JP2022158449A - 応力腐食割れ進展試験方法及び試験装置 - Google Patents

応力腐食割れ進展試験方法及び試験装置 Download PDF

Info

Publication number
JP2022158449A
JP2022158449A JP2021063361A JP2021063361A JP2022158449A JP 2022158449 A JP2022158449 A JP 2022158449A JP 2021063361 A JP2021063361 A JP 2021063361A JP 2021063361 A JP2021063361 A JP 2021063361A JP 2022158449 A JP2022158449 A JP 2022158449A
Authority
JP
Japan
Prior art keywords
test
stress corrosion
crack
test piece
corrosion cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021063361A
Other languages
English (en)
Inventor
雅雄 板谷
Masao Itaya
徳彦 田中
Norihiko Tanaka
友紀 阿部
Tomonori Abe
浩 平山
Hiroshi Hirayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2021063361A priority Critical patent/JP2022158449A/ja
Publication of JP2022158449A publication Critical patent/JP2022158449A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

【課題】片側亀裂付平板試験片端部への一様引張変位の付与を容易に実施することができ、高温高圧水中での応力拡大係数一定のSCC進展試験を行うことのできる、応力腐食割れ進展試験方法及び試験装置を提供する。【解決手段】高温高圧水中にて片側に亀裂を有する平板状の試験片に一定の引張変位を付与し、亀裂の進展を計測する応力腐食割れ進展試験方法において、偶数個の同一寸法の前記試験片を回転対称位置に配置し、これら偶数個の前記試験片を1体の試験治具で保持して同時に引張変位を付与することを特徴とする。【選択図】図1

Description

本発明の実施形態は、応力腐食割れ進展試験方法及び試験装置に関する。
原子力発電プラントをはじめとする各種プラントでは、応力腐食割れ(以下、SCC:Stress Corrosion Cracking)について、予め亀裂進展試験による損傷評価を行い、亀裂進展速度データを取得し、この結果に基づいてプラントの健全性の評価を行っている。
原子力発電プラントの高経年化に対する構造健全性評価には、材料データの高精度・高信頼性が重要であり、特に沸騰水型原子力発電(以下、BWR:Boiling Water Reactor)プラントの炉底部においては、SCCによる亀裂進展速度データの高い信頼性が求められている。
しかし、従来の応力腐食割れ進展試験方法(以下、SCC進展試験方法)で取得される亀裂進展速度データは、ばらつきが大きく、同一の応力拡大係数(亀裂進展の駆動力)に対して、数オーダ―のばらつきを示すこともある。そのため、データの上限により構造健全性評価用の亀裂進展速度を設定すると、ごく短期間でSCC亀裂が原子炉圧力容器(以下、RPV:Reactor Pressure Vessel)へ達するなど、実態とかけ離れた極めて厳しい評価結果となることがある。
そこで、応力拡大係数一定条件の下で、亀裂進展速度データを取得する試験方法に関する原理的な方法が提案されているものの、実用化にあたっては、原子炉の炉内水質環境を模擬した高温高圧水中で試験片をどのように保持するかと言った実用上の課題がある。
このような課題を解決し、信頼性の高いSCC亀裂進展データを取得できる応力腐食割れ進展試験方法及び試験装置を開発することにより、軽水炉プラントの構造健全性評価の精度向上に寄与することが可能となる。
特開2007-309736号公報 特開2010-8147号公報
しかしながら、亀裂長さによらず応力拡大係数を一定に保持するSCC進展試験方法として、これまでに片側亀裂付平板試験片の端部に一様な引張変位を付与する方法が提案されているものの、試験片の片側にしか亀裂がない、すなわち試験片の形状が非対称なために試験片の端部に引張変位を付与すると自然に曲げモーメントを発生し、それによって本来は一様な引張変位を付与する試験であるにも拘らず端部に曲げ変位が発生してしまうと言う課題があった。
このため、片側亀裂付平板試験片の端部に発生する曲げ変位を抑制する必要があるが、一般的にSCC進展試験に用いる試験装置では、引張変位を付与するための駆動部への試験環境の影響を抑制するためにプルロッドの長さを長くする必要がある。この場合、試験片に曲げモーメントが発生した場合、プルロッドが長いために試験片端部の曲げ変位の発生を抑えることが困難である。また、油圧式の試験装置の場合、駆動部においてプルロッドを支持しているシール部材としてのゴム製のOリングが潰れるため曲げ変位を抑えることがさらに困難となる。
本発明は、このような従来の事情を考慮してなされたもので、これまで実施が困難であった片側亀裂付平板試験片端部への一様な引張変位の付与を容易に実施することができ、高温高圧水中での応力拡大係数一定のSCC進展試験を行うことのできる、応力腐食割れ進展試験方法及び試験装置を提供することを目的とする。
本実施形態の応力腐食割れ進展試験方法は、高温高圧水中にて片側に亀裂を有する平板状の試験片に一定の引張変位を付与し、亀裂の進展を計測する応力腐食割れ進展試験方法において、偶数個の同一寸法の前記試験片を回転対称位置に配置し、これら偶数個の前記試験片を1体の試験治具で保持して同時に引張変位を付与することを特徴とする。
本発明の実施形態によれば、これまで実施が困難であった片側亀裂付平板試験片端部への一様な引張変位の付与を容易に実施することができ、高温高圧水中での応力拡大係数一定のSCC進展試験を行うことのできる、応力腐食割れ進展試験方法及び試験装置を提供することができる。
第1実施形態に係る応力腐食割れ進展試験装置の要部構成を模式的に示す図であり、(a)は側面図、(b)は正面図。。 第1実施形態に係る応力腐食割れ進展試験装置の全体構成を模式的に示す側面図。 第2実施形態に係る応力腐食割れ進展試験装置の要部構成を模式的に示す図であり、(a)は側面図、(b)は正面図。 第3実施形態に係る応力腐食割れ進展試験装置の要部構成を模式的に示す図であり、(a)は側面図、(b)は正面図。 第4実施形態に係る応力腐食割れ進展試験装置の要部構成を模式的に示す図であり、(a)は側面図、(b)は正面図。 第5実施形態に係る応力腐食割れ進展試験装置の全体構成を模式的に示す側面図。 従来の応力腐食割れ進展試験装置の要部構成を模式的に示す図であり、(a)は側面図、(b)は正面図。 従来の応力腐食割れ進展試験装置の全体構成を模式的に示す側面図。
以下、実施形態の応力腐食割れ進展試験方法及び試験装置について、図面を参照して説明する。
まず、図7、図8を参照して従来例について説明する。図7は従来例の応力腐食割れ進展試験装置の要部構成を模式的に示す図であり、(a)は側面図、(b)は正面図である。図7に示すように、平板状の試験片101は、押え104及びボルト105により台座106に押し付けられることによって試験治具に保持されている。試験片101と押え104の間および試験片101と台座106の間には絶縁材107が挟み込まれている。試験片101は、片側に予め亀裂301が形成されている片側亀裂付平板試験片である。
従来例によると、図示は省略してあるが試験装置により台座106に引張変位を付与することにより、押え104およびボルト105を介して試験片101の端部に引張変位が伝達されるが、試験片101は片側にしか亀裂301がない非対称な形状のため、端部に一様な引張変位を付与しようとしても受動的に曲げモーメントが発生し、その結果として試験片101の端部には曲げ変位が発生する。
片側亀裂付平板試験片を用いる応力拡大係数一定亀裂進展試験の基本原理は、試験片101の端部に一様な引張変位を付与することであり、自然に発生する曲げモーメントに打ち勝って試験片101の端部の曲げ変位を抑制するためには装置側に高い曲げ剛性が要求される。
図8は、従来例に係る応力腐食割れ進展試験装置の全体構成を模式的に示す側面図である。図8に示すように、SCC進展試験では装置駆動部を試験環境の影響を受けない位置に置いて保護する必要があるため、試験片をオートクレーブ201の中に設置し、試験片と駆動部との間にはプルロッド204を配設する必要がある。
プルロッド204は必然的に長くならざるを得ず、さらにプルロッド204がオートクレーブの蓋板205を貫通する部分にはシール部材が必要となるため、高い曲げ剛性の確保が困難である。また、油圧式の試験装置の場合、図示は省略してあるが駆動部においてプルロッド204を支持しているゴム製のOリングが潰れるため曲げ変位を抑えることがさらに困難となる。なお、図8において、202は支柱、203は固定軸である。
(第1実施形態)
図1は、第1実施形態に係る応力腐食割れ進展試験装置の要部構成を模式的に示す図であり、(a)は側面図、(b)は正面図である。図1に示すように、片側亀裂付平板試験片101は、初期亀裂長さを含めまったく同じ寸法の偶数、例えば体2体の試験片a(101a)と試験片b(101b)が単一の治具302に同時に懸架されている。試験片a(101a)と試験片b(101b)とは、試験片aの亀裂a(301a)と試験片bの亀裂b(301b)とが、上から見たときに回転対称位置になるよう、2体の試験片は反対向きに設置される。すなわち、図1(b)に示す正面図において、例えば試験片a(101a)は亀裂a(301a)が左側、試験片b(101b)は亀裂b(301b)が右側になるように配置される。
図7に示した従来例では、試験片101の端部に引張変位を付与すると、試験片101の形状が非対称であるために自然に曲げモーメントが発生することは既に述べた通りである。この曲げモーメントの向きは亀裂を開口させる方向である。
一方、図1に示す第1実施形態では、治具302に引張変位を付与すると、試験片a(101a)と試験片b(101b)とが回転対称関係に配置され、それぞれの亀裂a(301a)と亀裂b(301b)とが反対方向にあり、なおかつ2体の試験片は初期亀裂長さを含めて同寸法であるため、それぞれの試験片に発生する曲げモーメントが、大きさが同じで反対向きとなる。すなわち、治具302が試験片101から受ける曲げモーメントは相殺されて0となる。
図2は、第1実施形態に係る応力腐食割れ進展試験装置の全体構成を模式的に示す側面図である。なお、図8に示した従来例と対応する部分には同一の符号を付して重複した説明は省略する。本第1実施形態では、治具302に接続されるプルロッド204にも曲げモーメントは負荷されず、引張方向のみの変位を付与することが可能となる。
以上説明したように、本第1実施形態によれば、片側亀裂付平板試験片の端部に一様な引張変位を付与することが可能となり、応力拡大係数一定SCC進展試験方法の実施が可能となることによって精度の高い亀裂進展データを取得でき、プラントの健全性の評価を精度良く行うことができる。なお、本第1実施形態では、2体の試験片a(101a)と試験片b(101b)が単一の治具302に上から見たときに回転対称位置になるよう、2体の試験片は反対向きに設置される。これによって、例えば、2体の試験片を線対称位置となるように、図1中の横方向に反対向きに並べて配置した場合等と比べて、2体の試験片を、引張変位を付与する装置のプルロッド204の中心すなわち荷重軸の近くに配置することができ、治具302の内部に発生する曲げモーメントをより一層抑制することができる。また、横方向に反対向きに並べて配置した場合等と比べて、治具302をコンパクトにできるため、オートクレーブ201中への設置が容易になる。なお、本実施例では試験片を2体の例で説明したが、回転対称位置になるよう偶数体の試験片で適用することが可能である。
(第2実施形態)
図3は、第2実施形態に係る応力腐食割れ進展試験装置の要部構成を模式的に示す図であり、(a)は側面図、(b)は正面図である。基本的な構成は図1に示した第1実施形態と同様であるが、試験片101と治具302との間に絶縁材303を挟み込んである。
一般に軽水炉の炉水環境を模擬した高温高圧水中におけるSCC進展試験はオートクレーブ中で実施するため、亀裂長さを目視により直接測定することができない。このため、電位差法と呼ばれる方法により亀裂長さを測定する。電位差法は試験片に電流を流し、亀裂を挟む2点間の電位差が亀裂長さに依存することを応用した亀裂長さ測定方法であり、試験片を試験装置から絶縁する必要がある。
第2実施形態によると、試験片101と治具302が絶縁材303により電気的に絶縁されているため、試験片101に電流を流す電位差法を適用して亀裂長さを測定することが可能となる。ここで、絶縁材303としては、例えば酸化ジルコニウム或いはアルミナ等の軽水炉の炉水を模擬した高温高圧水環境中において溶出せずに電気絶縁性を有するセラミックス等を用いることが好ましい。
なお、絶縁材303は試験片101と治具302との間に挟み込まれた状態となっており、試験片101の端部に引張方向の変位を付与しても絶縁材303には圧縮力が作用するのみであり、引張力に弱いセラミックスからなる絶縁材303であっても、破損等が生じる事を防止することができる。
以上説明したように、本第2実施形態によれば、高温高圧水中に置かれた試験片101の端部に治具302によって引張変位を付与した状態で、時々刻々の亀裂長さ、即ち亀裂進展挙動を電位差法により測定することによって精度の良い亀裂進展速度データを取得することができる。これによって、プラントの健全性の評価を精度良く行うことができる。
(第3実施形態)
図4は、第3実施形態に係る応力腐食割れ進展試験装置の要部構成を模式的に示す図であり、(a)は側面図、(b)は正面図である。基本的な構成は図1に示した第1実施形態と同様であるが、図4に示すように、試験片101の治具302との取合部には変位引出し棒304が取り付けられ、当該変位引出し棒304の先端には変位計305が取り付けられている。第3実施形態によると変位引出し棒304を介して試験片101の両端の変位を測定することが可能となり、試験中に試験片101の端部に一様な引張変位が付与されていることを確認することが可能となる。
以上説明したように、本第3実施形態によれば、SCC進展試験中に試験片101に一様な引張変位が付与されていることを実測により確認するすることによって、精度の良い亀裂進展速度データを取得することができる。これによって、プラントの健全性の評価を精度良く行うことができる。
(第4実施形態)
図5は、第4実施形態に係る応力腐食割れ進展試験装置の要部構成を模式的に示す図であり、(a)は側面図、(b)は正面図である。基本的な構成は第1実施形態と同様であるが、試験片101を4体使用し、それぞれの試験片の亀裂301の向きが交互に反対方向となるよう試験片101の向きを設定することで全体として回転対称の配置となるよう4体の試験片101が設置される。
図5に示す第4実施形態では、第1実施形態について説明したのと同じ原理により治具302に引張変位を付与した時に、治具302が試験片101から受ける曲げモーメントは相殺されて0となる。
以上説明したように、本第4実施形態によれば、片側亀裂付平板試験片の端部に一様な引張変位を付与することが可能となり、応力拡大係数一定SCC進展試験方法の実施が可能となることによって精度の高い亀裂進展データを取得でき、プラントの健全性の評価を精度良く行うことができる。
(第5実施形態)
図6は、第5実施形態に係る応力腐食割れ進展試験装置の全体構成を模式的に示す図である。本実施形態では、主要部分は図2に示した第1実施形態と同様であるが、さらにプルロッド204の倒れ込みを防止するためのサポート206が設置されている。このサポート206は、四方からプルロッド204を支持しつつ、ローラー207等の機構により、プルロッド204の上下方向への移動を可能としている。
第5実施形態によれば、SCC進展試験を実施中に複数の試験片101の亀裂長さに差が生じて、治具302が各試験片101から受ける曲げモーメントに不均衡を生じた場合においても、プルロッド204がサポート206により支持されているため倒れ込みを生じることがなく、試験片101の端部に一様な引張変位を付与し続けることが可能となる。
以上説明したように、本第5実施形態によれば、片側亀裂付平板試験片の端部に一様な引張変位を付与し続けることが可能となり、応力拡大係数一定SCC進展試験方法の実施が可能となることによって精度の高い亀裂進展データを取得でき、プラントの健全性の評価を精度良く行うことができる。
以上説明したように、第1から第5の実施形態によれば、軽水炉の炉水環境を模擬した高温水中において、電位差法による亀裂長さ測定を含めた応力拡大係数一定SCC進展試験を実施することが可能となり、その結果として信頼性の高いSCC亀裂進展速度データを取得することが可能となる。したがって,最終的には精度の高いBWRプラント炉底部の構造健全性評価へ貢献できる。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として掲示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
101……試験片、104……押え、105……ボルト、106……台座、107……絶縁材、201……オートクレーブ、202……支柱、203……固定軸、204……プルロッド、205……蓋板、206……サポート、207……ローラー、301……亀裂、302……治具、303……絶縁材、304……変位引出し棒、305……変位計。

Claims (8)

  1. 高温高圧水中にて片側に亀裂を有する平板状の試験片に一定の引張変位を付与し、亀裂の進展を計測する応力腐食割れ進展試験方法において、
    偶数個の同一寸法の前記試験片を回転対称位置に配置し、これら偶数個の前記試験片を1体の試験治具で保持して同時に引張変位を付与することを特徴とする応力腐食割れ進展試験方法。
  2. 請求項1に記載の応力腐食割れ進展試験方法において、
    前記試験片と前記試験治具との間に絶縁材を挿入して前記試験片と前記試験治具とを電気的に絶縁し、前記試験片に電流を流して前記亀裂の進展を計測することを特徴とする応力腐食割れ進展試験方法。
  3. 請求項1又は2に記載の応力腐食割れ進展試験方法において、
    前記試験片の端部に変位計を取付けて応力腐食割れ進展試験中に前記試験片の端部の変位を測定することを特徴とする応力腐食割れ進展試験方法。
  4. 請求項1乃至3の何れか1項に記載の応力腐食割れ進展試験方法において、
    前記試験片に引張変位を付与する試験装置のプルロッドに、倒れ込みを防止するサポートを設置することを特徴とする応力腐食割れ進展試験方法。
  5. 高温高圧水中にて片側に亀裂を有する平板状の試験片に一定の引張変位を付与し、亀裂の進展を計測する応力腐食割れ進展試験装置において、
    偶数個の同一寸法の前記試験片を回転対称位置に保持し、これら偶数個の前記試験片を1体の試験治具で保持して同時に引張変位を付与する構造を有することを特徴とする応力腐食割れ進展試験装置。
  6. 請求項5に記載の応力腐食割れ進展試験装置において、
    前記試験片と前記試験治具との間に絶縁材を挿入して前記試験片と前記試験治具とを電気的に絶縁する構造を具備し、前記試験片に電流を流して前記亀裂の進展を計測する計測装置を具備することを特徴とする応力腐食割れ進展試験装置。
  7. 請求項5又は6に記載の応力腐食割れ進展試験装置において、
    前記試験片の端部の変位を測定する変位計を具備することを特徴とする応力腐食割れ進展試験装置。
  8. 請求項5乃至7の何れか1項に記載の応力腐食割れ進展試験装置において、
    前記試験片に引張変位を付与するプルロッドに、倒れ込みを防止するサポートを具備することを特徴とする応力腐食割れ進展試験装置。
JP2021063361A 2021-04-02 2021-04-02 応力腐食割れ進展試験方法及び試験装置 Pending JP2022158449A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021063361A JP2022158449A (ja) 2021-04-02 2021-04-02 応力腐食割れ進展試験方法及び試験装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021063361A JP2022158449A (ja) 2021-04-02 2021-04-02 応力腐食割れ進展試験方法及び試験装置

Publications (1)

Publication Number Publication Date
JP2022158449A true JP2022158449A (ja) 2022-10-17

Family

ID=83639181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021063361A Pending JP2022158449A (ja) 2021-04-02 2021-04-02 応力腐食割れ進展試験方法及び試験装置

Country Status (1)

Country Link
JP (1) JP2022158449A (ja)

Similar Documents

Publication Publication Date Title
Broughton Testing the mechanical, thermal and chemical properties of adhesives for marine environments
US20140069203A1 (en) Multiple specimen testing
CN107505213B (zh) 一种新型小冲杆试验装置及其试验方法
JP2022158449A (ja) 応力腐食割れ進展試験方法及び試験装置
JP6049378B2 (ja) 疲労試験装置
NO125688B (ja)
US3258957A (en) Non-destructive testing of materials
KR100579399B1 (ko) 증기발생기 전열관의 시편 제작 방법
KR101083183B1 (ko) 원자력 발전소의 고온고압환경에서 사용된 히터 슬리브 노즐 관통관에 발생되는 응력부식균열에 대한 비파괴 검사의 성능 검증용 시편 제조방법
Gill et al. A Method for Investigating Multi-Axial Fatigue in a PWR Environment
Sagawa et al. Stress corrosion cracking countermeasure observed on Ni-based alloy welds of BWR core support structure
Bourgeois et al. Mechanical characterization for a large test design of a Dissimilar Metals Welding with a narrow gap Nickel alloy weld: experimental and numerical analysis on specimens
JP2021135119A (ja) 応力腐食割れ試験方法及び試験装置
KR100927738B1 (ko) 소형 피로시편을 이용한 저주기 환경피로 실험방법
KR200448416Y1 (ko) 배열형 와전류검사 탐촉자의 교정시험편
Lucon et al. Evaluating a service-exposed component's mechanical properties by means of subsized and miniature specimens
Morovat et al. Experimental examination of creep buckling of steel columns in fire
Bradaï et al. Equi-biaxial loading effect on austenitic stainless steel fatigue life
Foster et al. Irradiation creep and irradiation stress relaxation of 316 and 304L stainless steels in thermal and fast neutron spectrum reactors
RU2582231C1 (ru) Способ испытания на сульфидное растрескивание металла электросварных и бесшовных труб
Moinereau et al. European Project ATLAS+: Status of the WP1 Relative to the Experimental Program on Pipes and Specimens
Mohanty et al. Tensile behavior of 82/182 filler, butter and heat-affected-zones in a 508 LAS-316 SS dissimilar weld: tensile test, Material Model and Finite Element Model Validation
Gourdin et al. Equi-biaxial loading effect on austenitic stainless steel fatigue life
Xuan et al. On the creep fracture toughness of 2¼Cr1Mo steel
Le Delliou Electric Potential Drop Method for Evaluating Crack Initiation and Crack Propagation: The Help of FE Simulation