281および第2シャントインダクタ282を備えている。コンデンサC1は、直列接続された上コンデンサCP1および下コンデンサCN1に置き換えられている。上コンデンサCP1の上端は上スイッチング素子SHの上端に接続され、下コンデンサCN1の下端は下スイッチング素子SLの下端に接続されている。上コンデンサCP1および下コンデンサCN1の接続点には、正極端子14pが接続されている。同様に、コンデンサC2もまた、直列接続された上コンデンサCP2および下コンデンサCN2に置き換えられている。
上コンデンサCP1および下コンデンサCN1の接続点と、上コンデンサCP2および下コンデンサCN2との接続点との間の上側経路161には、シリーズインダクタ28が挿入されている。第1スイッチング回路10における上スイッチング素子SHおよび下スイッチング素子SLの接続点と、第2スイッチング回路20における上スイッチング素子SHおよび下スイッチング素子SLの接続点との間は下側経路162によって接続されている。シリーズインダクタ28の1次側における上側経路161および下側経路162の間には、第1シャントインダクタ281が接続されている。シリーズインダクタ28の2次側における上側経路161および下側経路162の間には、第2シャントインダクタ282が接続されている。
1次巻線18のインダクタンスと、2次巻線22のインダクタンスとが等しくLであり、1次巻線18と2次巻線22との結合係数をkとした場合、シリーズインダクタ28のインダクタンスは(1-k)L/kである。また、第1シャントインダクタ281および第2シャントインダクタ282のインダクタンスは(1+k)Lである。
図3には、図2に示された等価回路のうち、昇圧動作に寄与する部分を抜き出したものが示されている。スイッチングアームA1のスイッチングによって、第1シャントインダクタ281に誘導起電力が発生する。この誘導起電力および第1直流電源12の出力電圧Vinに基づく昇圧電圧Vboost1が、上コンデンサCP1の上端と下コンデンサCN1の下端との間に印加される。上コンデンサCP1および下コンデンサCN1は、印加された電圧によって充電される。スイッチングアームA2のスイッチングによって、第2シャントインダクタ282に誘導起電力が発生する。この誘導起電力および第2直流電源26の出力電圧Voutに基づく昇圧電圧Vboost2が、上コンデンサCP2の上端と下コンデンサCN2の下端との間に印加される。上コンデンサCP2および下コンデンサCN2は、印加された電圧によって充電される。
図4には、図2に示された等価回路のうち、電力伝送動作に寄与する部分を抜き出したものが示されている。スイッチングアームA1およびA2のスイッチングによって、上側経路161および下側経路162に電流が流れ、上コンデンサCP1および下コンデンサCN1と、上コンデンサCP2および下コンデンサCN2との間で電力が伝送される。
(数1)には、上コンデンサCP1の上端と下コンデンサCN1の下端との間に印加される昇圧電圧Vboost1が、第1直流電源12の出力電圧Vinと、スイッチングアームA1の上スイッチング素子SHのデューティ比Dによって示されている。また、(数2)には、上コンデンサCP2の上端と下コンデンサCN2の下端との間に印加される昇圧電圧Vboost2が、第2直流電源26の出力電圧Voutと、スイッチングアームA2の上スイッチング素子SHのデューティ比Dによって示されている。
Figure 2022160093000002
Figure 2022160093000003
(数3)には、第1スイッチング回路10から第2スイッチング回路20に伝送される電力P21が示されている。
Figure 2022160093000004
ただし、(数3)には、スイッチング位相差δ≧π|D-D|が成立するものとした式が示されている。ωはスイッチングの角周波数である。(数3)に(数1)および(数2)を代入して昇圧電圧Vboost1および昇圧電圧Vboost2を消去すると、(数4)が得られる。
Figure 2022160093000005
デューティ比DおよびDが等しい値Dを有するものとして、(数4)を変形すると(数5)が得られる。
Figure 2022160093000006
電力変換装置には図5に示されるものがある。この電力変換装置100は、図1の第1スイッチング回路10における正極端子14pをコンデンサC1および上スイッチング素子SHの上端に移動し、コンデンサC1の下端と負極端子14nとの間にコンデンサC01を追加したものである。電力変換装置100は、さらに、図1の第2スイッチング回路20における正極端子24pをコンデンサC2および上スイッチング素子SHの上端に移動し、コンデンサC2の下端と負極端子24nとの間にコンデンサC02を追加したものとなっている。この電力変換装置100において、1次側から2次側に伝送される電力Pは(数6)によって示される。
Figure 2022160093000007
(数5)に示される電力P21は、デューティ比Dの調整によって、(数6)に示される電力Pよりも大きくなり得る。例えば、Dを0.5とした場合、(数5)に示される電力P21は、(数6)に示される電力の4倍である。したがって、本実施形態に係る電力変換装置1では、電力変換装置100よりも伝送される電力が大きくなり得る。
図6には、電力変換装置1の動作波形の概形が示されている。ここでは、デューティ比DおよびDが等しくDである場合の結果が示されている。図6における横軸は位相を示す。図6(a)には、ゲート信号G1H、G1L、G2HおよびG2Lが示されている。ゲート信号G1HおよびG1Lは、それぞれ、スイッチングアームA1における上スイッチング素子SHおよび下スイッチング素子SLを制御する。ゲート信号G2HおよびG2Lは、それぞれ、スイッチングアームA2における上スイッチング素子SHおよび下スイッチング素子SLを制御する。ゲート信号がハイのときに制御対象のスイッチング素子はオンになり、ゲート信号がローのときに制御対象のスイッチング素子はオフになる。
図6(b)には、1次巻線18に現れる1次巻線電圧vtr1が示されている。1次巻線電圧vtr1は、Vinと-(1-D)・Vin/Dとを交互に繰り返す。1周期をTとしたときに、1周期のうちDTの時間で値が-(1-D)・Vin/Dとなり、1周期のうち(1―D)Tの時間で値がVinとなる。
図6(c)には、2次巻線22に現れる2次巻線電圧vtr2が示されている。2次巻線電圧vtr2は、Voutと-(1-D)・Vout/Dとを交互に繰り返す。1周期のうちDTの時間で値が-(1-D)・Vout/Dとなり、1周期のうち(1―D)Tの時間で値がVoutとなる。
図6(d)には、第1シャントインダクタ281に流れる昇圧電流iboost1、および第2シャントインダクタ282に流れる昇圧電流iboost2が示されている。昇圧電流iboost1の時間微分値に応じて第1シャントインダクタ281に誘導起電力が発生し、昇圧電流iboost2の時間微分値に応じて第2シャントインダクタ282に誘導起電力が発生する。
図6(e)には、シリーズインダクタ28に流れる伝送電流idcdcが示されている。図6(f)には1次巻線電流itr1、および2次巻線電流itr2が示されている。1次巻線電流itr1は、伝送電流idcdcに昇圧電流iboost1を加えたものであり、2次巻線電流itr2は、伝送電流idcdcから昇圧電流iboost2を減じたものである。第1スイッチング回路10から第2スイッチング回路20へ伝送される電力P21は、1次巻線電流itr1および1次巻線電圧vtr1の積、または2次巻線電流itr2および2次巻線電圧vtr2の積で表される。
第1スイッチング回路10のスイッチング位相に対して、第2スイッチング回路20のスイッチング位相を遅らせることで、第1直流電源12から第2直流電源26に電力が伝送される。ここで、第1スイッチング回路10のスイッチング位相は、スイッチングアームA1の上スイッチング素子SHのスイッチング位相である。第2スイッチング回路20のスイッチング位相は、スイッチングアームA2の上スイッチング素子SHのスイッチング位相である。また、第2スイッチング回路20のスイッチング位相に対して、第1スイッチング回路10のスイッチング位相を遅らせることで、第2直流電源26から第1直流電源12に電力が伝送される。
また、スイッチングアームA1の上スイッチング素子SHのデューティ比Dと、スイッチングアームA2の上スイッチング素子のデューティ比Dを調整することで昇圧比が調整されてよい。昇圧比は、正極端子14pと負極端子14nとの間の電圧Vinに対する、正極端子24pと負極端子24nとの間の電圧Voutの比率である
したがって、デューティ比D、デューティ比D、またはスイッチング位相差δによって、第1直流電源12から第2直流電源26に伝送される電力P21が調整されてよい。すなわち、デューティ比D、デューティ比D、またはスイッチング位相差δによって、第1スイッチング回路10から第2スイッチング回路20に伝送される電力P21が調整されてよい。
1次巻線18および2次巻線22を、接近および隔離自在とした場合、第1スイッチング回路10および第2スイッチング回路20のそれぞれは、無接点コネクタ回路(無接点電力伝送回路)として用いられてよい。すなわち、第1スイッチング回路10および第2スイッチング回路20を、それぞれ、着脱自在な第1筐体および第2筐体に収容することで、1次側の無接点コネクタと2次側の無接点コネクタが構成されてもよい。
1次側の無接点コネクタに含まれる1次巻線(インダクタ)は、2次側の無接点コネクタ回路を外部のスイッチング回路として、外部のスイッチング回路が有する2次巻線(外部インダクタ)に結合する。2次側の無接点コネクタに含まれる2次巻線(インダクタ)は、1次側の無接点コネクタ回路を外部のスイッチング回路として、外部のスイッチング回路が有する1次巻線(外部インダクタ)に結合する。
この場合、第1直流電源12が、第1筐体とは別の筐体に収容され、第1直流電源12から引き出されたケーブルが第1筐体内の第1スイッチング回路10に接続されてもよい。そして、第2直流電源26が、第2筐体とは別の筐体に収容され、第2直流電源26から引き出されたケーブルが第2筐体内の第2スイッチング回路20に接続されてもよい。第1筐体および第2筐体を接近させ、または隔離することで、1次巻線18および2次巻線22が接近し、または隔離される。
なお、第1筐体に1次巻線18を収容し、第1スイッチング回路10のその他の構成要素を、別の筐体に収容してもよい。同様に、第2筐体に2次巻線22を収容し、第2スイッチング回路20のその他の構成要素を、別の筐体に収容してもよい。
本実施形態に係る電力変換装置1によれば、第1スイッチング回路10と第2スイッチング回路20との間で電気的な絶縁を確保しつつ電力を伝送する動作と、電圧を昇圧する動作がトランス16によって実現される。これによって、昇圧リアクトル等を設ける必要がなくなり、回路が単純化または小型化される。
図7には、第2実施形態に係る電力変換装置2の構成が示されている。電力変換装置2は、磁気的に結合する第1三相スイッチング回路40および第2三相スイッチング回路44を備えている。第1三相スイッチング回路40は、スイッチングアームA1u、A1vおよびA1w、コンデンサC1、U相1次巻線42u1、V相1次巻線42v1およびW相1次巻線42w1、正極端子14pおよび負極端子14nを備えている。各スイッチングアームは、直列接続された上スイッチング素子SHおよび下スイッチング素子SLを備えている。スイッチングアームA1u,A1vおよびA1wは並列接続されている。
第1三相スイッチング回路40は、図1に示された第1スイッチング回路10と同様の構成をそれぞれが有する3つの回路を、正極端子14pおよび負極端子14nを共通にして並列に接続したものである。
U相1次巻線42u1の一端は、スイッチングアームA1uにおける上スイッチング素子SHおよび下スイッチング素子SLの接続点に接続されている。V相1次巻線42v1の一端は、スイッチングアームA1vにおける上スイッチング素子SHおよび下スイッチング素子SLの接続点に接続されている。W相1次巻線42w1の一端は、スイッチングアームA1wにおける上スイッチング素子SHおよび下スイッチング素子SLの接続点に接続されている。
U相1次巻線42u1、V相1次巻線42v1およびW相1次巻線42w1のそれぞれの他端は共通に接続され、正極端子14pに接続されている。コンデンサC1の一端は、各上スイッチング素子SHの上端に接続され、コンデンサC1の他端は、各1次巻線の他端、すなわち正極端子14pに接続されている。下スイッチング素子SLの下端は負極端子14nに接続されている。正極端子14pには第1直流電源12の正極端子が接続され、負極端子14nには第1直流電源12の負極端子が接続される。
第2三相スイッチング回路44は、図1に示された第2スイッチング回路20と同様の構成をそれぞれが有する3つの回路を、正極端子24pおよび負極端子24nを共通にして並列に接続したものである。第2三相スイッチング回路44は、スイッチングアームA2u、A2vおよびA2w、コンデンサC2、U相2次巻線42u2、V相2次巻線42v2およびW相2次巻線42w2、正極端子24pおよび負極端子24nを備えている。
第2三相スイッチング回路44は、第1三相スイッチング回路40と同様の構成を有している。第2三相スイッチング回路44のスイッチングアームA2u、A2vおよびA2w、コンデンサC2、U相2次巻線42u2、V相2次巻線42v2およびW相2次巻線42w2、正極端子24pおよび負極端子24nが、それぞれ、第1三相スイッチング回路40のスイッチングアームA1u、A1vおよびA1w、コンデンサC1、U相1次巻線42u1、V相1次巻線42v1およびW相1次巻線42w1、正極端子14pおよび負極端子14nに対応している。正極端子24pには、第2直流電源26の正極端子が接続され、負極端子24nには、第2直流電源26の負極端子が接続される。
U相1次巻線42u1、V相1次巻線42v1およびW相1次巻線42w1は、それぞれ、U相2次巻線42u2、V相2次巻線42v2およびW相2次巻線42w2に結合し、3相トランス42を構成する。
このように、第1三相スイッチング回路40は、並列接続された複数のスイッチングアーム(A1u、A1v、A1w)と、各スイッチングアームに対応して設けられたインダクタとしての1次巻線(42u1、42v1、42w1)とを備えている。第2三相スイッチング回路44は、並列接続された複数のスイッチングアーム(A2u、A2v、A2w)と、各スイッチングアームに対応して設けられたインダクタとしての2次巻線(42u2、42v2、42w2)とを備えている。
各1次巻線の他端は共通に接続されており、第1三相スイッチング回路40が備える各1次巻線と、第2三相スイッチング回路44が備える各2次巻線とが、対応する巻線同士で結合している。第1三相スイッチング回路40が備える各1次巻線の他端には、共通の第1電源または第1負荷としての第1直流電源12が接続されている。第2三相スイッチング回路44が備える各2次巻線の他端には、共通の第2負荷または第2電源としての第2直流電源26が接続されている。
スイッチングアームA1uおよびA2uの対、スイッチングアームA1vおよびA2vの対、ならびにスイッチングアームA1wおよびA2wの対は、図1に示されたスイッチングアームA1およびA2の対と同様の動作を実行する。
スイッチングアームA1vおよびA2vのスイッチング位相は、例えば、スイッチングアームA1uおよびA2uのスイッチング位相に対して120°遅れてよい。スイッチングアームA1wおよびA2wのスイッチング位相は、例えば、スイッチングアームA1vおよびA2vのスイッチング位相に対して120°遅れてよい。このような相間のスイッチング位相差は、必ずしも120°でなくてもよい。
第1三相スイッチング回路40のスイッチング位相に対して、第2三相スイッチング回路44のスイッチング位相を遅らせることで、第1直流電源12から第2直流電源26に電力が伝送され得る。また、第2三相スイッチング回路44のスイッチング位相に対して、第1三相スイッチング回路40のスイッチング位相を遅らせることで、第2直流電源26から第1直流電源12に電力が伝送され得る。
第1三相スイッチング回路40および第2三相スイッチング回路44のそれぞれは、無接点コネクタ回路(無接点電力伝送回路)として用いられてよい。すなわち、第1三相スイッチング回路40および第2三相スイッチング回路44を、それぞれ、着脱自在な第1筐体および第2筐体に収容することで、1次側の無接点コネクタと2次側の無接点コネクタが構成されてもよい。
1次側の無接点コネクタに含まれる各1次巻線(インダクタ)は、2次側の無接点コネクタ回路を外部のスイッチング回路として、外部のスイッチング回路が有する各2次巻線(外部インダクタ)に結合する。2次側の無接点コネクタに含まれる各2次巻線(インダクタ)は、1次側の無接点コネクタ回路を外部のスイッチング回路として、外部のスイッチング回路が有する各1次巻線(外部インダクタ)に結合する。
この場合、第1直流電源12が、第1筐体とは別の筐体に収容され、第1直流電源12から引き出されたケーブルが第1筐体内の第1三相スイッチング回路40に接続されてもよい。そして、第2直流電源26が、第2筐体とは別の筐体に収容され、第2直流電源26から引き出されたケーブルが第2筐体内の第2三相スイッチング回路44に接続されてもよい。第1筐体および第2筐体を接近させ、または隔離することで、各相の1次巻線および2次巻線が接近し、または隔離される。
なお、第1筐体に各相の1次巻線を収容し、第1スイッチング回路10のその他の構成要素を、別の筐体に収容してもよい。同様に、第2筐体に各相の2次巻線を収容し、第2スイッチング回路20のその他の構成要素を、別の筐体に収容してもよい。
3相トランス42には、相間の結合が小さい相間非干渉トランスが用いられてよい。図8には、3相の相間非干渉トランスの構成例が示されている。相間非干渉トランス200は、1次側および2次側の相間非干渉巻線構造として、1次巻線構造71-1および2次巻線構造71-2を備えている。1次巻線構造71-1は、1次コア70-1、U相1次巻線42u1、V相1次巻線42v1およびW相1次巻線42w1を備えている。1次コア70-1は、横方向コア720、第1縦方向コア721~第4縦方向コア724を備えている。横方向コア720および第1縦方向コア721~第4縦方向コア724は角柱状、円柱状等の柱状に形成されている。
横方向コア720は横方向に延びている。第1縦方向コア721は、横方向コア720の左端から上方向に延びている。第2縦方向コア722は、第1縦方向コア721の右側に、第1縦方向コア721との間に所定の間隔を隔てて、横方向コア720から上方向に延びている。第3縦方向コア723は、第2縦方向コア722の右側に、第2縦方向コア722との間に所定の間隔を隔てて、横方向コア720から上方向に延びている。第4縦方向コア724は、第3縦方向コア723の右側に、第3縦方向コア723との間に所定の間隔を隔てて、横方向コア720の右端から上方向に延びている。
2次巻線構造71-2は、1次巻線構造7-1と同様の構成を有し、2次コア70-2、U相2次巻線42u2、V相2次巻線42v2およびW相2次巻線42w2を備えている。ただし、図8に示される例では、2次巻線構造71-2における各巻線の巻き方向は、1次コア70-1および70-2を同一の姿勢にし、基準端から導線を辿って見たときは、1次巻線構造71-1に対して逆方向である。2次巻線構造71-2は、2次コア70-2の第1縦方向コア721~第4縦方向コア724の先端面が、それぞれ、1次コア70-1の第1縦方向コア721~第4縦方向コア724の先端面に、所定のギャップ長を隔てて対向するように配置されている。1次コア70-1における第j縦方向コアと2次コア70-2における第j縦方向コアとの間には、第jギャップGjが形成されている。ただし、jは、1~4の整数である。
なお、1次巻線構造71-1および2次巻線構造71-2は、コアの姿勢を同一として見た場合の巻線の巻き方向を除き同様の構成を有している。そのため、本明細書では1次巻線構造71-1の動作について主に説明し、2次巻線構造71-2の動作についての説明を簡略化または省略する。
U相1次巻線42u1、V相1次巻線42v1およびW相1次巻線42w1は、3相トランス用巻線としての3相1次巻線を構成する。U相2次巻線42u2、V相2次巻線42v2およびW相2次巻線42w2は、3相トランス用巻線としての3相2次巻線を構成する。U相1次巻線42u1、V相1次巻線42v1およびW相1次巻線42w1のそれぞれの両端のうち、基準端とされる側には黒点が付されている。同様に、U相2次巻線42u2、V相2次巻線42v2およびW相2次巻線42w2のそれぞれの両端のうち、基準端とされる側にも黒点が付されている。
U相1次巻線42u1を構成する導線は、第2縦方向コア722の周りを右回りに周回した後、第1縦方向コア721の周りを左周りに周回している。V相1次巻線42v1を構成する導線は、第4縦方向コア724の周りを右回りに周回した後、第3縦方向コア123の周りを左周りに周回している。W相1次巻線42w1を構成する導線は、第3縦方向コア723および第4縦方向コア724の周りを右周りに周回した後、第2縦方向コア722および第1縦方向コア721の周りを左周りに周回している。
このように、U相1次巻線42u1、V相1次巻線42v1およびW相1次巻線42w1のそれぞれを構成する導線は、8の字状に縦方向コアの周りを周回する。各導線は、8の字を描く2つのループのうちの一方のループを1回または複数回に亘って周回した後に、他方のループを1回または複数回に亘って周回してよい。また、各導線は、1つの8の字を1回描いた後に、次の8の字を1回描くという巻き過程が、複数回に亘って繰り返されるように縦方向コアの周りを周回してもよい。
U相1次巻線42u1に電流が流れることで、1次コア70-1の第1縦方向コア721、第1ギャップG1、2次コア70-2の第1縦方向コア721、2次コア70-2の横方向コア720、2次コア70-2の第2縦方向コア122、第2ギャップG2、1次コア70-1の第2縦方向コア722、および1次コア70-1の横方向コア720を通る磁束Φuが発生する。この磁束ΦuによってU相2次巻線42u2に誘導起電力が発生する。
V相1次巻線42v1に電流が流れることで、1次コア70-1の第3縦方向コア723、第3ギャップG3、2次コア70-2の第3縦方向コア723、2次コア70-2の横方向コア720、2次コア70-2の第4縦方向コア724、第4ギャップG4、1次コア70-1の第4縦方向コア724、および1次コア70-1の横方向コア120を通る磁束Φvが発生する。この磁束ΦvによってV相2次巻線42v2に誘導起電力が発生する。
W相1次巻線42w1に電流が流れることで、1次コア70-1の第1縦方向コア721、第1ギャップG1、2次コア70-2の第1縦方向コア721、2次コア70-2の横方向コア120、2次コア70-2の第4縦方向コア724、第4ギャップG4、1次コア70-1の第4縦方向コア724、および1次コア70-1の横方向コア720を通る磁束Φw1が発生する。さらに、1次コア70-1の第2縦方向コア722、第2ギャップG2、2次コア70-2の第2縦方向コア722、2次コア70-2の横方向コア720、2次コア70-2の第3縦方向コア723、第3ギャップG3、1次コア70-1の第3縦方向コア723、および1次コア70-1の横方向コア720を通る磁束Φw2が発生する。これらの磁束Φw1およびΦw2によってW相2次巻線42w2に誘導起電力が発生する。
このような構成によれば、1つの巻線において8の字を描く2つのループのうち一方から発せられる磁束は、他の巻線において8の字を描く2つのループのいずれもくぐらない(いずれにも鎖交しない)か、あるいは、他の巻線の8の字を描く2つのループに鎖交する。8の字を描く2つのループのうち一方のループから発せられる磁束が、他の巻線の8の字を描く2つのループに鎖交する場合、当該他の巻線の2つのループには逆極性の誘導起電力が発生する。そのため、当該他の巻線の端子間に発生する誘導起電力が抑制される。
1つの巻線のループから発せられる磁束によって、他の巻線の2つのループに逆極性の誘導起電力を発生させるという効果が得られる程度は、各巻線の巻き数、各コアの断面積、各ギャップの長さ等によって調整されてよい。
複数相のトランスにおいて相間の結合がある場合、各巻線および各巻線に接続されるスイッチング回路に流れる電流に、理想的な電流との差異が生じ、巻線およびスイッチング回路で発生する損失が大きくなってしまう場合がある。電力変換装置2に相間非干渉トランスを用いることで、各巻線に流れる電流と理想的な電流との差異が生じる現象が抑制され、各巻線、第1三相スイッチング回路40および第2三相スイッチング回路44で発生する電力損失が低減される。
図9には、相間非干渉トランスの構成例が模式的に示されている。相間非干渉トランス202は、図8の相間非干渉トランス200の1次コア70-1および2次コア70-2を変形したものである。相間非干渉トランス202は、1次巻線構造75-1および2次巻線構造75-2を備えている。1次巻線構造75-1は、1次コア74-1、U相1次巻線42u1、V相1次巻線42v1およびW相1次巻線42w1を備えており、2次巻線構造75-2は、2次コア74-2、U相2次巻線42u2、V相2次巻線42v2およびW相2次巻線42w2を備えている。1次コア74-1は、矩形の板状コア600と、板状コア600の四隅から手前側に突出した第1四角柱コア601~第4四角柱コア604から構成されている。板状コア600は、相間非干渉トランス200の横方向コア720に対応し、第1四角柱コア601~第4四角柱コア604は、相間非干渉トランス200の第1縦方向コア721~第4縦方向コア724に対応している。
U相1次巻線42u1が描く8の字における2つのループのうちの一方は第1四角柱コア601の周りを周回し、他方は第2四角柱コア602の周りを周回する。V相1次巻線42v1が描く8の字における2つのループのうちの一方は第3四角柱コア603の周りを周回し、他方は第4四角柱コア604の周りを周回する。W相1次巻線42w1が描く8の字における2つのループのうちの一方は第1四角柱コア601および第2四角柱コア602の周りを周回し、他方は第3四角柱コア603および第4四角柱コア604の周りを周回する。
1次コア74-1および2次コア74-2は、これらの間にある平面に関して対称な構造を有している。2次コア74-2は、矩形の板状コア600と、板状コア600の四隅から奥側に突出した第1四角柱コア601~第4四角柱コア604から構成されている。2次コア74-2における第1四角柱コア601~第4四角柱コア604の先端面は、それぞれ、1次コア74-1における第1四角柱コア601~第4四角柱コア604の先端面に、所定のギャップ長を隔てて対向する。
本実施形態に係る電力変換装置2によれば、第1三相スイッチング回路40と第2三相スイッチング回路44との間で電気的な絶縁を確保しつつ電力を伝送する動作と、電圧を昇圧する動作がトランス16によって実現される。これによって、昇圧リアクトル等を設ける必要がなくなり、回路が単純化または小型化される。
図10には、変形例に係る電力変換装置3の構成が示されている。電力変換装置3は、図1に示された電力変換装置4におけるコンデンサC1およびC2に代えて、スイッチングアームA1の両端に接続されたコンデンサC11およびスイッチングアームA2の両端に接続されたコンデンサC12を設けたものである。
図11には、変形例に係る電力変換装置4の構成が示されている。電力変換装置4は、図1に示された電力変換装置4における2次巻線22の極性を逆とし、下端を基準端としたものである。
図12には、変形例に係る電力変換装置5の構成が示されている。電力変換装置5は、図1に示された電力変換装置1における正極端子14pおよび14nの位置と、コンデンサC1の位置を入れ換え、正極端子24pおよび24nの位置と、コンデンサC2の位置を入れ換えたものである。すなわち、電力変換装置5では、スイッチングアームA1の上端に正極端子14pが接続され、1次巻線18の上端に負極端子14nが接続されている。さらに、負極端子14nとスイッチングアームA1の下端との間にコンデンサC1が接続されている。また、電力変換装置5では、スイッチングアームA2の上端に正極端子24pが接続され、2次巻線22の上端に負極端子24nが接続されている。さらに、負極端子24nとスイッチングアームA2の下端との間にコンデンサC2が接続されている。
図10~図12に示された電力変換装置3~5のスイッチングアームA1およびA2の動作は、図1に示されたスイッチングアームA1およびA2の動作と同様である。また、図10~図12に示された電力変換装置3~5についても、第1スイッチング回路10A~10Cと、第2スイッチング回路20A~10Cのそれぞれは、無接点コネクタ回路として用いられてよい。
図13には、変形例に係る電力変換装置6の構成が示されている。電力変換装置6は、図7に示された電力変換装置2のコンデンサC1を、スイッチングアームA1u、A1vおよびA1wに対応する3相分のコンデンサCu1、Cv1およびCw1に分離したものである。同様に、2次側の回路は、電力変換装置2のコンデンサC2が、スイッチングアームA2u、A2vおよびA2wに対応する3相分のコンデンサCu2、Cv2およびCw2に分離された構成を有している。
コンデンサCu1、Cv1およびCw1は、それぞれ、スイッチングアームA1u、A1vおよびAw1に対応して設けられている。また、コンデンサCu1、Cv1およびCw1は、それぞれ、U相1次巻線42u1、V相1次巻線42v1およびW相1次巻線42w1に対応して設けられている。各コンデンサは、各1次巻線のスイッチングアームとは反対側の一端と、対応するスイッチングアームにおける上スイッチング素子SHの上端との間の経路に挿入されている。同様に、コンデンサCu2、Cv2およびCw2は、それぞれ、スイッチングアームA2u、A2vおよびAw2に対応して設けられている。また、コンデンサCu2、Cv2およびCw2は、それぞれ、U相2次巻線42u2、V相2次巻線42v2およびW相2次巻線42w2に対応して設けられている。各コンデンサは、各2次巻線のスイッチングアームとは反対側の一端と、対応するスイッチングアームにおける上スイッチング素子SHの上端との間の経路に挿入されている。
このように、各相におけるスイッチングアームおよびコンデンサを他の相から独立させた構成では、各相においてデューティ比DおよびDや、1次側と2次側でのスイッチング位相差δが独立に設定されてよい。
図14には、変形例に係る電力変換装置7の構成が示されている。電力変換装置7は、図7に示された電力変換装置2の正極端子14pを、各相の1次巻線に対応するU相端子14u、V相端子14vおよびW相端子14wに分離したものである。U相端子14u、V相端子14vおよびW相端子14wは、それぞれ、U相1次巻線42u1、V相1次巻線42v1およびW相1次巻線42w1のそれぞれにおけるスイッチングアームとは反対側の一端に接続されている。
U相端子14uには、U相直流電源12uの正極端子が接続されている。V相端子14vにはV相直流電源12vの正極端子が接続され、W相端子14wにはW相直流電源12wの正極端子が接続されている。U相直流電源12U、V相直流電源12VおよびW相直流電源12wのそれぞれの負極端子は、負極端子14nに接続されている。
同様に、電力変換装置7では、図7に示された電力変換装置2の正極端子24pが、各相の2次巻線に対応するU相端子24u、V相端子24vおよびW相端子24wに分離されている。U相端子24uには、U相直流電源26uの正極端子が接続されている。V相端子24vにはV相直流電源26vの正極端子が接続され、W相端子24wにはW相直流電源26wの正極端子が接続されている。U相直流電源26U、V相直流電源26VおよびW相直流電源26wのそれぞれの負極端子は、負極端子24nに接続されている。
図13および図14に示された電力変換装置6および7の各スイッチングアームの動作は、図7に示された各スイッチングアームの動作と同様である。また、図13および図14に示された電力変換装置6および7についても、第1三相スイッチング回路46および50と、第2三相スイッチング回路48および52のそれぞれは、無接点コネクタ回路として用いられてよい。
図15には、変形例に係る電力変換装置8の構成が示されている。電力変換装置7は、図7に示された電力変換装置2の第1三相スイッチング回路40および第2三相スイッチング回路44を4相化したものである。スイッチングアームAx1が、各相のスイッチングアームAu1、Av1およびAw1に並列に接続されている。U相、V相およびW相の1次巻線の共通接続端と、スイッチングアームAx1における上スイッチング素子SHおよび下スイッチング素子SLの接続点との間には、X相1次巻線42x1が接続されている。
また、スイッチングアームAx2が、各相のスイッチングアームAu2、Av2およびAw2に並列に接続されている。U相、V相およびW相の2次巻線の共通接続端と、スイッチングアームAx2における上スイッチング素子SHおよび下スイッチング素子SLの接続点との間には、X相2次巻線42x2が接続されている。
スイッチングアームA1vおよびA2vのスイッチング位相は、スイッチングアームA1uおよびA2uに対して90°遅れてよい。スイッチングアームA1wおよびA2wのスイッチング位相は、スイッチングアームA1vおよびA2vに対して90°遅れてよい。スイッチングアームA1xおよびA2xのスイッチング位相は、スイッチングアームA1wおよびA2wに対して90°遅れてよい。このような相間のスイッチング位相差は、必ずしも90°でなくてもよい。
U相、V相、W相およびX相の1次巻線(42u1、42v1、42w1および42x1)は、それぞれ、U相、V相、W相およびX相の2次巻線(42u2、42v2、42w2および42x2)に結合し、4相トランス58を構成する。4相トランス58には相間非干渉トランスが用いられてよい。
第1四相スイッチング回路54と、第2四相スイッチング回路56のそれぞれは、無接点コネクタ回路として用いられてよい。
図16には、4相の相間非干渉トランス204の構成例が示されている。相間非干渉トランス204は、1次側および2次側の相間非干渉巻線構造として、1次巻線構造72-1および2次巻線構造72-2を備えている。1次巻線構造72-1は、1次コア78-1、U相1次巻線42u1、V相1次巻線42v1、W相1次巻線42w1およびX相1次巻線42x1を備えている。1次コア78-1は、横方向コア720、第1縦方向コア721~第5縦方向コア725を備えている。2次巻線構造72-2は、2次コア78-2、U相2次巻線42u2、V相2次巻線42v2、W相2次巻線42w2およびX相2次巻線42x2を備えている。2次コア78-2は、横方向コア720、第1縦方向コア721~第5縦方向コア725を備えている。
相間非干渉トランス204では、図8に示される相間非干渉トランス200について、1次コア70-1および2次コア70-2のそれぞれの横方向コア720を右方向に延長したものが、それぞれ1次コア78-1および2次コア78-2とされている。相間非干渉トランス204では、1次コア78-1および2次コア78-2のそれぞれの右端に、第5縦方向コア725が追加されると共に、X相1次巻線42x1およびX相2次巻線42x2が追加されている。1次コア78-1の第5縦方向コア725は、第4縦方向コア724との間に所定の間隔を隔てて、1次コア78-1の横方向コア720の右端から上方向に延びている。2次コア78-2の第5縦方向コア725は、第4縦方向コア724との間に所定の間隔を隔てて、2次コア78-2の横方向コア720の右端から下方向に延びている。
1次コア78-1の第5縦方向コア725の先端面は、2次コア78-2の第5縦方向コア725の先端面に、所定のギャップ長を隔てて対向している。1次コア78-1における第5縦方向コア725と2次コア18-2における第5縦方向コア725との間には、第5ギャップG5が形成されている。
X相1次巻線42x1を構成する導線は、1次コア78-1の第5縦方向コア725を右周りに周回している。X相2次巻線42x2を構成する導線は、2次コア78-2の第5縦方向コア725を右周りに周回している。
X相1次巻線42x1に電流が流れることによって、2次コア78-2の第5縦方向コア725、第5ギャップG5、および1次コア78-1の第5縦方向コア725を通る磁束Φxが発生し、この磁束ΦxによってX相2次巻線42x2に誘導起電力が発生する。
このような構成によれば、U相1次巻線42u1、V相1次巻線42v1およびW相1次巻線42w1については、1つの巻線において8の字を描く2つのループのうち一方から発せられた磁束は、他の巻線の8の字を描く2つのループのいずれにも鎖交しないか、あるいは、他の巻線において8の字を描く2つのループに鎖交する。8の字を描く2つのループのうち一方のループから発せられる磁束が、他の巻線の8の字を描く2つのループに鎖交する場合、当該他の巻線の2つのループには逆極性の誘導起電力が発生する。そのため、当該他の巻線の端子間に発生する誘導起電力が抑制される。そして、X相1次巻線42x1から発せられた磁束は、他の巻線の8の字を描く2つのループに鎖交する。当該他の巻線の2つのループには逆極性の誘導起電力が発生するため、当該他の巻線の端子間に発生する誘導起電力が抑制される。
したがって、1つの巻線から発生した磁束は、他の巻線の端子間に誘導起電力を発生しないか、この端子間に発生する誘導起電力は微小である。これによって、U相1次巻線42u1、V相1次巻線42v1、W相1次巻線42w1およびX相1次巻線42x1における相互の結合が抑制される。
1つの巻線のループから発せられる磁束によって、他の巻線の2つのループに逆極性の誘導起電力を発生させるという効果が得られる程度は、各巻線の巻き数、各コアの断面積、各ギャップの長さ等によって調整されてよい。
上記では、単相、3相および4相の電力変換装置が示された。電力変換装置は、2相あるいは5相以上の構成としてもよい。この場合、相数に応じた数のスイッチングアーム、巻線およびコンデンサが設けられる。例えば、2相とする場合には、図7に示された電力変換装置2から、スイッチングアームAw1、1次巻線42w1、スイッチングアームAw2および2次巻線42w2が取り除かれる。
5相とする場合には、図15に示された電力変換装置8について、スイッチングアームAu1、Av1、Aw1およびAx1に対して並列に追加のスイッチングアームが接続される。そして、追加のスイッチングアームの上スイッチング素子と下スイッチング素子との接続点と、他の各1次巻線の接続点との間に追加の1次巻線が接続される。2次側についても同様に、スイッチングアームおよび2次巻線が追加される。
1~8,100 電力変換装置、10,10A、10B,10C 第1スイッチング回路、12 第1直流電源、12u,26u U相直流電源、12v,26v V相直流電源、12w,26w W相直流電源、14p,24p 正極端子、14n,24n 負極端子、16 トランス、18 1次巻線、20,20A,20B,20C 第2スイッチング回路、22 2次巻線、26 第2直流電源、28 シリーズインダクタ、281 第1シャントインダクタ、282 第2シャントインダクタ、40,46,50 第1三相スイッチング回路、42 3相トランス、42u1 U相1次巻線、42v1 V相1次巻線、42w1 W相1次巻線、42x1 X相1次巻線、42u2 U相2次巻線、42v2 V相2次巻線、42w2 W相2次巻線、42x2 X相2次巻線、44,48,52 第2三相スイッチング回路、58 4相トランス、200,202,204 相間非干渉トランス、70-1,74-1,78-1 1次コア、70-2,74-2,78-2 2次コア、720 横方向コア、721~725 第1縦方向コア~第5縦方向コア、71-1,72-1,75-1 1次巻線構造、71-2,72-2,75-2 2次巻線構造、600 板状コア、601~604 第1四角柱コア~第4四角柱コア、A1,A2,A1u,A1v,A1w,A2u,A2v,A2w スイッチングアーム、SH 上スイッチング素子、SL 下スイッチング素子、C1,C2,C01、C02,C11,C12,Cu1,Cv1,Cw1,Cu2,Cv2,Cw2 コンデンサ、CP1,CP2 上コンデンサ、CN1,CN2 下コンデンサ。

Claims (14)

  1. 第1スイッチング回路と、第2スイッチング回路とを備え、
    前記第1スイッチング回路および前記第2スイッチング回路のそれぞれは、
    一端が共通に接続された上スイッチング素子および下スイッチング素子を含むスイッチングアームと、
    前記上スイッチング素子および前記下スイッチング素子の接続点に一端が接続されたインダクタと、を備え、
    前記第1スイッチング回路が備える前記インダクタと、前記第2スイッチング回路が備える前記インダクタとが結合し、
    前記第1スイッチング回路が備える前記インダクタの他端に第1電源または第1負荷が接続され、
    前記第2スイッチング回路が備える前記インダクタの他端に第2負荷または第2電源が接続されることを特徴とする電力変換装置。
  2. 第1スイッチング回路と、第2スイッチング回路とを備え、
    前記第1スイッチング回路および前記第2スイッチング回路のそれぞれは、
    並列接続された複数のスイッチングアームであって、一端が共通に接続された上スイッチング素子および下スイッチング素子を、それぞれが含む複数のスイッチングアームと、
    各前記スイッチングアームに対応して設けられたインダクタであって、前記上スイッチング素子および前記下スイッチング素子の接続点に一端が接続されたインダクタと、を備え、
    各前記インダクタの他端が共通に接続されており、
    前記第1スイッチング回路が備える各前記インダクタと、前記第2スイッチング回路が備える各前記インダクタとが、対応するインダクタ同士で結合し、
    前記第1スイッチング回路が備える各前記インダクタの他端に共通の第1電源または第1負荷が接続され、
    前記第2スイッチング回路が備える各前記インダクタの他端に共通の第2負荷または第2電源が接続されることを特徴とする電力変換装置。
  3. 第1スイッチング回路と、第2スイッチング回路とを備え、
    前記第1スイッチング回路および前記第2スイッチング回路のそれぞれは、
    並列接続された複数のスイッチングアームであって、一端が共通に接続された上スイッチング素子および下スイッチング素子を、それぞれが含む複数のスイッチングアームと、
    各前記スイッチングアームに対応して設けられたインダクタであって、前記上スイッチング素子および前記下スイッチング素子の接続点に一端が接続されたインダクタと、を備え、
    前記第1スイッチング回路が備える各前記インダクタと、前記第2スイッチング回路が備える各前記インダクタとが、対応するインダクタ同士で結合し、
    前記第1スイッチング回路が備える各前記インダクタの他端に個別に第1電源または第1負荷が接続され、
    前記第2スイッチング回路が備える各前記インダクタの他端に個別に第2負荷または第2電源が接続されることを特徴とする電力変換装置。
  4. 請求項2または請求項3に記載の電力変換装置において、
    前記第1スイッチング回路が備える各前記インダクタと、前記第2スイッチング回路が備える各前記インダクタとが、相間非干渉トランスを構成することを特徴とする電力変換装置。
  5. 無接点電力伝送回路において、
    一端が共通に接続された上スイッチング素子および下スイッチング素子を含むスイッチングアームと、
    前記上スイッチング素子および前記下スイッチング素子の接続点に一端が接続されたインダクタと、を備え、
    前記インダクタは、外部のスイッチング回路が有する外部インダクタに結合し、
    前記インダクタの他端に電源または負荷が接続されることを特徴とする無接点電力伝送回路。
  6. 請求項5に記載の無接点電力伝送回路において、
    前記インダクタの他端と、前記上スイッチング素子または前記下スイッチング素子の他端との間に設けられたコンデンサを備えることを特徴とする無接点電力伝送回路。
  7. 請求項5に記載の無接点電力伝送回路において、
    前記上スイッチング素子の他端と、前記下スイッチング素子の他端との間に設けられたコンデンサを備えることを特徴とする無接点電力伝送回路。
  8. 請求項5に記載の無接点電力伝送回路において、
    前記インダクタの他端と、前記上スイッチング素子の他端との間に設けられた上コンデンサと、
    前記インダクタの他端と前記下スイッチング素子の他端との間に設けられた下コンデンサと、を備えることを特徴とする無接点電力伝送回路。
  9. 無接点電力伝送回路において、
    並列接続された複数のスイッチングアームであって、一端が共通に接続された上スイッチング素子および下スイッチング素子を、それぞれが含む複数のスイッチングアームと、
    各前記スイッチングアームに対応して設けられたインダクタであって、前記上スイッチング素子および前記下スイッチング素子の接続点に一端が接続されたインダクタと、を備え、
    各前記インダクタの他端が共通に接続されており、
    各前記インダクタが、外部のスイッチング回路が有する複数の外部インダクタのうち対応するものに結合し、
    各前記インダクタの他端に共通の電源または負荷が接続されることを特徴とする無接点電力伝送回路。
  10. 無接点電力伝送回路において、
    並列接続された複数のスイッチングアームであって、一端が共通に接続された上スイッチング素子および下スイッチング素子を、それぞれが含む複数のスイッチングアームと、
    各前記スイッチングアームに対応して設けられたインダクタであって、前記上スイッチング素子および前記下スイッチング素子の接続点に一端が接続されたインダクタと、を備え、
    各前記インダクタが、外部のスイッチング回路が有する複数の外部インダクタのうち対応するものに結合し、
    各前記インダクタの他端に個別に電源または負荷が接続されることを特徴とする無接点電力伝送回路。
  11. 請求項9または請求項10に記載の無接点電力伝送回路において、
    各前記スイッチングアームおよび各前記インダクタに対応して設けられたコンデンサであって、対応する前記インダクタの他端と、対応する前記上スイッチング素子の他端との間の経路に挿入されたコンデンサを備えることを特徴とする無接点電力伝送回路。
  12. 請求項9に記載の無接点電力伝送回路において、
    複数の前記スイッチングアームに対して共通に設けられたコンデンサであって、各前記インダクタの他端と、各前記上スイッチング素子または各前記下スイッチング素子の他端との間に設けられたコンデンサを備えることを特徴とする無接点電力伝送回路。
  13. 請求項9または請求項10に記載の無接点電力伝送回路において、
    複数の前記スイッチングアームに対して共通に設けられたコンデンサであって、各前記上スイッチング素子の他端と、各前記下スイッチング素子の他端との間に設けられたコンデンサを備えることを特徴とする無接点電力伝送回路。
  14. 請求項9から請求項13のいずれか1項に記載の無接点電力伝送回路において、
    複数の前記スイッチングアームのそれぞれに対応して設けられた前記インダクタが、相間非干渉巻線構造を構成することを特徴とする無接点電力伝送回路。
JP2021064623A 2021-04-06 2021-04-06 電力変換装置および無接点電力伝送回路 Pending JP2022160093A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021064623A JP2022160093A (ja) 2021-04-06 2021-04-06 電力変換装置および無接点電力伝送回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021064623A JP2022160093A (ja) 2021-04-06 2021-04-06 電力変換装置および無接点電力伝送回路

Publications (1)

Publication Number Publication Date
JP2022160093A true JP2022160093A (ja) 2022-10-19

Family

ID=83657584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021064623A Pending JP2022160093A (ja) 2021-04-06 2021-04-06 電力変換装置および無接点電力伝送回路

Country Status (1)

Country Link
JP (1) JP2022160093A (ja)

Similar Documents

Publication Publication Date Title
US10873265B2 (en) Bidirectional three-phase direct current (DC)/DC converters
EP3337024B1 (en) Bidirectional resonant conversion circuit and converter
CN113412566B (zh) 包括变压器和多电平功率变换器的集成充电和电机控制系统
US20140268896A1 (en) Reactor Apparatus and Power Converter Using Same
RU2017102579A (ru) Системная архитектура зарядного устройства для акумуляторов на базе устройств питания на основе нитрида галлия
CN106033931B (zh) 双向dc-dc变换器及其控制方法
CN102208242B (zh) 一种磁集成电感及其制作方法和一种无桥pfc电路
CN109874385A (zh) 电力转换系统
CN102403906B (zh) 升压变换器
US9287035B2 (en) Flyback converter using coaxial cable transformer
JP2002509349A (ja) 特にスタッド溶接装置用パワー・スイッチング・レギュレータのパワー・トランス
US8988182B2 (en) Transformers and methods for constructing transformers
CN101860235B (zh) 磁集成变换电路系统
US20220345045A1 (en) Current balancing in power semiconductors of a dc/dc converter
US20160149509A1 (en) Connecting power plants to high voltage networks
US8395469B2 (en) Multi-phase transformer
JP2022160093A (ja) 電力変換装置および無接点電力伝送回路
US11984812B2 (en) Dual active bridge converter cell with split energy transfer inductor for optimized current balancing in the medium frequency transformer (MFT)
JP2023007117A (ja) 無接点電力伝送回路
CN107404230B (zh) 降压型直流转换器
US12027986B2 (en) Magnetic integration of three-phase resonant converter and accessory power supply
US20220224236A1 (en) Magnetic integration of three-phase resonant converter and accessory power supply
US11855550B2 (en) Power supply module
CN217822319U (zh) 一种单绕组电感、耦合电感及电力电子设备
Jo et al. Design Methodology of Bidirectional LLC Resonant Converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240620