JP2022158845A - Insulation wire and wire harness - Google Patents

Insulation wire and wire harness Download PDF

Info

Publication number
JP2022158845A
JP2022158845A JP2021168394A JP2021168394A JP2022158845A JP 2022158845 A JP2022158845 A JP 2022158845A JP 2021168394 A JP2021168394 A JP 2021168394A JP 2021168394 A JP2021168394 A JP 2021168394A JP 2022158845 A JP2022158845 A JP 2022158845A
Authority
JP
Japan
Prior art keywords
flat portion
conductor
low
insulated wire
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021168394A
Other languages
Japanese (ja)
Inventor
芳隆 山田
Yoshitaka Yamada
響真 佐橋
Kyoma Sahashi
豊貴 古川
Toyoki Furukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to US18/281,757 priority Critical patent/US20240312669A1/en
Priority to DE112022001889.5T priority patent/DE112022001889T5/en
Priority to CN202280025221.7A priority patent/CN117121128A/en
Priority to PCT/JP2022/014294 priority patent/WO2022210332A1/en
Publication of JP2022158845A publication Critical patent/JP2022158845A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulated Conductors (AREA)

Abstract

To provide an insulation wire which allows easy processing involving removal of insulation coating while having a flat part where the cross section of a conductor is flat-shaped; and to provide a wire harness with such an insulation wire.SOLUTION: An insulation wire 1 has a conductor 11 obtained by twisting a plurality of single wires, and insulation coating 13 coating an outer periphery of the conductor 11. The insulation wire 1 has a flat part 20 and a low flat part 30 along an axial direction x with each of the single wires constituting the conductor 11 and the insulation coating 13 continuing mutually. The outer shape of the conductor 11 on a cross section orthogonal to the axial direction x of the insulation wire 1, on the flat part 20, has a flat shape, and on the low flat part 30, has a shape with a flatness degree smaller than that of the flat part 20. An adhesion force between the conductor 11 and the insulation coating 13 is smaller than that of the flat part 20 on the low flat part 30.SELECTED DRAWING: Figure 1

Description

本開示は、絶縁電線およびワイヤーハーネスに関する。 The present disclosure relates to insulated wires and wire harnesses.

扁平状の導体を用いて構成したフラットケーブルが公知である。フラットケーブルを用いることで、断面略円形の導体を備えた一般的な電線を用いる場合と比較して、配策の際に占めるスペースを小さくすることができる。 A flat cable constructed using flat conductors is known. By using a flat cable, it is possible to reduce the space occupied during wiring as compared with the case of using a general electric wire having a conductor with a substantially circular cross section.

従来一般のフラットケーブルにおいては、特許文献1,2等に開示されるように、導体として、平角導体がしばしば用いられる。平角導体は、金属の単線を断面四角形に成形したものである。また、出願人らの出願による特許文献3~5には、柔軟性と省スペース性を両立する観点から、複数の素線を撚り合わせた撚線を扁平形状に成形した電線導体が開示されている。 In conventional general flat cables, rectangular conductors are often used as conductors, as disclosed in Patent Documents 1 and 2 and the like. A rectangular conductor is formed by forming a metal single wire into a rectangular cross section. In addition, Patent Documents 3 to 5 filed by the applicants disclose electric wire conductors in which a twisted wire obtained by twisting a plurality of strands is molded into a flat shape from the viewpoint of achieving both flexibility and space saving. there is

特開2014-130739号公報JP 2014-130739 A 特開2019-149242号公報JP 2019-149242 A 国際公開第2019/093309号WO2019/093309 国際公開第2019/093310号WO2019/093310 国際公開第2019/177016号WO2019/177016

特許文献3~5に開示されるように、撚線を扁平形状に成形した導体を備えた扁平電線は、省スペース化と柔軟性の両立に優れたものとなる。しかし、その種の扁平電線に対しては、絶縁被覆を除去するワイヤーストリッパー等の工具、また端末部に取り付ける端子として、従来一般の断面略円形の電線(丸電線)に対して用いられてきたものを、そのまま適用することはできない。また、扁平電線においては、同じ導体断面積の丸電線と比較して、導体の表面積が大きいことに起因して、絶縁被覆と導体の間の密着性が高くなる傾向がある。すると、端子の取り付け等のために、扁平電線の端末部において絶縁被覆を除去する際に、大きな力が必要となる。このように、扁平電線の端末部等において、絶縁被覆の除去を伴う加工を施す際には、困難が伴う場合がある。 As disclosed in Patent Documents 3 to 5, a flat electric wire provided with a conductor formed by flattening a stranded wire is excellent in both space saving and flexibility. However, for flat electric wires of this type, tools such as a wire stripper for removing the insulating coating, and terminals attached to the ends have conventionally been used for general electric wires with a substantially circular cross section (round electric wires). cannot be applied as is. Moreover, flat electric wires tend to have a higher adhesion between the insulating coating and the conductor due to the larger surface area of the conductor compared to the round electric wire having the same conductor cross-sectional area. Then, a large force is required to remove the insulation coating from the end portion of the flat electric wire in order to attach a terminal or the like. As described above, it may be difficult to process the terminal portion of the flat electric wire or the like, which involves removal of the insulating coating.

以上に鑑み、導体の断面が扁平形状になった扁平部を有しながら、絶縁被覆の除去を伴う加工を簡便に行うことができる絶縁電線、およびそのような絶縁電線を備えたワイヤーハーネスを提供することを課題とする。 In view of the above, an insulated wire that has a flat portion with a flattened cross-section of the conductor and can be easily processed with removal of the insulation coating, and a wire harness equipped with such an insulated wire. The task is to

本開示の第一の形態にかかる絶縁電線は、複数の素線が撚り合わせられた導体と、前記導体の外周を被覆する絶縁被覆と、を有する絶縁電線であって、前記導体を構成する前記素線のそれぞれ、および前記絶縁被覆を相互に連続させて、扁平部と、低扁平部と、を軸線方向に沿って有し、前記絶縁電線の軸線方向に直交する断面における前記導体の外形が、前記扁平部において、扁平形状をとり、かつ前記低扁平部において、前記扁平部よりも扁平度の小さい形状をとり、前記導体と前記絶縁被覆の間の密着力が、前記低扁平部において、前記扁平部よりも小さくなっている。 An insulated wire according to a first embodiment of the present disclosure is an insulated wire including a conductor in which a plurality of strands are twisted together, and an insulating coating covering an outer periphery of the conductor, wherein the conductor comprises the Each of the strands of wire and the insulating coating are connected to each other to have a flat portion and a low flat portion along the axial direction, and the outer shape of the conductor in a cross section orthogonal to the axial direction of the insulated wire is , the flat portion has a flat shape, and the low flat portion has a shape with a smaller degree of flatness than the flat portion, and the adhesion between the conductor and the insulating coating is such that in the low flat portion, It is smaller than the flat portion.

本開示の第二の形態にかかる絶縁電線は、複数の素線が撚り合わせられた導体を扁平形状に圧縮し、外周を絶縁被覆で被覆して絶縁電線とした後、前記絶縁電線の軸線方向に沿って一部の領域において、前記扁平形状の幅方向外側から内側に向かって力を加えて、前記導体の扁平度を低下させることで、低扁平部を形成するとともに、前記低扁平部とした領域以外を、扁平部として残して製造されるものである。 In the insulated wire according to the second embodiment of the present disclosure, a conductor in which a plurality of strands are twisted is compressed into a flat shape, and the outer periphery is covered with an insulating coating to form an insulated wire, and then in the axial direction of the insulated wire. A force is applied from the outside in the width direction of the flat shape toward the inside in a partial region along the flat shape to reduce the flatness of the conductor, thereby forming a low flat portion and the low flat portion. It is manufactured by leaving the area other than the flattened area as a flat portion.

本開示の第三の形態にかかる絶縁電線は、複数の素線が撚り合わせられた導体の外周を絶縁被覆で被覆して絶縁電線とした後、前記絶縁電線の軸線方向に沿って一部の領域において、相互に対向する方向から前記絶縁電線を圧縮する力を加えて、前記導体の扁平度を上昇させることで、扁平部を形成するとともに、前記扁平部とした領域以外を、低扁平部として残して製造されるものである。 The insulated wire according to the third embodiment of the present disclosure is an insulated wire formed by covering the outer periphery of a conductor in which a plurality of wires are twisted with an insulating coating, and then partially extending along the axial direction of the insulated wire. In the region, a flat portion is formed by increasing the flatness of the conductor by applying a force to compress the insulated wire from directions facing each other, and the region other than the flat portion is a low flat portion It is manufactured by leaving as

本開示のワイヤーハーネスは、前記絶縁電線を含む。 A wire harness of the present disclosure includes the insulated wire.

本開示にかかる絶縁電線およびワイヤーハーネスは、導体の断面が扁平形状になった扁平部を有しながら、絶縁被覆の除去を伴う加工を簡便に行うことができる絶縁電線、およびそのような絶縁電線を備えたワイヤーハーネスとなる。 The insulated wire and the wire harness according to the present disclosure are an insulated wire that can be easily processed by removing the insulation coating while having a flat portion in which the cross section of the conductor is flat, and such an insulated wire. It becomes a wire harness with

図1A~1Cは、本開示の一実施形態にかかる絶縁電線を示す概略図である。図1Aは斜視図である。図1Bは図1A中のA-A断面に相当する扁平部、図1Cは図1A中のB-B断面に相当する低扁平部を表示する断面図である。各図において、導体を構成する素線は省略している。1A-1C are schematic diagrams illustrating an insulated wire according to one embodiment of the present disclosure. FIG. 1A is a perspective view. 1B is a cross-sectional view showing a flat portion corresponding to the AA cross section in FIG. 1A, and FIG. 1C is a cross-sectional view showing a low flat portion corresponding to the BB cross section in FIG. 1A. In each figure, the strands constituting the conductor are omitted. 図2A,2Bはそれぞれ、上記実施形態にかかる絶縁電線の扁平部および低扁平部を示す断面図である。2A and 2B are cross-sectional views respectively showing a flat portion and a low flat portion of the insulated wire according to the embodiment. 図3は、扁平部として、扁平方向の異なる複数の領域を有する絶縁電線を示す概略図である。図3Aは斜視図である。図3Bは図3A中のC-C断面に相当する第一の領域およびE-E断面に相当する第三の領域を示す断面図である。図3Cは図3A中のD-D断面に相当する第二の領域を表示する断面図である。各図において、導体を構成する素線は省略している。FIG. 3 is a schematic diagram showing an insulated wire having a plurality of regions with different flattening directions as flattened portions. FIG. 3A is a perspective view. FIG. 3B is a cross-sectional view showing the first region corresponding to the CC cross section and the third region corresponding to the EE cross section in FIG. 3A. FIG. 3C is a cross-sectional view showing the second area corresponding to the DD cross section in FIG. 3A. In each figure, the strands constituting the conductor are omitted. 図4は、上記実施形態にかかる絶縁電線の製造方法を説明する図である。FIG. 4 is a diagram for explaining the method of manufacturing the insulated wire according to the above embodiment. 図5は、本開示の別の実施形態にかかる絶縁電線の製造方法を説明する図である。FIG. 5 is a diagram illustrating a method of manufacturing an insulated wire according to another embodiment of the present disclosure. 図6A,6Bは、それぞれ試料1および試料2の扁平部と低扁平部について、断面画像と各種評価の結果をまとめた表である。6A and 6B are tables summarizing cross-sectional images and various evaluation results for the flat portion and low flat portion of Sample 1 and Sample 2, respectively.

[本開示の実施形態の説明]
最初に本開示の実施形態を列記して説明する。
本開示の第一の形態にかかる絶縁電線は、複数の素線が撚り合わせられた導体と、前記導体の外周を被覆する絶縁被覆と、を有する絶縁電線であって、前記導体を構成する前記素線のそれぞれ、および前記絶縁被覆を相互に連続させて、扁平部と、低扁平部と、を軸線方向に沿って有し、前記絶縁電線の軸線方向に直交する断面における前記導体の外形が、前記扁平部において、扁平形状をとり、かつ前記低扁平部において、前記扁平部よりも扁平度の小さい形状をとり、前記導体と前記絶縁被覆の間の密着力が、前記低扁平部において、前記扁平部よりも小さくなっている。
[Description of Embodiments of the Present Disclosure]
First, the embodiments of the present disclosure will be listed and described.
An insulated wire according to a first embodiment of the present disclosure is an insulated wire including a conductor in which a plurality of strands are twisted together, and an insulating coating covering an outer periphery of the conductor, wherein the conductor comprises the Each of the strands of wire and the insulating coating are connected to each other to have a flat portion and a low flat portion along the axial direction, and the outer shape of the conductor in a cross section orthogonal to the axial direction of the insulated wire is , the flat portion has a flat shape, and the low flat portion has a shape with a smaller degree of flatness than the flat portion, and the adhesion between the conductor and the insulating coating is such that in the low flat portion, It is smaller than the flat portion.

上記絶縁電線は、導体が扁平形状となった扁平部と、扁平度の小さい形状をとる低扁平部とを連続して有している。低扁平部は、扁平部と比較して、断面形状が、従来一般の丸電線に近いため、絶縁被覆の除去、および端子をはじめとする外部の部材の取り付け等の加工を行う際に、低扁平部に対してそれらの加工を行うようにすれば、ワイヤーストリッパー等の工具や、端子等の外部の部材として、従来一般に丸電線に対して使用されているものを適用しやすい。さらに、導体と絶縁被覆の間の密着力が、低扁平部において扁平部よりも小さくなっていることで、低扁平部において、絶縁被覆の除去を小さな力で行うことができる。このように、扁平部による省スペース性向上の効果を得ながら、低扁平部に対して加工を施すようにすることで、絶縁被覆の除去を伴う絶縁電線の加工を、簡便に行うことができる。扁平部においては、絶縁被覆が導体に大きな密着力で密着しているので、低扁平部において密着力が小さくなっていても、絶縁電線全体として、絶縁被覆と導体の間での位置ずれが発生するのを抑制し、また、通電時に、絶縁被覆を介した導体からの放熱性も確保することができる。 The insulated wire has a flat portion in which the conductor has a flat shape and a low-flat portion in which the flatness is small. Compared to the flat part, the low flat part has a cross-sectional shape that is closer to that of a conventional round electric wire. By performing these processes on the flat portion, it is easy to apply tools such as wire strippers and external members such as terminals that are conventionally used for round electric wires. Furthermore, since the adhesion force between the conductor and the insulating coating is smaller in the low flat portion than in the flat portion, the insulating coating can be removed with a small force in the low flat portion. In this way, by performing processing on the low flat portion while obtaining the effect of improving space saving by the flat portion, it is possible to easily perform processing of the insulated wire that involves removal of the insulation coating. . In the flat part, the insulation coating adheres to the conductor with a large adhesive force, so even if the adhesion strength is small in the low flat part, the positional deviation between the insulation coating and the conductor occurs as a whole insulated wire. In addition, heat dissipation from the conductor through the insulating coating can be ensured during energization.

このように、扁平部と低扁平部をともに有し、かつ低扁平部において導体と絶縁被覆の間の密着力が小さくなった絶縁電線は、扁平形状の導体の外周に絶縁被覆を形成した扁平電線の一部の領域において、導体を扁平形状の幅方向外側から圧縮するように力を加えて変形させることで導体の扁平度を下げ、低扁平部を形成するという方法により、簡便に製造することができる。あるいは、丸電線等、扁平度の小さい導体の外周に絶縁被覆を形成した低扁平電線の一部の領域において、相互に対向する方向から圧縮するように力を加えて変形させることで導体の扁平度を上げ、扁平部を形成するという方法でも、そのような絶縁電線を簡便に製造することができる。 In this way, an insulated wire having both a flat portion and a low flat portion, and in which the adhesive force between the conductor and the insulation coating is reduced in the low flat portion is a flat conductor with an insulation coating formed on the outer periphery of the flat conductor. In a part of the electric wire, a force is applied to compress the conductor from the outside in the width direction of the flat shape to deform the conductor, thereby lowering the flatness of the conductor and forming a low-flat portion. be able to. Alternatively, in a part of a low-flat electric wire, such as a round electric wire, in which an insulating coating is formed on the outer periphery of a conductor with a small flatness, a force is applied so as to compress the conductor from a direction facing each other to deform it, thereby flattening the conductor. Such an insulated wire can be easily manufactured by a method of increasing the strength and forming a flat portion.

ここで、前記導体と前記絶縁被覆の間の密着力が、前記低扁平部において、扁平部と比較して20%以上小さくなっているとよい。すると、低扁平部において、絶縁被覆の除去を特に容易に行えるようになる。 Here, it is preferable that the adhesion force between the conductor and the insulating coating is 20% or more smaller in the low flat portion than in the flat portion. Then, the insulating coating can be removed particularly easily in the low flat portion.

前記断面における前記絶縁被覆の内周に囲まれた領域の面積のうち、素線に占められない空隙の割合である空隙率が、前記低扁平部において前記扁平部よりも大きいとよい。低扁平部において、導体と絶縁被覆の間に形成される空隙は、導体と絶縁被覆の間の密着力を低減するものとなる。また、そのように導体と絶縁被覆の間に形成された空隙、および導体を構成する素線の間に形成された空隙は、低扁平部の柔軟性を高めるものとなる。よって、低扁平部の空隙率が扁平部よりも大きくなっていることで、低扁平部における絶縁被覆の剥離容易性および柔軟性を、効果的に高めることができる。低扁平部において扁平部よりも空隙率が大きくなった絶縁電線は、扁平電線に力を加えて低扁平部を形成する形態により、製造しやすい。 It is preferable that a porosity, which is a ratio of voids not occupied by wires, to the area of the region surrounded by the inner circumference of the insulating coating in the cross section is larger in the low flat portion than in the flat portion. In the low-flat portion, the gap formed between the conductor and the insulating coating reduces the adhesion between the conductor and the insulating coating. In addition, the voids formed between the conductor and the insulating coating and the voids formed between the strands of the conductor increase the flexibility of the low-flat portion. Therefore, since the porosity of the low flat portion is larger than that of the flat portion, it is possible to effectively improve the peelability and flexibility of the insulating coating in the low flat portion. An insulated wire in which the low flat portion has a higher porosity than the flat portion can be easily manufactured by applying force to the flat electric wire to form the low flat portion.

この場合に、前記断面における空隙率が、前記低扁平部において、前記扁平部と比較して20%以上大きくなっているとよい。すると、低扁平部における剥離容易性および柔軟性を、特に効果的に高めることができる。 In this case, the porosity in the cross section is preferably 20% or more higher in the low flat portion than in the flat portion. As a result, the ease of peeling and the flexibility of the low-flat portion can be particularly effectively enhanced.

前記低扁平部の前記断面において、前記扁平形状の幅方向および高さ方向に対応する方向に沿って、前記導体の外側の領域を、それぞれ、幅方向導体外領域および高さ方向導体外領域として、前記幅方向導体外領域において、前記導体と前記絶縁被覆との間に、前記高さ方向導体外領域よりも大きな空隙が形成されているとよい。上記のように、導体と絶縁被覆の間に形成される空隙は、導体と絶縁被覆の間の密着力を低減するものとなる。扁平電線に幅方向外側から力を加えて低扁平部を形成する場合に、低扁平部において、導体の幅方向の寸法が小さくなる分、幅方向導体外領域において、導体と絶縁被覆との間に、空隙が形成されやすい。 In the cross section of the low-flat portion, regions outside the conductor along directions corresponding to the width direction and the height direction of the flat shape are defined as a width direction outside conductor region and a height direction outside conductor region, respectively. Preferably, in the width direction outside conductor region, a gap larger than that in the height direction outside conductor region is formed between the conductor and the insulating coating. As described above, the gap formed between the conductor and the insulating coating reduces the adhesion between the conductor and the insulating coating. When a force is applied to the flat electric wire from the outside in the width direction to form the low flat portion, in the low flat portion, the dimension of the conductor in the width direction is reduced, so that in the width direction outside conductor area, there is a gap between the conductor and the insulation coating. voids are likely to form.

前記断面において、前記扁平部と前記低扁平部との間における前記絶縁被覆の内周の長さの差が、前記扁平部における前記絶縁被覆の内周の長さの5%以下であるとよい。扁平電線に力を加えて変形させて、低扁平部を形成する際には、絶縁被覆の内周面によって絶縁被覆の内周の長さの変化が制限される。よって、扁平部と低扁平部とで、絶縁被覆の内周の長さの差が、扁平部における絶縁被覆の内周の長さの5%以下に抑えられた絶縁電線は、扁平電線を原料として、簡便に製造できるものとなる。 In the cross section, the difference in length of the inner periphery of the insulating coating between the flat portion and the low flat portion is preferably 5% or less of the length of the inner periphery of the insulating coating in the flat portion. . When the flat electric wire is deformed by applying force to form the low flat portion, the change in length of the inner circumference of the insulating coating is restricted by the inner peripheral surface of the insulating coating. Therefore, an insulated wire in which the difference in the length of the inner circumference of the insulating coating between the flat portion and the low flat portion is suppressed to 5% or less of the length of the inner circumference of the insulating coating in the flat portion is made from the flat electric wire. As such, it can be manufactured easily.

前記絶縁電線は、前記扁平部として、前記扁平形状の方向が異なる複数の領域を有してもよい。扁平部は、扁平形状の高さ方向への曲げにおいて、高い柔軟性を示す。そこで、絶縁電線において、扁平部として、扁平形状の方向が異なる複数の領域を設けておけば、それぞれの領域が、それぞれの扁平形状の高さ方向に曲がりやすくなるので、単一の絶縁電線の中に、曲がりやすい方向が異なる複数の部位を形成することができる。例えば、絶縁電線が、三次元的な配策等、複雑な形状への曲げを要する場合に、絶縁電線の部位ごとに、曲げたい方向に扁平形状の高さ方向が向くように、複数の領域を設定して扁平部を形成しておけば、複雑な形状であっても、電線を無理なく曲げることができる。 The insulated wire may have, as the flattened portion, a plurality of regions having different flattened directions. The flat portion exhibits high flexibility in bending in the height direction of the flat shape. Therefore, if the insulated wire is provided with a plurality of regions having different flattened directions as the flattened portions, each region can be easily bent in the height direction of each flattened shape, so that a single insulated wire can be formed. A plurality of portions having different bending directions can be formed inside. For example, when an insulated wire needs to be bent into a complicated shape such as for three-dimensional routing, for each part of the insulated wire, multiple regions are formed so that the height direction of the flat shape faces the direction you want to bend. is set to form a flat portion, the wire can be bent without difficulty even if it has a complicated shape.

前記絶縁電線は、軸線方向に沿って、前記扁平部の少なくとも片側に、前記低扁平部を有するとよい。端末部等、扁平電線の少なくとも片側に低扁平部を設けた絶縁電線は、扁平部の省スペース性を配策に活用しながら、低扁平部を利用して、絶縁被覆の除去、および端子やコネクタの取り付け等の加工を、簡便に行うことができる。扁平度が低い断面形状を有する低扁平部に対してそれらの加工を行うことで、端子やコネクタとして、扁平部の形状に合わせた扁平なものを用いる必要も生じない。 The insulated wire preferably has the low flat portion on at least one side of the flat portion along the axial direction. An insulated wire with a low flat part on at least one side of the flat wire, such as a terminal part, utilizes the space-saving properties of the flat part for wiring, and uses the low flat part to remove insulation coating, terminals, etc. Processing such as attachment of a connector can be easily performed. By processing the low flat portion having a cross-sectional shape with low flatness, there is no need to use a flat terminal or connector that matches the shape of the flat portion.

本開示の第二の形態にかかる絶縁電線は、複数の素線が撚り合わせられた導体を扁平形状に圧縮し、外周を絶縁被覆で被覆して絶縁電線とした後、前記絶縁電線の軸線方向に沿って一部の領域において、前記扁平形状の幅方向外側から内側に向かって力を加えて、前記導体の扁平度を低下させることで、低扁平部を形成するとともに、前記低扁平部とした領域以外を、扁平部として残して製造されるものである。 In the insulated wire according to the second embodiment of the present disclosure, a conductor in which a plurality of strands are twisted is compressed into a flat shape, and the outer periphery is covered with an insulating coating to form an insulated wire, and then in the axial direction of the insulated wire. A force is applied from the outside in the width direction of the flat shape toward the inside in a partial region along the flat shape to reduce the flatness of the conductor, thereby forming a low flat portion and the low flat portion. It is manufactured by leaving the area other than the flattened area as a flat portion.

上記第二の形態にかかる絶縁電線においては、扁平形状の導体を絶縁被覆で被覆した扁平電線に対して、幅方向外側から力を加えて導体を圧縮する操作を経ることで、低扁平部において、導体と絶縁被覆の間の密着力が小さくなる。そのため、低扁平部において、扁平度の低さ自体による効果と合わせて、絶縁被覆の除去を伴う加工を行いやすくなる。よって、扁平部による省スペース性と、低扁平部における加工容易性の両方に優れた絶縁電線となる。さらに、扁平電線に幅方向外側から力を加えて導体を圧縮する操作により、低扁平部において、絶縁被覆の内側の領域に、素線に占められない空隙が形成されやすい。そのような空隙は、低扁平部において、導体と絶縁被覆の間の密着力の低減、および柔軟性の向上に高い効果を示す。 In the insulated wire according to the second embodiment, the flat electric wire in which the flat conductor is covered with an insulating coating is subjected to an operation of compressing the conductor by applying force from the outside in the width direction, so that the low flat portion , the adhesion between the conductor and the insulation coating is reduced. Therefore, in the low-flat portion, it becomes easier to perform processing involving removal of the insulation coating, in combination with the effect of the low flatness itself. Therefore, the insulated wire is excellent in both space saving properties due to the flattened portion and ease of processing in the low flattened portion. Furthermore, the operation of applying force to the flat wire from the outside in the width direction to compress the conductor tends to form a void not occupied by the wires in the region inside the insulation coating in the low flat portion. Such voids are highly effective in reducing adhesion between the conductor and the insulating coating and improving flexibility in the low-flat portion.

本開示の第三の形態にかかる絶縁電線は、複数の素線が撚り合わせられた導体の外周を絶縁被覆で被覆して絶縁電線とした後、前記絶縁電線の軸線方向に沿って一部の領域において、相互に対向する方向から前記絶縁電線を圧縮する力を加えて、前記導体の扁平度を上昇させることで、扁平部を形成するとともに、前記扁平部とした領域以外を、低扁平部として残して製造されるものである。 The insulated wire according to the third embodiment of the present disclosure is an insulated wire formed by covering the outer periphery of a conductor in which a plurality of wires are twisted with an insulating coating, and then partially extending along the axial direction of the insulated wire. In the region, a flat portion is formed by increasing the flatness of the conductor by applying a force to compress the insulated wire from directions facing each other, and the region other than the flat portion is a low flat portion It is manufactured by leaving as

上記第三の形態にかかる絶縁電線も、扁平度の低い絶縁電線を相互に対向する方向から圧縮する操作を経ることで、低扁平部において、扁平部よりも、導体と絶縁被覆の間の密着力が小さくなる。そのため、低扁平部において、扁平度の低さ自体による効果と合わせて、絶縁被覆の除去を伴う加工を行いやすくなっている。よって、扁平部による省スペース性と、低扁平部における加工容易性の両方に優れた絶縁電線となる。丸電線等、扁平度の低い導体を有する絶縁電線に力を加えて変形させて扁平部を形成することで、低扁平部と扁平部を一体に備えた絶縁電線を、汎用的な絶縁電線を原料として、簡便に形成することができる。 In the insulated wire according to the third form as well, the insulated wires with low flatness are compressed from the directions facing each other, so that the adhesion between the conductor and the insulation coating is reduced at the low flat portion rather than at the flat portion. power becomes smaller. Therefore, in the low-flat portion, it is easy to perform the processing accompanied by the removal of the insulating coating in combination with the effect of the low flatness itself. Therefore, the insulated wire is excellent in both space saving properties due to the flattened portion and ease of processing in the low flattened portion. By applying force to an insulated wire that has a conductor with low flatness such as a round wire and deforming it to form a flattened portion, an insulated wire that integrates a low flattened portion and a flattened portion can be converted into a general-purpose insulated wire. As a raw material, it can be easily formed.

本開示にかかるワイヤーハーネスは、本開示にかかる前記絶縁電線を含む。上記のように、本開示にかかる絶縁電線は、扁平部が高い省スペース性と柔軟性を示すとともに、低扁平部において、絶縁被覆の除去を伴う加工を簡便に行うことができる。ワイヤーハーネス全体としても、それらの特性を利用し、自動車内等、スペースが限られた箇所において、機器間の接続等の用途に、好適に利用することができる。 A wire harness according to the present disclosure includes the insulated wire according to the present disclosure. As described above, in the insulated wire according to the present disclosure, the flat portion exhibits high space saving properties and flexibility, and the low flat portion can be easily processed to remove the insulating coating. The wire harness as a whole can also be suitably used for applications such as connection between devices in places where space is limited, such as in automobiles, by utilizing these characteristics.

[本開示の実施形態の詳細]
以下に、本開示の実施形態にかかる絶縁電線およびワイヤーハーネスについて、図面を用いて詳細に説明する。本明細書において、絶縁電線の各部の形状に関して、直線、平行、垂直等、部材の形状や配置を示す概念には、長さにして概ね±15%程度、また角度にして概ね±15°程度のずれ等、この種の絶縁電線において許容される範囲で、幾何的な概念からの誤差を含むものとする。本明細書において、絶縁電線や導体の断面とは、特記しない限り、軸線方向(長手方向)に垂直に切断した断面を示すものとする。
[Details of the embodiment of the present disclosure]
Insulated wires and wire harnesses according to embodiments of the present disclosure will be described in detail below with reference to the drawings. In this specification, regarding the shape of each part of the insulated wire, the concept of the shape and arrangement of the member, such as straight, parallel, and vertical, is approximately ±15% in length and approximately ±15° in angle. Errors from the geometrical concept are included within the allowable range for this type of insulated wire, such as deviation of In this specification, unless otherwise specified, the cross section of an insulated wire or conductor indicates a cross section taken perpendicularly to the axial direction (longitudinal direction).

<絶縁電線の概略>
図1Aに、本開示の一施形態にかかる絶縁電線1を斜視図にて表示する。また、図1B,1Cに、それぞれ図1A中のA-A線およびB-B線にて切断した断面図を簡略化して示す。さらに、図2Aおよび図2Bに、それぞれ、図1Bに対応する扁平部、および図1Cに対応する低扁平部の断面を詳細に表示する。
<Overview of insulated wire>
FIG. 1A shows a perspective view of an insulated wire 1 according to an embodiment of the present disclosure. 1B and 1C are simplified cross-sectional views taken along lines AA and BB in FIG. 1A, respectively. Further, FIGS. 2A and 2B display in detail the cross-sections of the flattened portion corresponding to FIG. 1B and the low flattened portion corresponding to FIG. 1C, respectively.

本実施形態にかかる絶縁電線1は、導体11と、絶縁被覆13とを有している。導体11は、複数の素線12を撚り合わせた撚線として構成されている。絶縁被覆13は、導体11の外周を、全周にわたって被覆している。絶縁電線1は、軸線方向(x方向)に沿って、扁平部20と低扁平部30を有している。扁平部20と低扁平部30は、絶縁電線1の軸線方向に沿って一体に連続している。つまり、扁平部20と低扁平部30の間で相互に、導体11を構成する各素線12が、一体に連続している。また、扁平部20と低扁平部30の間で相互に、導体11を被覆する絶縁被覆13も、一体に連続している。 An insulated wire 1 according to this embodiment has a conductor 11 and an insulating coating 13 . The conductor 11 is configured as a twisted wire in which a plurality of wires 12 are twisted together. The insulating coating 13 covers the entire circumference of the conductor 11 . The insulated wire 1 has a flat portion 20 and a low flat portion 30 along the axial direction (x direction). The flat portion 20 and the low flat portion 30 are integrally continuous along the axial direction of the insulated wire 1 . That is, the wires 12 forming the conductor 11 are integrally continuous between the flat portion 20 and the low flat portion 30 . Further, the insulating coating 13 that covers the conductor 11 is also integrally continuous between the flat portion 20 and the low flat portion 30 .

扁平部20においては、断面における導体11の外形が、扁平形状をとっている。ここで、導体11の外形が扁平形状をとっているとは、断面を構成する辺または径と平行に断面を横切り、断面全体を範囲に含む直線のうち、最長の直線の長さである幅wが、その直線に直交し、断面全体を範囲に含む直線の長さである高さhよりも、大きい状態を指す。導体11の断面は、扁平形状であれば、どのような具体的形状よりなってもよいが、本実施形態においては、導体11の断面は、長方形に近似できる形状を有している。長方形以外の扁平形状としては、例えば、楕円形、長円形、小判型(長方形の両端に円弧を接合した形状)を挙げることができる。省スペース性を高める、また低扁平部30との連続性を高める等の観点から、扁平部20における縦横比w/hは、例えば、2以上、6以下程度としておくとよい。以降、低扁平部30を含め、絶縁電線1の全域において、扁平部20の扁平形状の幅方向および高さ方向に対応する方向を、それぞれ、幅相当方向(y方向)および高さ相当方向(z方向)と称する。 In the flat portion 20, the cross section of the conductor 11 has a flat shape. Here, the fact that the outer shape of the conductor 11 has a flat shape means that the length of the longest straight line among the straight lines that cross the cross section parallel to the sides or diameters that make up the cross section and that covers the entire cross section. A state in which w is greater than the height h, which is the length of a straight line that is perpendicular to the straight line and covers the entire cross section. The cross section of the conductor 11 may have any specific shape as long as it is flat, but in the present embodiment, the cross section of the conductor 11 has a shape that approximates a rectangle. Flat shapes other than rectangles include, for example, elliptical, oval, and oval shapes (shapes in which circular arcs are joined to both ends of a rectangle). From the viewpoint of enhancing space saving and enhancing continuity with the low-flat portion 30, the aspect ratio w/h of the flat portion 20 is preferably about 2 or more and 6 or less, for example. Hereinafter, in the entire area of the insulated wire 1 including the low flat portion 30, the directions corresponding to the width direction and the height direction of the flat shape of the flat portion 20 are set to the width equivalent direction (y direction) and the height equivalent direction ( z-direction).

低扁平部30は、断面において、扁平部20よりも、導体11が扁平度の小さい形状をとっている。ここで、導体11の扁平度が小さいとは、導体11の断面における縦横比w/hが小さく、断面形状が扁平である程度が低いことを示す。低扁平部30の具体的な形状は特に限定されるものではなく、正方形や円形、六角形等、異方性がない、あるいは異方性が低い図形に近似できる形状の他、扁平部20よりも縦横比w/hの小さい長方形、楕円形、長円形等に近似できる形状を例示することができる。低扁平部30の扁平度は小さいほど良く、縦横比w/hが1となる、円形または正方形に近似できる形状を断面として有する形態が、特に好ましい。さらに、断面を円形に近似できる形態が、最も好ましい。ただし、低扁平部30における縦横比w/hを、例えば2以下としておけば、後述する低扁平部30の加工性を高める効果を、十分に得ることができる。また、低扁平部30における縦横比w/hを、扁平部20における縦横比w/hに対して、おおむね20%以上、また70%以下としておけばよい。なお、低扁平部30においては、幅相当方向の寸法wを、高さ相当方向の寸法hよりも小さくしないことが好ましい(w/h≧1とするとよい)。つまり、低扁平部30を縦長の断面形状としないことが好ましい。ただし、低扁平部30を縦長の断面形状とすることを妨げるものではなく、その場合には、低扁平部30における横縦比h/wを、扁平部20における縦横比w/hよりも小さくしておくことが好ましい。さらには、その低扁平部30の加工性を高める観点から、低扁平部30の横縦比h/wを、上に挙げた横長形状の場合の縦横比w/hと同様、2以下としておけばよい。また、低扁平部30における横縦比h/wを、扁平部20における縦横比w/hに対して、おおむね20%以上、また70%以下としておけばよい。 The low flat portion 30 has a shape in which the flatness of the conductor 11 is smaller than that of the flat portion 20 in cross section. Here, the low flatness of the conductor 11 means that the cross-sectional aspect ratio w/h of the conductor 11 is small and the cross-sectional shape is low in flatness. The specific shape of the low flat portion 30 is not particularly limited. A shape that can be approximated to a rectangle, ellipse, or oval with a small aspect ratio w/h can also be exemplified. The flatness of the low-flat portion 30 is preferably as small as possible, and it is particularly preferable that the low-flat portion 30 have a circular or square-like cross section with an aspect ratio w/h of 1. Furthermore, a form that can approximate a circular cross section is most preferable. However, if the aspect ratio w/h of the low-flat portion 30 is set to, for example, 2 or less, the effect of improving the workability of the low-flat portion 30, which will be described later, can be sufficiently obtained. Also, the aspect ratio w/h of the low-flat portion 30 may be approximately 20% or more and 70% or less of the aspect ratio w/h of the flat portion 20 . In the low-flat portion 30, it is preferable that the dimension w in the width equivalent direction is not smaller than the dimension h in the height equivalent direction (w/h≧1). In other words, it is preferable that the low flat portion 30 does not have a vertically long cross-sectional shape. However, this does not prevent the low flat portion 30 from having a vertically long cross-sectional shape. It is preferable to keep Furthermore, from the viewpoint of improving the workability of the low flat portion 30, the aspect ratio h/w of the low flat portion 30 should be 2 or less, like the aspect ratio w/h in the case of the oblong shape mentioned above. Just do it. Also, the aspect ratio h/w of the low-flat portion 30 may be approximately 20% or more and 70% or less of the aspect ratio w/h of the flat portion 20 .

このように、扁平部20と低扁平部30を一体に有する絶縁電線1は、図4に示すように、導体11を扁平形状に変形させた原料扁平電線9から、好適に製造することができる。原料扁平電線9は、複数の素線12が撚り合わせられた断面円形の導体11を扁平形状に圧縮し、その導体11の外周を絶縁被覆13で被覆することで、製造できる。この際、導体11の圧縮は、特許文献3~5に記載されるように、ローラを用いて、高さ方向両側から、さらには任意に幅方向両側から圧縮することで、好適に行うことができる。圧縮した導体11の外周への絶縁被覆13の形成は、樹脂組成物の押出成形によって行うことが好ましい。このようにして得られた原料扁平電線9のうち、軸線方向に沿って一部の領域、具体的には低扁平部30を形成したい領域において、原料扁平電線9の外から、幅方向(y方向)に沿って外側から内側に向かって、力F1を印加し、導体11を変形させる。力F1の印加によって、導体11の幅方向の寸法が小さくなり、導体11の扁平度が低下する。この操作によって、低扁平部30を形成することができる。力F1の印加は、手作業による加工、あるいはハンマー等の工具や、成形型、プレス機等の装置を用いた加工によって行うことができる。この際に導体11に加える力F1は、原料扁平電線9を形成する際に、導体11の扁平化のために加える力よりも小さいことが好ましい。原料扁平電線9において、力F1の印加によって低扁平部30を形成した領域以外の領域は、扁平部20として残される。 As shown in FIG. 4, the insulated wire 1 integrally having the flat portion 20 and the low flat portion 30 can be suitably manufactured from the raw material flat wire 9 obtained by deforming the conductor 11 into a flat shape. . The raw material flat electric wire 9 can be manufactured by compressing a conductor 11 having a circular cross section in which a plurality of strands 12 are twisted together into a flat shape and covering the outer periphery of the conductor 11 with an insulating coating 13 . At this time, as described in Patent Documents 3 to 5, the conductor 11 can be suitably compressed by using rollers from both sides in the height direction and optionally from both sides in the width direction. can. Formation of the insulating coating 13 on the outer circumference of the compressed conductor 11 is preferably carried out by extrusion molding of a resin composition. In the raw material flat electric wire 9 obtained in this way, in a part of the region along the axial direction, specifically, in the region where the low flat portion 30 is desired to be formed, from outside the raw material flat electric wire 9 in the width direction (y direction) from the outside toward the inside to deform the conductor 11 . The application of the force F1 reduces the dimension of the conductor 11 in the width direction and reduces the flatness of the conductor 11 . By this operation, the low flat portion 30 can be formed. The force F1 can be applied by manual processing, or by processing using a tool such as a hammer, a molding die, a press machine, or the like. The force F1 applied to the conductor 11 at this time is preferably smaller than the force applied for flattening the conductor 11 when forming the raw flat wire 9 . In the raw material flat electric wire 9 , the area other than the area where the low flat portion 30 is formed by the application of the force F1 is left as the flat portion 20 .

なお、力F1の印加による低扁平部30の形成を行った後、低扁平部30を含む箇所で絶縁被覆13を加熱して、絶縁被覆13を導体11に密着させる操作は、行わない方がよい。後に説明するように、低扁平部30において、導体11と絶縁被覆13の間の密着力を小さく保ち、また絶縁被覆13に囲まれた領域に多くの空隙を残すためである。ただし、低扁平部30を含む箇所で絶縁被覆13を加熱して、絶縁被覆13を変形させることで、導体11と絶縁被覆13の間の所望の箇所に、空隙を配置するようにしてもよい。例えば、低扁平部30が縦長の断面形状をとる場合に(w/h<1)、導体11に対して高さ相当方向の外側、つまり縦長方向の外側の領域に、空隙を偏在させるように、絶縁被覆13を変形させる形態が考えられる。 After forming the low-flat portion 30 by applying the force F1, it is better not to heat the insulating coating 13 at a location including the low-flat portion 30 to bring the insulating coating 13 into close contact with the conductor 11. good. This is to keep the adhesion between the conductor 11 and the insulating coating 13 small and leave many gaps in the region surrounded by the insulating coating 13 in the low flat portion 30, as will be described later. However, by heating the insulating coating 13 at a location including the low flat portion 30 to deform the insulating coating 13, a gap may be arranged at a desired location between the conductor 11 and the insulating coating 13. . For example, when the low-flat portion 30 has a vertically long cross-sectional shape (w/h<1), the gaps are unevenly distributed outside the conductor 11 in the direction corresponding to the height, that is, outside in the longitudinal direction. , a form in which the insulating coating 13 is deformed is conceivable.

本実施形態にかかる絶縁電線1は、扁平な断面形状を有する扁平部20を備えることで、高い省スペース性を発揮するものとなり、狭い空間への配策や、他の部材と接近した状態での配策にも好適に用いることができる。一方で、低扁平部30が、扁平度の低い断面形状を有し、従来一般の丸電線に近い断面形状となっていることから、ワイヤーストリッパー等、従来の丸電線に適用される工具や装置を利用して、低扁平部30に対して、絶縁被覆13の除去等の加工を行いやすくなる。また、端子やコネクタ等、絶縁電線1に取り付ける外部の部材としても、扁平形状に合わせた特殊な形状のものを準備することなく、従来の丸電線用のものを適用しやすくなる。このように、低扁平部30を利用して絶縁電線1の加工を行うことで、絶縁被覆13の除去等の加工を、簡便に行うことができる。本実施形態にかかる絶縁電線1は、自動車内等、配策できるスペースが限られ、かつ外部の部材との接続等のために絶縁被覆13の除去を伴う加工が要求される箇所に、好適に適用することができる。 The insulated wire 1 according to the present embodiment is provided with the flat portion 20 having a flat cross-sectional shape, so that it exhibits a high space saving property, and can be installed in a narrow space or in a state close to other members. It can also be suitably used for wiring. On the other hand, since the low-flat portion 30 has a cross-sectional shape with a low degree of flatness and has a cross-sectional shape similar to that of a conventional general round electric wire, tools and devices such as wire strippers that are applied to conventional round electric wires can be used. is used to facilitate processing such as removal of the insulating coating 13 from the low flat portion 30 . Also, as external members such as terminals and connectors to be attached to the insulated wire 1, conventional ones for round wires can be easily applied without preparing special shapes matching the flat shape. By processing the insulated wire 1 using the low-flat portion 30 in this manner, processing such as removal of the insulating coating 13 can be easily performed. The insulated wire 1 according to the present embodiment is suitable for places where wiring space is limited, such as in automobiles, and processing involving removal of the insulating coating 13 is required for connection with external members. can be applied.

本実施形態において、絶縁電線1の軸線方向において、低扁平部30を設ける位置や数は、特に限定されるものではなく、絶縁被覆13の除去等の加工が想定される任意の箇所に、低扁平部30を形成すればよい。上記のように、原料扁平電線9に対して、絶縁被覆13の外から導体11を変形させる力F1を加えるのみで、低扁平部30を形成できるので、共通の原料扁平電線9を用いて、低扁平部30が必要とされる箇所が異なる種々の絶縁電線1を、簡便に製造することができる。好適な形態として、絶縁電線1の軸線方向に沿って、扁平部20の少なくとも片側、あるいは両側に、低扁平部30をそれぞれ有する形態を挙げることができる。さらには、1本の絶縁電線1の少なくとも一方の端部あるいは両端部に、低扁平部30を形成し、2つの低扁平部30に挟まれた絶縁電線1の中途域等、残りの領域を扁平部20とする形態が好ましい。すると、絶縁電線1を配策する際に、中途域等における取り回しに、扁平部20の省スペース性を利用できるとともに、絶縁電線1の端部の少なくとも一方において、外部の部材との接続の利便性等の観点から、扁平部20よりも低扁平部30を設けることが好都合な場合には、その端部に低扁平部3を設けておくことで、絶縁被覆13の除去をはじめとして、端子やコネクタ等、外部の部材との接続に必要な加工を、簡便に行うことができる。 In the present embodiment, in the axial direction of the insulated wire 1, the position and number of the low flat portions 30 are not particularly limited. A flat portion 30 may be formed. As described above, the low flat portion 30 can be formed only by applying the force F1 that deforms the conductor 11 from the outside of the insulating coating 13 to the raw material flat electric wire 9. Therefore, using the common raw material flat electric wire 9, Various insulated wires 1 having different locations where the low flat portion 30 is required can be easily manufactured. As a preferred form, a form having low flat portions 30 on at least one side or both sides of the flat portion 20 along the axial direction of the insulated wire 1 can be cited. Furthermore, a low flat portion 30 is formed on at least one end or both ends of one insulated wire 1, and the remaining region such as the middle region of the insulated wire 1 sandwiched between the two low flat portions 30 is A form of the flat portion 20 is preferable. Then, when routing the insulated wire 1, the space-saving property of the flat portion 20 can be used for routing in the middle area, etc., and at least one of the ends of the insulated wire 1 can be conveniently connected to an external member. When it is more convenient to provide the low flat portion 30 than the flat portion 20 from the viewpoint of quality, etc., by providing the low flat portion 3 at the end thereof, the insulation coating 13 can be removed and the terminal can be It is possible to easily perform processing necessary for connection with an external member such as a connector or the like.

本実施形態にかかる絶縁電線1において、導体11を構成する素線12の材質や線径、また導体断面積は、特に限定されるものではない。しかし、扁平部20による省スペース性向上の効果や、低扁平部30を設けることによる加工性向上の効果を高める観点から、ある程度導体断面積の大きい導体11を用いることが好ましい。その観点で、導体11の材質としては、銅や銅合金に比べて導電性が低いために、導体断面積を大きくされることが多いアルミニウムまたはアルミニウム合金を用いることが好ましい。また、導体断面積は、10mm以上、さらには50mm以上、100mm以上であることが好ましい。導体11を構成する素線12の外径としては、0.3mm以上、1.0mm以下の範囲を例示することができる。 In the insulated wire 1 according to the present embodiment, the material and wire diameter of the wire 12 constituting the conductor 11, and the cross-sectional area of the conductor are not particularly limited. However, it is preferable to use the conductor 11 having a relatively large conductor cross-sectional area from the viewpoint of improving the space-saving effect of the flat portion 20 and improving the workability of the low-flat portion 30 . From this point of view, as the material of the conductor 11, it is preferable to use aluminum or an aluminum alloy, which often has a large conductor cross-sectional area because of its low conductivity compared to copper and copper alloys. Moreover, the cross-sectional area of the conductor is preferably 10 mm 2 or more, more preferably 50 mm 2 or more, or 100 mm 2 or more. As an outer diameter of the wire 12 constituting the conductor 11, a range of 0.3 mm or more and 1.0 mm or less can be exemplified.

本実施形態にかかる絶縁電線1は、単独の状態で使用しても、本開示の実施形態にかかるワイヤーハーネスの構成部材として用いてもよい。本開示の実施形態にかかるワイヤーハーネスは、上記実施形態にかかる絶縁電線1を含むものである。ワイヤーハーネスは、上記絶縁電線1を複数含むものとしてもよく、また、上記絶縁電線1に加えて、他種の絶縁電線を含むものとしてもよい。複数の絶縁電線を含むワイヤーハーネスにおいては、端末部で、複数の絶縁電線を共通のコネクタに接続することが多い。この場合に、絶縁電線として端末が扁平形状のものが含まれていれば、その扁平形状に合わせるために、コネクタ全体が幅広なものになり、コネクタの配置に大きなスペースを要する場合がある。しかし、端末部に低扁平部30を形成した本実施形態にかかる絶縁電線1を用いてワイヤーハーネスを構成すれば、コネクタの過剰な幅広化を避けることができる。 The insulated wire 1 according to the present embodiment may be used alone or as a constituent member of the wire harness according to the embodiment of the present disclosure. A wire harness according to an embodiment of the present disclosure includes the insulated wire 1 according to the above embodiment. The wire harness may include a plurality of the insulated wires 1 described above, or may include other types of insulated wires in addition to the insulated wires 1 described above. In a wire harness including a plurality of insulated wires, the plurality of insulated wires are often connected to a common connector at the end portion. In this case, if the terminal of the insulated wire includes a flat shape, the entire connector must be wide to match the flat shape, and a large space may be required for arranging the connector. However, if a wire harness is configured using the insulated wire 1 according to the present embodiment in which the low-flat portion 30 is formed at the terminal portion, excessive widening of the connector can be avoided.

<扁平部と低扁平部の比較>
本実施形態にかかる絶縁電線1の扁平部20と低扁平部30は、導体11の断面形状における扁平度の違い以外にも、構造および特性に差異を有している。
<Comparison between the flat part and the low flat part>
The flat portion 20 and the low flat portion 30 of the insulated wire 1 according to this embodiment have differences in structure and characteristics in addition to the difference in flatness in the cross-sectional shape of the conductor 11 .

(1)導体と絶縁被覆の密着力
本実施形態にかかる絶縁電線1においては、導体11と絶縁被覆13の間の密着力が、低扁平部30において、扁平部20よりも小さくなっている。扁平部20においては、その扁平形状に由来して、表面積が大きくなっているため、絶縁被覆13と広い面積で接することになる。そのため、導体11と絶縁被覆13の間で、軸線方向に沿った単位長さあたりの密着力が大きくなる。しかし、低扁平部30においては、断面形状の扁平度が低いことにより、同じ導体断面積を有する扁平部20よりも導体の表面積が小さくなり、絶縁被覆13との接触面積が小さくなる。よって、低扁平部30においては、扁平部20よりも、導体11と絶縁被覆13の間で、軸線方向に沿った単位長さあたりの密着力が、小さくなる。
(1) Adhesion between Conductor and Insulating Coating In the insulated wire 1 according to the present embodiment, the adhesion between the conductor 11 and the insulating coating 13 is smaller in the flat portion 30 than in the flat portion 20 . Since the flat portion 20 has a large surface area due to its flat shape, the flat portion 20 comes into contact with the insulating coating 13 over a large area. Therefore, the adhesion force per unit length along the axial direction is increased between the conductor 11 and the insulating coating 13 . However, in the low-flat portion 30, since the cross-sectional flatness is low, the surface area of the conductor is smaller than that of the flat portion 20 having the same conductor cross-sectional area, and the contact area with the insulating coating 13 is smaller. Therefore, in the low flat portion 30 , the adhesion force per unit length along the axial direction between the conductor 11 and the insulating coating 13 is smaller than that in the flat portion 20 .

また、原料扁平電線9を変形させて低扁平部30を形成する場合に、低扁平部30における導体11と絶縁被覆13の間の密着力が、さらに小さくなりやすい。扁平部20では、原料扁平電線9において、押出成形等によって、導体11の外周に密着させて絶縁被覆13を形成したままの状態が維持されるので、導体11と絶縁被覆13の間に、比較的大きな密着力が生じている。しかし、低扁平部30は、原料扁平電線9に対して絶縁被覆13の外から導体11に力F1を加えて変形させているため、力F1の印加および導体11の変形に伴って、絶縁被覆13と導体11の間の密着が解消または低減されている。そのため、低扁平部30において、扁平部20に比べて、絶縁被覆13と導体11の間の密着力が大幅に小さくなりやすい。 Further, when forming the low-flat portion 30 by deforming the raw material flat electric wire 9, the adhesion between the conductor 11 and the insulating coating 13 in the low-flat portion 30 tends to be further reduced. In the flat portion 20, the raw material flat electric wire 9 is kept in contact with the outer periphery of the conductor 11 by extrusion molding or the like, and the insulating coating 13 is formed. A significant adhesion force is generated. However, since the low flat portion 30 deforms the conductor 11 by applying the force F1 to the conductor 11 from the outside of the insulating coating 13 with respect to the raw flat wire 9, the application of the force F1 and the deformation of the conductor 11 cause the insulating coating to deform. Adhesion between 13 and conductor 11 is eliminated or reduced. Therefore, in the low flat portion 30 , the adhesion between the insulating coating 13 and the conductor 11 tends to be significantly smaller than in the flat portion 20 .

低扁平部30において、導体11と絶縁被覆13の間の密着力が小さくなっていることにより、上で説明した扁平度が低いという形状自体による効果に加えてさらに、絶縁被覆13の除去を伴う低扁平部30の加工の簡便性が向上する。絶縁被覆13が導体11に対して低い密着力しか及ぼさないことにより、低扁平部30において、導体11の外周から絶縁被覆13を剥がして除去するのに、小さな力しか必要とされないからである。絶縁被覆13の剥離性向上の効果を高める観点から、低扁平部30における密着力は小さい方が好ましく、例えば、扁平部20における密着力に対して、5%以上、さらには10%以上、また20%以上、30%以上小さくなっているとよい。つまり、扁平部20の密着力をA1、低扁平部20の密着力をA2として、下記の式(1)で表現される密着力差分率ΔAが、ΔA≦-5%、さらにはΔA≦-10%、またΔA≦-20%、ΔA≦-30%となっているとよい。
ΔA=(A2-A1)/A1 (1)
絶縁被覆13の剥離性向上の観点からは、低扁平部30の密着力に特に下限は設けられないが、導体11に対する絶縁被覆13の位置ずれを防ぐ等の観点から、例えば、密着力差分率がΔA≧-90%、ΔA≧-80%以下の範囲に収まるようにしておくとよい。
In the low-flat portion 30, the adhesive force between the conductor 11 and the insulation coating 13 is reduced, so that the insulation coating 13 is removed in addition to the effect of the shape itself that the flatness is low as described above. The ease of processing of the low flat portion 30 is improved. This is because the insulating coating 13 exerts only a low adhesion force to the conductor 11, so that only a small force is required to peel and remove the insulating coating 13 from the outer periphery of the conductor 11 at the low flat portion 30. From the viewpoint of enhancing the effect of improving the peelability of the insulating coating 13, it is preferable that the adhesion force in the low flat portion 30 is small. 20% or more, preferably 30% or more. That is, where A1 is the adhesion force of the flat portion 20 and A2 is the adhesion force of the low flat portion 20, the adhesion force difference rate ΔA expressed by the following formula (1) is ΔA≦−5%, further ΔA≦− 10%, ΔA≦−20%, and ΔA≦−30%.
ΔA=(A2-A1)/A1 (1)
From the viewpoint of improving the peelability of the insulating coating 13, there is no particular lower limit for the adhesion force of the low flat portion 30, but from the viewpoint of preventing misalignment of the insulating coating 13 with respect to the conductor 11, for example, the adhesion force difference rate is within the ranges of ΔA≧−90% and ΔA≧−80%.

低扁平部30が、導体11と絶縁被覆13の間の密着性の低さにより、絶縁被覆13の剥離性を高めるものとなる一方で、扁平部20においては、導体11の外周に絶縁被覆13が大きな密着力で密着していることにより、導体11に対する絶縁被覆13の位置ずれが抑制される。また、導体11に通電して導体11が発熱した場合に、絶縁被覆13と導体11が密着した箇所において、空気の層を介することなく、熱が縁被覆13に効率的に伝達され、さらに外部の環境中に散逸されるため、扁平部20において高い放熱性が確保される。扁平部20におけるこれら位置ずれ抑制および放熱性向上の効果は、絶縁電線1全体の特性として発揮されるものとなる。 The low flat portion 30 enhances the peelability of the insulating coating 13 due to the low adhesion between the conductor 11 and the insulating coating 13 . is in close contact with the conductor 11, the displacement of the insulating coating 13 with respect to the conductor 11 is suppressed. In addition, when the conductor 11 is energized and the conductor 11 generates heat, the heat is efficiently transmitted to the edge coating 13 without passing through a layer of air at the place where the insulating coating 13 and the conductor 11 are in close contact with each other. high heat dissipation in the flat portion 20 is ensured. The effects of suppressing the displacement and improving the heat dissipation in the flat portion 20 are exhibited as the characteristics of the insulated wire 1 as a whole.

導体11と絶縁被覆13の間の密着力は、引き抜き試験によって評価することができる。具体的な試験方法としては、例えば、絶縁電線1から、扁平部20のみを含む箇所、または低扁平部30のみを含む箇所を切り出し、端部の所定の長さの領域にわたって、絶縁被覆13を剥がして、導体11を露出させる。そして、導体11の外形と同等の形状を有する貫通孔に、露出させた導体11を挿通した状態で、導体11を所定の速度で引張り、導体11を絶縁被覆13から引き抜く。引き抜きに要する荷重をロードセル等で測定し、最大荷重を、導体11に対する絶縁被覆13の密着力とすればよい。そして、同じ長さに切り出した扁平部20と低扁平部30で、計測された密着力を相互に比較すればよい。 The adhesion between the conductor 11 and the insulation coating 13 can be evaluated by a pull-out test. As a specific test method, for example, a portion containing only the flat portion 20 or a portion containing only the low flat portion 30 is cut out from the insulated wire 1, and the insulating coating 13 is applied over a region of a predetermined length at the end. Peel off to expose conductor 11 . Then, the exposed conductor 11 is inserted into the through-hole having the same shape as the outer shape of the conductor 11 , and the conductor 11 is pulled at a predetermined speed to pull the conductor 11 out of the insulating coating 13 . The load required for pulling out is measured with a load cell or the like, and the maximum load is taken as the adhesion force of the insulating coating 13 to the conductor 11 . Then, the flat portion 20 and the low flat portion 30 cut to the same length may be compared with each other in the measured adhesion force.

(2)空隙の分布
本実施形態にかかる絶縁電線1の断面において、絶縁被覆13に囲まれた領域における空隙の分布にも、扁平部20と低扁平部30の間で差が存在する。本実施形態にかかる絶縁電線1においては、低扁平部30において、扁平部20よりも、空隙率が大きくなりやすい。ここで、空隙率とは、絶縁電線1の断面において、絶縁被覆13の内周に囲まれた領域の面積のうち、素線12に占められない空隙の面積の割合を指す。
(2) Distribution of voids In the cross section of the insulated wire 1 according to this embodiment, there is also a difference in the distribution of voids between the flat portion 20 and the low flat portion 30 in the region surrounded by the insulating coating 13 . In the insulated wire 1 according to this embodiment, the low flat portion 30 tends to have a higher porosity than the flat portion 20 . Here, the porosity refers to the ratio of the area of voids not occupied by the wires 12 to the area of the region surrounded by the inner periphery of the insulating coating 13 in the cross section of the insulated wire 1 .

低扁平部30において空隙率が大きくなりやすいのは、低扁平部30の形成方法に関係している。原料扁平電線9の外から力F1を加えて、低扁平部30を形成する際に、絶縁電線1の断面において、導体11が変形するとともに、絶縁被覆13の形状も、扁平度が下がる方向に変化するが、絶縁被覆13の内周長は、ほぼ変化しない。絶縁被覆13の内周長が同じであれば、絶縁被覆13が扁平度の低い形状に変形するほど、絶縁被覆13の内周に囲まれた領域の面積は大きくなる。この際、絶縁被覆13の内周に囲まれた領域において、素線12が占める面積は変わらないので、素線12に占められない空隙の面積が増大することになり、空隙率が上昇する。 The fact that the porosity of the low flat portion 30 tends to increase is related to the method of forming the low flat portion 30 . When the low flat portion 30 is formed by applying a force F1 from the outside of the raw material flat wire 9, the conductor 11 is deformed in the cross section of the insulated wire 1, and the shape of the insulating coating 13 is also changed in the direction of decreasing flatness. Although it changes, the inner peripheral length of the insulating coating 13 does not substantially change. If the inner peripheral length of the insulating coating 13 is the same, the area of the region surrounded by the inner periphery of the insulating coating 13 increases as the insulating coating 13 deforms into a shape with a lower flatness. At this time, since the area occupied by the wires 12 does not change in the region surrounded by the inner circumference of the insulating coating 13, the area of the voids not occupied by the wires 12 increases, and the porosity increases.

低扁平部30を形成する際に、絶縁被覆13の外から導体11に力F1を印加しているため、空隙は、導体11の外周と絶縁被覆13の内周の間に形成されやすい。この導体11と絶縁被覆13の間への空隙の形成は、導体11と絶縁被覆13の間の密着力の低減にも寄与する。特に、導体11を変形させるための力F1の印加を、幅方向外側から内側に向かって行い、導体11の寸法を幅方向に圧縮しているため、図2Bに示すように、導体11の幅相当方向外側の領域に空隙が偏在しやすい。つまり、幅相当方向(y方向)に沿って導体11の外側の領域にあたる幅方向導体外領域Rwに、高さ相当方向(z方向)に沿って導体11の外側の領域にあたる高さ方向導体外領域Rhよりも、大きな空隙が形成されやすい。その結果として、導体11と絶縁被覆13の内周面との距離が、幅方向導体外領域Rwにおいて、高さ方向導体外領域Rhよりも大きくなりやすく、また、導体11と絶縁被覆13の間の密着力が、幅相当方向において、高さ相当方向よりも小さくなりやすい。なお、低扁平部30のみならず、低扁平部30と扁平部20の間の境界部においても、同様に、幅方向導体外領域Rwへの空隙の偏在が生じる場合がある。 Since the force F1 is applied to the conductor 11 from the outside of the insulating coating 13 when forming the low flat portion 30 , a gap is likely to be formed between the outer periphery of the conductor 11 and the inner periphery of the insulating coating 13 . The formation of the gap between the conductor 11 and the insulation coating 13 also contributes to the reduction of adhesion between the conductor 11 and the insulation coating 13 . In particular, the force F1 for deforming the conductor 11 is applied from the outer side to the inner side in the width direction, and the dimension of the conductor 11 is compressed in the width direction. Gaps are likely to be unevenly distributed in the outer region in the equivalent direction. That is, in the width direction outer conductor region Rw corresponding to the outer region of the conductor 11 along the width equivalent direction (y direction), the height direction outer conductor region corresponding to the outer region of the conductor 11 along the height equivalent direction (z direction) A larger void is more likely to be formed than in the region Rh. As a result, the distance between the conductor 11 and the inner peripheral surface of the insulating coating 13 tends to be larger in the width direction outer conductor region Rw than in the height direction outer conductor region Rh, and between the conductor 11 and the insulating coating 13 is likely to be smaller in the width equivalent direction than in the height equivalent direction. Note that, not only in the low flat portion 30 but also in the boundary portion between the low flat portion 30 and the flat portion 20, uneven distribution of voids in the width direction outer conductor region Rw may occur.

低扁平部30において、空隙率が大きくなっていることは、導体11と絶縁被覆13の間の密着力を低減することのみならず、低扁平部30における絶縁電線1の曲げ柔軟性を高めることにも効果を有する。導体11を曲げる際に、空隙への素線12の移動によって、絶縁電線1の柔軟な曲げが補助されるからである。幅方向導体外領域Rw等、導体11と絶縁被覆13の間に形成された空隙も、柔軟性の向上に効果を有するが、導体11の内部において、素線12の間に形成された空隙は、柔軟性の向上に特に高い効果を発揮する。そのため、低扁平部30における曲げ柔軟性を高める観点から、低扁平部30においては、絶縁被覆13の内周に囲まれた領域全体における空隙のみならず、導体11の内側の領域における空隙についても、扁平部20よりも空隙率が大きくなっていることが好ましい。 The increased porosity in the low flat portion 30 not only reduces the adhesion between the conductor 11 and the insulating coating 13, but also increases the bending flexibility of the insulated wire 1 in the low flat portion 30. also have an effect. This is because, when the conductor 11 is bent, the flexible bending of the insulated wire 1 is assisted by the movement of the wire 12 into the gap. Gaps formed between the conductor 11 and the insulating coating 13, such as the width direction outside conductor region Rw, also have an effect of improving flexibility. , which is particularly effective in improving flexibility. Therefore, from the viewpoint of increasing the bending flexibility of the low flat portion 30, in the low flat portion 30, not only the gap in the entire area surrounded by the inner circumference of the insulating coating 13 but also the gap in the area inside the conductor 11 , the porosity is preferably larger than that of the flat portion 20 .

低扁平部30における具体的な空隙率は、特に限定されるものではない。しかし、空隙率が、低扁平部30において、扁平部20と比較して、5%以上、さらには10%以上、また20%以上、30%以上、45%以上大きくなっているとよい。つまり、扁平部20における空隙率をV1(%)、低扁平部30における空隙率をV2(%)として、下記の式(2)で表現される空隙率差分率ΔVが、ΔV≧+5%、さらにはΔV≧+10%、またΔV≧+20%、ΔV≧+30%、ΔV≧+45%であるとよい。
ΔV=(V2ーV1)/V1 (2)
また、低扁平部30における空隙率の値(V2)が、30%以上、さらには35%以上、40%以上となっているとよい。すると、低扁平部30において、絶縁被覆13と導体の間の密着力を低減しやすくなるとともに、高い柔軟性を確保しやすくなる。扁平部20においても、高さ相当方向(z方向)への曲げ柔軟性を確保する観点から、扁平部20の空隙率(V1)は、10%以上、さらには20%以上であることが好ましい。柔軟性の観点からは、空隙率(V1,V2)に特に上限は設けられないが、扁平部20および低扁平部30のそれぞれにおいて、所定の導体11の外形を安定に保持する等の観点から、おおむね50%以下としておくとよい。
A specific porosity in the low flat portion 30 is not particularly limited. However, it is preferable that the porosity of the low flat portion 30 is 5% or more, further 10% or more, 20% or more, 30% or more, or 45% or more higher than that of the flat portion 20 . That is, when the porosity in the flat portion 20 is V1 (%) and the porosity in the low flat portion 30 is V2 (%), the porosity difference rate ΔV expressed by the following formula (2) is ΔV≧+5%, Further, it is preferable that ΔV≧+10%, ΔV≧+20%, ΔV≧+30%, and ΔV≧+45%.
ΔV=(V2−V1)/V1 (2)
Moreover, the value of the porosity (V2) in the low-flat portion 30 is preferably 30% or more, further 35% or more, or 40% or more. Then, in the low-flat portion 30, it becomes easy to reduce the adhesion force between the insulating coating 13 and the conductor, and it becomes easy to secure high flexibility. Also in the flat portion 20, the porosity (V1) of the flat portion 20 is preferably 10% or more, more preferably 20% or more, from the viewpoint of ensuring bending flexibility in the height equivalent direction (z direction). . From the viewpoint of flexibility, there is no particular upper limit to the porosity (V1, V2). , should be approximately 50% or less.

上で説明したように、原料扁平電線9に力F1を印加して導体11を変形させることで低扁平部30を形成する場合に、絶縁被覆13の内周の長さ(内周長)はほぼ変化せず、絶縁被覆13の内周に囲まれた領域の低扁平化に伴う面積の増大によって、低扁平部30の空隙率が増大する。この機構による低扁平部30における空隙率の増大の効果を高める観点から、低扁平部30の形成に伴う絶縁被覆13の内周長の変化量、つまり扁平部20と低扁平部30での絶縁被覆13の内周長の差が、小さい方が好ましい。例えば、扁平部20と低扁平部30との間で、絶縁被覆13の内周長の差が、扁平部20における絶縁被覆13の内周長に対して、5%以下となるとよい。つまり、扁平部20における絶縁被覆13の内周長をD1、低扁平部30における絶縁被覆13の内周長をD2として、下記の式(3)で表現される周長差分率ΔDが|ΔD|≦5%となるとよい。さらには、|ΔD|≦2%であるとよい。
ΔD=(D2-D1)/D1 (3)
As described above, when the low flat portion 30 is formed by applying the force F1 to the raw material flat wire 9 to deform the conductor 11, the length of the inner circumference (inner circumference length) of the insulating coating 13 is The porosity of the low-flat portion 30 increases due to the increase in the area associated with the low-flatness of the region surrounded by the inner periphery of the insulating coating 13, which remains almost unchanged. From the viewpoint of enhancing the effect of increasing the porosity in the low flat portion 30 by this mechanism, the amount of change in the inner peripheral length of the insulating coating 13 accompanying the formation of the low flat portion 30, that is, the insulation between the flat portion 20 and the low flat portion 30 It is preferable that the difference in inner circumference length of the coating 13 is small. For example, the difference in inner circumference length of the insulating coating 13 between the flat portion 20 and the low flat portion 30 is preferably 5% or less with respect to the inner circumference length of the insulating coating 13 in the flat portion 20 . That is, the inner peripheral length of the insulating coating 13 in the flat portion 20 is D1, and the inner peripheral length of the insulating coating 13 in the low flat portion 30 is D2. |≤5%. Further, it is preferable that |ΔD|≦2%.
ΔD=(D2-D1)/D1 (3)

また、上記機構による低扁平部30における空隙率増大の効果を高める観点から、低扁平部30の形成に伴って、絶縁被覆13の内周に囲まれた領域の面積(内面積)が大きく増加することが好ましい。つまり扁平部20と比較して、低扁平部30において、内面積が大きくなっている方が好ましい。例えば、低扁平部30における内面積が、扁平部20との比較において、30%以上、さらには50%以上大きくなっているとよい。つまり、扁平部20における内面積をS1、低扁平部30における内面積をS2として、下記の式(4)で表現される内面積差分率ΔSが、ΔS≧+10%、さらにはΔS≧+20%以上であるとよい。
ΔS=(S2-S1)/S1 (4)
In addition, from the viewpoint of enhancing the effect of increasing the porosity in the low flat portion 30 by the above mechanism, the area (inner area) of the region surrounded by the inner circumference of the insulating coating 13 is greatly increased along with the formation of the low flat portion 30. preferably. That is, it is preferable that the inner area of the low flat portion 30 is larger than that of the flat portion 20 . For example, the inner area of the low flat portion 30 may be 30% or more, or preferably 50% or more larger than that of the flat portion 20 . That is, assuming that the inner area of the flat portion 20 is S1 and the inner area of the low flat portion 30 is S2, the inner area difference rate ΔS expressed by the following formula (4) is ΔS≧+10%, or further ΔS≧+20%. It should be above.
ΔS=(S2-S1)/S1 (4)

(3)素線の変形
本実施形態にかかる絶縁電線1を、原料扁平電線9に対して幅方向から力F1を印加することによる、低扁平部30の形成を伴って製造する場合には、その製造方法と対応して、扁平部20および低扁平部30において、断面の素線12の変形率に、不均一な分布が生じやすい。ここで、素線12の変形率とは、ある素線12が円形からどれだけ逸脱した断面形状を有しているかを示す指標であり、素線12の形状が円形から大きく逸脱しているほど、変形率が大きくなる。
(3) Deformation of wire When manufacturing the insulated wire 1 according to the present embodiment by applying a force F1 from the width direction to the raw material flat wire 9 to form the low flat portion 30, Corresponding to the manufacturing method, in the flat portion 20 and the low flat portion 30, the deformation rate of the wire 12 in the cross section tends to be unevenly distributed. Here, the deformation rate of the wire 12 is an index indicating how much the wire 12 has a cross-sectional shape that deviates from a circular shape. , the deformation rate increases.

具体的には、図2A,2Bに示すように、扁平部20と低扁平部30の両方において、導体11の外周に面する外周部のうち、幅相当方向(y方向)に沿って外側(両端)の領域にあたる幅方向端部(例えば領域R2)において、外周部の内側に位置する中央部(例えば領域R1)や、高さ相当方向(z方向)に沿って外側(両端)の領域にあたる高さ方向端部(例えば領域R3)よりも、素線12の変形率が小さくなりやすい。つまり、扁平部20および低扁平部30において、中央部および高さ方向端部の素線12よりも、幅方向端部の素線12の方が、円形に近い形状をとりやすい。 Specifically, as shown in FIGS. 2A and 2B , in both the flat portion 20 and the low flat portion 30, of the outer peripheral portion facing the outer periphery of the conductor 11, along the width equivalent direction (y direction), the outer ( In the width direction end (e.g., region R2) corresponding to the region of both ends), the central portion (e.g., region R1) located inside the outer peripheral portion and the outer (both ends) region along the height equivalent direction (z direction). The deformation rate of the wire 12 tends to be smaller than at the ends in the height direction (for example, the region R3). In other words, in the flat portion 20 and the low flat portion 30, the wires 12 at the ends in the width direction are more likely to have a shape closer to a circle than the wires 12 at the central portion and the ends in the height direction.

上記のように、本実施形態にかかる絶縁電線1を、扁平に成形した撚線導体を含んだ原料扁平電線9から形成する場合に、その原料扁平電線9に含まれる導体11は、ローラを用いた撚線への穏やかな力の印加によって扁平に変形されたものである。そのことに起因して、特許文献3~5にも記載されるとおり、外周部、特に幅方向端部において、中央部に比べて、小さな素線変形率を有する。この原料扁平電線9から本実施形態にかかる絶縁電線1を製造する際に、扁平部20においては、原料扁平電線9における導体11の構造が実質的にそのまま引き継がれる。低扁平部30においても、導体11全体の外形としては、扁平度の低い形状に変形されるが、各素線12の形状までは、ほぼ変化を受けない。よって、原料扁平電線9において生じていた素線12の変形率の分布は、ほぼそのまま低扁平部30にも引き継がれる。よって、本実施形態にかかる絶縁電線1の扁平部20および低扁平部30においても、原料扁平電線9と同様に、素線12の変形率が、幅方向端部において、中央部および高さ方向端部よりも小さくなる。 As described above, when the insulated wire 1 according to the present embodiment is formed from the raw material flat electric wire 9 containing the flattened stranded conductor, the conductor 11 included in the raw material flat electric wire 9 is formed using a roller. It was deformed flat by applying a gentle force to the twisted wire. Due to this, as described in Patent Documents 3 to 5, the outer peripheral portion, particularly the width direction end portion, has a smaller wire deformation ratio than the central portion. When the insulated wire 1 according to the present embodiment is manufactured from the raw material flat electric wire 9 , the structure of the conductor 11 in the raw material flat electric wire 9 is inherited substantially as it is in the flat portion 20 . In the low-flat portion 30 as well, the outer shape of the conductor 11 as a whole is deformed into a shape with a low degree of flatness, but the shape of each wire 12 is substantially unchanged. Therefore, the distribution of the deformation rate of the wires 12 occurring in the raw material flat electric wire 9 is carried over to the low flat portion 30 almost as it is. Therefore, in the flat portion 20 and the low flat portion 30 of the insulated wire 1 according to the present embodiment, similarly to the raw material flat wire 9, the deformation rate of the wire 12 is smaller than the ends.

<変形形態:扁平部の扁平方向を変化させる形態>
上記では、1本の絶縁電線1の両端部に低扁平部30を形成するとともに、それら低扁平部30に挟まれた位置に、一様な形状の扁平部20を形成する形態を中心に、説明を行った。しかし、扁平部20および低扁平部30の数および配置はそれに限られず、それぞれ、任意の数を、任意の配列順に設けることができる。例えば、扁平部20として、扁平方向の異なる複数の領域を設けることができる。それら複数の領域は、隣接して設けても、間に低扁平部30を介して設けてもよい。
<Deformed form: A form in which the flattening direction of the flattened portion is changed>
In the above, the low flat portions 30 are formed at both ends of one insulated wire 1, and the flat portions 20 having a uniform shape are formed at positions sandwiched between the low flat portions 30. explained. However, the number and arrangement of the flattened portions 20 and the low flattened portions 30 are not limited thereto, and any number of them can be provided in any arrangement order. For example, as the flat portion 20, a plurality of regions with different flattening directions can be provided. The plurality of regions may be provided adjacent to each other or may be provided with the low flat portion 30 interposed therebetween.

扁平部に複数の領域を設ける例として、図3A~3Cに、扁平部20Aに、扁平方向が異なる複数の領域として、第一の領域21、第二の領域22、第三の領域23を設けた絶縁電線1Aを示す。これら3つの領域21~23は、絶縁電線1Aの軸線方向に沿って、この順に連続して設けられている。また、図示は省略しているが、絶縁電線1Aの軸線方向に沿って、第一の領域21および第三の領域23の外側(第二の領域22と反対側)の領域に相当する、絶縁電線1Aの両端部には、低扁平部が設けられている。扁平部20Aにおいて、第一の領域21、第二の領域22、第三の領域23は、扁平方向が相互に異なっている。ここで、扁平方向とは、断面の扁平形状の方向、つまり扁平形状が扁平に延びた方向である幅方向が向いている方向を指している。 As an example of providing a plurality of regions in the flat portion, in FIGS. 3A to 3C, the flat portion 20A is provided with a first region 21, a second region 22, and a third region 23 as a plurality of regions with different flattening directions. Insulated wire 1A is shown. These three regions 21 to 23 are continuously provided in this order along the axial direction of the insulated wire 1A. In addition, although illustration is omitted, along the axial direction of the insulated wire 1A, the insulating Both ends of the electric wire 1A are provided with low flat portions. In the flat portion 20A, the first region 21, the second region 22, and the third region 23 have different flattening directions. Here, the flat direction refers to the direction of the flat shape of the cross section, that is, the direction in which the flat shape extends in the width direction.

具体的には、第一の領域21および第三の領域23は、扁平方向がy方向に向いた横長の扁平形状を有している。一方で、第二の領域22は、扁平方向がz方向に向いた縦長の扁平形状を有している。各領域21~23は、扁平方向の急激な変化に伴って不可避的に生じる領域を除き、直接、相互に隣接している。 Specifically, the first region 21 and the third region 23 have oblong flat shapes with the flattened direction oriented in the y direction. On the other hand, the second region 22 has a vertically elongated flattened shape whose flattening direction is oriented in the z-direction. The regions 21-23 are directly adjacent to each other, except for regions that inevitably occur with abrupt changes in the flattening direction.

絶縁電線の扁平部は、扁平形状の幅方向(つまり扁平方向)には、あまり高い柔軟性を示さず、絶縁電線を曲げにくいが、高さ方向には、高い柔軟性を示し、絶縁電線を曲げやすくなっている。このように、扁平部は柔軟性に異方性を有し、扁平部として、扁平方向の異なる複数の領域が存在している場合には、それら複数の領域において、絶縁電線を曲げやすい方向が異なっている。図3A~3Cに示した例では、横長の第一の領域21および第三の領域23は、縦方向(z方向)に曲がりやすい一方で、縦長の第二の領域22は、横方向(y方向)に曲がりやすい。 The flat part of the insulated wire does not show very high flexibility in the width direction of the flat shape (that is, the flat direction), making it difficult to bend the insulated wire. Easy to bend. In this way, the flat portion has anisotropic flexibility, and when there are a plurality of regions with different flattening directions as the flat portion, the direction in which the insulated wire is likely to bend in the plurality of regions is different. In the example shown in FIGS. 3A-3C, the horizontally elongated first region 21 and the third region 23 tend to bend in the vertical direction (z direction), while the vertically elongated second region 22 tends to bend in the horizontal direction (y direction). direction).

このように、扁平部20Aとして、扁平方向の異なる複数の領域21~23を設けることで、絶縁電線1Aの扁平部20Aの各部が、異なる方向に、曲げやすくなる。それらの領域21~23において、絶縁電線1Aを異なる方向に曲げることで、三次元的な配策や、複雑な形状の物品に沿った配策等、複雑な形状への曲げを要する用途に、絶縁電線1Aを好適に利用することができる。具体的な配策経路等に応じて、絶縁電線1Aにおいて、曲げを形成すべき位置に、曲げるべき方向に扁平形状の高さ方向を向けた領域を、必要な数だけ形成しておけばよい。 Thus, by providing a plurality of regions 21 to 23 with different flattening directions as the flattened portion 20A, each portion of the flattened portion 20A of the insulated wire 1A can be easily bent in different directions. By bending the insulated wire 1A in different directions in these regions 21 to 23, for applications that require bending into complicated shapes, such as three-dimensional routing and routing along articles with complicated shapes, The insulated wire 1A can be preferably used. In the insulated wire 1A, depending on the specific wiring route, a required number of flat-shaped regions with the height direction facing the direction to be bent may be formed at the position where the bend is to be formed. .

扁平部20Aの各領域21~23において、具体的な扁平方向は、上記のように、絶縁電線1Aを曲げるべき方向に応じて適宜定めればよく、隣接する領域の間の扁平方向の差も、特に限定されるものではない。例えば、隣接する領域の間の扁平方向の差を、10°以上としておけば、扁平方向の異なる複数の領域を設けることによって多様な方向への曲げを実現する効果を、十分に得ることができる。しかし、隣接する領域間の扁平方向の差を大きくしておくほど、複雑な形状への曲げに対応しやすくなる。例えば、図3A~3Cに示した形態においては、第一の領域21と第二の領域22の間、および第二の領域22と第三の領域23の間の扁平方向の差が、いずれも90°となっている。このように、扁平部20Aにおいて、隣接する領域の間の扁平方向の差を、45°以上、特に80°以上としておくことが好ましい。 In each of the regions 21 to 23 of the flat portion 20A, the specific flattening direction may be appropriately determined according to the direction in which the insulated wire 1A should be bent, as described above, and the difference in flattening direction between adjacent regions , is not particularly limited. For example, if the difference in flattening direction between adjacent regions is set to 10° or more, it is possible to sufficiently obtain the effect of realizing bending in various directions by providing a plurality of regions with different flattening directions. . However, the greater the difference in the flattening direction between adjacent regions, the easier it is to bend into a complicated shape. For example, in the embodiment shown in FIGS. 3A-3C, the difference in the plane direction between the first region 21 and the second region 22 and between the second region 22 and the third region 23 are both 90°. Thus, in the flat portion 20A, it is preferable to set the difference in the flattening direction between adjacent regions to 45° or more, particularly 80° or more.

扁平部20Aにおいて、扁平方向の異なる複数の領域21~23を設ける場合に、それら複数の領域21~23のそれぞれが、低扁平部よりも高い扁平度を有していれば、各領域21~23の具体的な扁平度(断面の扁平形状の縦横比)、およびそれらの領域21~23の間の扁平度の関係は、特に限定されるものではない。しかし、各領域21~23を、それぞれの扁平形状の高さ方向に、同程度の柔軟性を示すものとし、絶縁電線1Aを各方向に同程度に柔軟に曲げられるようにするためには、扁平方向の異なる複数の領域21~23が、同程度の扁平度を示すものであることが好ましい。例えば、扁平部20Aにおいて、ある1つの領域の断面形状の縦横比を基準として、隣接する領域の断面形状の縦横比が、80%以上120%以下となっていることが好ましい。図示した形態では、3つの領域21~23の扁平度が同じになっている。 When a plurality of regions 21 to 23 with different flattening directions are provided in the flat portion 20A, if each of the plurality of regions 21 to 23 has a higher degree of flatness than the low flat portion, each region 21 to The specific flatness of 23 (the aspect ratio of the flat shape of the cross section) and the flatness relationship between those regions 21 to 23 are not particularly limited. However, in order to allow each of the regions 21 to 23 to exhibit the same degree of flexibility in the height direction of each flat shape and to bend the insulated wire 1A in the same degree of flexibility in each direction, It is preferable that the plurality of regions 21 to 23 with different flattening directions exhibit the same degree of flattening. For example, in the flat portion 20A, it is preferable that the aspect ratio of the cross-sectional shape of one region is used as a reference, and the aspect ratio of the cross-sectional shape of the adjacent region is 80% or more and 120% or less. In the illustrated form, the flatness of the three regions 21-23 is the same.

このように、扁平部20Aとして、扁平方向の異なる複数の領域21~23を備えた絶縁電線1Aも、上記で詳細に説明した絶縁電線1と同様に、導体11を扁平形状に変形させた原料扁平電線9に対して、必要な領域に選択的に力を加えて、部分的に変形させることで、好適に製造することができる。この際、扁平方向の異なる複数の扁平領域のうち、1つの領域、あるいは扁平方向の揃った複数の領域を、もとの扁平形状から原料扁平電線9を変形させずに残すことで、形成すればよい。一方、原料扁平電線9に、幅方向(y方向)に沿って外側から内側に力を加えることで、必要な箇所に、低扁平部、および、扁平部20Aのうち、もとの原料扁平電線9と扁平方向の異なる領域を形成すればよい。この際、もとの原料扁平電線9と扁平方向の異なる扁平領域を形成する箇所において、低扁平部を形成する箇所よりも大きな力を加え、原料扁平電線9を、もとの状態から扁平方向が変化する状態にまで、大きく変形させる。図3A~3Cに示した絶縁電線1Aを製造する場合に、例えば、原料扁平電線9の扁平方向をy方向に向け、原料扁平電線9の軸線方向中途部において、幅方向(y方向)に沿って外側から内側に向かって力を印加し、断面形状を、横長から縦長の状態に変形させることで、第二の領域22を形成できる。一方、第二の領域22の軸線方向両側の部位において、原料扁平電線9の横長の扁平形状を変化させずにそのまま残すことで、第一の領域21および第三の領域23を形成できる。 Thus, the insulated wire 1A having a plurality of regions 21 to 23 with different flattening directions as the flattened portion 20A is also the raw material obtained by deforming the conductor 11 into a flattened shape, similarly to the insulated wire 1 described in detail above. The flat electric wire 9 can be suitably manufactured by selectively applying a force to a required area to partially deform the flat electric wire 9 . At this time, one of the plurality of flattened regions having different flattening directions or a plurality of flattened regions having the same flattening direction is left without deforming the raw material flat electric wire 9 from the original flat shape. Just do it. On the other hand, by applying force from the outside to the inside along the width direction (y direction) of the raw material flat electric wire 9, the original raw material flat electric wire is applied to the necessary portions of the low flat portion and the flat portion 20A. 9 and a region having a different flattening direction may be formed. At this time, a larger force is applied to a portion where a flat region having a different flattening direction from the original flat electric wire 9 is formed than at a portion where a low flat portion is formed, and the raw material flat electric wire 9 is moved from its original state to its flattened direction. It is greatly deformed until the state changes. When manufacturing the insulated wire 1A shown in FIGS. 3A to 3C, for example, the flattening direction of the raw flat wire 9 is oriented in the y direction, and in the middle of the axial direction of the raw flat wire 9, along the width direction (y direction) The second region 22 can be formed by applying a force from the outside to the inside of the cross section and changing the cross-sectional shape from a horizontally long state to a vertically long state. On the other hand, the first region 21 and the third region 23 can be formed by leaving the oblong flat shape of the raw material flat electric wire 9 unchanged at both sides of the second region 22 in the axial direction.

<別の実施形態>
上記で説明した実施形態にかかる絶縁電線1においては、扁平な導体11を備える原料扁平電線9に対して加工を行うことで、一部の領域に低扁平部30を形成し、それ以外の領域を扁平部20として残すことで、扁平部20と低扁平部30を共存させていた。しかし、扁平部と低扁平部が共存した絶縁電線は、別の方法によっても製造することができる。以下、別の方法によって形成される絶縁電線1’について、簡単に説明する。以下、上記で説明した実施形態と同様の構成については記載を省略し、上記と異なる点を中心に説明を行う。
<Another embodiment>
In the insulated wire 1 according to the embodiment described above, by processing the raw material flat wire 9 including the flat conductor 11, the low flat portion 30 is formed in a part of the region, and the other region is is left as the flat portion 20, the flat portion 20 and the low flat portion 30 coexist. However, an insulated wire in which flat portions and low flat portions coexist can be produced by another method. An insulated wire 1' formed by another method will be briefly described below. In the following, descriptions of the same configurations as those of the above-described embodiment are omitted, and the description will focus on points that differ from the above.

この別の実施形態にかかる絶縁電線1’は、図5に示すように、原料低扁平電線9’を用いて製造することができる。ここで、原料低扁平電線9’は、複数の素線12が撚り合わせられた導体11の外周を絶縁被覆13で被覆して絶縁電線1’としたものであり、導体11の断面が、略円形等、扁平度の低い外形を有している。例えば、原料低扁平電線9’として、汎用的な丸電線をそのまま利用することができる。 An insulated wire 1' according to this alternative embodiment can be manufactured using a raw low-flat wire 9', as shown in FIG. Here, the raw material low-flat electric wire 9' is an insulated electric wire 1' in which the outer periphery of a conductor 11 in which a plurality of wires 12 are twisted is covered with an insulating coating 13, and the cross section of the conductor 11 is approximately It has an outer shape with low flatness, such as a circular shape. For example, a general-purpose round electric wire can be used as it is as the raw material low-flat electric wire 9'.

原料低扁平電線9’に対して、一部の領域において、相互に対向する方向から圧縮する力F2を加えて、導体11の扁平度を上昇させることで、扁平部20’を形成する。そして、扁平部20’とした領域以外を、低扁平部30’として残す。これにより、扁平部20’と低扁平部30’を有する絶縁電線1’を製造することができる。つまり、上記で説明した実施形態にかかる絶縁電線1においては、原料扁平電線9に加工を施すことで低扁平部30を形成し、残りの箇所を扁平部20としたのに対し、この別の実施形態にかかる絶縁電線1’においては、原料低扁平電線9’に加工を施すことで扁平部20’を形成し、残りの箇所を低扁平部30’としている。 A flat portion 20 ′ is formed by increasing the flatness of the conductor 11 by applying a compressive force F<b>2 to the raw material low-flat electric wire 9 ′ from the directions facing each other in some regions. A region other than the flat portion 20' is left as a low flat portion 30'. Thereby, an insulated wire 1' having a flat portion 20' and a low flat portion 30' can be manufactured. That is, in the insulated wire 1 according to the embodiment described above, the low flat portion 30 is formed by processing the raw material flat wire 9, and the remaining portion is the flat portion 20. In the insulated wire 1' according to the embodiment, a flat portion 20' is formed by processing a raw material low-flat electric wire 9', and the remaining portion is a low-flat portion 30'.

この別の実施形態にかかる絶縁電線1’においても、上記で説明した絶縁電線1と同様に、扁平部20’において、低扁平部30’よりも、広い面積で導体11に絶縁被覆13が接するため、導体11と絶縁被覆13の間の密着力が、低扁平部30’において、扁平部20’よりも小さくなる。よって、絶縁電線1’の端末部等に、低扁平部30’を設けておくことで、外形の扁平度の低さ自体の効果と合わせて、導体11と絶縁被覆13の間の密着力の小ささの効果によって、絶縁被覆13の除去を伴う絶縁電線1’の加工を、低扁平部30’において簡便に行うことができる。この形態においても、例えば、低扁平部30’における密着力を、扁平部20’における密着力との比較において、20%以上、さらには30%以上小さいものとすることができる(ΔA≦-20%、さらにはΔA≦-30%)。 In the insulated wire 1' according to this other embodiment, similarly to the insulated wire 1 described above, the flat portion 20' is in contact with the conductor 11 over a wider area than the low flat portion 30'. Therefore, the adhesion force between the conductor 11 and the insulating coating 13 is smaller in the low flat portion 30' than in the flat portion 20'. Therefore, by providing the low-flatness portion 30' at the terminal portion of the insulated wire 1' or the like, the adhesive force between the conductor 11 and the insulation coating 13 can be improved in combination with the effect of the low flatness of the outer shape itself. Due to the effect of the small size, the processing of the insulated wire 1' that involves the removal of the insulation coating 13 can be easily performed in the low flat portion 30'. Also in this embodiment, for example, the adhesion force in the low flat portion 30′ can be reduced by 20% or more, further 30% or more in comparison with the adhesion force in the flat portion 20′ (ΔA≦−20 %, or even ΔA≦−30%).

ただし、この別の実施形態にかかる絶縁電線1’においては、後の実施例にも示すように、上記で説明した絶縁電線1とは異なり、低扁平部30’において、扁平部20’よりも空隙率が大きい状態は形成しにくい。また、扁平形状への原料低扁平電線9’の圧縮を行う際に、扁平度の増大に伴って、絶縁被覆13の内周長が引き伸ばされる場合がある。絶縁被覆13の内周長が引き伸ばされることで、幅方向外側の箇所で、導体11と絶縁被覆13の密着が強くなり、低扁平部30’よりも扁平部20’において密着力が大きくなる。絶縁被覆13の内周長が引き伸ばされる際に、絶縁被覆13に無理な負荷が印加されないように、絶縁被覆13としては、ある程度、引張弾性率が低く、伸長しやすい材料を用いることが好ましい。さらに、この形態の絶縁電線1’においては、原料低扁平電線9’の製造時、および原料低扁平電線9’からの加工時のいずれにおいても、低扁平部30’には、導体11を変形させる力は加えられない。よって、低扁平部30’の断面においては、位置によらず、素線12が、変形率の小さい、断面円形に近い形状を維持することになる。 However, in the insulated wire 1' according to this other embodiment, unlike the insulated wire 1 described above, the low flat portion 30' is more It is difficult to form a state with a large porosity. Further, when the raw material low-flat electric wire 9' is compressed into a flat shape, the inner peripheral length of the insulating coating 13 may be stretched as the flatness increases. By stretching the inner peripheral length of the insulating coating 13, the adhesion between the conductor 11 and the insulating coating 13 is strengthened at the widthwise outer portion, and the adhesion force is greater in the flat portion 20' than in the low flat portion 30'. In order to prevent excessive load from being applied to the insulating coating 13 when the inner peripheral length of the insulating coating 13 is stretched, it is preferable to use a material that has a relatively low tensile modulus and is easily stretched as the insulating coating 13. Furthermore, in the insulated wire 1' of this form, the conductor 11 is deformed into the low-flat portion 30' both during the production of the raw low-flat wire 9' and during processing from the raw low-flat wire 9'. No force can be applied. Therefore, in the cross section of the low flat portion 30', the wire 12 maintains a shape close to a circular cross section with a small deformation rate regardless of the position.

ここに説明した絶縁電線1’と同様の方法でも、図3A~3Cに示したような、扁平部20Aとして、扁平方向の異なる複数の領域21~23を含む絶縁電線1Aを製造することができる。この場合には、原料低扁平電線9’に力を加えて扁平部20Aを形成する際に、力を加える方向が異なる複数の領域を設定することで、扁平方向が異なる複数の領域21~23を形成することができる。図3A~3Cに示した形状の絶縁電線1Aを製造する場合、横長の第一の領域21および第三の領域23を形成すべき位置には、z方向に沿って原料低扁平電線9’を圧縮する力を印加し、縦長の第二の領域22を形成すべき位置には、y方向に沿って原料低扁平電線9’を圧縮する力を印加する。 An insulated wire 1A including a plurality of regions 21 to 23 with different flattening directions can be manufactured as a flat portion 20A as shown in FIGS. . In this case, when forming the flat portion 20A by applying force to the raw material low-flat electric wire 9′, by setting a plurality of regions with different directions of applying force, the plurality of regions 21 to 23 with different flattening directions are set. can be formed. When manufacturing the insulated wire 1A having the shape shown in FIGS. 3A to 3C, the raw material low-flat wire 9′ is placed along the z direction at the positions where the horizontally long first region 21 and the third region 23 are to be formed. A compressing force is applied, and a compressing force is applied along the y-direction to the position where the elongated second region 22 is to be formed.

以下に実施例を示す。なお、本発明はこれら実施例によって限定されるものではない。ここでは、2とおりの絶縁電線について、扁平部および低扁平部の間で状態を比較した。 Examples are shown below. However, the present invention is not limited to these examples. Here, for two types of insulated wires, the states were compared between the flat portion and the low flat portion.

(試料の準備)
(1)試料1
最初に、原料扁平電線を作製した。まず、アルミニウム合金の素線を撚り合わせた断面略円形の撚線を準備し、その撚線をローラによって扁平形状に圧縮することで、導体を作製した。撚線としては、導体断面積が130mm、素線径が0.42mmのものを用いた。扁平形状の縦横比w/hは約3とした。作製した導体の外周に、押出成形によって、絶縁被覆を形成し、原料扁平電線を得た。絶縁被覆の構成材料としては、架橋ポリエチレンを用い、絶縁被覆の厚さは、2mmとした。
(Sample preparation)
(1) Sample 1
First, a raw material flat electric wire was produced. First, a stranded wire having a substantially circular cross section was prepared by twisting aluminum alloy strands, and a conductor was produced by compressing the stranded wire into a flat shape with a roller. The stranded wire used had a conductor cross-sectional area of 130 mm 2 and a wire diameter of 0.42 mm. The aspect ratio w/h of the flat shape was about 3. An insulating coating was formed on the outer periphery of the produced conductor by extrusion molding to obtain a raw material flat electric wire. Crosslinked polyethylene was used as a constituent material of the insulating coating, and the thickness of the insulating coating was set to 2 mm.

上記の原料扁平電線に対して、一部の領域において、扁平形状の幅方向外側から内側に向かう力を印加して、導体の扁平形状の扁平度を低下させることで、低扁平部を形成した。力の印加を行わなかった領域は、扁平部として残した。低扁平部における導体の縦横比w/hは、約1とした。低扁平部の形成は、室温におけるプレス加工によって行った。 A low-flat portion was formed by applying a force directed from the outside in the width direction of the flat shape to the inside in some regions of the raw material flat electric wire to reduce the flatness of the flat shape of the conductor. . Areas where no force was applied were left as flattened areas. The aspect ratio w/h of the conductor in the low flat portion was about 1. Formation of the low flat portion was performed by press working at room temperature.

(2)試料2
最初に、原料低扁平電線を作製した。まず、アルミニウム合金の素線を撚り合わせた断面略円形の撚線を準備した。撚線としては、導体断面積が60mm、素線径が0.32mmのものを用いた。作製した導体の外周に、押出成形によって、絶縁被覆を形成し、原料低扁平電線を得た。絶縁被覆の構成材料としては、ポリ塩化ビニルを用い、絶縁被覆の厚さは、2mmとした。
(2) Sample 2
First, a raw low-flat electric wire was produced. First, a stranded wire having a substantially circular cross section was prepared by twisting aluminum alloy strands. As the stranded wire, a wire having a conductor cross-sectional area of 60 mm 2 and a wire diameter of 0.32 mm was used. An insulating coating was formed on the outer periphery of the produced conductor by extrusion molding to obtain a raw material low-flat electric wire. Polyvinyl chloride was used as a constituent material of the insulation coating, and the thickness of the insulation coating was 2 mm.

上記の低原料扁平電線に対して、一部の領域において、対向する方向から挟み込む力を印加して、導体を圧縮して扁平度を上昇させることで、扁平部を形成した。力の印加を行わなかった領域は、低扁平部として残した。扁平部における導体の縦横比w/hは、約3とした。扁平部の形成は、室温におけるプレス加工によって行った。 A flattened portion was formed by applying pinching force from opposite directions to the low-raw material flat wire to compress the conductor and increase the degree of flatness in some regions. Areas where no force was applied were left as low flattened areas. The aspect ratio w/h of the conductor in the flat portion was about 3. The flat portion was formed by press working at room temperature.

(評価方法)
上記で作製した試料1,2の扁平部および低扁平部について、それぞれ、断面観察を行った。各試料を、アクリル樹脂に包埋して固定した。そして、扁平部と低扁平部のそれぞれの箇所にて、絶縁電線を軸線方向に垂直に切断することで、断面試料を得た。得られた断面試料を顕微鏡にて観察し、観察像に対して画像解析を行うことで、絶縁被覆の内側の領域について、空隙面積、内面積、空隙率、内周長を評価した。試料1の低扁平部、および試料2の扁平部については、位置1~3の3か所で断面試料を作成して評価を行い、得られた値を3か所で平均した。
(Evaluation method)
Cross-sectional observation was performed for each of the flat portion and the low flat portion of Samples 1 and 2 produced above. Each sample was embedded and fixed in acrylic resin. Then, cross-sectional samples were obtained by cutting the insulated wire perpendicularly to the axial direction at each of the flat portion and the low flat portion. The obtained cross-sectional sample was observed with a microscope, and image analysis was performed on the observed image to evaluate the void area, inner area, porosity, and inner peripheral length of the region inside the insulating coating. For the low flat portion of sample 1 and the flat portion of sample 2, cross-sectional samples were prepared at three positions 1 to 3 and evaluated, and the obtained values were averaged at the three positions.

別途、試料1,2の絶縁電線に対して、扁平部および低扁平部のそれぞれにおいて、導体と絶縁被覆の間の密着力を評価した。各試料の扁平部のみ、あるいは低扁平部のみを含む領域を70mmに切り出し、端部から25mmの領域の絶縁被覆を剥がして、導体を露出させた。導体の外形と同等の形状を有する貫通孔を金属板に形成し、その貫通孔に、露出した導体を挿通した。そして、導体を250mm/秒の速度で引張り、導体を絶縁被覆から引き抜いた。引き抜きに要する荷重をロードセルにて測定し、最大荷重を、導体に対する絶縁被覆の密着力とした。 Separately, for the insulated wires of Samples 1 and 2, the adhesion between the conductor and the insulation coating was evaluated in each of the flat portion and the low flat portion. A region containing only the flat portion or only the low flat portion of each sample was cut to 70 mm, and the insulating coating was peeled off in a region of 25 mm from the end to expose the conductor. A through-hole having the same shape as the outer shape of the conductor was formed in the metal plate, and the exposed conductor was inserted through the through-hole. Then, the conductor was pulled at a speed of 250 mm/sec to pull the conductor out of the insulating coating. The load required for drawing was measured with a load cell, and the maximum load was defined as the adhesion of the insulating coating to the conductor.

(評価結果)
図6A,6Bに、それぞれ試料1および試料2について、各位置における断面画像とともに、断面の状態の評価の結果と、密着力の測定結果を示す。なお、断面画像においては、扁平部と低扁平部で縮尺は適宜変更している。表中には合わせて、各測定値について、扁平部と低扁平部の間の差分率を表示している。ここで、差分率は、扁平部の値を基準として、低扁平部の値がどれだけの割合で変化しているかを表示している。つまり、差分率は、以下の式(5)によって表現される。
差分率=(低扁平部の値-扁平部の値)/扁平部の値×100% (5)
複数の位置で断面の評価を行っている場合には、平均値を差分率の算出に用いている。図6A,6Bにおいて、差分率の算出に用いた値および算出された差分率を太字で表示している。
(Evaluation results)
6A and 6B show the cross-sectional images at each position, the evaluation results of the state of the cross-sections, and the measurement results of the adhesion force for the samples 1 and 2, respectively. In the cross-sectional images, the scales of the flat portion and the low-flat portion are appropriately changed. Also shown in the table is the rate of difference between the flattened portion and the low flattened portion for each measured value. Here, the rate of difference indicates how much the value of the low flat portion changes with respect to the value of the flat portion. That is, the difference rate is expressed by the following formula (5).
Differential rate = (low flat portion value - flat portion value) / flat portion value x 100% (5)
When cross-sections are evaluated at multiple positions, the average value is used to calculate the differential ratio. In FIGS. 6A and 6B, the values used to calculate the difference rate and the calculated difference rate are displayed in bold.

図6Aに示す試料1の断面画像によると、原料扁平電線に力を加えて形成した低扁平部が、扁平部よりも扁平度の低い形状を有していることが確認される。そして、扁平部と低扁平部で密着力の測定結果を比較すると、低扁平部の方が小さい値をとっており、差分率を見ても、ΔA≦-30%となっている。つまり、低扁平化によって、絶縁被覆と導体の間の密着力が、30%以上小さくなっている。 According to the cross-sectional image of Sample 1 shown in FIG. 6A, it is confirmed that the low flat portion formed by applying force to the raw material flat electric wire has a shape with a lower degree of flatness than the flat portion. Comparing the measurement results of the adhesion force between the flat portion and the low flat portion, the low flat portion has a smaller value, and the difference rate is ΔA≦−30%. In other words, the adhesion between the insulating coating and the conductor is reduced by 30% or more due to the low flatness.

断面画像において、素線に占められていない空隙の分布に着目すると、まず、扁平部では、導体の外周に絶縁被覆が密着しており、導体と絶縁被覆の間の空隙はごく小さくなっているのに対し、低扁平部においては、導体と絶縁被覆の間に、明らかな空隙が生じている。さらに、その空隙は、幅相当方向(画像の横方向)に偏在している。空隙の偏在は、位置2,3において特に顕著である。さらに、導体の内部の素線間の領域の空隙も、低扁平部において、扁平部よりも大きくなっているのが見て取れる。これらのことから、絶縁被覆の内周に囲まれた領域に形成された空隙が、低扁平部において、扁平部よりも大きくなっていることが分かる。これらの結果は、空隙面積および空隙率の測定値が、低扁平部において、扁平部より大きくなっていることにより、またそれらの差分値が正値をとっていることにより、一層明確に示される。空隙率については、扁平部の値を基準として、50%以上も、低扁平部の方で大きくなっている(ΔV≧+50%)。 Focusing on the distribution of voids not occupied by wires in the cross-sectional image, first, in the flat portion, the insulating coating adheres to the outer periphery of the conductor, and the voids between the conductor and the insulating coating are very small. On the other hand, in the low-flat part, a clear air gap occurs between the conductor and the insulation coating. Furthermore, the gaps are unevenly distributed in the width equivalent direction (horizontal direction of the image). The uneven distribution of voids is particularly noticeable at positions 2 and 3. Furthermore, it can be seen that the gap in the region between the strands inside the conductor is also larger in the low flat portion than in the flat portion. From these facts, it can be seen that the voids formed in the region surrounded by the inner circumference of the insulating coating are larger in the low flat portion than in the flat portion. These results are more clearly shown by the fact that the measured values of the void area and the porosity are larger in the low flattened portion than in the flattened portion, and the difference value between them is a positive value. . Regarding the porosity, the value of the flat portion is larger than that of the flat portion by 50% or more (ΔV≧+50%).

扁平部と低扁平部で、絶縁被覆の内周長は変化していない(ΔD=0%)。一方、絶縁被覆の内面積は、低扁平部において、扁平部の値に対して20%以上大きくなっている(ΔS≧+20%)。 The inner peripheral length of the insulating coating does not change between the flat portion and the low flat portion (ΔD=0%). On the other hand, the inner area of the insulating coating is 20% or more larger in the low flat portion than in the flat portion (ΔS≧+20%).

以上の結果から、原料扁平電線に幅方向外側から力を加えて低扁平部を形成する際に、絶縁被覆の内周長の変化が制限された空間の内部で、導体が低扁平形状に変形することで、絶縁被覆の内周面に囲まれた空間の面積が増大し、それによって空隙率が上昇すると解釈される。そして、空隙率の増加、特に導体と絶縁被覆の間の領域への空隙の形成により、絶縁被覆と導体の間の密着力が低減されると考えられる。 From the above results, when a force is applied to the raw material flat wire from the outside in the width direction to form a low flat portion, the conductor deforms into a low flat shape inside the space where the change in the inner circumference length of the insulation coating is restricted. By doing so, it is interpreted that the area of the space surrounded by the inner peripheral surface of the insulating coating increases, thereby increasing the porosity. It is believed that the increase in porosity, particularly the formation of voids in the region between the conductor and the insulation coating, reduces the adhesion between the insulation coating and the conductor.

次に、図6Bに示す試料2の断面画像によると、原料低扁平電線の構造を残した低扁平部が、原料低扁平電線に圧縮する力を加えて形成した扁平部よりも、扁平度の低い形状を有していることが確認される。そして、扁平部と低扁平部の密着力の測定結果を比較すると、低扁平部の方が小さい値をとっており、差分率を見ても、ΔA≦-30%となっている。つまり、原料低扁平電線の圧縮により、絶縁被覆と導体の間の密着力が上昇し、低扁平部は、圧縮を経て形成される扁平部よりも、30%以上密着力が小さい状態に留まる。 Next, according to the cross-sectional image of sample 2 shown in FIG. 6B , the low flat portion, which retains the structure of the raw material low-flat electric wire, has a flatter degree than the flat portion formed by applying a compressive force to the raw low-flat electric wire. It is confirmed that it has a low profile. Comparing the measurement results of the adhesion force between the flat portion and the low flat portion, the low flat portion has a smaller value, and the difference ratio is ΔA≦−30%. That is, the compression of the raw material low-flat wire increases the adhesion between the insulating coating and the conductor, and the low-flat portion remains at a state where the adhesion is 30% or more lower than that of the flat portion formed through compression.

断面画像において、空隙の分布に着目すると、扁平部、低扁平部とも、導体と絶縁被覆の間にはほぼ空隙が形成されていない。導体の内部の素線間の空隙については、低扁平部よりも扁平部の方が大きくなっていることが見て取れる。つまり、絶縁被覆の内周に囲まれた領域に形成された空隙が、低扁平部よりも扁平部において大きくなっていることが分かる。これらの結果は、空隙面積および空隙率の測定値が、扁平部において、低扁平部より大きくなっており、差分率も負値をとっていることにより、一層明確に示される。この結果は、低扁平形状から扁平形状への圧縮により、導体の内部の空隙が増大することを意味している。 Focusing on the distribution of voids in the cross-sectional image, there are almost no voids formed between the conductor and the insulating coating in both the flat portion and the low flat portion. It can be seen that the gap between the wires inside the conductor is larger in the flat part than in the low flat part. That is, it can be seen that the gap formed in the region surrounded by the inner circumference of the insulating coating is larger in the flat portion than in the low flat portion. These results are more clearly shown by the fact that the measured values of void area and void ratio are larger in the flattened portion than in the low flattened portion, and the difference rate is also negative. This result implies that the compression from the low profile shape to the flat shape increases the void inside the conductor.

試料1では、力の印加による低扁平部の形成を経て、絶縁被覆の内周長が変化しなかったのに対し、試料2では、扁平部において、低扁平部よりも、絶縁被覆の内周長が長くなっており(差分率ΔD≦0)、力の印加による扁平部の形成を経て、絶縁被覆の内周長が伸びている。この現象は、力の印加によって導体を圧縮する際に、導体の変形に伴って絶縁被覆が伸長されたことによると考えられる。 In sample 1, the inner circumference length of the insulating coating did not change through the formation of the low flat portion due to the application of force. The length is longer (difference ratio ΔD≦0), and the inner peripheral length of the insulating coating is extended through the formation of a flat portion due to the application of force. This phenomenon is considered to be due to the extension of the insulation coating along with the deformation of the conductor when the conductor is compressed by the application of force.

以上、本開示の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。 Although the embodiments of the present disclosure have been described in detail above, the present invention is by no means limited to the above embodiments, and various modifications are possible without departing from the gist of the present invention.

1,1’,1A 絶縁電線
11 導体
12 素線
13 絶縁被覆
20,20’,20A 扁平部
21 第一の領域
22 第二の領域
23 第三の領域
30,30’ 低扁平部
9 原料扁平電線
9’ 原料低扁平電線
h 導体の高さ
w 導体の幅
x 絶縁電線の軸線方向
y 幅相当方向
z 高さ相当方向
F1 力
F2 力
R1 中央部の領域
R2 幅方向端部の領域
R3 高さ方向端部の領域
Rh 高さ方向導体外領域
Rw 幅方向導体外領域
1, 1', 1A Insulated wire 11 Conductor 12 Wire 13 Insulation coating 20, 20', 20A Flat portion 21 First region 22 Second region 23 Third region 30, 30' Low flat portion 9 Raw flat wire 9′ Raw material low-flat electric wire h Conductor height w Conductor width x Insulated wire axial direction y Width equivalent direction z Height equivalent direction F1 Force F2 Force R1 Central region R2 Width direction end region R3 Height direction Edge region Rh Height direction outside conductor region Rw Width direction outside conductor region

Claims (11)

複数の素線が撚り合わせられた導体と、
前記導体の外周を被覆する絶縁被覆と、を有する絶縁電線であって、
前記導体を構成する前記素線のそれぞれ、および前記絶縁被覆を相互に連続させて、扁平部と、低扁平部と、を軸線方向に沿って有し、
前記絶縁電線の軸線方向に直交する断面における前記導体の外形が、前記扁平部において、扁平形状をとり、かつ前記低扁平部において、前記扁平部よりも扁平度の小さい形状をとり、
前記導体と前記絶縁被覆の間の密着力が、前記低扁平部において、前記扁平部よりも小さくなっている、絶縁電線。
a conductor in which a plurality of strands are twisted together;
An insulated wire having an insulating coating that covers the outer periphery of the conductor,
Each of the wires constituting the conductor and the insulating coating are connected to each other to have a flat portion and a low flat portion along the axial direction,
The outer shape of the conductor in a cross section orthogonal to the axial direction of the insulated wire has a flattened shape at the flattened portion, and a flatter shape at the low flattened portion than the flattened portion,
The insulated wire, wherein adhesion between the conductor and the insulating coating is smaller in the low flat portion than in the flat portion.
前記導体と前記絶縁被覆の間の密着力が、前記低扁平部において、扁平部と比較して20%以上小さくなっている、請求項1に記載の絶縁電線。 2. The insulated wire according to claim 1, wherein the adhesion between said conductor and said insulating coating is 20% or more smaller in said low flat portion than in said flat portion. 前記断面における前記絶縁被覆の内周に囲まれた領域の面積のうち、素線に占められない空隙の割合である空隙率が、前記低扁平部において前記扁平部よりも大きい、請求項1または請求項2に記載の絶縁電線。 2. A porosity, which is a ratio of voids not occupied by wires, in the area of the region surrounded by the inner circumference of the insulating coating in the cross section, is larger in the low flat portion than in the flat portion. The insulated wire according to claim 2. 前記断面における空隙率が、前記低扁平部において、前記扁平部と比較して20%以上大きくなっている、請求項3に記載の絶縁電線。 The insulated wire according to claim 3, wherein the porosity in the cross section is 20% or more larger in the low flat portion than in the flat portion. 前記低扁平部の前記断面において、前記扁平形状の幅方向および高さ方向に対応する方向に沿って、前記導体の外側の領域を、それぞれ、幅方向導体外領域および高さ方向導体外領域として、
前記幅方向導体外領域において、前記導体と前記絶縁被覆との間に、前記高さ方向導体外領域よりも大きな空隙が形成されている、請求項1から請求項4に記載の絶縁電線。
In the cross section of the low-flat portion, regions outside the conductor along directions corresponding to the width direction and the height direction of the flat shape are defined as a width direction outside conductor region and a height direction outside conductor region, respectively. ,
5 . The insulated wire according to claim 1 , wherein in the width direction outside conductor region, a gap larger than that in the height direction outside conductor region is formed between the conductor and the insulation coating.
前記断面において、前記扁平部と前記低扁平部との間における前記絶縁被覆の内周の長さの差が、前記扁平部における前記絶縁被覆の内周の長さの5%以下である、請求項1から請求項5のいずれか1項に記載の絶縁電線。 In the cross section, the difference in length of the inner circumference of the insulating coating between the flat portion and the low flat portion is 5% or less of the length of the inner circumference of the insulating coating in the flat portion. The insulated wire according to any one of claims 1 to 5. 前記扁平部として、前記扁平形状の方向が異なる複数の領域を有する、請求項1から請求項6のいずれか1項に記載の絶縁電線。 The insulated wire according to any one of claims 1 to 6, wherein the flattened portion has a plurality of regions with different flattened directions. 前記絶縁電線は、軸線方向に沿って、前記扁平部の少なくとも片側に、前記低扁平部を有する、請求項1から請求項7のいずれか1項に記載の絶縁電線。 The insulated wire according to any one of claims 1 to 7, wherein the insulated wire has the low flat portion on at least one side of the flat portion along the axial direction. 複数の素線が撚り合わせられた導体を扁平形状に圧縮し、外周を絶縁被覆で被覆して絶縁電線とした後、
前記絶縁電線の軸線方向に沿って一部の領域において、前記扁平形状の幅方向外側から内側に向かって力を加えて、前記導体の扁平度を低下させることで、低扁平部を形成するとともに、
前記低扁平部とした領域以外を、扁平部として残して製造される、絶縁電線。
After compressing a conductor in which a plurality of wires are twisted together into a flat shape and covering the outer periphery with an insulating coating to make an insulated wire,
A low-flat portion is formed by reducing the flatness of the conductor by applying a force from the outside in the width direction toward the inside of the flat shape in a partial region along the axial direction of the insulated wire. ,
An insulated wire manufactured by leaving a flat portion other than the low flat portion.
複数の素線が撚り合わせられた導体の外周を絶縁被覆で被覆して絶縁電線とした後、
前記絶縁電線の軸線方向に沿って一部の領域において、相互に対向する方向から前記絶縁電線を圧縮する力を加えて、前記導体の扁平度を上昇させることで、扁平部を形成するとともに、
前記扁平部とした領域以外を、低扁平部として残して製造される、絶縁電線。
After covering the outer periphery of the conductor in which a plurality of wires are twisted together with an insulating coating to form an insulated wire,
In some regions along the axial direction of the insulated wire, a flat portion is formed by increasing the flatness of the conductor by applying a force that compresses the insulated wire from mutually opposing directions, and
An insulated wire manufactured by leaving a region other than the flattened portion as a low flattened portion.
請求項1から請求項10のいずれか1項に記載の絶縁電線を含む、ワイヤーハーネス。 A wire harness comprising the insulated wire according to any one of claims 1 to 10.
JP2021168394A 2021-03-31 2021-10-13 Insulation wire and wire harness Pending JP2022158845A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/281,757 US20240312669A1 (en) 2021-03-31 2022-03-25 Insulated electric wire and wire harness
DE112022001889.5T DE112022001889T5 (en) 2021-03-31 2022-03-25 INSULATED ELECTRICAL CABLE AND WIRING HARNESS
CN202280025221.7A CN117121128A (en) 2021-03-31 2022-03-25 Insulated wire and wire harness
PCT/JP2022/014294 WO2022210332A1 (en) 2021-03-31 2022-03-25 Insulated electric wire and wire harness

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021060354 2021-03-31
JP2021060354 2021-03-31

Publications (1)

Publication Number Publication Date
JP2022158845A true JP2022158845A (en) 2022-10-17

Family

ID=83639064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021168394A Pending JP2022158845A (en) 2021-03-31 2021-10-13 Insulation wire and wire harness

Country Status (1)

Country Link
JP (1) JP2022158845A (en)

Similar Documents

Publication Publication Date Title
JP7293275B2 (en) Wire conductor, coated wire, wire harness
JP7290184B2 (en) Wire conductor, coated wire, wire harness, and method for manufacturing wire conductor
US10916359B2 (en) Electric wire conductor, covered electric wire, and wiring harness
CN112086223B (en) Electric wire conductor, coated electric wire, and wire harness
JP2020107615A (en) Cable assembly
JP6164844B2 (en) Insulated wire, coaxial cable and multi-core cable
WO2006008982A1 (en) Electric wire for automobile
WO2022210332A1 (en) Insulated electric wire and wire harness
JP2022158845A (en) Insulation wire and wire harness
CN117121128A (en) Insulated wire and wire harness
WO2022210331A1 (en) Insulated electric cable, and wire harness
JP2020021620A (en) Insulated wire and cable
WO2023189982A1 (en) Insulated electric wire, wire harness, and method for manufacturing insulated electric wire
WO2023167255A1 (en) Aluminum-compressed electric wire and wire harness
WO2022210684A1 (en) Insulated wire and wire harness
JP2023146624A (en) Electric wire and cable
JP2024004190A (en) Stranded wire conductor, electric wire, and method for manufacturing stranded wire conductor
JP2006032076A (en) Electric wire for automobile
JP2008235052A (en) Ground bar, and ultrafine coaxial cable assembly using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240215