JP2022158595A - Absorbent and removal method of impurities - Google Patents

Absorbent and removal method of impurities Download PDF

Info

Publication number
JP2022158595A
JP2022158595A JP2021063608A JP2021063608A JP2022158595A JP 2022158595 A JP2022158595 A JP 2022158595A JP 2021063608 A JP2021063608 A JP 2021063608A JP 2021063608 A JP2021063608 A JP 2021063608A JP 2022158595 A JP2022158595 A JP 2022158595A
Authority
JP
Japan
Prior art keywords
adsorbent
mass
adsorbent according
meth
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021063608A
Other languages
Japanese (ja)
Inventor
正 足立
Tadashi Adachi
智一 篠崎
Tomokazu Shinozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2021063608A priority Critical patent/JP2022158595A/en
Publication of JP2022158595A publication Critical patent/JP2022158595A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Edible Oils And Fats (AREA)

Abstract

To provide an absorbent capable of efficiently removing impurities represented by aldehyde or organic acids in a non water-soluble organic compound represented by fat, and also to provide a method for efficiently removing impurities represented by aldehyde or organic acids in a non water-soluble organic compound represented by fat.SOLUTION: An absorbent is for removing impurities in a non water-soluble organic compound, the absorbent having a primary amino group. A removal method of impurities uses the absorbent to remove impurities in a non water-soluble organic compound.SELECTED DRAWING: Figure 1

Description

本発明は、吸着剤及びこの吸着剤を用いた不純物の除去方法に関する。 TECHNICAL FIELD The present invention relates to an adsorbent and a method for removing impurities using the adsorbent.

オリーブ油、大豆油、パーム油等に代表される植物油脂は、食用として広く用いられている。とりわけ、オリーブ油は、成分にLDLを減らし、HDLを維持する効果を有する一価不飽和脂肪酸であるオレイン酸を多く含み、また、人間の体内では生成できない必須脂肪酸である多価不飽和脂肪酸のリノール酸とα-リノレン酸も適度に含むため、「地中海式ダイエット」の構成要素に挙げられており、需要増大が見込まれている。 Vegetable oils and fats represented by olive oil, soybean oil, palm oil and the like are widely used as food. Above all, olive oil contains a large amount of oleic acid, a monounsaturated fatty acid that has the effect of reducing LDL and maintaining HDL. It also contains a moderate amount of acid and α-linolenic acid, so it is listed as a component of the “Mediterranean diet” and demand is expected to increase.

一方、需要増大への対応として、オリーブ油の増産のみならず、オリーブ搾油残渣から抽出されるオリーブポマス油の活用も重要である。オリーブポマス油は、オリーブ搾油残渣からの溶媒抽出後に、中和工程、脱ろう工程、脱色工程、脱臭工程等を経て製造されるが、その品質は、バージンオリーブ油、精製オリーブ油、オリーブ油に比べて劣るものと見なされている。このため、その用途は、揚げ物、煮物、ソース、製菓等の食品工業的使用が主となっている。 On the other hand, it is important not only to increase the production of olive oil but also to utilize olive pomace oil, which is extracted from olive oil residue, in order to meet the growing demand. Olive pomace oil is produced through a process of neutralization, dewaxing, decolorization, deodorization, etc. after solvent extraction from olive oil residue, but its quality is inferior to virgin olive oil, refined olive oil and olive oil. regarded as a thing. Therefore, it is mainly used in the food industry such as fried food, boiled food, sauce, and confectionery.

特開2009-118781号公報JP 2009-118781 A

J.Agric.Food Chem.,Vol.68,p5927(2020).J. Agric. Food Chem. , Vol. 68, p5927 (2020). 食品総合研究所研究報告,No.76,p51(2012).Food Research Institute Research Report, No. 76, p51 (2012). 油化学,Vol.26,p150(1977).Oil Chemistry, Vol. 26, p150 (1977).

オリーブ油の品質に影響する因子として、非特許文献1に開示されているように、アルデヒド類や有機酸類の存在があり、オリーブポマス油の製造工程において、アルデヒド類や有機酸類を充分に除去できれば、オリーブポマス油の品質が向上し利用範囲を広げられる等、オリーブポマス油の付加価値を高めることが可能となる。 As disclosed in Non-Patent Document 1, aldehydes and organic acids are factors that affect the quality of olive oil. It is possible to increase the added value of olive pomace oil, such as by improving the quality of olive pomace oil and expanding the range of use.

また、油脂を揚げ物に用いる場合、非特許文献2及び非特許文献3に開示されているように、継続使用に伴う劣化によりアルデヒド類や有機酸類が生成し、品質が低下する。このため、アルデヒド類や有機酸類の生成を抑制するだけでなく、生成した場合に効率よく除去できる方法があれば、継続使用期間を延ばすことが可能となり、経済的に有益である。 In addition, when oils and fats are used for fried food, as disclosed in Non-Patent Documents 2 and 3, aldehydes and organic acids are generated due to deterioration due to continuous use, resulting in deterioration of quality. Therefore, if there is a method that not only suppresses the generation of aldehydes and organic acids but also efficiently removes them when they are generated, it is possible to extend the continuous use period, which is economically beneficial.

アルデヒド類の除去方法として、特許文献1に開示されているアニオン交換樹脂を用いる方法が考えられるが、特許文献1に開示されているアルデヒド類の除去方法は、水溶液中のアルデヒド類の除去方法であるため、油脂中のアルデヒド類の除去に適用できるかは不明であった。 As a method for removing aldehydes, a method using an anion exchange resin disclosed in Patent Document 1 can be considered, but the method for removing aldehydes disclosed in Patent Document 1 is a method for removing aldehydes in an aqueous solution. Therefore, it was unclear whether it could be applied to the removal of aldehydes in fats and oils.

本発明は、このような課題に鑑みてなされたものであり、本発明の目的は、油脂に代表される非水溶性有機化合物中の、アルデヒド類や有機酸類に代表される不純物を、効率よく除去する吸着剤を提供することにある。また、本発明のもう1つの目的は、油脂に代表される非水溶性有機化合物中の、アルデヒド類や有機酸類に代表される不純物を、効率よく除去する不純物の除去方法を提供することにある。 The present invention has been made in view of such problems, and an object of the present invention is to efficiently remove impurities typified by aldehydes and organic acids in water-insoluble organic compounds typified by oils and fats. The object is to provide an adsorbent that removes. Another object of the present invention is to provide a method for removing impurities such as aldehydes and organic acids from water-insoluble organic compounds such as fats and oils. .

本発明者らは、鋭意検討を重ねた結果、一級アミノ基を有する吸着剤が、油脂に代表される非水溶性有機化合物中の、アルデヒド類や有機酸類に代表される不純物に対して、優れた吸着性を示すことを見出し、本発明に至った。 As a result of intensive studies, the present inventors have found that an adsorbent having a primary amino group is excellent against impurities represented by aldehydes and organic acids in water-insoluble organic compounds represented by oils and fats. The present inventors have found that it exhibits a high adsorption property, leading to the present invention.

即ち、本発明の要旨は、以下の通りである。
[1]非水溶性有機化合物中の不純物を除去するための吸着剤であって、一級アミノ基を有する、吸着剤。
[2]前記不純物が、アルデヒド類を含む、[1]に記載の吸着剤。
[3]前記不純物が、更に、有機酸類を含む、[2]に記載の吸着剤。
[4]前記非水溶性有機化合物が、油脂を含む、[1]~[3]のいずれかに記載の吸着剤。
[5]樹脂、多糖類、シリカ及びガラスからなる群より選ばれる少なくとも1種を含む、[1]~[4]のいずれかに記載の吸着剤。
[6]樹脂を含む、[5]に記載の吸着剤。
[7]前記樹脂が、アクリル系樹脂、スチレン系樹脂、ポリビニルアミン系樹脂、イソシアヌル酸トリアリル系樹脂及びビニルエーテル系樹脂からなる群より選ばれる少なくとも1種を含む、[6]に記載の吸着剤。
[8]前記樹脂が、架橋構造を有する、[6]又は[7]に記載の吸着剤。
[9]前記アクリル系樹脂が、エポキシ基含有(メタ)アクリレート単位及び架橋性(メタ)アクリレート単位を含む、[7]又は[8]に記載の吸着剤。
[10]前記スチレン系樹脂が、芳香族モノビニル単量体単位及び架橋性芳香族ビニル単量体単位を含む、[7]又は[8]に記載の吸着剤。
[11]前記ポリビニルアミン系樹脂が、N-ビニルカルボン酸アミド単位を含む、[7]又は[8]に記載の吸着剤。
[12]前記一級アミノ基が、ポリアルキレンポリアミン、ポリビニルアミン及びポリアリルアミンからなる群より選ばれる少なくとも1種により導入されたものである、[1]~[11]のいずれかに記載の吸着剤。
[13]多孔性を有する、[1]~[12]のいずれかに記載の吸着剤。
[14]細孔直径が、1nm~1000nmである、[13]に記載の吸着剤。
[15][1]~[14]のいずれかに記載の吸着剤を用いて、非水溶性有機化合物中の不純物を除去する、不純物の除去方法。
That is, the gist of the present invention is as follows.
[1] An adsorbent for removing impurities in a water-insoluble organic compound, the adsorbent having a primary amino group.
[2] The adsorbent according to [1], wherein the impurities include aldehydes.
[3] The adsorbent according to [2], wherein the impurities further include organic acids.
[4] The adsorbent according to any one of [1] to [3], wherein the water-insoluble organic compound contains oil.
[5] The adsorbent according to any one of [1] to [4], containing at least one selected from the group consisting of resins, polysaccharides, silica and glass.
[6] The adsorbent according to [5], which contains a resin.
[7] The adsorbent according to [6], wherein the resin contains at least one selected from the group consisting of acrylic resins, styrene resins, polyvinylamine resins, triallyl isocyanurate resins and vinyl ether resins.
[8] The adsorbent according to [6] or [7], wherein the resin has a crosslinked structure.
[9] The adsorbent according to [7] or [8], wherein the acrylic resin contains epoxy group-containing (meth)acrylate units and crosslinkable (meth)acrylate units.
[10] The adsorbent according to [7] or [8], wherein the styrenic resin contains aromatic monovinyl monomer units and crosslinkable aromatic vinyl monomer units.
[11] The adsorbent according to [7] or [8], wherein the polyvinylamine-based resin contains an N-vinylcarboxylic acid amide unit.
[12] The adsorbent according to any one of [1] to [11], wherein the primary amino group is introduced by at least one selected from the group consisting of polyalkylenepolyamine, polyvinylamine and polyallylamine. .
[13] The adsorbent according to any one of [1] to [12], which has porosity.
[14] The adsorbent according to [13], which has a pore diameter of 1 nm to 1000 nm.
[15] A method for removing impurities, comprising removing impurities in a water-insoluble organic compound using the adsorbent according to any one of [1] to [14].

本発明の吸着剤は、油脂に代表される非水溶性有機化合物中の、アルデヒド類や有機酸類に代表される不純物を、効率よく除去することができる。
また、本発明の不純物の除去方法は、油脂に代表される非水溶性有機化合物中の、アルデヒド類や有機酸類に代表される不純物を、効率よく除去することができる。
The adsorbent of the present invention can efficiently remove impurities typified by aldehydes and organic acids in water-insoluble organic compounds typified by oils and fats.
In addition, the method for removing impurities of the present invention can efficiently remove impurities such as aldehydes and organic acids in water-insoluble organic compounds such as oils and fats.

実施例1で得られた吸着剤による処理後のアルデヒド含有油脂の高速液体クロマトグラムを示す図である。1 is a diagram showing a high-performance liquid chromatogram of aldehyde-containing fats and oils after treatment with the adsorbent obtained in Example 1. FIG. 実施例2で得られた吸着剤による処理後のアルデヒド含有油脂の高速液体クロマトグラムを示す図である。1 is a diagram showing a high-performance liquid chromatogram of aldehyde-containing fats and oils after treatment with the adsorbent obtained in Example 2. FIG. アルデヒド含有油脂の高速液体クロマトグラムを示す図である。It is a figure which shows the high performance liquid chromatogram of aldehyde containing fats and oils.

以下に本発明について詳述するが、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変更して実施することができる。尚、本明細書において「~」という表現を用いる場合、その前後の数値又は物性値を含む表現として用いるものとする。また、本明細書において、「(メタ)アクリル」とは、「アクリル」、「メタクリル」又はその両者をいい、「(メタ)アクリレート」とは、「アクリレート」、「メタクリレート」又はその両者をいう。 Although the present invention will be described in detail below, the present invention is not limited to the following embodiments, and can be implemented with various modifications within the scope of the gist thereof. In addition, when the expression "~" is used in this specification, it is used as an expression including numerical values or physical property values before and after it. In the present specification, "(meth)acrylic" refers to "acrylic", "methacrylic" or both, and "(meth)acrylate" refers to "acrylate", "methacrylate" or both. .

(吸着剤)
本発明の吸着剤は、非水溶性有機化合物中の不純物を除去するためのものである。
(adsorbent)
The adsorbent of the present invention is for removing impurities in water-insoluble organic compounds.

本明細書において、非水溶性有機化合物は、液体状態で水と自由に混和しない化合物をいい、例えば、消防法第四類において非水溶性液体に分類される化合物;油脂等が挙げられる。これらの非水溶性有機化合物の中でも、高純度が求められる電子工業用途や高付加価値化が求められる食品工業用途であることから、プロピレングリコールメチルエーテルアセタート、プロピレングリコールモノメチルエーテル、酢酸エチル、酢酸ブチル、メチルイソブチルカルビノール、シクロヘキサノン、油脂が好ましく、油脂がより好ましい。 As used herein, the water-insoluble organic compound refers to a compound that is not freely miscible with water in a liquid state. Among these water-insoluble organic compounds, propylene glycol methyl ether acetate, propylene glycol monomethyl ether, ethyl acetate, and acetic acid are used for electronic industry applications that require high purity and food industry applications that require high added value. Butyl, methylisobutylcarbinol, cyclohexanone, fats and oils are preferred, and fats and oils are more preferred.

本発明の吸着剤による除去対象の不純物は、本発明の吸着剤の吸着性に優れることから、アルデヒド類を含むことが好ましく、アルデヒド類及び有機酸類を含むことがより好ましい。 The impurities to be removed by the adsorbent of the present invention preferably contain aldehydes, and more preferably contain aldehydes and organic acids, because the adsorbent of the present invention has excellent adsorptivity.

本発明の吸着剤は、一級アミノ基を有する。 The adsorbents of the present invention have primary amino groups.

吸着剤を構成する材料としては、例えば、樹脂、多糖類、シリカ、ガラス等が挙げられる。これらの吸着剤を構成する材料の中でも、機械的強度や化学的耐久性に優れることから、樹脂、多糖類、シリカ、ガラスが好ましく、樹脂がより好ましい。 Materials constituting the adsorbent include, for example, resins, polysaccharides, silica, and glass. Among the materials constituting these adsorbents, resins, polysaccharides, silica, and glass are preferable, and resins are more preferable, because they are excellent in mechanical strength and chemical durability.

吸着剤を構成する樹脂の種類としては、例えば、アクリル系樹脂、スチレン系樹脂、ポリビニルアミン系樹脂、イソシアヌル酸トリアリル系樹脂、ビニルエーテル系樹脂等が挙げられる。これらの樹脂の種類の中でも、機械的強度や化学的耐久性に優れることから、アクリル系樹脂、スチレン系樹脂、ポリビニルアミン系樹脂、イソシアヌル酸トリアリル系樹脂、ビニルエーテル系樹脂が好ましく、吸着剤に多孔性を容易に付与することができ、酸やアルカリに対する化学的耐久性に優れることから、アクリル系樹脂、スチレン系樹脂、ポリビニルアミン系樹脂がより好ましく、アクリル系樹脂、ポリビニルアミン系樹脂が更に好ましい。 Examples of types of resins constituting the adsorbent include acrylic resins, styrene resins, polyvinylamine resins, triallyl isocyanurate resins, and vinyl ether resins. Among these resin types, acrylic resins, styrene resins, polyvinylamine resins, triallyl isocyanurate resins, and vinyl ether resins are preferable because of their excellent mechanical strength and chemical durability. Acrylic resins, styrene resins, and polyvinylamine resins are more preferable, and acrylic resins and polyvinylamine resins are even more preferable, because they can easily impart properties and have excellent chemical durability against acids and alkalis. .

本明細書において、アクリル系樹脂は、アクリル系樹脂を構成する全単量体単位100質量%中、(メタ)アクリレート由来の構成単位が50質量%以上である樹脂をいい、この割合は80質量%以上であることが好ましい。アクリル系樹脂は、(メタ)アクリレート由来以外の構成単位を含んでもよい。 In the present specification, the acrylic resin refers to a resin in which the (meth)acrylate-derived structural unit is 50% by mass or more in 100% by mass of the total monomer units constituting the acrylic resin, and this ratio is 80% by mass. % or more. The acrylic resin may contain structural units other than those derived from (meth)acrylate.

(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等のアルキル(メタ)アクリレート;ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート等のヒドロキシル基含有(メタ)アクリレート;グリシジル(メタ)アクリレート、4,5-エポキシブチル(メタ)アクリレート、9,10-エポキシステアリル(メタ)アクリレート等のエポキシ基含有(メタ)アクリレート;(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリルアミド等の(メタ)アクリルアミド類;(メタ)アクリロニトリル等のシアノ基含有(メタ)アクリレート;エチレングリコールジ(メタ)アクリレート等のアルキレンジ(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレート;N,N’-アルキレンビス(メタ)アクリルアミド、グリセロールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等の架橋性(メタ)アクリレート等が挙げられる。これらの(メタ)アクリレートは、1種を単独で用いてもよく、2種以上を併用してもよい。これらの(メタ)アクリレートの中でも、一級アミノ基の導入が容易で、油脂に代表される非水溶性有機化合物に対する耐溶解性に優れることから、エポキシ基含有(メタ)アクリレート及び架橋性(メタ)アクリレートを含むことが好ましく、グリシジル(メタ)アクリレート及びアルキレングリコールジ(メタ)アクリレートを含むことがより好ましく、グリシジル(メタ)アクリレート及びエチレングリコールジ(メタ)アクリレートを含むことが更に好ましい。 Examples of (meth)acrylates include alkyl (meth)acrylates such as methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, stearyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and cyclohexyl (meth)acrylate. meth) acrylate; hydroxyl group-containing (meth) acrylate such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, glycerin mono (meth) acrylate; glycidyl (meth) acrylate, 4,5-epoxybutyl (meth) acrylate , Epoxy group-containing (meth)acrylates such as 9,10-epoxystearyl (meth)acrylate; (meth)acrylamides such as (meth)acrylamide, dimethyl (meth)acrylamide and hydroxyethyl (meth)acrylamide; (meth)acrylonitrile Cyano group-containing (meth)acrylates such as; alkylene di(meth)acrylates such as ethylene glycol di(meth)acrylate; polyalkylene glycol di(meth)acrylates such as polyethylene glycol di(meth)acrylate; N,N'-alkylene Examples include crosslinkable (meth)acrylates such as bis(meth)acrylamide, glycerol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, and the like. These (meth)acrylates may be used alone or in combination of two or more. Among these (meth)acrylates, epoxy group-containing (meth)acrylates and crosslinkable (meth)acrylates, which are easy to introduce a primary amino group and have excellent solubility resistance in water-insoluble organic compounds represented by oils and fats, It preferably contains acrylate, more preferably glycidyl (meth)acrylate and alkylene glycol di(meth)acrylate, and even more preferably glycidyl (meth)acrylate and ethylene glycol di(meth)acrylate.

アクリル系樹脂がエポキシ基含有(メタ)アクリレート単位及び架橋性(メタ)アクリレート単位を含む場合、アクリル系樹脂中のエポキシ基含有(メタ)アクリレート単位の含有率は、アクリル系樹脂100質量%中、5質量%~95質量%が好ましく、10質量%~90質量%がより好ましい。エポキシ基含有(メタ)アクリレート単位の含有率が5質量%以上であると、一級アミノ基の導入性に優れる。また、エポキシ基含有(メタ)アクリレート単位の含有率が95質量%以下であると、機械的強度に優れる。 When the acrylic resin contains epoxy group-containing (meth)acrylate units and crosslinkable (meth)acrylate units, the content of the epoxy group-containing (meth)acrylate units in the acrylic resin is, in 100% by mass of the acrylic resin, 5% by mass to 95% by mass is preferable, and 10% by mass to 90% by mass is more preferable. When the content of epoxy group-containing (meth)acrylate units is 5% by mass or more, the ability to introduce primary amino groups is excellent. Moreover, when the content of epoxy group-containing (meth)acrylate units is 95% by mass or less, the mechanical strength is excellent.

アクリル系樹脂がエポキシ基含有(メタ)アクリレート単位及び架橋性(メタ)アクリレート単位を含む場合、アクリル系樹脂中の架橋性(メタ)アクリレート単位の含有率は、アクリル系樹脂100質量%中、5質量%~95質量%が好ましく、10質量%~90質量%がより好ましい。架橋性(メタ)アクリレート単位の含有率が5質量%以上であると、機械的強度に優れる。また、架橋性(メタ)アクリレート単位の含有率が95質量%以下であると、一級アミノ基の導入性に優れる。 When the acrylic resin contains epoxy group-containing (meth)acrylate units and crosslinkable (meth)acrylate units, the content of the crosslinkable (meth)acrylate units in the acrylic resin is 5 in 100% by mass of the acrylic resin. % to 95% by mass is preferable, and 10% to 90% by mass is more preferable. When the content of the crosslinkable (meth)acrylate units is 5% by mass or more, the mechanical strength is excellent. Moreover, when the content of the crosslinkable (meth)acrylate units is 95% by mass or less, the ability to introduce primary amino groups is excellent.

本明細書において、スチレン系樹脂は、スチレン系樹脂を構成する全単量体単位100質量%中、芳香族ビニル単量体由来の構成単位が50質量%以上である樹脂をいい、この割合は80質量%以上であることが好ましい。スチレン系樹脂は、芳香族ビニル単量体由来以外の構成単位を含んでもよい。 In the present specification, the styrene resin refers to a resin in which the structural unit derived from an aromatic vinyl monomer is 50% by mass or more in 100% by mass of the total monomer units constituting the styrene resin. It is preferably at least 80% by mass. The styrenic resin may contain structural units other than those derived from aromatic vinyl monomers.

芳香族ビニル単量体としては、例えば、スチレン、メチルスチレン、エチルスチレン、α-メチルスチレン、クロロスチレン、クロロメチルスチレン、ブロモブチルスチレン等の芳香族モノビニル単量体;ジビニルベンゼン、ビス(ビニルフェニル)エタン、ジビニルナフタレン、2,4,6-トリビニルエチルベンゼン等の架橋性芳香族ビニル単量体等が挙げられる。これらの芳香族ビニル単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの芳香族ビニル単量体の中でも、油脂に代表される非水溶性有機化合物に対する耐溶解性に優れることから、芳香族モノビニル単量体及び架橋性芳香族ビニル単量体を含むことが好ましく、スチレン及びジビニルベンゼンを含むことがより好ましい。 Examples of aromatic vinyl monomers include aromatic monovinyl monomers such as styrene, methylstyrene, ethylstyrene, α-methylstyrene, chlorostyrene, chloromethylstyrene, and bromobutylstyrene; divinylbenzene, bis(vinylphenyl ) crosslinkable aromatic vinyl monomers such as ethane, divinylnaphthalene, and 2,4,6-trivinylethylbenzene; These aromatic vinyl monomers may be used alone or in combination of two or more. Among these aromatic vinyl monomers, it is preferable to include an aromatic monovinyl monomer and a crosslinkable aromatic vinyl monomer because of their excellent resistance to dissolution in water-insoluble organic compounds typified by fats and oils. , styrene and divinylbenzene.

スチレン系樹脂が芳香族モノビニル単量体単位及び架橋性芳香族ビニル単量体単位を含む場合、スチレン系樹脂中の芳香族モノビニル単量体単位の含有率は、スチレン系樹脂100質量%中、5質量%~98質量%が好ましく、10質量%~96質量%がより好ましい。芳香族モノビニル単量体単位の含有率が2質量%以上であると、一級アミノ基の導入性に優れる。また、芳香族モノビニル単量体単位の含有率が98質量%以下であると、機械的強度に優れる。 When the styrene resin contains aromatic monovinyl monomer units and crosslinkable aromatic vinyl monomer units, the content of the aromatic monovinyl monomer units in the styrene resin is, in 100% by mass of the styrene resin, 5% by mass to 98% by mass is preferable, and 10% by mass to 96% by mass is more preferable. When the content of aromatic monovinyl monomer units is 2% by mass or more, the ability to introduce a primary amino group is excellent. Moreover, when the content of the aromatic monovinyl monomer units is 98% by mass or less, the mechanical strength is excellent.

スチレン系樹脂が芳香族モノビニル単量体単位及び架橋性芳香族ビニル単量体単位を含む場合、スチレン系樹脂中の架橋性芳香族ビニル単量体単位の含有率は、スチレン系樹脂100質量%中、2質量%~95質量%が好ましく、4質量%~90質量%がより好ましい。架橋性芳香族ビニル単量体単位の含有率が2質量%以上であると、機械的強度に優れる。また、架橋性芳香族ビニル単量体単位の含有率が95質量%以下であると、一級アミノ基の導入性に優れる。 When the styrene resin contains aromatic monovinyl monomer units and crosslinkable aromatic vinyl monomer units, the content of the crosslinkable aromatic vinyl monomer units in the styrene resin is 100% by mass of the styrene resin. 2% by mass to 95% by mass is preferable, and 4% by mass to 90% by mass is more preferable. When the content of the crosslinkable aromatic vinyl monomer unit is 2% by mass or more, the mechanical strength is excellent. Further, when the content of the crosslinkable aromatic vinyl monomer units is 95% by mass or less, the ability to introduce primary amino groups is excellent.

本明細書において、ポリビニルアミン系樹脂は、ポリビニルアミン系樹脂を構成する全単量体単位100質量%中、N-ビニルカルボン酸アミド由来の構成単位が50質量%以上である樹脂をいい、この割合は80質量%以上であることが好ましい。ポリビニルアミン系樹脂は、N-ビニルカルボン酸アミド由来以外の構成単位を含んでもよい。 In the present specification, the polyvinylamine resin refers to a resin in which N-vinylcarboxylic acid amide-derived structural units account for 50% by mass or more in 100% by mass of all monomer units constituting the polyvinylamine resin. The proportion is preferably 80% by mass or more. The polyvinylamine-based resin may contain structural units other than those derived from N-vinylcarboxylic acid amide.

N-ビニルカルボン酸アミドとしては、例えば、N-ビニルホルムアミド、N-メチル-N-ビニルホルムアミド、N-ビニルアセトアミド、N-メチル-N-ビニルアセトアミド、N-ビニルプロピオンアミド、N-メチル-N-ビニルプロピオンアミド、N-ビニルブチルアミド、N-ビニルイソブチルアミド等が挙げられる。これらのN-ビニルカルボン酸アミドは、1種を単独で用いてもよく、2種以上を併用してもよい。これらのN-ビニルカルボン酸アミドの中でも、原子効率に優れ、入手や合成が容易であることから、N-ビニルホルムアミド、N-ビニルアセトアミドが好ましく、N-ビニルホルムアミドがより好ましい。 Examples of N-vinylcarboxylic acid amides include N-vinylformamide, N-methyl-N-vinylformamide, N-vinylacetamide, N-methyl-N-vinylacetamide, N-vinylpropionamide, N-methyl-N -vinylpropionamide, N-vinylbutyramide, N-vinylisobutyramide and the like. These N-vinylcarboxylic acid amides may be used singly or in combination of two or more. Among these N-vinylcarboxylic acid amides, N-vinylformamide and N-vinylacetamide are preferable, and N-vinylformamide is more preferable, because they are excellent in atomic efficiency and easy to obtain and synthesize.

本明細書において、イソシアヌル酸トリアリル系樹脂は、イソシアヌル酸トリアリルを架橋剤として用いて合成した樹脂であり、イソシアヌル酸トリアリル系樹脂を構成する全単量体単位100質量%中、イソシアヌル酸トリアリル由来の構成単位が10質量%以上である樹脂をいい、この割合は20質量%以上であることが好ましい。イソシアヌル酸トリアリル系樹脂は、イソシアヌル酸トリアリル由来以外の構成単位を含んでもよい。 In the present specification, a triallyl isocyanurate-based resin is a resin synthesized using triallyl isocyanurate as a cross-linking agent. It refers to a resin in which the constituent unit is 10% by mass or more, and the ratio is preferably 20% by mass or more. The triallyl isocyanurate-based resin may contain structural units other than those derived from triallyl isocyanurate.

本明細書において、ビニルエーテル系樹脂は、ビニルエーテル系樹脂を構成する全単量体単位100質量%中、ビニルエーテル由来の構成単位が50質量%以上である樹脂をいい、この割合は80質量%以上であることが好ましい。ビニルエーテル系樹脂は、ビニルエーテル由来以外の構成単位を含んでもよい。 In the present specification, the vinyl ether resin refers to a resin in which the structural unit derived from vinyl ether is 50% by mass or more in 100% by mass of the total monomer units constituting the vinyl ether resin, and the ratio is 80% by mass or more. Preferably. The vinyl ether-based resin may contain structural units other than those derived from vinyl ether.

ビニルエーテルとしては、例えば、メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル、ヒドロキシエチルビニルエーテル、クロロエチルビニルエーテル等のモノビニルエーテル類;エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル等のジビニルエーテル類等が挙げられる。これらのビニルエーテルは、1種を単独で用いてもよく、2種以上を併用してもよい。これらのビニルエーテルの中でも、油脂に代表される非水溶性有機化合物に対する耐溶解性に優れることから、モノビニルエーテル類及びジビニルエーテル類を含むことが好ましい。 Examples of vinyl ethers include monovinyl ethers such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether, hydroxyethyl vinyl ether, and chloroethyl vinyl ether; and divinyl ethers such as ethylene glycol divinyl ether, diethylene glycol divinyl ether, and triethylene glycol divinyl ether. be done. These vinyl ethers may be used individually by 1 type, and may use 2 or more types together. Among these vinyl ethers, it is preferable to include monovinyl ethers and divinyl ethers because they are excellent in dissolving resistance to water-insoluble organic compounds represented by oils and fats.

吸着剤を構成する樹脂は、油脂に代表される非水溶性有機化合物に対する耐溶解性に優れることから、架橋構造を有することが好ましい。 The resin that constitutes the adsorbent preferably has a crosslinked structure because it has excellent resistance to dissolution in water-insoluble organic compounds typified by oils and fats.

架橋構造の導入方法としては、例えば、架橋性単量体を含む単量体を重合する方法、重合体を得た後に架橋剤を反応させる方法等が挙げられる。これらの架橋構造の導入方法の中でも、製造安定性に優れることから、架橋性単量体を含む単量体を重合する方法が挙げられる。 Methods for introducing a crosslinked structure include, for example, a method of polymerizing a monomer containing a crosslinkable monomer, a method of reacting a crosslinking agent after obtaining a polymer, and the like. Among these methods for introducing a crosslinked structure, a method of polymerizing a monomer containing a crosslinkable monomer is exemplified because of its excellent production stability.

架橋性単量体の含有率は、樹脂の製造に用いる全単量体100質量%中、2質量%~95質量%が好ましく、3質量%~90質量%がより好ましい。架橋性単量体の含有率が2質量%以上であると、樹脂の機械的強度に優れると共に、多孔性の導入が容易となる。また、架橋性単量体の含有率が95質量%以下であると、一級アミノ基の導入反応が進行しやすい。 The content of the crosslinkable monomer is preferably 2% by mass to 95% by mass, more preferably 3% by mass to 90% by mass, based on 100% by mass of the total monomers used for producing the resin. When the content of the crosslinkable monomer is 2% by mass or more, the mechanical strength of the resin is excellent and the introduction of porosity is facilitated. Further, when the content of the crosslinkable monomer is 95% by mass or less, the introduction reaction of the primary amino group is likely to proceed.

吸着剤を構成する多糖類としては、例えば、アガロース、セルロース、デキストラン、キチン、キトサン等が挙げられる。これらの多糖類の中でも、一級アミノ基を導入する起点を有するキチンや一級アミノ基を有するキトサンが好ましい。 Polysaccharides constituting the adsorbent include, for example, agarose, cellulose, dextran, chitin, chitosan and the like. Among these polysaccharides, chitin having a starting point for introducing a primary amino group and chitosan having a primary amino group are preferable.

シリカ及びガラスは、吸着剤に後述する反応性官能基を導入することができることから、3-グリシドキシプロピルトリメトキシシラン等の反応性官能基を有する有機ケイ素化合物を原料として含むことが好ましい。 Silica and glass preferably contain an organic silicon compound having a reactive functional group such as 3-glycidoxypropyltrimethoxysilane as a raw material, since the reactive functional group described below can be introduced into the adsorbent.

(一級アミノ基)
本発明の吸着剤は、一級アミノ基を有する。
本発明の吸着剤は、一級アミノ基以外の官能基を有してもよい。一級アミノ基以外の官能基としては、例えば、二級アミノ基、三級アミノ基、四級アンモニウム基等が挙げられる。
(primary amino group)
The adsorbents of the present invention have primary amino groups.
The adsorbents of the present invention may have functional groups other than primary amino groups. Examples of functional groups other than primary amino groups include secondary amino groups, tertiary amino groups, and quaternary ammonium groups.

一級アミノ基は、吸着剤の耐久性に優れることから、共有結合で固定化されたものが好ましい。
一級アミノ基を共有結合で固定化する方法としては、例えば、後反応で一級アミノ基が生成する単量体を含む単量体を重合した後に後反応で一級アミノ基を生成させる方法、反応性官能基を有する単量体を含む単量体を重合した後に一級アミノ基を有する化合物と反応させる方法等が挙げられる。これらの一級アミノ基を共有結合で固定化する方法の中でも、工業的製造性に優れることから、
(1)反応性官能基を有する単量体を含む単量体を重合した後に一級アミノ基を有する化合物と反応させる方法(以下、「方法(1)」と称す場合がある。)
(2)後反応で一級アミノ基が生成する単量体を含む単量体を重合した後に後反応で一級アミノ基を生成させる方法(以下、「方法(2)」と称す場合がある。)
が好ましい。
The primary amino group is preferably immobilized by a covalent bond, since the durability of the adsorbent is excellent.
Examples of methods for immobilizing a primary amino group with a covalent bond include, for example, a method of polymerizing a monomer containing a monomer that generates a primary amino group in a post-reaction and then generating a primary amino group in a post-reaction; Examples include a method of polymerizing a monomer containing a monomer having a functional group and then reacting it with a compound having a primary amino group. Among these methods of immobilizing a primary amino group with a covalent bond, since it is excellent in industrial productivity,
(1) A method of polymerizing a monomer containing a monomer having a reactive functional group and then reacting it with a compound having a primary amino group (hereinafter sometimes referred to as "method (1)").
(2) A method of polymerizing a monomer containing a monomer that produces a primary amino group in a post-reaction and then producing a primary amino group in a post-reaction (hereinafter sometimes referred to as "method (2)").
is preferred.

<方法(1)>
方法(1)で用いる反応性官能基を有する単量体の反応性官能基としては、例えば、ヒドロキシル基、アミノ基、カルボキシル基、ハロゲン基、エポキシ基等が挙げられる。これらの反応性官能基は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの反応性官能基の中でも、反応性官能基を導入しやすく、一級アミノ基を有する化合物との反応性に優れることから、ハロゲン基、エポキシ基が好ましい。
<Method (1)>
Examples of the reactive functional group of the monomer having a reactive functional group used in method (1) include a hydroxyl group, an amino group, a carboxyl group, a halogen group and an epoxy group. One of these reactive functional groups may be used alone, or two or more thereof may be used in combination. Among these reactive functional groups, a halogen group and an epoxy group are preferable because they are easy to introduce a reactive functional group and are excellent in reactivity with a compound having a primary amino group.

反応性官能基は、反応性官能基を有する単量体を含む単量体を重合して導入してもよく、重合体を構築した後に反応性官能基を導入してもよい。
重合体を構築した後に反応性官能基を導入する方法としては、例えば、反応性官能基を有する化合物(スペーサー)と反応可能な官能基を有する単量体を含む単量体を重合して重合体を構築し、重合体と反応性官能基を有する化合物(スペーサー)とを反応させる方法等が挙げられる。
The reactive functional group may be introduced by polymerizing a monomer containing a monomer having a reactive functional group, or the reactive functional group may be introduced after constructing the polymer.
As a method of introducing a reactive functional group after constructing a polymer, for example, a monomer containing a compound (spacer) having a reactive functional group and a monomer having a functional group capable of reacting is polymerized. Examples include a method of constructing a coalescence and reacting a polymer with a compound having a reactive functional group (spacer).

反応性官能基を有する単量体としては、例えば、クロロメチルスチレン、ブロモブチルスチレン等のハロゲン基含有単量体;グリシジル(メタ)アクリレート、アリルグリシジルエーテル、ビニルグリシジルエーテル、4-エポキシ-1-ブテン等のエポキシ基含有単量体等が挙げられる。これらの反応性官能基を有する単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの反応性官能基を有する単量体の中でも、一級アミノ基を有する化合物の導入が容易となることから、ハロゲン基含有単量体、エポキシ基含有単量体が好ましく、クロロメチルスチレン、ブロモブチルスチレン、グリシジル(メタ)アクリレートがより好ましく、クロロメチルスチレン、グリシジルメタクリレートが更に好ましい。 Examples of monomers having a reactive functional group include halogen group-containing monomers such as chloromethylstyrene and bromobutylstyrene; glycidyl (meth)acrylate, allyl glycidyl ether, vinyl glycidyl ether, 4-epoxy-1- Examples thereof include epoxy group-containing monomers such as butene. These monomers having reactive functional groups may be used singly or in combination of two or more. Among these monomers having a reactive functional group, halogen group-containing monomers and epoxy group-containing monomers are preferred because they facilitate the introduction of compounds having a primary amino group, and chloromethylstyrene, bromo Butylstyrene and glycidyl (meth)acrylate are more preferred, and chloromethylstyrene and glycidyl methacrylate are even more preferred.

反応性官能基を有する単量体を含む単量体を重合した後に一級アミノ基を有する化合物と反応させる方法は、反応性に優れることから、一級アミノ基を有する化合物をそのまま又は一級アミノ基を有する化合物を有機溶媒若しくは水に溶解させた溶液を、反応性官能基を有する重合体に供給し、共有結合反応させる方法が好ましい。 The method of polymerizing a monomer containing a monomer having a reactive functional group and then reacting it with a compound having a primary amino group has excellent reactivity. A preferred method is a method in which a solution obtained by dissolving a compound having the compound in an organic solvent or water is supplied to a polymer having a reactive functional group to cause a covalent bond reaction.

一級アミノ基を導入するための一級アミノ基を有する化合物としては、例えば、アルキルアミン;アニリン;ベンジルアミン;エチレンジアミン;ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンイミン等のポリアルキレンポリアミン;ポリビニルアミン;ポリアリルアミン等が挙げられる。これらの一級アミノ基を有する化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの一級アミノ基を有する化合物の中でも、一級アミノ基を効率よく導入できることから、ポリアルキレンポリアミン、ポリビニルアミン、ポリアリルアミンが好ましく、ポリエチレンイミン、ポリビニルアミンがより好ましい。 Examples of compounds having a primary amino group for introducing a primary amino group include alkylamine; aniline; benzylamine; ethylenediamine; polyalkylenepolyamines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine and polyethyleneimine; ; and polyallylamine. One of these compounds having a primary amino group may be used alone, or two or more thereof may be used in combination. Among these compounds having a primary amino group, polyalkylenepolyamine, polyvinylamine and polyallylamine are preferred, and polyethyleneimine and polyvinylamine are more preferred, since the primary amino group can be efficiently introduced.

有機溶媒は、一級アミノ基を有する化合物を溶解することができれば特に限定されないが、例えば、メタノール、エタノール、プロピルアルコール、ブタノール等のアルコール類;エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチルエーテル、シクロペンチルメチルエーテル、4-メチルテトラヒドロピラン、テトラヒドロフラン(THF)、ジオキサン等のエーテル類;ジメチルホルムアミド、ジメチルアセトアミド等のアミド類等が挙げられる。これらの有機溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの有機溶媒の中でも、吸着剤が樹脂の場合、樹脂を膨潤させ、反応性官能基と一級アミノ基を有する化合物との反応性が向上することから、エーテル類が好ましく、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチルエーテル、シクロペンチルメチルエーテル、4-メチルテトラヒドロピラン、テトラヒドロフラン、ジオキサンがより好ましい。 The organic solvent is not particularly limited as long as it can dissolve a compound having a primary amino group. Examples include alcohols such as methanol, ethanol, propyl alcohol and butanol; ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethyl ether, cyclopentyl methyl ether, ethers such as 4-methyltetrahydropyran, tetrahydrofuran (THF) and dioxane; and amides such as dimethylformamide and dimethylacetamide. These organic solvents may be used individually by 1 type, and may use 2 or more types together. Among these organic solvents, when the adsorbent is a resin, ethers are preferred because they swell the resin and improve the reactivity between the compound having a reactive functional group and a primary amino group, such as ethylene glycol dimethyl ether and diethylene glycol. Dimethyl ether, diethyl ether, cyclopentyl methyl ether, 4-methyltetrahydropyran, tetrahydrofuran and dioxane are more preferred.

反応性官能基を有する重合体と一級アミノ基を有する化合物との共有結合反応の反応温度は、10℃~120℃が好ましく、20℃~100℃がより好ましい。反応温度が10℃以上であると、共有結合反応を短時間とすることができる。また、反応温度が120℃以下であると、吸着剤が樹脂の場合、分解を抑制することができる。 The reaction temperature for the covalent bond reaction between the polymer having a reactive functional group and the compound having a primary amino group is preferably 10°C to 120°C, more preferably 20°C to 100°C. When the reaction temperature is 10°C or higher, the covalent bond reaction can be shortened. Further, when the reaction temperature is 120° C. or lower, decomposition can be suppressed when the adsorbent is a resin.

共有結合反応の後、重合体に残存する反応性官能基を不活性化することが好ましい。
不活性化せずに反応性官能基を残存させた場合、吸着時に非水溶性有機化合物中に存在する活性基と反応し、非水溶性有機化合物以外の不純物を生成したり、アルデヒド類や有機酸類に代表される不純物の吸着量を低下させたりする場合がある。
After the covalent bonding reaction, it is preferred to deactivate any reactive functional groups remaining on the polymer.
If the reactive functional group is left without deactivation, it reacts with the active group present in the water-insoluble organic compound during adsorption, producing impurities other than the water-insoluble organic compound, aldehydes and organic In some cases, the adsorption amount of impurities typified by acids is reduced.

反応性官能基、例えば、エポキシ基を不活性化する場合、安全性、経済性に優れることから、触媒の存在下に水と反応させて不活性化する方法が好ましい。 When inactivating a reactive functional group such as an epoxy group, a method of inactivating by reacting with water in the presence of a catalyst is preferable because it is excellent in safety and economy.

エポキシ基を水と反応させて不活性化する際の触媒としては、例えば、リン酸、硫酸等の無機酸水溶液;水酸化ナトリウム、水酸化カリウム等のアルカリ類水溶液、ギ酸等の有機酸水溶液等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。これらの触媒の中でも、反応性に優れることから、硫酸が好ましい。 Examples of catalysts for deactivating epoxy groups by reacting them with water include aqueous solutions of inorganic acids such as phosphoric acid and sulfuric acid; aqueous solutions of alkalis such as sodium hydroxide and potassium hydroxide; and aqueous solutions of organic acids such as formic acid. is mentioned. These may be used individually by 1 type, and may use 2 or more types together. Among these catalysts, sulfuric acid is preferable because of its excellent reactivity.

エポキシ基を水と反応させて不活性化する際の触媒の濃度は、副反応を抑制することができることから、水溶液100質量%中、1質量%~50質量%が好ましく、3質量%~30質量%がより好ましい。 The concentration of the catalyst when inactivating the epoxy group by reacting with water is preferably 1% by mass to 50% by mass, and 3% by mass to 30% by mass in 100% by mass of the aqueous solution, because it can suppress side reactions. % by mass is more preferred.

エポキシ基を水と反応させて不活性化する際の反応温度は、反応性に優れることから、10℃~90℃が好ましく、20℃~80℃がより好ましい。 The reaction temperature for inactivating the epoxy group by reacting it with water is preferably 10° C. to 90° C., more preferably 20° C. to 80° C., because of excellent reactivity.

エポキシ基を水と反応させて不活性化する際の反応時間は、副反応を抑制することができることから、0.1時間~24時間が好ましく、1時間~10時間がより好ましい。 The reaction time for inactivating the epoxy group by reacting it with water is preferably 0.1 to 24 hours, more preferably 1 to 10 hours, since side reactions can be suppressed.

反応性官能基の不活性化に際して、酸を用いた場合は、アルカリを用いて一級アミノ基の再生を行う。この一級アミノ基の再生は、0.01mol/L~5mol/Lのアルカリ水溶液を不活性化後の吸着剤に接触させることで行うことができる。 When an acid is used in deactivating the reactive functional group, an alkali is used to regenerate the primary amino group. This primary amino group can be regenerated by contacting the inactivated adsorbent with an alkaline aqueous solution of 0.01 mol/L to 5 mol/L.

<方法(2)>
後反応で一級アミノ基が生成する単量体を含む単量体を重合した後に後反応で一級アミノ基を生成させる方法は、工業的製造性に優れることから、N-ビニルカルボン酸アミドを含む単量体を重合した後に加水分解する方法が好ましい。
<Method (2)>
The method of polymerizing a monomer containing a monomer that generates a primary amino group in a post-reaction and then generating a primary amino group in the post-reaction is excellent in industrial productivity, and thus includes N-vinylcarboxylic acid amide. A method of hydrolyzing after polymerizing the monomer is preferred.

後反応で一級アミノ基が生成する単量体としては、例えば、N-ビニルホルムアミド、N-メチル-N-ビニルホルムアミド、N-ビニルアセトアミド、N-メチル-N-ビニルアセトアミド、N-ビニルプロピオンアミド、N-メチル-N-ビニルプロピオンアミド、N-ビニルブチルアミド、N-ビニルイソブチルアミド等が挙げられる。これらのN-ビニルカルボン酸アミドは、1種を単独で用いてもよく、2種以上を併用してもよい。これらのN-ビニルカルボン酸アミドの中でも、原子効率に優れ、入手や合成が容易であることから、N-ビニルホルムアミド、N-ビニルアセトアミドが好ましく、N-ビニルホルムアミドがより好ましい。 Examples of monomers that form a primary amino group in post-reaction include N-vinylformamide, N-methyl-N-vinylformamide, N-vinylacetamide, N-methyl-N-vinylacetamide, and N-vinylpropionamide. , N-methyl-N-vinylpropionamide, N-vinylbutyramide, N-vinylisobutyramide and the like. These N-vinylcarboxylic acid amides may be used singly or in combination of two or more. Among these N-vinylcarboxylic acid amides, N-vinylformamide and N-vinylacetamide are preferable, and N-vinylformamide is more preferable, because they are excellent in atomic efficiency and easy to obtain and synthesize.

加水分解の方法としては、N-ビニルカルボン酸アミドを含む単量体の重合体にアルカリ水溶液を加えて撹拌しながら加熱する方法が好ましい。 As a hydrolysis method, a method of adding an alkaline aqueous solution to a polymer of a monomer containing N-vinylcarboxylic acid amide and heating the mixture with stirring is preferred.

アルカリ水溶液のアルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等を用いることができる。これらのアルカリは、1種を単独で用いてもよく、2種以上を併用してもよい。これらのアルカリの中でも入手性、経済性、後処理の容易さに優れることから水酸化ナトリウムが好ましい。 Sodium hydroxide, potassium hydroxide, lithium hydroxide, or the like can be used as the alkali of the alkaline aqueous solution. These alkalis may be used individually by 1 type, and may use 2 or more types together. Among these alkalis, sodium hydroxide is preferred because of its excellent availability, economic efficiency, and ease of post-treatment.

アルカリ水溶液のアルカリの濃度は、副反応を抑制することができることから、水溶液100質量%中、1質量%~50質量%が好ましく、3質量%~30質量%がより好ましい。 The concentration of alkali in the alkaline aqueous solution is preferably 1% by mass to 50% by mass, more preferably 3% by mass to 30% by mass, based on 100% by mass of the aqueous solution, since it can suppress side reactions.

加水分解反応の際の反応温度は、反応性に優れることから、50℃~100℃が好ましく、80℃~95℃がより好ましい。 The reaction temperature during the hydrolysis reaction is preferably 50° C. to 100° C., more preferably 80° C. to 95° C., because of excellent reactivity.

加水分解の際の反応時間は、副反応を抑制することができることから、0.1時間~24時間が好ましく、1時間~10時間がより好ましい。 The reaction time for hydrolysis is preferably 0.1 to 24 hours, more preferably 1 to 10 hours, since side reactions can be suppressed.

吸着剤の形状は、球状であっても不定形であってもよいが、吸着剤をカラムに充填して通液したときの圧力損失を抑制し、通液速度を高めることができ、吸着処理の生産性に優れることから、球状が好ましい。 The shape of the adsorbent may be spherical or irregular, but the pressure loss when the adsorbent is packed in a column and passed through the column can be suppressed, the flow rate can be increased, and the adsorption process can be performed. A spherical shape is preferable because it is excellent in productivity.

(吸着剤の物性)
本発明の吸着剤の体積平均粒子径は、1μm~1000μmが好ましく、4μm~700μmがより好ましく、10μm~500μmが更に好ましい。吸着剤の体積平均粒子径が1μm以上であると、吸着剤をカラムに充填して通液したときの圧力損失を抑制し、通液速度を高めることができ、吸着処理の生産性に優れる。また、吸着剤の体積平均粒子径が1000μm以下であると、カラム効率に優れ、吸着量や分離性能に優れる。
本明細書において、吸着剤の体積平均粒子径は、光学顕微鏡を用いて任意の100個の吸着剤の粒子径を測定し、その分布から体積メジアン径を算出するものとする。
(Physical properties of adsorbent)
The volume average particle size of the adsorbent of the present invention is preferably 1 μm to 1000 μm, more preferably 4 μm to 700 μm, and even more preferably 10 μm to 500 μm. When the volume average particle size of the adsorbent is 1 μm or more, pressure loss can be suppressed when the adsorbent is packed in a column and passed through the column, and the flow rate can be increased, resulting in excellent adsorption treatment productivity. Moreover, when the volume average particle size of the adsorbent is 1000 μm or less, the column efficiency is excellent, and the adsorption amount and separation performance are excellent.
In this specification, the volume average particle diameter of the adsorbent is obtained by measuring the particle diameters of arbitrary 100 adsorbents using an optical microscope and calculating the volume median diameter from the distribution thereof.

吸着剤の体積平均粒子径は、吸着剤が樹脂の場合、懸濁重合や乳化重合の重合条件、具体的には、単量体の種類や量、分散安定剤や乳化剤の種類や量、撹拌回転数等の設定により、調整することができる。また、重合終了後に、篩網、水篩、風篩等の方法により分級して、吸着剤の体積平均粒子径を揃えてもよい。 When the adsorbent is a resin, the volume average particle diameter of the adsorbent depends on the polymerization conditions of suspension polymerization and emulsion polymerization, specifically the type and amount of the monomer, the type and amount of the dispersion stabilizer and emulsifier, and the stirring It can be adjusted by setting the number of revolutions and the like. Further, after the polymerization is completed, the adsorbent may be classified by a method such as sieve mesh, water sieve, or wind sieve to make the volume average particle size of the adsorbent uniform.

吸着剤の均一係数は、吸着剤をカラムに充填して通液したときの圧力損失を抑制することができることから、2.0以下が好ましく、1.0~2.0がより好ましく、1.0~1.6が更に好ましい。
本明細書において、吸着剤の均一係数は、粒子径分布幅の指標であり、吸着剤の体積分布において、粒子径の大きい方から40%となる粒子径を、粒子系の大きい方から90%となる粒子径で除した値とする。
The uniformity coefficient of the adsorbent is preferably 2.0 or less, more preferably 1.0 to 2.0, because it is possible to suppress pressure loss when the adsorbent is packed in a column and passed through. 0 to 1.6 is more preferred.
In this specification, the uniformity coefficient of the adsorbent is an index of the particle size distribution width, and in the volume distribution of the adsorbent, the particle size that is 40% from the larger particle size is 90% from the larger particle system. It is the value divided by the particle size.

吸着剤は、油脂に代表される非水溶性有機化合物中の、アルデヒド類や有機酸類に代表される不純物を、効率よく除去することができることから、多孔性を有することが好ましい。 The adsorbent preferably has porosity because it can efficiently remove impurities typified by aldehydes and organic acids in water-insoluble organic compounds typified by oils and fats.

吸着剤の比表面積は、1m/g~1000m/gが好ましく、10m/g~500m/gがより好ましい。吸着剤の比表面積が1m/g以上であると、アルデヒド類や有機酸類に代表される不純物の吸着剤表面への接触頻度に優れる。また、吸着剤の比表面積が1000m/g以下であると、アルデヒド類や有機酸類に代表される不純物の吸着剤細孔内への拡散浸透が妨げられにくく吸着性に優れる。
本明細書において、吸着剤の比表面積は、窒素ガス吸着法(BET法)により測定するものとする。具体的には、窒素ガスの吸着前後の圧力変化から、BETの式により単分子層吸着量を算出し、窒素ガス1分子の断面積から吸着剤の比表面積を算出するものとし、ISO 9277を準用する。
The specific surface area of the adsorbent is preferably 1 m 2 /g to 1000 m 2 /g, more preferably 10 m 2 /g to 500 m 2 /g. When the specific surface area of the adsorbent is 1 m 2 /g or more, the contact frequency of impurities represented by aldehydes and organic acids with the adsorbent surface is excellent. Further, when the specific surface area of the adsorbent is 1000 m 2 /g or less, diffusion and penetration of impurities represented by aldehydes and organic acids into the pores of the adsorbent is less likely to be hindered, resulting in excellent adsorbability.
In this specification, the specific surface area of the adsorbent shall be measured by the nitrogen gas adsorption method (BET method). Specifically, from the pressure change before and after adsorption of nitrogen gas, the monomolecular layer adsorption amount is calculated by the BET formula, and the specific surface area of the adsorbent is calculated from the cross-sectional area of one molecule of nitrogen gas. apply mutatis mutandis.

吸着剤の比表面積は、吸着剤が樹脂の場合、重合の反応条件や架橋構造の導入条件等の設定により、調整することができる。 When the adsorbent is a resin, the specific surface area of the adsorbent can be adjusted by setting reaction conditions for polymerization, conditions for introducing a crosslinked structure, and the like.

吸着剤の細孔直径は、1nm~1000nmが好ましく、2nm~500nmがより好ましく、3nm~200nmが更に好ましい。吸着剤の細孔直径が1nm以上であると、アルデヒド類や有機酸類に代表される不純物の吸着剤表面への接触頻度に優れる。吸着剤の細孔直径が1000nm以下であると、吸着剤の機械的強度に優れ、細孔内部に吸着に寄与しない空間の発生を抑制することができ、アルデヒド類や有機酸類に代表される不純物の吸着性に優れる。
本明細書において、吸着剤の細孔直径は、最頻度直径が100nm以上の場合は水銀圧入法により、最頻度直径が100nm未満の場合は窒素ガス吸着法により測定した最頻度直径とする。具体的には、水銀圧入法の場合には、吸着剤に圧力をかけて水銀を開孔部に侵入させ、圧力値と対応する侵入水銀体積とを用いて、細孔の形状を円柱状と仮定し、Washburnの式から算出する方法であり、ISO 15901-1を準用する。窒素ガス吸着法の場合には、ISO 15901-2を準用する。
The pore diameter of the adsorbent is preferably 1 nm to 1000 nm, more preferably 2 nm to 500 nm, even more preferably 3 nm to 200 nm. When the pore diameter of the adsorbent is 1 nm or more, the contact frequency of impurities represented by aldehydes and organic acids with the surface of the adsorbent is excellent. When the pore diameter of the adsorbent is 1000 nm or less, the mechanical strength of the adsorbent is excellent, it is possible to suppress the generation of spaces that do not contribute to adsorption inside the pores, and impurities such as aldehydes and organic acids can be suppressed. Excellent adsorption of
In this specification, the pore diameter of the adsorbent is defined as the mode diameter measured by the mercury intrusion method when the mode diameter is 100 nm or more, and by the nitrogen gas adsorption method when the mode diameter is less than 100 nm. Specifically, in the case of the mercury intrusion method, pressure is applied to the adsorbent to cause mercury to penetrate into the pores, and the pressure value and the corresponding infiltrated mercury volume are used to determine the shape of the pores to be cylindrical. It is a method of calculating from the Washburn formula based on assumptions, and ISO 15901-1 is applied mutatis mutandis. In the case of the nitrogen gas adsorption method, ISO 15901-2 shall be applied mutatis mutandis.

吸着剤の細孔直径は、吸着剤が樹脂の場合、懸濁重合や乳化重合の重合条件、具体的には、単量体の種類や量、多孔質化剤の種類や量、重合開始剤の種類や量等の設定により、調整することができる。 When the adsorbent is a resin, the pore diameter of the adsorbent depends on the polymerization conditions for suspension polymerization or emulsion polymerization, specifically the type and amount of the monomer, the type and amount of the porosifying agent, the polymerization initiator can be adjusted by setting the type and amount of

吸着剤の細孔容積は、0.01mL/g~3.0mL/gが好ましく、0.1mL/g~2.5mL/gがより好ましく、0.2mL/g~2.0mL/gが更に好ましい。吸着剤の細孔容積が0.01mL/g以上であると、アルデヒド類や有機酸類に代表される不純物の吸着性に優れる。吸着剤の細孔容積が3.0mL/g以下であると、吸着剤の機械的強度に優れる。
本明細書において、吸着剤の細孔容積は、最頻度直径が100nm以上の場合は水銀圧入法により、最頻度直径が100nm未満の場合は窒素ガス吸着法により測定した最頻度容積とする。具体的には、水銀圧入法の場合には、吸着剤に圧力をかけて水銀を開孔部に侵入させ、圧力値と対応する侵入水銀体積とを用いて、細孔の形状を円柱状と仮定し、Washburnの式から算出する方法であり、ISO 15901-1を準用する。窒素ガス吸着法の場合には、ISO 15901-2を準用する。
The pore volume of the adsorbent is preferably 0.01 mL/g to 3.0 mL/g, more preferably 0.1 mL/g to 2.5 mL/g, and further preferably 0.2 mL/g to 2.0 mL/g. preferable. When the pore volume of the adsorbent is 0.01 mL/g or more, the adsorption of impurities represented by aldehydes and organic acids is excellent. When the pore volume of the adsorbent is 3.0 mL/g or less, the adsorbent has excellent mechanical strength.
In this specification, the pore volume of the adsorbent is defined as the mode volume measured by the mercury intrusion method when the mode diameter is 100 nm or more, and by the nitrogen gas adsorption method when the mode diameter is less than 100 nm. Specifically, in the case of the mercury intrusion method, pressure is applied to the adsorbent to cause mercury to penetrate into the pores, and the pressure value and the corresponding infiltrated mercury volume are used to determine the shape of the pores to be cylindrical. It is a method of calculating from the Washburn formula based on assumptions, and ISO 15901-1 is applied mutatis mutandis. In the case of the nitrogen gas adsorption method, ISO 15901-2 shall be applied mutatis mutandis.

吸着剤の細孔容積は、吸着剤が樹脂の場合、重合の反応条件や架橋構造の導入条件等の設定により、調整することができる。 When the adsorbent is a resin, the pore volume of the adsorbent can be adjusted by setting reaction conditions for polymerization, conditions for introducing a crosslinked structure, and the like.

吸着剤中の一級アミノ基を有する化合物は、窒素含有率や総交換容量により定量することができる。 A compound having a primary amino group in the adsorbent can be quantified by nitrogen content and total exchange capacity.

吸着剤の窒素含有率は、吸着剤100質量%中、0.3質量%~30質量%が好ましく、0.5質量%~25質量%がより好ましい。吸着剤の窒素含有率が0.3質量%以上であると、十分に一級アミノ基を有するため、アルデヒド類や有機酸類に代表される不純物の吸着性に優れる。また、吸着剤の窒素含有率が30質量%以下であると、機械的強度に優れ、また、アルデヒド類や有機酸類に代表される不純物が十分に拡散浸透できるほどの細孔容積を有するため、アルデヒド類や有機酸類に代表される不純物の吸着性に優れる。
本明細書において、吸着剤の窒素含有率は、後述する吸着剤の総交換容量から算出するものとする。
The nitrogen content of the adsorbent is preferably 0.3% by mass to 30% by mass, more preferably 0.5% by mass to 25% by mass, based on 100% by mass of the adsorbent. When the nitrogen content of the adsorbent is 0.3% by mass or more, the adsorbent has sufficient primary amino groups, so that it is excellent in adsorption of impurities represented by aldehydes and organic acids. In addition, when the nitrogen content of the adsorbent is 30% by mass or less, it has excellent mechanical strength and has a pore volume that allows impurities such as aldehydes and organic acids to diffuse and penetrate sufficiently. Excellent adsorption of impurities such as aldehydes and organic acids.
In this specification, the nitrogen content of the adsorbent is calculated from the total exchange capacity of the adsorbent, which will be described later.

吸着剤の総交換容量は、0.1ミリ等量/g~20ミリ等量/gが好ましく、0.2ミリ等量/g~10ミリ等量/gがより好ましい。吸着剤の総交換容量が0.1ミリ等量/g以上であると、アルデヒド類や有機酸類に代表される不純物の吸着性に優れる。また、吸着剤の総交換容量が20ミリ等量/g以下であると、機械的強度に優れ、また、アルデヒド類や有機酸類に代表される不純物が十分に拡散浸透できるほどの細孔容積を有するため、アルデヒド類や有機酸類に代表される不純物の吸着性に優れる。
本明細書において、吸着剤の総交換容量は、乾燥させた吸着剤0.5g~1.5gに相当する量を精秤し、0.2mol/Lの塩酸250mLに入れ、30℃で8時間振盪させた後、上澄みの塩酸濃度を滴定により測定し、その測定結果から算出するものとする。
The total exchange capacity of the adsorbent is preferably 0.1 meq/g to 20 meq/g, more preferably 0.2 meq/g to 10 meq/g. When the total exchange capacity of the adsorbent is 0.1 meq/g or more, the adsorption of impurities represented by aldehydes and organic acids is excellent. In addition, when the total exchange capacity of the adsorbent is 20 milliequivalents/g or less, the mechanical strength is excellent, and the pore volume is such that impurities such as aldehydes and organic acids can sufficiently diffuse and penetrate. Therefore, it is excellent in adsorbing impurities such as aldehydes and organic acids.
In this specification, the total exchange capacity of the adsorbent is obtained by accurately weighing an amount equivalent to 0.5 g to 1.5 g of the dried adsorbent, putting it in 250 mL of 0.2 mol / L hydrochloric acid, and heating it at 30 ° C. for 8 hours. After shaking, the hydrochloric acid concentration of the supernatant is measured by titration, and the calculation is made from the measurement results.

(不純物の除去方法)
本発明の不純物の除去方法は、本発明の吸着剤を用いて、非水溶性有機化合物中の不純物を除去する方法である。
本発明の吸着剤や非水溶性化合物中の不純物については、前述した通りである。
(Method for removing impurities)
The impurity removal method of the present invention is a method of removing impurities in a water-insoluble organic compound using the adsorbent of the present invention.
The impurities in the adsorbent and water-insoluble compound of the present invention are as described above.

不純物の除去方法としては、例えば、非水溶性有機化合物を含む液体と吸着剤とを容器中で混合接触させるバッチ処理法、吸着剤をカラムに充填して非水溶性有機化合物を含む液体を通液するカラム処理法等が挙げられる。これらの不純物の除去方法の中でも、アルデヒド類や有機酸類に代表される不純物を効率よく吸着剤に吸着することができることから、カラム処理法が好ましい。 Methods for removing impurities include, for example, a batch treatment method in which a liquid containing a water-insoluble organic compound and an adsorbent are mixed and contacted in a container, a column filled with an adsorbent, and a liquid containing a water-insoluble organic compound passed through the column. and a liquid column treatment method. Among these methods for removing impurities, the column treatment method is preferable because impurities such as aldehydes and organic acids can be efficiently adsorbed onto the adsorbent.

本発明の方法において、油脂に代表される非水溶性有機化合物は、溶媒に溶解させて本発明の吸着剤に吸着させてもよく、そのまま本発明の吸着剤に吸着させてもよいが、吸着後に溶媒を除去する工程を省略できることから、そのまま本発明の吸着剤に吸着させることが好ましい。 In the method of the present invention, the water-insoluble organic compound represented by oils and fats may be dissolved in a solvent and adsorbed on the adsorbent of the present invention, or may be adsorbed on the adsorbent of the present invention as it is. Since the step of removing the solvent later can be omitted, it is preferable to cause the adsorbent of the present invention to adsorb it as it is.

(用途)
本発明の吸着剤は、特に、油脂に代表される非水溶性有機化合物中の、アルデヒド類や有機酸類に代表される不純物に対し、優れた吸着性を示し、アルデヒド類や有機酸類に代表される不純物が高度に除去された、油脂に代表される非水溶性有機化合物を、工業スケールで効率よく得ることができることから、食用油脂工業分野における実用上の価値が極めて高い。
(Application)
The adsorbent of the present invention particularly exhibits excellent adsorption properties for impurities represented by aldehydes and organic acids in water-insoluble organic compounds represented by oils and fats, and is represented by aldehydes and organic acids. Since water-insoluble organic compounds typified by oils and fats can be efficiently obtained on an industrial scale from which impurities such as impurities are highly removed, the method has extremely high practical value in the field of the edible oil industry.

以下、実施例を用いて本発明を更に具体的に説明するが、本発明は、その要旨を逸脱しない限り、以下の実施例の記載に限定されるものではない。 The present invention will be described in more detail below using examples, but the present invention is not limited to the description of the following examples unless it departs from the gist thereof.

(体積平均粒子径)
実施例で得られた吸着剤の体積平均粒子径について、光学顕微鏡(機種名「SMZ1500」、株式会社ニコン製)を用い、任意の100個の吸着剤の粒子径を測定し、その分布から体積メジアン径を算出した。
(Volume average particle size)
Regarding the volume average particle size of the adsorbent obtained in the example, an optical microscope (model name "SMZ1500", manufactured by Nikon Corporation) was used to measure the particle size of arbitrary 100 adsorbents, and the volume A median diameter was calculated.

(均一係数)
実施例で得られた吸着剤の均一係数について、光学顕微鏡(機種名「SMZ1500」、株式会社ニコン製)を用い、任意の100個の吸着剤の粒子径を測定し、粒子径の大きい方から40%となる粒子径を、粒子系の大きい方から90%となる粒子径で除した値とした。
(uniformity factor)
Regarding the uniformity coefficient of the adsorbent obtained in the example, an optical microscope (model name "SMZ1500", manufactured by Nikon Corporation) was used to measure the particle size of any 100 adsorbents, and The value obtained by dividing the particle diameter corresponding to 40% by the particle diameter corresponding to 90% from the larger particle system.

(比表面積)
実施例で用いた重合体・実施例で得られた吸着剤の比表面積について、乾燥させた吸着剤を秤量し、比表面積測定装置(機種名「フローソーブIII」、マイクロメリティックス社製)を用い、窒素ガス吸着法(BET法)により測定した。
(Specific surface area)
Regarding the specific surface area of the adsorbent obtained in the example and the polymer used in the example, the dried adsorbent was weighed, and a specific surface area measuring device (model name "Flowsorb III", manufactured by Micromeritics Co., Ltd.) was used. was measured by the nitrogen gas adsorption method (BET method).

(細孔直径・細孔容積)
実施例で用いた重合体・実施例で得られた吸着剤の細孔直径・細孔容積について、自動ポロシメータ(機種名「オートポア9520」、マイクロメリティックス社製)を用い、水銀圧入法により測定、又は、細孔分布測定装置(機種名「ASAP2400」、マイクロメリティックス社製)を用い、窒素ガス吸着法により測定した。
(pore diameter/pore volume)
Regarding the pore diameter and pore volume of the adsorbent obtained in the polymer used in the example and the example, using an automatic porosimeter (model name "Autopore 9520", manufactured by Micromeritics Co., Ltd.), by the mercury intrusion method Alternatively, it was measured by a nitrogen gas adsorption method using a pore size distribution measuring device (model name "ASAP2400", manufactured by Micromeritics).

(窒素含有率・総交換容量)
実施例で得られた吸着剤の窒素含有率・総交換容量について、乾燥させた吸着剤0.5g~1.5gに相当する量を精秤し、0.2mol/Lの塩酸250mLに入れ、30℃で8時間振盪させた後、上澄みの塩酸濃度を滴定により測定し、その測定結果から算出した。
(Nitrogen content/total exchange capacity)
Regarding the nitrogen content rate and total exchange capacity of the adsorbent obtained in the example, an amount corresponding to 0.5 g to 1.5 g of the dried adsorbent was accurately weighed, placed in 250 mL of 0.2 mol / L hydrochloric acid, After shaking at 30° C. for 8 hours, the hydrochloric acid concentration of the supernatant was measured by titration and calculated from the measurement results.

[実施例1]
<吸着剤の製造>
グリシジルメタクリレート由来の構成単位20質量%及びエチレングリコールジメタクリレート由来の構成単位80質量%からなり、比表面積305m/g、細孔直径120.4nm、細孔容積1.06mL/gの重合体40質量部に、ジエチレングリコールジメチルエーテル140質量部及びポリエチレンイミン(富士フイルム和光純薬株式会社製、分子量600)60質量部を添加し、撹拌して懸濁状態とした。この懸濁液を80℃に昇温し、6時間反応させた。冷却後、得られた粒子を水洗した。この粒子に10質量%の濃度の硫酸200質量部を添加し、撹拌して懸濁状態とした。この懸濁液を50℃に昇温し、5時間保持し、未反応のエポキシ基への水付加による不活性化を行った。冷却後、得られた粒子を水洗し、2mol/Lの水酸化ナトリウム水溶液によりイオン交換基の再生を行い、篩網を用いて粒子径75μm~220μmの粒子を選別し、一級アミノ基を有する吸着剤(1)を得た。
得られた吸着剤(1)は、比表面積113m/g、細孔直径38.2nm、細孔容積0.76mL/g、窒素含有率4.3質量%、総交換容量3.09ミリ等量/gであった。
[Example 1]
<Production of adsorbent>
Polymer 40 consisting of 20% by mass of structural units derived from glycidyl methacrylate and 80% by mass of structural units derived from ethylene glycol dimethacrylate, having a specific surface area of 305 m 2 /g, a pore diameter of 120.4 nm, and a pore volume of 1.06 mL/g 140 parts by weight of diethylene glycol dimethyl ether and 60 parts by weight of polyethyleneimine (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., molecular weight 600) were added to the parts by weight, and stirred to form a suspension. This suspension was heated to 80° C. and reacted for 6 hours. After cooling, the particles obtained were washed with water. 200 parts by mass of sulfuric acid having a concentration of 10% by mass was added to the particles and stirred to form a suspension. This suspension was heated to 50° C. and held for 5 hours to inactivate unreacted epoxy groups by addition of water. After cooling, the obtained particles are washed with water, ion-exchange groups are regenerated with a 2 mol/L sodium hydroxide aqueous solution, particles with a particle size of 75 μm to 220 μm are screened using a sieve, and adsorbed with primary amino groups. Agent (1) was obtained.
The resulting adsorbent (1) has a specific surface area of 113 m 2 /g, a pore diameter of 38.2 nm, a pore volume of 0.76 mL/g, a nitrogen content of 4.3% by mass, a total exchange capacity of 3.09 mm, etc. amount/g.

<吸着処理>
トリオレイン(ナカライテスク株式会社製)1.8143質量部及び(E,E)-2,4-デカジエナール(東京化成工業株式会社製)0.0035質量部(添加量1920ppm)を含む油脂に、吸着剤(1)を0.0999質量部添加して、25℃で18時間静置し、吸着処理を実施した。
吸着処理後の油脂中の(E,E)-2,4-デカジエナールを、以下の条件にて高速液体クロマトグラフィー分析した。
カラム:Cadenza CD-C18(商品名、インタクト社製、内径4.6mm、長さ75mm)
カラム温度:40℃
溶離液:アセトニトリル/水=70/30
流速:1.00mL/分
注入量:2μL
検出:紫外吸光検出器(波長210nm)
得られたクロマトグラムを、図1に示す。高速液体クロマトグラフィー分析により求められた吸着処理前後の油脂中の(E,E)-2,4-デカジエナール量は、1.92mg/gから0.67mg/gに減少した(減少率:65.2%)。
<Adsorption treatment>
Adsorption to fats and oils containing 1.8143 parts by mass of triolein (manufactured by Nacalai Tesque Co., Ltd.) and 0.0035 parts by mass of (E, E)-2,4-decadienal (manufactured by Tokyo Chemical Industry Co., Ltd.) (added amount: 1920 ppm) 0.0999 parts by mass of agent (1) was added, and the mixture was allowed to stand at 25° C. for 18 hours for adsorption treatment.
(E,E)-2,4-decadienal in the oil after the adsorption treatment was analyzed by high performance liquid chromatography under the following conditions.
Column: Cadenza CD-C18 (trade name, manufactured by Intact, inner diameter 4.6 mm, length 75 mm)
Column temperature: 40°C
Eluent: acetonitrile/water = 70/30
Flow rate: 1.00 mL/min Injection volume: 2 μL
Detection: UV absorption detector (wavelength 210 nm)
The chromatogram obtained is shown in FIG. The amount of (E,E)-2,4-decadienal in the oil before and after the adsorption treatment determined by high-performance liquid chromatography analysis decreased from 1.92 mg/g to 0.67 mg/g (reduction rate: 65. 2%).

[実施例2]
<吸着剤の製造>
脱塩水362質量部、硫酸アンモニウム241質量部及びポリジアリルジメチルアンモニウムクロライド水溶液(ポリマー濃度18質量%、重量平均分子量50万)6.20質量部を混合し、重合浴とした。N-ビニルホルムアミド100質量部、ジビニルベンゼン11.1質量部、酢酸エチル23.8質量部、アクリロニトリル47.6質量部及び2,2’-アゾビス(2、4-ジメチルバレロニトリル)(商品名「V-65」、富士フイルム和光純薬工業株式会社製)0.79質量部を混合し、単量体溶液とした。単量体溶液と重合浴を混合し、窒素で置換しながら100rpmで撹拌した。30分後昇温し、40℃で100分間、次いで50℃で60分間、次いで60℃で30分間重合した。重合後、濾過、水洗、濾過を順次行い、含水状態の重合体球状粒子を得た。得られた重合体球状粒子100質量部に、24質量%水酸化ナトリウム水溶液150質量部を加え、撹拌しながら90℃で8時間加水分解した。水洗、濾過し、一級アミノ基を有する吸着剤(2)を得た。
得られた吸着剤(2)は、体積平均粒子径685μm、均一係数1.54、比表面積4m/g、細孔直径41.8nm、細孔容積0.01mL/g、窒素含有率9.6質量%、総交換容量6.87ミリ等量/gであった。
[Example 2]
<Production of adsorbent>
362 parts by mass of demineralized water, 241 parts by mass of ammonium sulfate, and 6.20 parts by mass of an aqueous solution of polydiallyldimethylammonium chloride (polymer concentration: 18% by mass, weight average molecular weight: 500,000) were mixed to prepare a polymerization bath. 100 parts by mass of N-vinylformamide, 11.1 parts by mass of divinylbenzene, 23.8 parts by mass of ethyl acetate, 47.6 parts by mass of acrylonitrile and 2,2'-azobis (2,4-dimethylvaleronitrile) (trade name "V-65", manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was mixed with 0.79 parts by mass to prepare a monomer solution. The monomer solution and the polymerization bath were mixed and stirred at 100 rpm while purging with nitrogen. After 30 minutes, the temperature was raised to polymerize at 40° C. for 100 minutes, then at 50° C. for 60 minutes, and then at 60° C. for 30 minutes. After the polymerization, filtration, washing with water, and filtration were carried out in order to obtain water-containing polymer spherical particles. 150 parts by mass of a 24% by mass sodium hydroxide aqueous solution was added to 100 parts by mass of the resulting polymer spherical particles, and the mixture was hydrolyzed at 90° C. for 8 hours while stirring. After washing with water and filtering, an adsorbent (2) having a primary amino group was obtained.
The resulting adsorbent (2) had a volume average particle diameter of 685 μm, a uniformity coefficient of 1.54, a specific surface area of 4 m 2 /g, a pore diameter of 41.8 nm, a pore volume of 0.01 mL/g, and a nitrogen content of 9.5. 6% by mass and a total exchange capacity of 6.87 meq/g.

<吸着処理>
トリオレイン(ナカライテスク株式会社製)1.8143質量部及び(E,E)-2,4-デカジエナール(東京化成工業株式会社製)0.0035質量部(添加量2010ppm)を含む油脂に、吸着剤(2)を0.1020質量部添加して、25℃で18時間静置し、吸着処理を実施した。
吸着処理後の油脂中の(E,E)-2,4-デカジエナールを、実施例1と同様に高速液体クロマトグラフィー分析した。
得られたクロマトグラムを、図2に示す。高速液体クロマトグラフィー分析により求められた吸着処理前後の油脂中の(E,E)-2,4-デカジエナール量は、2.01mg/gから1.87mg/gに減少した(減少率:6.7%)。
<Adsorption treatment>
Triolein (manufactured by Nacalai Tesque Co., Ltd.) 1.8143 parts by weight and (E, E)-2,4-decadienal (manufactured by Tokyo Chemical Industry Co., Ltd.) 0.0035 parts by weight (addition amount 2010 ppm) Adsorption to oils and fats 0.1020 parts by mass of agent (2) was added, and the mixture was allowed to stand at 25° C. for 18 hours for adsorption treatment.
(E,E)-2,4-decadienal in the oil after the adsorption treatment was analyzed by high performance liquid chromatography in the same manner as in Example 1.
The chromatogram obtained is shown in FIG. The amount of (E,E)-2,4-decadienal in the oil before and after the adsorption treatment determined by high-performance liquid chromatography analysis decreased from 2.01 mg/g to 1.87 mg/g (reduction rate: 6.0 mg/g). 7%).

[参考例]
トリオレイン(ナカライテスク株式会社製)0.7651質量部及び(E,E)-2,4-デカジエナール(東京化成工業株式会社製)0.0017質量部(添加量2270ppm)を含む油脂について、実施例1と同様に高速液体クロマトグラフィー分析した。得られたクロマトグラムを、図3に示す。
[Reference example]
Conducted on fats and oils containing 0.7651 parts by mass of triolein (manufactured by Nacalai Tesque Co., Ltd.) and 0.0017 parts by mass of (E, E)-2,4-decadienal (manufactured by Tokyo Chemical Industry Co., Ltd.) (added amount: 2270 ppm) High performance liquid chromatography analysis was performed in the same manner as in Example 1. The chromatogram obtained is shown in FIG.

以上の結果から明らかなように、本発明の吸着剤により、簡便な処理方法で、油脂中のアルデヒド類を、高い効率で吸着除去することができた。 As is clear from the above results, the adsorbent of the present invention was able to adsorb and remove aldehydes in fats and oils with high efficiency by a simple treatment method.

本発明の吸着剤は、油脂に代表される非水溶性有機化合物中の、アルデヒド類や有機酸類に代表される不純物に対し、優れた吸着性を示し、アルデヒド類や有機酸類に代表される不純物が高度に除去された、油脂に代表される非水溶性有機化合物を、工業スケールで効率よく得ることができることから、食用油脂工業分野における実用上の価値が極めて高い。
The adsorbent of the present invention exhibits excellent adsorption of impurities represented by aldehydes and organic acids in water-insoluble organic compounds represented by oils and fats, and impurities represented by aldehydes and organic acids. Since water-insoluble organic compounds typified by fats and oils from which the impurities are highly removed can be efficiently obtained on an industrial scale, the method has extremely high practical value in the field of the edible fats and oils industry.

Claims (15)

非水溶性有機化合物中の不純物を除去するための吸着剤であって、一級アミノ基を有する、吸着剤。 An adsorbent for removing impurities in water-insoluble organic compounds, the adsorbent having a primary amino group. 前記不純物が、アルデヒド類を含む、請求項1に記載の吸着剤。 The adsorbent according to claim 1, wherein the impurities include aldehydes. 前記不純物が、更に、有機酸類を含む、請求項2に記載の吸着剤。 3. The adsorbent according to claim 2, wherein said impurities further comprise organic acids. 前記非水溶性有機化合物が、油脂を含む、請求項1~3のいずれか1項に記載の吸着剤。 The adsorbent according to any one of claims 1 to 3, wherein the water-insoluble organic compound comprises fats and oils. 樹脂、多糖類、シリカ及びガラスからなる群より選ばれる少なくとも1種を含む、請求項1~4のいずれか1項に記載の吸着剤。 The adsorbent according to any one of claims 1 to 4, comprising at least one selected from the group consisting of resins, polysaccharides, silica and glass. 樹脂を含む、請求項5に記載の吸着剤。 6. The adsorbent of claim 5, comprising a resin. 前記樹脂が、アクリル系樹脂、スチレン系樹脂、ポリビニルアミン系樹脂、イソシアヌル酸トリアリル系樹脂及びビニルエーテル系樹脂からなる群より選ばれる少なくとも1種を含む、請求項6に記載の吸着剤。 The adsorbent according to claim 6, wherein the resin comprises at least one selected from the group consisting of acrylic resins, styrene resins, polyvinylamine resins, triallyl isocyanurate resins and vinyl ether resins. 前記樹脂が、架橋構造を有する、請求項6又は7に記載の吸着剤。 The adsorbent according to claim 6 or 7, wherein the resin has a crosslinked structure. 前記アクリル系樹脂が、エポキシ基含有(メタ)アクリレート単位及び架橋性(メタ)アクリレート単位を含む、請求項7又は8に記載の吸着剤。 The adsorbent according to claim 7 or 8, wherein the acrylic resin contains epoxy group-containing (meth)acrylate units and crosslinkable (meth)acrylate units. 前記スチレン系樹脂が、芳香族モノビニル単量体単位及び架橋性芳香族ビニル単量体単位を含む、請求項7又は8に記載の吸着剤。 The adsorbent according to claim 7 or 8, wherein the styrenic resin contains aromatic monovinyl monomer units and crosslinkable aromatic vinyl monomer units. 前記ポリビニルアミン系樹脂が、N-ビニルカルボン酸アミド単位を含む、請求項7又は8に記載の吸着剤。 The adsorbent according to claim 7 or 8, wherein the polyvinylamine-based resin contains an N-vinylcarboxylic acid amide unit. 前記一級アミノ基が、ポリアルキレンポリアミン、ポリビニルアミン及びポリアリルアミンからなる群より選ばれる少なくとも1種により導入されたものである、請求項1~11のいずれか1項に記載の吸着剤。 The adsorbent according to any one of claims 1 to 11, wherein the primary amino group is introduced by at least one selected from the group consisting of polyalkylenepolyamine, polyvinylamine and polyallylamine. 多孔性を有する、請求項1~12のいずれか1項に記載の吸着剤。 The adsorbent according to any one of claims 1 to 12, having porosity. 細孔直径が、1nm~1000nmである、請求項13に記載の吸着剤。 Adsorbent according to claim 13, wherein the pore diameter is between 1 nm and 1000 nm. 請求項1~14のいずれか1項に記載の吸着剤を用いて、非水溶性有機化合物中の不純物を除去する、不純物の除去方法。
A method for removing impurities, comprising removing impurities in a water-insoluble organic compound using the adsorbent according to any one of claims 1 to 14.
JP2021063608A 2021-04-02 2021-04-02 Absorbent and removal method of impurities Pending JP2022158595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021063608A JP2022158595A (en) 2021-04-02 2021-04-02 Absorbent and removal method of impurities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021063608A JP2022158595A (en) 2021-04-02 2021-04-02 Absorbent and removal method of impurities

Publications (1)

Publication Number Publication Date
JP2022158595A true JP2022158595A (en) 2022-10-17

Family

ID=83638949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021063608A Pending JP2022158595A (en) 2021-04-02 2021-04-02 Absorbent and removal method of impurities

Country Status (1)

Country Link
JP (1) JP2022158595A (en)

Similar Documents

Publication Publication Date Title
JP5315691B2 (en) Novel filler with excellent hydrophilicity and method for producing the same
DE69502396T2 (en) POLYMERS ADSORBENTS WITH INCREASED ADSORPTION CAPACITY AND KINETICS AND METHOD FOR THE PRODUCTION THEREOF
Salisu et al. Alginate graft polyacrylonitrile beads for the removal of lead from aqueous solutions
KR102017649B1 (en) A novel chromatographic media based on allylamine and its derivative for protein purification
AU2010250143B2 (en) Porous polymeric separation material
CN105080468B (en) A kind of method that two steps blotting prepares the Large pore molecular trace adsorbent of hydridization
CN109847715A (en) A kind of preparation method of amide group modified polystyrene system super high cross-linked adsorbing resin
US20220176273A1 (en) Packing material for size exclusion chromatography and method for producing the same
JPH01254247A (en) Complex separation agent and manufacture thereof
Erdem et al. Synthesis of novel methacrylate based adsorbents and their sorptive properties towards p-nitrophenol from aqueous solutions
Xu et al. Preparation and application of monodisperse, highly cross-linked, and porous polystyrene microspheres for dye removal
JP6981364B2 (en) Separator, separation method and compound manufacturing method
JP2022158595A (en) Absorbent and removal method of impurities
JP6992586B2 (en) Precious metal removal method and compound manufacturing method
AU2014355200B2 (en) Stabilization of fermented beverages
CN111138668A (en) Cyclodextrin modified macroporous adsorption resin and preparation method thereof
KR20230049566A (en) Porous particles and method for preparing the same
AU2014355200A1 (en) Stabilization of fermented beverages
KR102014742B1 (en) Mixed salt suspension polymerization process and resins and catalysts produced thereof
JP4946466B2 (en) Gas adsorbent
JP4882588B2 (en) Gas adsorbent for tobacco filter
JP7543746B2 (en) Cation exchange resin and method for producing the same
KR101776369B1 (en) Polymer having high adsorption ability for metal ions and preparation method thereof
JP7186338B1 (en) Packing material, manufacturing method thereof, and column for size exclusion chromatography
JP4946255B2 (en) Gas adsorbent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240917