JP2022158309A - Optical signal waveform measuring device and optical signal waveform measuring method - Google Patents

Optical signal waveform measuring device and optical signal waveform measuring method Download PDF

Info

Publication number
JP2022158309A
JP2022158309A JP2021063094A JP2021063094A JP2022158309A JP 2022158309 A JP2022158309 A JP 2022158309A JP 2021063094 A JP2021063094 A JP 2021063094A JP 2021063094 A JP2021063094 A JP 2021063094A JP 2022158309 A JP2022158309 A JP 2022158309A
Authority
JP
Japan
Prior art keywords
optical signal
attenuation
power
variable
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021063094A
Other languages
Japanese (ja)
Other versions
JP7308873B2 (en
Inventor
真樹 上野
Masaki Ueno
崇 村上
Takashi Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2021063094A priority Critical patent/JP7308873B2/en
Publication of JP2022158309A publication Critical patent/JP2022158309A/en
Application granted granted Critical
Publication of JP7308873B2 publication Critical patent/JP7308873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

To automatically adjust the attenuation amount of an optical signal outputted from an optical signal waveform measurement object to an appropriate attenuation amount without the need for a user to prepare a variable attenuation device in addition to an optical signal waveform measuring device, even when the electric power of an optical signal outputted from an optical signal waveform measurement object is difference (when especially large) for each optical signal waveform measurement object.SOLUTION: An optical signal waveform measuring device 2 comprises, inside of a housing of a local device: an attenuation amount adjustment unit 26 for adjusting the attenuation amount of an optical signal inputted to the local device so that the electric power of the optical signal outputted from a variable attenuation device 22 equals prescribed electric power; and a waveform measurement unit 24 for measuring the waveform of the electric signal outputted from a signal conversion unit 23 when the electric power of the optical signal outputted from the variable attenuation device 22 equals the prescribed electric power.SELECTED DRAWING: Figure 1

Description

本開示は、光信号を電気信号に変換し、光信号の波形を測定する技術に関する。 The present disclosure relates to technology for converting an optical signal into an electrical signal and measuring the waveform of the optical signal.

光信号を電気信号に変換し、光信号の波形を測定する技術が、特許文献1等に開示されている。特許文献1では、測定波長毎に信号変換部を選択している。 A technique for converting an optical signal into an electrical signal and measuring the waveform of the optical signal is disclosed in Japanese Unexamined Patent Application Publication No. 2002-200013 and the like. In Patent Document 1, a signal converter is selected for each measurement wavelength.

特開2018-124237号公報JP 2018-124237 A

ところで、光信号波形測定対象から出力された光信号の電力は、光信号波形測定対象毎に異なることがある。すると、光信号波形測定対象から出力された光信号の電力が大きいときには、光信号を電気信号に変換する信号変換部で電気信号歪みが生じることがある。そして、光信号波形測定対象から出力された光信号の電力がさらに大きいときには、信号変換部が損傷する原因となる。 By the way, the power of the optical signal output from the optical signal waveform measurement target may differ for each optical signal waveform measurement target. Then, when the power of the optical signal output from the optical signal waveform measurement target is high, electrical signal distortion may occur in the signal converter that converts the optical signal into an electrical signal. Further, when the power of the optical signal output from the optical signal waveform measurement target is even higher, it may cause damage to the signal converter.

そこで、光信号波形測定対象から出力された光信号の電力が大きいときには、ユーザが光信号波形測定装置に加え、可変減衰装置を用意する必要がある。そして、可変減衰装置から出力された光信号の電力が、信号変換部に入力されるべき範囲の光信号の電力と等しくなるように、ユーザが光信号波形測定対象から出力された光信号の減衰量を調整する必要がある。よって、測定開始前に減衰量調整する手間が生じるという問題があった。 Therefore, when the power of the optical signal output from the optical signal waveform measurement target is high, the user needs to prepare a variable attenuation device in addition to the optical signal waveform measurement device. Then, the user attenuates the optical signal output from the optical signal waveform measurement object so that the power of the optical signal output from the variable attenuation device becomes equal to the power of the optical signal in the range to be input to the signal conversion unit. I need to adjust the amount. Therefore, there is a problem that it takes time to adjust the attenuation amount before starting the measurement.

そこで、前記課題を解決するために、本開示は、光信号波形測定対象から出力された光信号の電力が、光信号波形測定対象毎に異なるとき(特に大きいとき)であっても、ユーザが光信号波形測定装置に加え、可変減衰装置を用意することなく、自動的に光信号波形測定対象から出力された光信号の減衰量を適切な減衰量に調整することを目的とする。 Therefore, in order to solve the above problems, the present disclosure provides a method for enabling a user to An object of the present invention is to automatically adjust the attenuation of an optical signal output from an optical signal waveform measurement object to an appropriate attenuation without preparing a variable attenuation device in addition to an optical signal waveform measurement device.

前記課題を解決するために、請求項1に係る発明は、光信号の波形を測定する光信号波形測定装置であって、自装置に入力された光信号の減衰量を可変可能な可変減衰部と、前記可変減衰部から出力された光信号を電気信号に変換する信号変換部と、前記信号変換部から出力された電気信号の電力と、前記信号変換部の変換効率と、に基づいて、前記可変減衰部から出力された光信号の電力を監視する電力監視部と、前記可変減衰部から出力された光信号の電力が所定の電力と等しくなるように、前記自装置に入力された光信号の減衰量を調整する減衰量調整部と、前記可変減衰部から出力された光信号の電力が前記所定の電力と等しくなったときに、前記信号変換部から出力された電気信号の波形を測定する波形測定部と、を前記自装置の筐体内に備えることを特徴とする光信号波形測定装置である。 In order to solve the above-mentioned problems, the invention according to claim 1 is an optical signal waveform measuring device for measuring the waveform of an optical signal, comprising a variable attenuation section capable of varying the attenuation of the optical signal input to the device. and a signal converter that converts the optical signal output from the variable attenuator into an electrical signal, the power of the electrical signal output from the signal converter, and the conversion efficiency of the signal converter, a power monitoring unit for monitoring the power of the optical signal output from the variable attenuator; an attenuation adjuster for adjusting the attenuation of a signal; and a waveform of the electrical signal output from the signal converter when the power of the optical signal output from the variable attenuator becomes equal to the predetermined power. and a waveform measuring unit for measuring the optical signal waveform, which is provided in a housing of the apparatus itself.

請求項1に係る発明において、請求項2に係る発明は、前記減衰量調整部は、(1)前記自装置の測定の初期段階では、前記自装置に入力された光信号の減衰量を所定の減衰量に設定し、(2)前記可変減衰部から出力された光信号の電力が前記所定の電力と比べて大きいときには、前記自装置に入力された光信号の減衰量を前記所定の減衰量と比べて大きい減衰量に調整し、(3)前記可変減衰部から出力された光信号の電力が前記所定の電力と比べて小さいときには、前記自装置に入力された光信号の減衰量を前記所定の減衰量と比べて小さい減衰量に調整することを特徴とする光信号波形測定装置である。 In the invention according to claim 1, the invention according to claim 2 is characterized in that the attenuation amount adjustment unit (1) at an initial stage of the measurement of the own apparatus sets the attenuation amount of the optical signal input to the own apparatus to a predetermined amount. and (2) when the power of the optical signal output from the variable attenuator is greater than the predetermined power, the attenuation of the optical signal input to the self apparatus is set to the predetermined attenuation (3) when the power of the optical signal output from the variable attenuator is smaller than the predetermined power, the attenuation of the optical signal input to the self apparatus is adjusted to The optical signal waveform measuring apparatus is characterized in that the attenuation is adjusted to be smaller than the predetermined attenuation.

請求項1又は2に係る発明において、請求項3に係る発明は、前記波形測定部は、前記可変減衰部から出力された光信号の前記所定の電力と、前記自装置に入力された光信号の調整済みの減衰量と、前記自装置の入力端子の接続損失と、前記入力端子から前記可変減衰部を経て前記信号変換部までの光ファイバの伝送損失と、に基づいて、前記自装置に入力された光信号の電力を測定することを特徴とする光信号波形測定装置である。 In the invention according to claim 1 or 2, the invention according to claim 3 is characterized in that the waveform measurement unit measures the predetermined power of the optical signal output from the variable attenuator and the optical signal input to the device itself. and the connection loss of the input terminal of the device itself, and the transmission loss of the optical fiber from the input terminal through the variable attenuation unit to the signal conversion unit. An optical signal waveform measuring device characterized by measuring the power of an input optical signal.

前記課題を解決するために、請求項4に係る発明は、光信号の波形を測定する光信号波形測定装置を用いる光信号波形測定方法であって、自装置に入力された光信号の減衰量を可変可能な可変減衰手順と、前記可変減衰手順で出力された光信号を電気信号に変換する信号変換手順と、前記信号変換手順で出力された電気信号の電力と、前記信号変換手順の変換効率と、に基づいて、前記可変減衰手順で出力された光信号の電力を監視する電力監視手順と、前記可変減衰手順で出力された光信号の電力が所定の電力と等しくなるように、前記自装置に入力された光信号の減衰量を調整する減衰量調整手順と、前記可変減衰手順で出力された光信号の電力が前記所定の電力と等しくなったときに、前記信号変換手順で出力された電気信号の波形を測定する波形測定手順と、を前記自装置の筐体内で行うことを特徴とする光信号波形測定方法である。 In order to solve the above-mentioned problems, the invention according to claim 4 is an optical signal waveform measuring method using an optical signal waveform measuring device for measuring the waveform of an optical signal, wherein the attenuation amount of the optical signal input to the device is a signal conversion procedure for converting the optical signal output in the variable attenuation procedure into an electrical signal; the power of the electrical signal output in the signal conversion procedure; a power monitoring procedure for monitoring the power of the optical signal output by the variable attenuation procedure based on the efficiency, and the power of the optical signal output by the variable attenuation procedure is equal to a predetermined power; an attenuation adjustment procedure for adjusting the attenuation of the optical signal input to the device; and output by the signal conversion procedure when the power of the optical signal output by the variable attenuation procedure becomes equal to the predetermined power. and a waveform measurement procedure for measuring the waveform of the generated electrical signal.

請求項4に係る発明において、請求項5に係る発明は、前記減衰量調整手順は、(1)前記自装置の測定の初期段階では、前記自装置に入力された光信号の減衰量を所定の減衰量に設定し、(2)前記可変減衰手順で出力された光信号の電力が前記所定の電力と比べて大きいときには、前記自装置に入力された光信号の減衰量を前記所定の減衰量と比べて大きい減衰量に調整し、(3)前記可変減衰手順で出力された光信号の電力が前記所定の電力と比べて小さいときには、前記自装置に入力された光信号の減衰量を前記所定の減衰量と比べて小さい減衰量に調整することを特徴とする光信号波形測定方法である。 In the invention according to claim 4, the invention according to claim 5 is characterized in that the attenuation amount adjustment procedure includes: (1) in an initial stage of measurement of the own apparatus, the attenuation amount of the optical signal input to the own apparatus is set to a predetermined amount; and (2) when the power of the optical signal output by the variable attenuation procedure is greater than the predetermined power, the attenuation of the optical signal input to the self apparatus is set to the predetermined attenuation. (3) when the power of the optical signal output by the variable attenuation procedure is smaller than the predetermined power, the attenuation of the optical signal input to the self apparatus is adjusted to The optical signal waveform measuring method is characterized in that the attenuation is adjusted to be smaller than the predetermined attenuation.

請求項4又は5に係る発明において、請求項6に係る発明は、前記波形測定手順は、前記可変減衰手順で出力された光信号の前記所定の電力と、前記自装置に入力された光信号の調整済みの減衰量と、前記自装置の入力端子の接続損失と、前記入力端子から前記可変減衰手順を経て前記信号変換手順までの光ファイバの伝送損失と、に基づいて、前記自装置に入力された光信号の電力を測定することを特徴とする光信号波形測定方法である。 In the invention according to claim 4 or 5, the invention according to claim 6 is characterized in that, in the waveform measurement step, the predetermined power of the optical signal output in the variable attenuation step and the optical signal input to the device are , the connection loss of the input terminal of the device itself, and the transmission loss of the optical fiber from the input terminal to the signal conversion procedure through the variable attenuation procedure, An optical signal waveform measuring method characterized by measuring the power of an input optical signal.

このように、本開示は、光信号波形測定対象から出力された光信号の電力が、光信号波形測定対象毎に異なるとき(特に大きいとき)であっても、ユーザが光信号波形測定装置に加え、可変減衰装置を用意することなく、自動的に光信号波形測定対象から出力された光信号の減衰量を適切な減衰量に調整することができる。 In this way, the present disclosure enables the user to use the optical signal waveform measurement apparatus even when the power of the optical signal output from the optical signal waveform measurement target differs (especially when it is large) for each optical signal waveform measurement target. In addition, it is possible to automatically adjust the attenuation of the optical signal output from the optical signal waveform measurement target to an appropriate attenuation without preparing a variable attenuation device.

本開示の光信号波形測定装置の構成を示す図である。1 is a diagram showing a configuration of an optical signal waveform measuring device of the present disclosure; FIG. 本開示の光信号波形測定方法の手順を示す図である。It is a figure which shows the procedure of the optical-signal-waveform-measurement method of this disclosure. 本開示の大電力の入力光信号に対する処理を示す図である。FIG. 4 illustrates processing for high power input optical signals of the present disclosure; 本開示の小電力の入力光信号に対する処理を示す図である。FIG. 4 illustrates the processing for a low power input optical signal of the present disclosure; 本開示の減衰量制御及び補正表示のテーブルを示す図である。FIG. 4 is a diagram showing a table of attenuation amount control and correction display according to the present disclosure;

添付の図面を参照して本開示の実施形態を説明する。以下に説明する実施形態は本開示の実施の例であり、本開示は以下の実施形態に制限されるものではない。 Embodiments of the present disclosure will be described with reference to the accompanying drawings. The embodiments described below are examples of implementing the present disclosure, and the present disclosure is not limited to the following embodiments.

本開示の光信号波形測定装置の構成を図1に示す。本開示の光信号波形測定方法の手順を図2に示す。光信号波形測定装置2は、入力端子21、可変減衰部22、信号変換部23、波形測定部24、電力監視部25及び減衰量調整部26を、自装置の筐体内に備える。 FIG. 1 shows the configuration of the optical signal waveform measuring device of the present disclosure. FIG. 2 shows the procedure of the optical signal waveform measuring method of the present disclosure. The optical signal waveform measurement device 2 includes an input terminal 21, a variable attenuation section 22, a signal conversion section 23, a waveform measurement section 24, a power monitoring section 25, and an attenuation amount adjustment section 26 within its housing.

光信号波形測定対象1は、例えばDUT(Device Under Test)等である。光信号波形測定装置2は、例えば光サンプリングオシロスコープ等である。光信号波形測定対象1と光信号波形測定装置2とは、接続端子11及び入力端子21を介して接続される。 The optical signal waveform measurement target 1 is, for example, a DUT (Device Under Test). The optical signal waveform measuring device 2 is, for example, an optical sampling oscilloscope. The optical signal waveform measurement object 1 and the optical signal waveform measurement device 2 are connected via a connection terminal 11 and an input terminal 21 .

可変減衰部22は、例えばVOA(Variable Optical Attenuator)等であり、例えば電圧信号等を可変減衰量の制御信号として入力している。信号変換部23は、例えばPD(Photo Diode)等であり、光信号を電気信号に変換する変換効率が入力光電力で所定の特性を有している。 The variable attenuation unit 22 is, for example, a VOA (Variable Optical Attenuator) or the like, and receives, for example, a voltage signal or the like as a variable attenuation control signal. The signal conversion unit 23 is, for example, a PD (Photo Diode) or the like, and has a predetermined characteristic of conversion efficiency for converting an optical signal into an electric signal depending on the input optical power.

光信号波形測定対象1から出力された光信号の電力は、光信号波形測定対象1毎に異なることがある(大きいことがあり、小さいこともある。)。そこで、本開示の大電力(例えば+数dBm以上)の入力光信号に対する処理を図3に示す。そして、本開示の小電力(例えば-10数dBm以下)の入力光信号に対する処理を図4に示す。さらに、本開示の減衰量制御及び補正表示のテーブルを図5に示す。 The power of the optical signal output from the optical signal waveform measurement object 1 may differ (may be large or small) for each optical signal waveform measurement object 1 . Therefore, FIG. 3 shows processing for an input optical signal of high power (for example, +several dBm or more) according to the present disclosure. FIG. 4 shows processing for an input optical signal of low power (for example, −10 dBm or less) according to the present disclosure. Further, FIG. 5 shows a table of attenuation amount control and correction display of the present disclosure.

図3の左欄、中欄及び右欄では、それぞれ、大電力の入力光信号に対する処理のうちの、測定の初期段階、減衰量の制御段階及び結果の表示段階を示す。 The left, middle, and right columns of FIG. 3 respectively show the initial measurement stage, the attenuation control stage, and the result display stage of the processing for the high-power input optical signal.

測定の初期段階として、減衰量調整部26は、光信号波形測定装置2の測定の初期段階では、光信号波形測定装置2に入力された光信号(大電力PIH)の減衰量を所定の減衰量Aに設定する(ステップS1)。ここで、所定の減衰量Aは、光信号波形測定対象1から出力された光信号の電力のレンジが考慮されたうえで、光信号を電気信号に変換する信号変換部23で電気信号歪みが小さくなる減衰量(減衰後に、例えば+数dBm以下)に設定され、電気信号SN比が良くなる(例えばシングルモードファイバ(SMF)であれば、SN比が所望の値、例えば15~16dB以上)減衰量に設定される。或いは、所定の減衰量Aは、光信号波形測定対象1から出力された光信号の電力のレンジが考慮されたうえで、ユーザの指定の減衰量に設定されてもよい。 At the initial stage of measurement, the attenuation adjustment unit 26 adjusts the attenuation of the optical signal (high power P IH ) input to the optical signal waveform measurement device 2 to a predetermined value. The attenuation amount is set to AI (step S1). Here, the predetermined amount of attenuation AI is determined by taking into consideration the power range of the optical signal output from the optical signal waveform measurement target 1, and the electrical signal distortion in the signal converter 23 that converts the optical signal into an electrical signal. is set to a small attenuation amount (for example, + several dBm or less after attenuation), and the electrical signal SN ratio is improved (for example, in the case of single mode fiber (SMF), the SN ratio is set to a desired value, for example, 15 to 16 dB or more ) attenuation. Alternatively, the predetermined amount of attenuation AI may be set to an amount of attenuation specified by the user after considering the power range of the optical signal output from the optical signal waveform measurement target 1 .

可変減衰部22は、光信号波形測定装置2に入力された光信号(大電力PIH)の減衰量を可変可能である(ステップS2)。信号変換部23は、可変減衰部22から出力された光信号(電力PAH)を電気信号に変換する(ステップS3)。電力監視部25は、信号変換部23から出力された電気信号の電力と、信号変換部23の変換効率と、に基づいて、可変減衰部22から出力された光信号の電力PAHを監視する(ステップS4)。 The variable attenuation unit 22 can vary the amount of attenuation of the optical signal (high power P IH ) input to the optical signal waveform measuring device 2 (step S2). The signal converter 23 converts the optical signal (power P AH ) output from the variable attenuator 22 into an electrical signal (step S3). The power monitoring unit 25 monitors the power PAH of the optical signal output from the variable attenuation unit 22 based on the power of the electrical signal output from the signal conversion unit 23 and the conversion efficiency of the signal conversion unit 23. (Step S4).

光信号波形測定装置2に入力された光信号の大電力PIHは、所定の減衰量Aと、入力端子21の接続損失Lと、入力端子21から可変減衰部22を経て信号変換部23までの光ファイバの伝送損失LОと、を受けて、可変減衰部22から出力された光信号の電力PAH=PIH-(A+L+LО)(単位はdBm)に減衰される。 The high power P IH of the optical signal input to the optical signal waveform measuring device 2 is divided into a predetermined attenuation A I , a connection loss L I of the input terminal 21, and a signal conversion section from the input terminal 21 via the variable attenuation section 22. In response to the transmission loss L O of the optical fiber up to 23, the power of the optical signal output from the variable attenuator 22 is attenuated to P AH =P IH -(A I + LI +L O ) (unit: dBm). be.

減衰量の制御段階として、減衰量調整部26は、可変減衰部22から出力された光信号の電力が所定の電力PAFと等しくなるように、光信号波形測定装置2に入力された光信号(大電力PIH)の減衰量を調整する。ここで、所定の電力PAFは、信号変換部23の入力光電力の適切な範囲が考慮されたうえで、光信号を電気信号に変換する信号変換部23で電気信号歪みが小さくなる電力(減衰後に、例えば+数dBm以下)にまで減衰され、電気信号SN比が良くなる(例えばシングルモードファイバ(SMF)であれば、SN比が所望の値、例えば15~16dB以上)電力にまで減衰される。 As an attenuation amount control step, the attenuation amount adjustment unit 26 adjusts the optical signal input to the optical signal waveform measurement apparatus 2 so that the power of the optical signal output from the variable attenuation unit 22 is equal to the predetermined power PAF . Adjust the attenuation of (high power P IH ). Here, the predetermined power P AF is determined by taking into consideration the appropriate range of the input optical power of the signal converter 23, and the power ( After attenuation, for example, it is attenuated to + several dBm or less), and the electrical signal SN ratio is improved (for example, if it is a single mode fiber (SMF), the SN ratio is a desired value, for example, 15 to 16 dB or more). be done.

具体的には、減衰量調整部26は、可変減衰部22から出力された光信号の電力PAHが所定の電力PAFと比べて大きいため(ステップS5で「出力>所定」)、光信号波形測定装置2に入力された光信号(大電力PIH)の減衰量を、所定の減衰量Aと比べて大きい減衰量AFHに調整する(ステップS6)。そして、ステップS2~S4が再実行される。 Specifically, since the power PAH of the optical signal output from the variable attenuator 22 is greater than the predetermined power PAF ("output>predetermined" in step S5), the attenuation amount adjuster 26 adjusts the optical signal The attenuation of the optical signal (high power P IH ) input to the waveform measuring device 2 is adjusted to an attenuation A FH that is greater than the predetermined attenuation A I (step S6). Steps S2 to S4 are then re-executed.

光信号波形測定装置2に入力された光信号の大電力PIHは、大きい減衰量AFHと、入力端子21の接続損失Lと、入力端子21から可変減衰部22を経て信号変換部23までの光ファイバの伝送損失LОと、を受けて、可変減衰部22から出力された光信号の電力PAF=PIH-(AFH+L+LО)(単位はdBm)に減衰される。 The high power P IH of the optical signal input to the optical signal waveform measuring device 2 is divided into a large attenuation A FH , a connection loss L I at the input terminal 21, and a signal conversion section 23 from the input terminal 21 via the variable attenuation section 22. The optical signal output from the variable attenuator 22 is attenuated to power P AF = P IH - (A FH + L I + L O ) (unit: dBm) . .

結果の表示段階として、波形測定部24は、可変減衰部22から出力された光信号の電力PAFが所定の電力PAFと等しくなったため(ステップS5で「出力=所定」)、信号変換部23から出力された電気信号の電力を受ける(ステップS8)。そして、波形測定部24は、信号変換部23から出力された電気信号の電力に信号変換部23の変換効率を適用して、光信号波形測定装置2に入力された光信号の電力を測定し、電力を例えば縦軸として、時間を例えば横軸として、波形を表示する(具体的には、ステップS9)。 At the stage of displaying the result, the waveform measurement unit 24 determines that the power PAF of the optical signal output from the variable attenuator 22 is equal to the predetermined power PAF ("output=predetermined" in step S5), so that the signal conversion unit 23 receives the power of the electric signal output from 23 (step S8). Then, the waveform measurement unit 24 applies the conversion efficiency of the signal conversion unit 23 to the power of the electrical signal output from the signal conversion unit 23 to measure the power of the optical signal input to the optical signal waveform measurement device 2. , the waveform is displayed with, for example, power as the vertical axis and time as the horizontal axis (specifically, step S9).

つまり、波形測定部24は、可変減衰部22から出力された光信号の所定の電力PAFと、光信号波形測定装置2に入力された光信号の調整済みの減衰量AFHと、入力端子21の接続損失Lと、入力端子21から可変減衰部22を経て信号変換部23までの光ファイバの伝送損失LОと、に基づいて、光信号波形測定装置2に入力された光信号の大電力PIH=PAF+(AFH+L+LО)(単位はdBm)を測定・表示する(ステップS9)。 That is, the waveform measurement unit 24 measures the predetermined power P AF of the optical signal output from the variable attenuation unit 22, the adjusted attenuation A FH of the optical signal input to the optical signal waveform measurement device 2, and the input terminal 21 and the transmission loss L O of the optical fiber from the input terminal 21 to the signal converter 23 via the variable attenuator 22, the optical signal input to the optical signal waveform measuring device 2 is determined. The high power P IH =P AF +(A FH + LI +L O ) (unit: dBm) is measured and displayed (step S9).

なお、減衰量調整部26は、図5に示した減衰量制御のテーブルを参照したうえで、可変減衰部22から出力された光信号の電力PAHに基づいて、所定の減衰量Aと比べて大きい減衰量AFH=A+(PAH-PAF)(単位はdBm)を調整してもよい。また、波形測定部24は、図5に示した補正表示のテーブルを参照したうえで、可変減衰部22から出力された光信号の電力PAHに基づいて、光信号波形測定装置2に入力された光信号の大電力PIH=PAF+(AFH+L+LО)(単位はdBm)を測定・表示してもよい。 The attenuation adjustment unit 26 refers to the attenuation control table shown in FIG. A relatively large attenuation amount A FH =A I +(P AH -P AF ) (in dBm) may be adjusted. Further, the waveform measurement unit 24 refers to the correction display table shown in FIG. The large power P IH =P AF +(A FH + LI +L O ) (unit: dBm) of the optical signal obtained may be measured and displayed.

図4の左欄、中欄及び右欄では、それぞれ、小電力の入力光信号に対する処理のうちの、測定の初期段階、減衰量の制御段階及び結果の表示段階を示す。 The left, middle and right columns of FIG. 4 respectively show the initial measurement stage, the attenuation control stage and the result display stage of the processing for the low-power input optical signal.

測定の初期段階として、減衰量調整部26は、光信号波形測定装置2の測定の初期段階では、光信号波形測定装置2に入力された光信号(小電力PIL)の減衰量を所定の減衰量Aに設定する(ステップS1)。ここで、所定の減衰量Aは、光信号波形測定対象1から出力された光信号の電力のレンジが考慮されたうえで、電気信号SN比が良くなる(例えばシングルモードファイバ(SMF)であれば、SN比が所望の値、例えば15~16dB以上)減衰量に設定され、光信号を電気信号に変換する信号変換部23で電気信号歪みが小さくなる減衰量(減衰後に、例えば+数dBm以下)に設定される。或いは、所定の減衰量Aは、光信号波形測定対象1から出力された光信号の電力のレンジが考慮されたうえで、ユーザの指定の減衰量に設定されてもよい。 At the initial stage of measurement, the attenuation adjustment unit 26 adjusts the attenuation of the optical signal (low power P IL ) input to the optical signal waveform measurement device 2 to a predetermined value in the initial stage of measurement by the optical signal waveform measurement device 2 . The attenuation amount is set to AI (step S1). Here, the predetermined amount of attenuation AI is determined in consideration of the power range of the optical signal output from the optical signal waveform measurement target 1, and the electric signal SN ratio is improved (for example, in single mode fiber (SMF)). If there is, the signal-to-noise ratio is set to a desired value, for example, 15 to 16 dB or more), and the signal conversion unit 23 that converts the optical signal into an electrical signal reduces the electrical signal distortion. dBm or less). Alternatively, the predetermined amount of attenuation AI may be set to an amount of attenuation specified by the user after considering the power range of the optical signal output from the optical signal waveform measurement target 1 .

可変減衰部22は、光信号波形測定装置2に入力された光信号(小電力PIL)の減衰量を可変可能である(ステップS2)。信号変換部23は、可変減衰部22から出力された光信号(電力PAL)を電気信号に変換する(ステップS3)。電力監視部25は、信号変換部23から出力された電気信号の電力と、信号変換部23の変換効率と、に基づいて、可変減衰部22から出力された光信号の電力PALを監視する(ステップS4)。 The variable attenuation unit 22 can vary the amount of attenuation of the optical signal (low power P IL ) input to the optical signal waveform measuring device 2 (step S2). The signal converter 23 converts the optical signal (power P AL ) output from the variable attenuator 22 into an electrical signal (step S3). The power monitoring unit 25 monitors the power PAL of the optical signal output from the variable attenuation unit 22 based on the power of the electrical signal output from the signal conversion unit 23 and the conversion efficiency of the signal conversion unit 23. (Step S4).

光信号波形測定装置2に入力された光信号の小電力PILは、所定の減衰量Aと、入力端子21の接続損失Lと、入力端子21から可変減衰部22を経て信号変換部23までの光ファイバの伝送損失LОと、を受けて、可変減衰部22から出力された光信号の電力PAL=PIL-(A+L+LО)(単位はdBm)に減衰される。 The small power PIL of the optical signal input to the optical signal waveform measuring device 2 is divided into a predetermined attenuation amount AI , a connection loss LI at the input terminal 21, and a signal conversion section from the input terminal 21 via the variable attenuation section 22. In response to the transmission loss L O of the optical fiber up to 23, the power P AL of the optical signal output from the variable attenuator 22 is attenuated to P AL = P IL - (A I + L I + L O ) (unit: dBm). be.

減衰量の制御段階として、減衰量調整部26は、可変減衰部22から出力された光信号の電力が所定の電力PAFと等しくなるように、光信号波形測定装置2に入力された光信号(小電力PIL)の減衰量を調整する。ここで、所定の電力PAFは、信号変換部23の入力光電力の適切な範囲が考慮されたうえで、電気信号SN比が良くなる(例えばシングルモードファイバ(SMF)であれば、SN比が所望の値、例えば15~16dB以上)電力にまで減衰され、光信号を電気信号に変換する信号変換部23で電気信号歪みが小さくなる電力(減衰後に、例えば+数dBm以下)にまで減衰される。 As an attenuation amount control step, the attenuation amount adjustment unit 26 adjusts the optical signal input to the optical signal waveform measurement apparatus 2 so that the power of the optical signal output from the variable attenuation unit 22 is equal to the predetermined power PAF . Adjust the attenuation of (small power P IL ). Here, the predetermined power PAF is determined by taking into consideration the appropriate range of the input optical power of the signal converter 23, and the electric signal SN ratio is improved (for example, if a single mode fiber (SMF) is used, the SN ratio is attenuated to a desired value, for example, 15 to 16 dB or more), and the electric signal distortion is reduced in the signal conversion unit 23 that converts the optical signal into an electric signal (after attenuation, for example, + several dBm or less). be done.

具体的には、減衰量調整部26は、可変減衰部22から出力された光信号の電力PALが所定の電力PAFと比べて小さいため(ステップS5で「出力<所定」)、光信号波形測定装置2に入力された光信号(小電力PIL)の減衰量を、所定の減衰量Aと比べて小さい減衰量AFLに調整する(ステップS7)。そして、ステップS2~S4が再実行される。 Specifically, since the power PAL of the optical signal output from the variable attenuator 22 is smaller than the predetermined power PAF ( "output<predetermined" in step S5), the attenuation adjuster 26 adjusts the optical signal The attenuation of the optical signal (low power P IL ) input to the waveform measuring device 2 is adjusted to an attenuation A FL that is smaller than the predetermined attenuation A I (step S7). Steps S2 to S4 are then re-executed.

光信号波形測定装置2に入力された光信号の小電力PILは、小さい減衰量AFLと、入力端子21の接続損失Lと、入力端子21から可変減衰部22を経て信号変換部23までの光ファイバの伝送損失LОと、を受けて、可変減衰部22から出力された光信号の電力PAF=PIL-(AFL+L+LО)(単位はdBm)に減衰される。 The low power PIL of the optical signal input to the optical signal waveform measuring device 2 is composed of a small attenuation amount AFL , a connection loss LI of the input terminal 21, and a signal conversion section 23 from the input terminal 21 via the variable attenuation section 22. The power of the optical signal output from the variable attenuator 22 is attenuated to P AF = P IL - (A FL + L I + L O ) (unit: dBm) . .

結果の表示段階として、波形測定部24は、可変減衰部22から出力された光信号の電力PAFが所定の電力PAFと等しくなったため(ステップS5で「出力=所定」)、信号変換部23から出力された電気信号の電力を受ける(ステップS8)。そして、波形測定部24は、信号変換部23から出力された電気信号の電力に信号変換部23の変換効率を適用して、光信号波形測定装置2に入力された光信号の電力を測定し、電力を例えば縦軸として、時間を例えば横軸として、波形を表示する(具体的には、ステップS9)。 At the stage of displaying the result, the waveform measurement unit 24 determines that the power PAF of the optical signal output from the variable attenuator 22 is equal to the predetermined power PAF ("output=predetermined" in step S5), so that the signal conversion unit 23 receives the power of the electric signal output from 23 (step S8). Then, the waveform measurement unit 24 applies the conversion efficiency of the signal conversion unit 23 to the power of the electrical signal output from the signal conversion unit 23 to measure the power of the optical signal input to the optical signal waveform measurement device 2. , the waveform is displayed with, for example, power as the vertical axis and time as the horizontal axis (specifically, step S9).

つまり、波形測定部24は、可変減衰部22から出力された光信号の所定の電力PAFと、光信号波形測定装置2に入力された光信号の調整済みの減衰量AFLと、入力端子21の接続損失Lと、入力端子21から可変減衰部22を経て信号変換部23までの光ファイバの伝送損失LОと、に基づいて、光信号波形測定装置2に入力された光信号の小電力PIL=PAF+(AFL+L+LО)(単位はdBm)を測定・表示する(ステップS9)。 That is, the waveform measurement unit 24 measures the predetermined power P AF of the optical signal output from the variable attenuation unit 22, the adjusted attenuation amount A FL of the optical signal input to the optical signal waveform measurement device 2, and the input terminal 21 and the transmission loss L O of the optical fiber from the input terminal 21 to the signal converter 23 via the variable attenuator 22, the optical signal input to the optical signal waveform measuring device 2 is determined. The small power PIL = PAF +( AFL + LI +LO) (unit: dBm) is measured and displayed (step S9).

なお、減衰量調整部26は、図5に示した減衰量制御のテーブルを参照したうえで、可変減衰部22から出力された光信号の電力PALに基づいて、所定の減衰量Aと比べて小さい減衰量AFL=A-(PAF-PAL)(単位はdBm)を調整してもよい。また、波形測定部24は、図5に示した補正表示のテーブルを参照したうえで、可変減衰部22から出力された光信号の電力PALに基づいて、光信号波形測定装置2に入力された光信号の小電力PIL=PAF+(AFL+L+LО)(単位はdBm)を測定・表示してもよい。 The attenuation adjustment unit 26 refers to the attenuation control table shown in FIG. A relatively small attenuation amount A FL =A I -(P AF -P AL ) (in dBm) may be adjusted. Further, the waveform measurement unit 24 refers to the correction display table shown in FIG. The small power P IL =P AF +(A FL + LI +L O ) (unit: dBm) of the optical signal obtained may be measured and displayed.

以上に説明したように、光信号波形測定対象1から出力された光信号の電力が、光信号波形測定対象1毎に異なるとき(大きい/小さいとき、特に大きいとき)であっても、ユーザが光信号波形測定装置2に加え、可変減衰装置を用意することなく、自動的に光信号波形測定対象1から出力された光信号の減衰量を適切な減衰量に調整することができる。 As described above, even when the power of the optical signal output from the optical signal waveform measurement object 1 differs (large/small, particularly large) for each optical signal waveform measurement object 1, the user The attenuation of the optical signal output from the optical signal waveform measurement object 1 can be automatically adjusted to an appropriate attenuation without preparing a variable attenuation device in addition to the optical signal waveform measurement device 2 .

そして、光信号波形測定対象1から出力された光信号の減衰量と、光信号波形測定装置2の筐体内の接続損失及び伝送損失と、を自動的に加味したうえで、可変減衰部22から出力された光信号の電力を測定・表示するのではなく、光信号波形測定装置2に入力された光信号の電力(ユーザの所望電力)を測定・表示することができる。 Then, after automatically considering the attenuation of the optical signal output from the optical signal waveform measurement target 1 and the connection loss and transmission loss in the housing of the optical signal waveform measurement device 2, the variable attenuation section 22 Instead of measuring and displaying the power of the output optical signal, the power of the optical signal input to the optical signal waveform measuring device 2 (user's desired power) can be measured and displayed.

本開示の光信号波形測定装置及び光信号波形測定方法は、例えば光サンプリングオシロスコープ等に適用することができ、ユーザが光サンプリングオシロスコープ等に加え、可変減衰装置を用意することなく、測定可能な入力光の電力範囲を拡大することができる。 The optical signal waveform measurement device and optical signal waveform measurement method of the present disclosure can be applied to, for example, an optical sampling oscilloscope, etc., and the user can measure inputs without preparing a variable attenuation device in addition to the optical sampling oscilloscope. The power range of light can be expanded.

1:光信号波形測定対象
2:光信号波形測定装置
11:接続端子
21:入力端子
22:可変減衰部
23:信号変換部
24:波形測定部
25:電力監視部
26:減衰量調整部
1: Optical signal waveform measurement object 2: Optical signal waveform measuring device 11: Connection terminal 21: Input terminal 22: Variable attenuation unit 23: Signal conversion unit 24: Waveform measurement unit 25: Power monitoring unit 26: Attenuation adjustment unit

Claims (6)

光信号の波形を測定する光信号波形測定装置であって、
自装置に入力された光信号の減衰量を可変可能な可変減衰部と、
前記可変減衰部から出力された光信号を電気信号に変換する信号変換部と、
前記信号変換部から出力された電気信号の電力と、前記信号変換部の変換効率と、に基づいて、前記可変減衰部から出力された光信号の電力を監視する電力監視部と、
前記可変減衰部から出力された光信号の電力が所定の電力と等しくなるように、前記自装置に入力された光信号の減衰量を調整する減衰量調整部と、
前記可変減衰部から出力された光信号の電力が前記所定の電力と等しくなったときに、前記信号変換部から出力された電気信号の波形を測定する波形測定部と、
を前記自装置の筐体内に備えることを特徴とする光信号波形測定装置。
An optical signal waveform measuring device for measuring the waveform of an optical signal,
a variable attenuation unit capable of varying the amount of attenuation of an optical signal input to the device;
a signal converter that converts the optical signal output from the variable attenuator into an electrical signal;
a power monitoring unit that monitors the power of the optical signal output from the variable attenuation unit based on the power of the electrical signal output from the signal conversion unit and the conversion efficiency of the signal conversion unit;
an attenuation adjustment unit that adjusts the attenuation of the optical signal input to the device so that the power of the optical signal output from the variable attenuation unit is equal to a predetermined power;
a waveform measuring unit that measures the waveform of the electrical signal output from the signal conversion unit when the power of the optical signal output from the variable attenuation unit becomes equal to the predetermined power;
in a housing of the device itself.
前記減衰量調整部は、(1)前記自装置の測定の初期段階では、前記自装置に入力された光信号の減衰量を所定の減衰量に設定し、(2)前記可変減衰部から出力された光信号の電力が前記所定の電力と比べて大きいときには、前記自装置に入力された光信号の減衰量を前記所定の減衰量と比べて大きい減衰量に調整し、(3)前記可変減衰部から出力された光信号の電力が前記所定の電力と比べて小さいときには、前記自装置に入力された光信号の減衰量を前記所定の減衰量と比べて小さい減衰量に調整する
ことを特徴とする、請求項1に記載の光信号波形測定装置。
The attenuation adjustment unit (1) sets the attenuation of the optical signal input to the device to a predetermined attenuation in the initial stage of measurement of the device, and (2) outputs from the variable attenuation unit (3) the variable When the power of the optical signal output from the attenuation unit is smaller than the predetermined power, the attenuation of the optical signal input to the device is adjusted to be smaller than the predetermined attenuation. 2. The optical signal waveform measuring device according to claim 1.
前記波形測定部は、前記可変減衰部から出力された光信号の前記所定の電力と、前記自装置に入力された光信号の調整済みの減衰量と、前記自装置の入力端子の接続損失と、前記入力端子から前記可変減衰部を経て前記信号変換部までの光ファイバの伝送損失と、に基づいて、前記自装置に入力された光信号の電力を測定する
ことを特徴とする、請求項1又は2に記載の光信号波形測定装置。
The waveform measuring unit measures the predetermined power of the optical signal output from the variable attenuation unit, the adjusted attenuation amount of the optical signal input to the device itself, and the connection loss of the input terminal of the device itself. and a transmission loss of an optical fiber from the input terminal to the signal conversion section through the variable attenuation section, and the power of the optical signal input to the apparatus is measured. 3. The optical signal waveform measuring device according to 1 or 2.
光信号の波形を測定する光信号波形測定装置を用いる光信号波形測定方法であって、
自装置に入力された光信号の減衰量を可変可能な可変減衰手順と、
前記可変減衰手順で出力された光信号を電気信号に変換する信号変換手順と、
前記信号変換手順で出力された電気信号の電力と、前記信号変換手順の変換効率と、に基づいて、前記可変減衰手順で出力された光信号の電力を監視する電力監視手順と、
前記可変減衰手順で出力された光信号の電力が所定の電力と等しくなるように、前記自装置に入力された光信号の減衰量を調整する減衰量調整手順と、
前記可変減衰手順で出力された光信号の電力が前記所定の電力と等しくなったときに、前記信号変換手順で出力された電気信号の波形を測定する波形測定手順と、
を前記自装置の筐体内で行うことを特徴とする光信号波形測定方法。
An optical signal waveform measuring method using an optical signal waveform measuring device for measuring the waveform of an optical signal,
a variable attenuation procedure capable of varying the amount of attenuation of an optical signal input to the device;
a signal conversion procedure for converting the optical signal output by the variable attenuation procedure into an electrical signal;
a power monitoring procedure for monitoring the power of the optical signal output by the variable attenuation procedure based on the power of the electrical signal output by the signal conversion procedure and the conversion efficiency of the signal conversion procedure;
an attenuation adjustment procedure for adjusting the attenuation of the optical signal input to the device so that the power of the optical signal output by the variable attenuation procedure is equal to a predetermined power;
a waveform measurement step of measuring the waveform of the electrical signal output in the signal conversion step when the power of the optical signal output in the variable attenuation step becomes equal to the predetermined power;
is performed within the housing of the device itself.
前記減衰量調整手順は、(1)前記自装置の測定の初期段階では、前記自装置に入力された光信号の減衰量を所定の減衰量に設定し、(2)前記可変減衰手順で出力された光信号の電力が前記所定の電力と比べて大きいときには、前記自装置に入力された光信号の減衰量を前記所定の減衰量と比べて大きい減衰量に調整し、(3)前記可変減衰手順で出力された光信号の電力が前記所定の電力と比べて小さいときには、前記自装置に入力された光信号の減衰量を前記所定の減衰量と比べて小さい減衰量に調整する
ことを特徴とする、請求項4に記載の光信号波形測定方法。
The attenuation amount adjustment procedure includes (1) setting the attenuation amount of the optical signal input to the own apparatus to a predetermined attenuation amount in the initial stage of the measurement of the own apparatus, and (2) outputting by the variable attenuation procedure. (3) the variable When the power of the optical signal output by the attenuation procedure is smaller than the predetermined power, the attenuation of the optical signal input to the device is adjusted to be smaller than the predetermined attenuation. 5. The optical signal waveform measuring method according to claim 4.
前記波形測定手順は、前記可変減衰手順で出力された光信号の前記所定の電力と、前記自装置に入力された光信号の調整済みの減衰量と、前記自装置の入力端子の接続損失と、前記入力端子から前記可変減衰手順を経て前記信号変換手順までの光ファイバの伝送損失と、に基づいて、前記自装置に入力された光信号の電力を測定する
ことを特徴とする、請求項4又は5に記載の光信号波形測定方法。
The waveform measurement procedure includes the predetermined power of the optical signal output by the variable attenuation procedure, the adjusted attenuation of the optical signal input to the device itself, and the connection loss of the input terminal of the device itself. , the transmission loss of the optical fiber from the input terminal through the variable attenuation procedure to the signal conversion procedure, and the power of the optical signal input to the self device is measured based on the above. 6. The optical signal waveform measurement method according to 4 or 5.
JP2021063094A 2021-04-01 2021-04-01 Optical signal waveform measuring device and optical signal waveform measuring method Active JP7308873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021063094A JP7308873B2 (en) 2021-04-01 2021-04-01 Optical signal waveform measuring device and optical signal waveform measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021063094A JP7308873B2 (en) 2021-04-01 2021-04-01 Optical signal waveform measuring device and optical signal waveform measuring method

Publications (2)

Publication Number Publication Date
JP2022158309A true JP2022158309A (en) 2022-10-17
JP7308873B2 JP7308873B2 (en) 2023-07-14

Family

ID=83638644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021063094A Active JP7308873B2 (en) 2021-04-01 2021-04-01 Optical signal waveform measuring device and optical signal waveform measuring method

Country Status (1)

Country Link
JP (1) JP7308873B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144687A (en) * 1999-11-11 2001-05-25 Matsushita Electric Ind Co Ltd Optical output control circuit
WO2005001560A1 (en) * 2003-06-25 2005-01-06 Fujitsu Limited Optical amplifier
JP2005345312A (en) * 2004-06-03 2005-12-15 Nippon Telegr & Teleph Corp <Ntt> Optical signal waveform measurement/evaluation apparatus by optoelectric sampling
WO2008023833A1 (en) * 2006-08-23 2008-02-28 Toyota Jidosha Kabushiki Kaisha Gas analyzing device and gas analyzing method
JP2010217100A (en) * 2009-03-18 2010-09-30 Toyota Motor Corp Exhaust gas analyzer
JP2014228504A (en) * 2013-05-27 2014-12-08 アンリツ株式会社 Light sampling device and light sampling method
JP2018124237A (en) * 2017-02-03 2018-08-09 アンリツ株式会社 Optical sampling oscilloscope and method for improving its sensitivity

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144687A (en) * 1999-11-11 2001-05-25 Matsushita Electric Ind Co Ltd Optical output control circuit
WO2005001560A1 (en) * 2003-06-25 2005-01-06 Fujitsu Limited Optical amplifier
JP2005345312A (en) * 2004-06-03 2005-12-15 Nippon Telegr & Teleph Corp <Ntt> Optical signal waveform measurement/evaluation apparatus by optoelectric sampling
WO2008023833A1 (en) * 2006-08-23 2008-02-28 Toyota Jidosha Kabushiki Kaisha Gas analyzing device and gas analyzing method
JP2010217100A (en) * 2009-03-18 2010-09-30 Toyota Motor Corp Exhaust gas analyzer
JP2014228504A (en) * 2013-05-27 2014-12-08 アンリツ株式会社 Light sampling device and light sampling method
JP2018124237A (en) * 2017-02-03 2018-08-09 アンリツ株式会社 Optical sampling oscilloscope and method for improving its sensitivity

Also Published As

Publication number Publication date
JP7308873B2 (en) 2023-07-14

Similar Documents

Publication Publication Date Title
EP0901617B1 (en) Eye mask for measurement of distortion in optical transmission systems
US20040051938A1 (en) Gain controlled optical amplifier
JP2001211120A (en) Compensator compensating polarization mode dispersion of optical fiber
US7664399B2 (en) Optical communication device
JP2010010614A (en) Light detecting apparatus and output light intensity controller
JP7308873B2 (en) Optical signal waveform measuring device and optical signal waveform measuring method
CN113691325B (en) Satellite-borne short message cavity filter thermal vacuum experiment test system and method
JP3178661B2 (en) Optical filter adjustment method
JP7224386B2 (en) Optical signal waveform measuring device and optical signal waveform measuring method
CN111463647B (en) Optical amplifier and adjusting method thereof
US10148383B2 (en) Optical channel monitor with integral optical switch
CN115549778A (en) Irradiation environment testing device for multichannel aerospace-level optical preamplifier
CN110048769B (en) Self-adaptive frequency response characteristic testing device and method
KR100326318B1 (en) Suppression device for transient effect of optical fiber amplifier in wavelength division multiplexing system
CN109921849B (en) Control apparatus and method for optimizing transmission performance of optical communication system
CN220896696U (en) Automatic optical noise testing device
AU2053300A (en) Method and apparatus for controlling the ratio of an output signal and an input signal
CN111901048B (en) Gain adjusting method of optical receiver
CN219891435U (en) Optical power attenuation device applied to optical communication field
JP2019106605A (en) Polarization multiplex optical signal transmission system
CN114172585B (en) Detection device and laser communication system
JP4615438B2 (en) Optical amplification method and optical amplification device
WO2023030073A1 (en) Method and apparatus for measuring gain of raman amplifier, electronic device, and storage medium
JPH07325011A (en) Extinction ratio measuring apparatus
SU1518889A1 (en) Device for monitoring amplitude-frequency characteristics of communication channels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230704

R150 Certificate of patent or registration of utility model

Ref document number: 7308873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150