JP2022157172A - Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents

Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
JP2022157172A
JP2022157172A JP2021061253A JP2021061253A JP2022157172A JP 2022157172 A JP2022157172 A JP 2022157172A JP 2021061253 A JP2021061253 A JP 2021061253A JP 2021061253 A JP2021061253 A JP 2021061253A JP 2022157172 A JP2022157172 A JP 2022157172A
Authority
JP
Japan
Prior art keywords
positive electrode
ion secondary
lithium ion
secondary battery
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021061253A
Other languages
Japanese (ja)
Inventor
勉 野添
Tsutomu Nozoe
豊将 中野
Toyomasa Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2021061253A priority Critical patent/JP2022157172A/en
Publication of JP2022157172A publication Critical patent/JP2022157172A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a positive electrode material for a lithium ion secondary battery and a positive electrode for a lithium ion secondary battery capable of obtaining a lithium ion secondary battery with excellent cycle characteristics, and to provide a lithium ion secondary battery comprising the positive electrode for a lithium ion secondary battery.SOLUTION: For a positive electrode material for a lithium ion secondary battery, a high-energy side peak intensity in quadrupole splitting of iron ions is higher than a low-energy side peak intensity in quadrupole splitting of iron ions, in Mossbauer spectra obtained by the Mossbauer spectroscopy.SELECTED DRAWING: None

Description

本発明は、リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池に関する。 The present invention relates to a positive electrode material for lithium ion secondary batteries, a positive electrode for lithium ion secondary batteries, and a lithium ion secondary battery.

オリビン系正極活物質は、結晶内のリチウムイオンが一次元方向のみに拡散するため、オリビン系正極活物質を含む正極を備えたリチウムイオン二次電池は、大電流を瞬間的に流した際にリチウムイオンの拡散が追い付かず、過電圧(電圧降下)が高くなるという課題があった。 In the olivine-based positive electrode active material, lithium ions in the crystal diffuse only in one-dimensional direction. There was a problem that the diffusion of lithium ions could not catch up and the overvoltage (voltage drop) increased.

従来、3価のFeの含有量が極めて少なくするように、リン酸鉄リチウム(LiFePO)またはリン酸マンガン鉄リチウム(LiMn1-xFePO)からなるオリビン系正極活物質を合成することにより、オリビン系正極活物質を含む正極を備えたリチウムイオン二次電池の高容量化が可能であることが知られている。特許文献1では、メスバウアー分光法により得られるメスバウアースペクトルにおいて、異性体シフト値を規定することにより、意図的に少量の3価のFeを結晶内に固溶させて、結晶内に欠陥を生成し、結晶内においてリチウムイオンが二次元方向または三次元方向に拡散することが可能としている。 Conventionally, an olivine-based positive electrode active material composed of lithium iron phosphate (LiFePO 4 ) or lithium manganese iron phosphate (LiMn 1-x Fe x PO 4 ) is synthesized so that the content of trivalent Fe is extremely low. It is known that, by doing so, it is possible to increase the capacity of a lithium ion secondary battery having a positive electrode containing an olivine-based positive electrode active material. In Patent Document 1, in the Mössbauer spectrum obtained by Mössbauer spectroscopy, by specifying the isomer shift value, a small amount of trivalent Fe is intentionally dissolved in the crystal to cause defects in the crystal. This allows lithium ions to diffuse in two or three dimensions within the crystal.

特許第6477948号公報Japanese Patent No. 6477948

しかしながら、リチウムイオン二次電池を使用するにあたり、耐久性の指標となるサイクル特性に関して、さらなる性能の向上が求められていた。 However, in using lithium-ion secondary batteries, there has been a demand for further improvement in cycle characteristics, which is an index of durability.

本発明は、上記事情に鑑みてなされたものであって、サイクル特性に優れるリチウムイオン二次電池を得ることができるリチウムイオン二次電池用正極材料およびリチウムイオン二次電池用正極、並びに、このリチウムイオン二次電池用正極を備えたリチウムイオン二次電池を提供することを目的とする。 The present invention has been made in view of the above circumstances, and a positive electrode material for a lithium ion secondary battery and a positive electrode for a lithium ion secondary battery that can obtain a lithium ion secondary battery having excellent cycle characteristics, and this An object of the present invention is to provide a lithium ion secondary battery having a positive electrode for a lithium ion secondary battery.

本発明者等は、上記の課題を解決するべく鋭意検討した結果、リチウムイオン二次電池用正極材料をメスバウアー分光法により分析して得られるメスバウアースペクトルにおいて、鉄イオンの四極子分裂の高エネルギー側のピークの強度が、鉄イオンの四極子分裂の低エネルギー側のピークの強度よりも大きくなるように、リチウムイオン二次電池用正極材料を作製することにより、サイクル特性に優れるリチウムイオン二次電池を得ることができるリチウムイオン二次電池用正極材料が得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that the Mössbauer spectrum obtained by analyzing the positive electrode material for lithium ion secondary batteries by Mössbauer spectroscopy shows that the quadrupolar splitting of iron ions is high. By producing a positive electrode material for a lithium ion secondary battery so that the intensity of the peak on the energy side is greater than the intensity of the peak on the low energy side of quadrupolar splitting of iron ions, lithium ion secondary batteries with excellent cycle characteristics can be obtained. The inventors have found that a positive electrode material for lithium ion secondary batteries can be obtained from which the following batteries can be obtained, and have completed the present invention.

本発明は以下の態様を有する。
[1]メスバウアー分光法により得られるメスバウアースペクトルにおいて、鉄イオンの四極子分裂の高エネルギー側のピークの強度が、鉄イオンの四極子分裂の低エネルギー側のピークの強度よりも大きい、リチウムイオン二次電池用正極材料。
[2]電極活物質粒子の表面に炭素質被膜が形成された一次粒子と、該一次粒子が複数個集合した凝集粒子と、を含み、レーザー式回折粒度分布測定装置で測定された平均粒子径が0.3μm以上5.0μm以下である、[1]に記載のリチウムイオン二次電池用正極材料。
[3]前記一次粒子が、平均粒子径が50nm以上500nm以下のオリビン構造を有する、[2]に記載のリチウムイオン二次電池用正極材料。
[4]前記炭素質被膜の厚さが0.5nm以上10nm以下である、[2]または[3]に記載のリチウムイオン二次電池用正極材料。
[5]電極集電体と、該電極集電体上に形成された正極合剤層と、を備えたリチウムイオン二次電池用正極であって、前記正極合剤層は、[1]~[4]のいずれかに記載のリチウムイオン二次電池用正極材料を含有する、リチウムイオン二次電池用正極。
[6]正極、負極および非水電解質を有するリチウムイオン二次電池であって、正極として、[5]に記載のリチウムイオン二次電池用正極を備えた、リチウムイオン二次電池。
The present invention has the following aspects.
[1] In the Mössbauer spectrum obtained by Mössbauer spectroscopy, the intensity of the peak on the high-energy side of the quadrupolar splitting of iron ions is greater than the intensity of the peak on the low-energy side of the quadrupolar splitting of iron ions, lithium Cathode material for ion secondary batteries.
[2] The average particle diameter measured with a laser diffraction particle size distribution analyzer, comprising primary particles having a carbonaceous coating formed on the surface of the electrode active material particles and aggregated particles in which a plurality of the primary particles are aggregated. is 0.3 μm or more and 5.0 μm or less, the positive electrode material for a lithium ion secondary battery according to [1].
[3] The positive electrode material for a lithium ion secondary battery according to [2], wherein the primary particles have an olivine structure with an average particle size of 50 nm or more and 500 nm or less.
[4] The positive electrode material for a lithium ion secondary battery according to [2] or [3], wherein the carbonaceous film has a thickness of 0.5 nm or more and 10 nm or less.
[5] A positive electrode for a lithium ion secondary battery comprising an electrode current collector and a positive electrode mixture layer formed on the electrode current collector, wherein the positive electrode mixture layer comprises [1] to A positive electrode for lithium ion secondary batteries, containing the positive electrode material for lithium ion secondary batteries according to any one of [4].
[6] A lithium ion secondary battery having a positive electrode, a negative electrode and a non-aqueous electrolyte, comprising the positive electrode for a lithium ion secondary battery according to [5] as the positive electrode.

本発明のリチウムイオン二次電池用正極材料によれば、サイクル特性に優れるリチウムイオン二次電池を得ることができるリチウムイオン二次電池用正極材料およびリチウムイオン二次電池用正極、並びに、このリチウムイオン二次電池用正極を備えたリチウムイオン二次電池を提供することができる。 According to the positive electrode material for a lithium ion secondary battery of the present invention, a positive electrode material for a lithium ion secondary battery and a positive electrode for a lithium ion secondary battery that can obtain a lithium ion secondary battery having excellent cycle characteristics, and the lithium A lithium ion secondary battery having a positive electrode for an ion secondary battery can be provided.

メスバウアースペクトルにおいて、スペクトルが2本に分裂している状態を示す図である。FIG. 2 is a diagram showing a state in which a Mössbauer spectrum is split into two. 実施例1の正極材料のメスバウアースペクトルを示す図である。1 is a diagram showing a Mössbauer spectrum of the positive electrode material of Example 1. FIG. 比較例1の正極材料のメスバウアースペクトルを示す図である。3 is a diagram showing the Mossbauer spectrum of the positive electrode material of Comparative Example 1. FIG.

本発明のリチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池の実施の形態について説明する。
なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
Embodiments of the positive electrode material for lithium ion secondary batteries, the positive electrode for lithium ion secondary batteries, and the lithium ion secondary battery of the present invention will be described.
It should be noted that the present embodiment is specifically described for better understanding of the gist of the invention, and does not limit the invention unless otherwise specified.

[リチウムイオン二次電池用正極材料]
本実施形態のリチウムイオン二次電池用正極材料は、メスバウアー分光法により得られるメスバウアースペクトルにおいて、鉄イオンの四極子分裂の高エネルギー側のピークの強度が、鉄イオンの四極子分裂の低エネルギー側のピークの強度よりも大きい。
[Positive material for lithium-ion secondary batteries]
In the positive electrode material for a lithium ion secondary battery of the present embodiment, in the Mössbauer spectrum obtained by Mössbauer spectroscopy, the intensity of the peak on the high energy side of the quadrupolar splitting of iron ions is low. greater than the intensity of the peak on the energy side.

本実施形態のリチウムイオン二次電池用正極材料は、メスバウアー分光法により得られるメスバウアースペクトルにおいて、鉄イオンの四極子分裂の低エネルギー側のピークの強度(以下、「ピーク強度A」ということもある。)に対する、鉄イオンの四極子分裂の高エネルギー側のピークの強度(以下、「ピーク強度B」ということもある。)の比(ピーク強度B/ピーク強度A)が、1.02以上であることが好ましく、1.04以上であることがより好ましい。前記の比(ピーク強度B/ピーク強度A)の上限値は、1.1以下であってもよく、1.08以下であってもよい。
前記の比(ピーク強度B/ピーク強度A)が、1/02以上であると、充放電時の容量の低下が抑えられる。
The positive electrode material for a lithium ion secondary battery of the present embodiment has the intensity of the peak on the low energy side of quadrupolar splitting of iron ions in the Mössbauer spectrum obtained by Mössbauer spectroscopy (hereinafter referred to as "peak intensity A" The ratio (peak intensity B/peak intensity A) of the intensity of the peak on the high energy side of quadrupole splitting of iron ions (hereinafter sometimes referred to as “peak intensity B”) is 1.02 It is preferably 1.04 or more, more preferably 1.04 or more. The upper limit of the ratio (peak intensity B/peak intensity A) may be 1.1 or less, or 1.08 or less.
When the ratio (peak intensity B/peak intensity A) is 1/02 or more, a decrease in capacity during charging and discharging is suppressed.

メスバウアー分光分析は、固体中の放射性同位元素(線源)として組み込まれたメスバウアー核(57Co→57Feの壊変過程で励起基準にある57Fe)から放出されるγ線が、もう1つの固体(試料)中での基底状態にある同種のメスバウアー核によって反跳せずに共鳴吸収されるときに、その吸収量あるいは吸収後に放出される散乱量のエネルギー依存性(メスバウアースペクトル)を調べることにより行われる。 Mössbauer spectroscopy analyzes that γ-rays emitted from Mössbauer nuclei ( 57 Fe, which is the excitation standard in the decay process of 57 Co→ 57 Fe) incorporated as radioactive isotopes (radiation sources) in solids are Energy dependence of the amount of absorption or the amount of scattering emitted after absorption when resonance is absorbed without recoil by the same kind of Mössbauer nuclei in the ground state in two solids (samples) (Mössbauer spectrum) This is done by examining

本実施形態では、このメスバウアー分光分析により得られたスペクトルがローレンツ型の理論線型式で近似できるものとし、成分毎のピーク半値幅は全て等しく、対称位置にあるピーク高さはそれぞれで等しく、スペクトルが理論線型の足し合わせであるとの仮定の元、カーブフィッティングを行い、ピーク位置を定め、各成分の面積強度を求める。理論線型式には下記の式(1)に示す式を用いる。 In the present embodiment, the spectrum obtained by this Mössbauer spectroscopic analysis can be approximated by a Lorentz-type theoretical linear expression, the peak half-widths for each component are all equal, the peak heights at symmetrical positions are equal, Under the assumption that the spectrum is the sum of the theoretical linear shapes, curve fitting is performed to determine the peak position and obtain the area intensity of each component. The formula shown in the following formula (1) is used as the theoretical linear formula.

Figure 2022157172000001
Figure 2022157172000001

上記の式(1)において、f(E)はドップラー速度Eにおけるカウント、Eはドップラー速度(エネルギーに1次で比例)、Bはベースラインのカウント、Iはi番目のピークの吸収強度、Γはi番目のピークの半値幅、x0iはi番目のピーク中心、δは異性体シフト、Δは四極分裂、Hは内部磁場を示す。
また、最小二乗法にて残差の二乗和が最小となるときの各成分の相対面積比をスペクトルの面積強度とする。
In the above equation (1), f(E) is the count at the Doppler velocity E, E is the Doppler velocity (linearly proportional to the energy), B is the baseline count, I i is the absorption intensity of the i-th peak, Γ i is the half width of the i-th peak, x 0i is the i-th peak center, δ is the isomer shift, Δ is the quadrupole splitting, and H is the internal magnetic field.
Also, the area intensity of the spectrum is defined as the relative area ratio of each component when the sum of squares of the residuals is minimized by the method of least squares.

本実施形態では、メスバウアー分光法により得られるスペクトルにおいて、そのFeが常磁性(内部磁場H=0)である場合は2本に分裂したピークとして得られ、そのFeが強磁性もしくは反強磁性(内部磁場H≠0)である場合は6本に分裂したピークとして得られ、2本もしくは6本以外のピークとしては観測されない。 In the present embodiment, in the spectrum obtained by Mössbauer spectroscopy, when the Fe is paramagnetic (internal magnetic field H = 0), it is obtained as a peak split into two, and the Fe is ferromagnetic or antiferromagnetic In the case of (internal magnetic field H≠0), six peaks are obtained, and no peaks other than two or six are observed.

なお、メスバウアースペクトルにおいて、スペクトルが2本に分裂しているとは、図1に示すような状態のことである。 In addition, in the Mössbauer spectrum, the spectrum being split into two means the state as shown in FIG.

また、メスバウアースペクトルにおける四極分裂値とは、2本に分裂したピーク間隔である。一般的には、構造的に等方的でも電気陰性度の異なる配位子が配位している場合、構造的に配置が歪んでいる場合、および、これらの混合の場合に2本に分裂すると考えられている。 Moreover, the quadrupole splitting value in the Mössbauer spectrum is the peak interval split into two. In general, when structurally isotropic ligands with different electronegativities are coordinated, when the arrangement is structurally distorted, or when these are mixed, it splits into two. It is believed that

本実施形態のリチウムイオン二次電池用正極材料は、電極活物質粒子の表面に炭素質被膜が形成された一次粒子と、その一次粒子が複数個集合した凝集粒子(二次粒子)と、を含むことが好ましい。 The positive electrode material for a lithium ion secondary battery of the present embodiment includes primary particles in which a carbonaceous film is formed on the surface of an electrode active material particle, and aggregated particles (secondary particles) in which a plurality of the primary particles are aggregated. preferably included.

本実施形態のリチウムイオン二次電池用正極材料では、レーザー式回折粒度分布測定装置で測定された平均粒子径が0.3μm以上5.0μm以下であることが好ましく、0.4μm以上4.0μm以下であることがより好ましく、0.45μm以上3.5μm以下であることがさらに好ましい。前記平均粒子径が前記下限値以上であると、リチウムイオン二次電池用正極材料ペーストをアルミニウム集電体に塗工、乾燥した正極合材層の構造を均一化することができ、充放電反応に伴う局所的な過電圧が抑制され、金属溶出量を低減することができる。前記平均粒子径が前記上限値以下であると、正極材料を密に詰め込むことが可能となり、正極の単位体積当たりのエネルギー密度が向上する。
なお、ここでいう平均粒子径とは、電極活物質粒子の表面に炭素質被膜が形成された一次粒子、およびその一次粒子が複数個集合した凝集粒子の平均粒子径のことである。
In the positive electrode material for a lithium ion secondary battery of the present embodiment, the average particle size measured with a laser diffraction particle size distribution analyzer is preferably 0.3 μm or more and 5.0 μm or less, and more preferably 0.4 μm or more and 4.0 μm. It is more preferably 0.45 μm or more and 3.5 μm or less. When the average particle size is at least the lower limit, the positive electrode material paste for a lithium ion secondary battery can be applied to an aluminum current collector, and the structure of the dried positive electrode mixture layer can be made uniform, and the charge and discharge reaction can be achieved. The local overvoltage associated with this can be suppressed, and the metal elution amount can be reduced. When the average particle diameter is equal to or less than the upper limit, the positive electrode material can be densely packed, and the energy density per unit volume of the positive electrode is improved.
The average particle size here means the average particle size of the primary particles in which the carbonaceous film is formed on the surface of the electrode active material particles, and the aggregated particles in which a plurality of the primary particles are aggregated.

一次粒子の平均粒子径は走査型電子顕微鏡(SEM)で観察した粒子を任意に100個選択し、その一次粒子の平均した粒子径から算出する。 The average particle size of the primary particles is calculated from the average particle size of the primary particles after arbitrarily selecting 100 particles observed with a scanning electron microscope (SEM).

上記一次粒子は、平均粒子径が50nm以上500nm以下のオリビン構造を有することが好ましい。すなわち、上記一次粒子を構成する電極活物質粒子はオリビン構造を有し、上記一次粒子は、平均粒子径が50nm以上500nm以下であることが好ましい。
一次粒子の平均粒子径は、60nm以上400nm以下であることがより好ましく、80nm以上250nm以下であることがさらに好ましい。
ここで、炭素質被膜によって被覆されたオリビン構造を有する電極活物質粒子を含む一次粒子の平均一次粒子径を上記の範囲とした理由は、次の通りである。平均一次粒子径が50nm未満では、一次粒子の比表面積が増えることで必要になる炭素の質量が増加し、充放電容量が低減する。さらに、炭素被覆が困難となり、充分な被覆率の一次粒子を得ることができず、特に低温や高速充放電において良好な質量エネルギー密度が得られない。一方、平均一次粒子径が500nmを超えると、一次粒子内でのリチウムイオンの移動または電子の移動に時間がかかり、よって、内部抵抗が増加し、出力特性が悪化するので好ましくない。
The primary particles preferably have an olivine structure with an average particle diameter of 50 nm or more and 500 nm or less. That is, it is preferable that the electrode active material particles that constitute the primary particles have an olivine structure, and that the primary particles have an average particle diameter of 50 nm or more and 500 nm or less.
The average particle size of the primary particles is more preferably 60 nm or more and 400 nm or less, and further preferably 80 nm or more and 250 nm or less.
Here, the reason why the average primary particle size of the primary particles containing the electrode active material particles having an olivine structure coated with the carbonaceous film is set in the above range is as follows. When the average primary particle size is less than 50 nm, the mass of carbon required increases due to the increase in the specific surface area of the primary particles, and the charge/discharge capacity decreases. Furthermore, carbon coating becomes difficult, primary particles with a sufficient coating rate cannot be obtained, and a good mass energy density cannot be obtained particularly at low temperatures or at high speed charging and discharging. On the other hand, if the average primary particle size exceeds 500 nm, it takes a long time to move lithium ions or electrons in the primary particles, thereby increasing the internal resistance and deteriorating the output characteristics.

上記二次粒子の形状は特に限定されないが、球状、特に真球状の粒子からなる正極材料を生成し易いことから、その形状も球状であることが好ましい。
ここで、球状が好ましい理由は、次の通りである。炭素質被膜で被覆されている、二次粒子と、結着剤と、溶媒とを混合して、リチウムイオン二次電池用正極材料ペーストを調製する際の溶媒量を低減させることができる。さらに、このリチウムイオン二次電池用正極材料ペーストの電極集電体への塗工も容易となる。また、形状が球状であれば、二次粒子の表面積が最小となり、ひいては、添加する結着剤の混合量を最小限にすることができ、得られる正極の内部抵抗を小さくすることができる。
さらに、二次粒子の形状を球状、特に真球状とすることで最密充填し易くなる。これにより、単位体積当たりのリチウムイオン二次電池用正極材料の充填量が多くなり、その結果、電極密度を高くすることができ、リチウムイオン二次電池の高容量化を図ることができるので好ましい。
Although the shape of the secondary particles is not particularly limited, it is preferable that the secondary particles have a spherical shape because it facilitates production of a positive electrode material composed of spherical particles, particularly spherical particles.
Here, the reason why a spherical shape is preferable is as follows. The secondary particles coated with the carbonaceous film, the binder, and the solvent can be mixed to reduce the amount of the solvent when preparing the positive electrode material paste for lithium ion secondary batteries. Furthermore, it becomes easy to apply the positive electrode material paste for a lithium ion secondary battery to an electrode current collector. Moreover, if the shape is spherical, the surface area of the secondary particles is minimized, and the amount of the binder to be added can be minimized, and the internal resistance of the resulting positive electrode can be reduced.
Furthermore, by making the shape of the secondary particles spherical, particularly spherical, the closest packing is facilitated. As a result, the filling amount of the positive electrode material for lithium ion secondary batteries per unit volume increases, and as a result, the electrode density can be increased, and the capacity of the lithium ion secondary battery can be increased, which is preferable. .

上記一次粒子における炭素質被膜の厚みは、0.5nm以上かつ10nm以下であることが好ましく、炭素質被膜の厚みは、0.5nm以上かつ5.5nm以下であることがより好ましい。
炭素質被膜の厚みを上記の範囲とした理由は、次の通りである。炭素質被膜の厚みが0.5nm未満であると、炭素質被膜の厚みが薄すぎるために所望の抵抗値を有する膜を形成することができなくなる。その結果、導電性が低下し、正極材料としての導電性を確保することができなくなる。一方、炭素質被膜の厚みが10nmを超えると、電池活性、例えば、正極材料の単位質量当たりの電池容量が低下する。
The thickness of the carbonaceous coating in the primary particles is preferably 0.5 nm or more and 10 nm or less, and more preferably 0.5 nm or more and 5.5 nm or less.
The reason for setting the thickness of the carbonaceous coating to the above range is as follows. If the thickness of the carbonaceous coating is less than 0.5 nm, the thickness of the carbonaceous coating is too thin to form a film having a desired resistance value. As a result, the conductivity is lowered, and the conductivity as a positive electrode material cannot be secured. On the other hand, when the thickness of the carbonaceous film exceeds 10 nm, the battery activity, for example, the battery capacity per unit mass of the positive electrode material decreases.

上記一次粒子における炭素質被膜の被覆率は、60%以上であることが好ましく、80%以上であることがより好ましい。炭素質被膜の被覆率が60%以上であることにより、炭素質被膜の被覆効果が充分に得られる。 The coverage of the carbonaceous film on the primary particles is preferably 60% or more, more preferably 80% or more. When the coverage of the carbonaceous film is 60% or more, a sufficient covering effect of the carbonaceous film can be obtained.

また、本実施形態のリチウムイオン二次電池用正極材料の比表面積に対する炭素担持量([炭素担持量]/[比表面積])は、0.5mg/m以上かつ2.0mg/m以下であることが好ましく、0.7mg/m以上かつ1.6mg/m以下であることがより好ましい。
ここで、本実施形態のリチウムイオン二次電池用正極材料における比表面積に対する炭素担持量を上記の範囲に限定した理由は、次の通りである。比表面積に対する炭素担持量が0.5mg/m未満では、リチウムイオン二次電池を形成した場合に高速充放電レートにおける放電容量が低くなり、充分な充放電レート性能を実現することが困難となる。一方、比表面積に対する炭素担持量が2.0mg/mを超えると、炭素量が多すぎて、一次粒子の単位質量当たりのリチウムイオン二次電池の電池容量が必要以上に低下する。
In addition, the amount of carbon carried relative to the specific surface area of the positive electrode material for a lithium ion secondary battery of the present embodiment ([amount of carbon carried]/[specific surface area]) is 0.5 mg/m 2 or more and 2.0 mg/m 2 or less. and more preferably 0.7 mg/m 2 or more and 1.6 mg/m 2 or less.
Here, the reason why the amount of carbon supported relative to the specific surface area in the positive electrode material for a lithium ion secondary battery of the present embodiment is limited to the above range is as follows. If the amount of carbon supported relative to the specific surface area is less than 0.5 mg/m 2 , the discharge capacity at a high charge/discharge rate becomes low when a lithium ion secondary battery is formed, making it difficult to achieve sufficient charge/discharge rate performance. Become. On the other hand, when the amount of carbon carried relative to the specific surface area exceeds 2.0 mg/m 2 , the amount of carbon is too large, and the battery capacity of the lithium ion secondary battery per unit mass of primary particles is lowered more than necessary.

本実施形態のリチウムイオン二次電池用正極材料の比表面積は、5.0m/g以上かつ20m/g以下であることが好ましく、5.5m/g以上かつ18m/g以下であることがより好ましく、6.0m/g以上かつ16m/g以下であることがさらに好ましい。
ここで、本実施形態のリチウムイオン二次電池用正極材料の比表面積を上記の範囲に限定した理由は、次の通りである。比表面積が5.0m/g未満では、結晶内でのリチウムイオンの移動または電子の移動に時間がかかり、よって、内部抵抗が増加し、出力特性が悪化するので好ましくない。一方、比表面積が20m/gを超えると、炭素質電極活物質複合粒子の比表面積が増えることで必要になる炭素の質量が増加し、充放電容量が低減する。さらに、炭素被覆が困難となり、充分な被覆率の一次粒子を得ることができず、特に低温や高速充放電において良好な質量エネルギー密度が得られないため好ましくない。
The specific surface area of the positive electrode material for a lithium ion secondary battery of the present embodiment is preferably 5.0 m 2 /g or more and 20 m 2 /g or less, and 5.5 m 2 /g or more and 18 m 2 /g or less. more preferably 6.0 m 2 /g or more and 16 m 2 /g or less.
Here, the reason why the specific surface area of the positive electrode material for lithium ion secondary batteries of the present embodiment is limited to the above range is as follows. If the specific surface area is less than 5.0 m 2 /g, it takes a long time for lithium ions or electrons to move within the crystal, which increases the internal resistance and deteriorates the output characteristics. On the other hand, when the specific surface area exceeds 20 m 2 /g, the mass of carbon required increases due to the increase in the specific surface area of the carbonaceous electrode active material composite particles, and the charge/discharge capacity decreases. Furthermore, carbon coating becomes difficult, primary particles with a sufficient coverage cannot be obtained, and in particular, a good mass energy density cannot be obtained at low temperatures or at high-speed charging and discharging, which is not preferable.

「電極活物質粒子」
オリビン構造を有する電極活物質粒子は、特に限定されないが、例えば、Li拡散に好適な結晶構造を有するLiFe1-y-zPO(但し、AはMn、CoおよびNiからなる群から選択される少なくとも1種、MはMg、Ca、Co、Sr、Ba、Ti、Zn、V、B、Al、Ga、In、Si、Geおよび希土類元素からなる群から選択される少なくとも1種、0.85≦x≦1.1、0≦y≦0.85、0≦z≦0.2)からなることが好ましい。
"Electrode active material particles"
The electrode active material particles having an olivine structure are not particularly limited. M is selected from the group consisting of Mg, Ca, Co, Sr, Ba, Ti, Zn, V, B, Al, Ga, In, Si, Ge and rare earth elements It is preferable to consist of at least one type, 0.85≤x≤1.1, 0≤y≤0.85, 0≤z≤0.2).

LiFe1-y-zPOにおいて、xが、0.85≦x≦1.1を満たすこととした理由は、次の通りである。xが0.85未満であると、負極にリチウムイオンを含まない活物質を用いた場合、電池内のリチウムイオン量が少なくなり、電池容量が低下するので好ましくない。一方、xが1.1を超えると、オリビン構造を保つことができず結晶安定性が低下するので好ましくない。 The reason why x satisfies 0.85≦x≦1.1 in Li x Fe 1-yz A y M z PO 4 is as follows. If x is less than 0.85, the amount of lithium ions in the battery will decrease when an active material containing no lithium ions is used for the negative electrode, resulting in a decrease in battery capacity. On the other hand, if x exceeds 1.1, the olivine structure cannot be maintained and the crystal stability is lowered, which is not preferable.

LiFe1-y-zPOにおいて、yが、0≦y≦0.85を満たすこととした理由は、次の通りである。yが0.85を超えると、Feの比率が小さくなり過ぎるため、結晶内のリチウムイオン拡散速度や電子伝導速度が低下し、入出力特性が低下するため好ましくない。 The reason why y in Li x Fe 1-yz A y M z PO 4 satisfies 0≦y≦0.85 is as follows. When y exceeds 0.85, the ratio of Fe becomes too small, which lowers the lithium ion diffusion speed and electron conduction speed in the crystal, and deteriorates the input/output characteristics, which is not preferable.

LiFe1-y-zPOにおいて、zが、0≦z≦0.2を満たすこととした理由は、次の通りである。zが0.2を超えると、電気化学的に不活性な金属比率が大きくなるので、正極材料の単位質量当たりの電池容量が低下するので好ましくない。 The reason why z satisfies 0≦z≦0.2 in Li x Fe 1-yz A y M z PO 4 is as follows. When z exceeds 0.2, the ratio of electrochemically inactive metals increases, which unfavorably lowers the battery capacity per unit mass of the positive electrode material.

本実施形態におけるLiFe1-y-zPOは、y=0かつz=0であるものが好ましい。すなわち、本実施形態のリチウムイオン二次電池用正極材料において、電極活物質粒子はLiFePOからなることが好ましい。
電極活物質粒子がLiFePOからなることにより、結晶内のリチウムイオン拡散速度や電子伝導速度が向上し、入出力特性が向上する。
Li x Fe 1-yz A y M z PO 4 in the present embodiment preferably has y=0 and z=0. That is, in the positive electrode material for a lithium ion secondary battery of this embodiment, the electrode active material particles are preferably made of LiFePO4 .
When the electrode active material particles are made of LiFePO 4 , the lithium ion diffusion speed and electron conduction speed in the crystal are improved, and the input/output characteristics are improved.

「炭素質被膜」
炭素質被膜は、原料となる有機化合物が炭化することにより得られる熱分解炭素質被膜である。炭素質被膜の原料となる炭素源は、炭素の純度が42.00%以上かつ60.00%以下の有機化合物由来であることが好ましい。
"Carbon coating"
A carbonaceous film is a pyrolytic carbonaceous film obtained by carbonizing an organic compound as a raw material. The carbon source that is the raw material for the carbonaceous film is preferably derived from an organic compound having a carbon purity of 42.00% or more and 60.00% or less.

本実施形態のリチウムイオン二次電池用正極材料における炭素質被膜の原料となる炭素源の「炭素の純度」の算出方法としては、複数種類の有機化合物を用いる場合、各有機化合物の配合量(質量%)と既知の炭素の純度(%)から、各有機化合物の配合量中の炭素量(質量%)を算出、合算し、その有機化合物の総配合量(質量%)と総炭素量(質量%)から、下記の式(2)に従って算出する方法が用いられる。
炭素の純度(%)=総炭素量(質量%)/総配合量(質量%)×100・・・(2)
As a method for calculating the "purity of carbon" of the carbon source that is the raw material of the carbonaceous film in the positive electrode material for lithium ion secondary batteries of the present embodiment, when using a plurality of types of organic compounds, the blending amount of each organic compound ( %) and the known carbon purity (%), the amount of carbon (% by mass) in the amount of each organic compound is calculated and summed, and the total amount of the organic compound (% by mass) and the total amount of carbon ( % by mass), a method of calculating according to the following formula (2) is used.
Purity of carbon (%) = total carbon content (% by mass)/total compounding amount (% by mass) x 100 (2)

本実施形態のリチウムイオン二次電池用正極材料によれば、メスバウアー分光法により得られるメスバウアースペクトルにおいて、鉄イオンの四極子分裂の高エネルギー側のピークの強度が、鉄イオンの四極子分裂の低エネルギー側のピークの強度よりも大きいため、サイクル特性に優れるリチウムイオン二次電池を得ることができる。 According to the positive electrode material for a lithium ion secondary battery of the present embodiment, in the Mössbauer spectrum obtained by Mössbauer spectroscopy, the intensity of the peak on the high energy side of the quadrupolar splitting of iron ions is the quadrupolar splitting of iron ions. , a lithium ion secondary battery with excellent cycle characteristics can be obtained.

[リチウムイオン二次電池用正極材料の製造方法]
本実施形態のリチウムイオン二次電池用正極材料の製造方法は、特に限定されないが、例えば、電極活物質粒子がLiFe1-y-zPOからなる場合、Li源、Fe源、A源、M源およびP源を、水を主成分とする溶媒と混合して得られた原料スラリーαを、100℃以上かつ300℃以下の範囲の温度に加熱することで、加圧下にて、LiFe1-y-zPO粒子を合成する工程と、炭素源を含む水溶媒中にLiFe1-y-zPO粒子を分散させてなる原料スラリーβを乾燥して、造粒した後、500℃以上かつ1000℃以下の範囲の温度に加熱することで、LiFe1-y-zPO粒子の表面を炭素質被膜によって被覆する工程と、を有する方法が挙げられる。
[Method for producing positive electrode material for lithium ion secondary battery]
The method for producing the positive electrode material for a lithium ion secondary battery of the present embodiment is not particularly limited. A raw material slurry α obtained by mixing an Fe source, an A source, an M source, and a P source with a solvent containing water as a main component is heated to a temperature in the range of 100° C. or higher and 300° C. or lower. synthesizing Li x Fe 1-yz A yM z PO 4 particles under reduced pressure; dispersing the Li x Fe 1- yz A yM z PO 4 particles in a water solvent containing a carbon source After drying and granulating the raw material slurry β, the surface of the Li x Fe 1-yz A y M z PO 4 particles is heated to a temperature in the range of 500° C. or higher and 1000° C. or lower. and coating with a carbonaceous coating.

本実施形態のリチウムイオン二次電池用正極材料が、メスバウアー分光法により得られるメスバウアースペクトルにおいて、鉄イオンの四極子分裂の高エネルギー側のピークの強度が、鉄イオンの四極子分裂の低エネルギー側のピークの強度よりも大きくなるように調整する方法としては、特に限定されないが、例えば、水熱合成において、核粒子となる前駆体粒子合成する第1工程と第1工程で得られた前駆体粒子を材料に用い、再度水熱合成を行い、粒成長を促進させることで目的の粒子を形成することができる。 In the Mössbauer spectrum obtained by the Mössbauer spectroscopy of the positive electrode material for a lithium ion secondary battery of the present embodiment, the intensity of the peak on the high energy side of the quadrupolar splitting of iron ions is lower than that of the quadrupolar splitting of iron ions. The method for adjusting the intensity of the peak on the energy side to be greater than the intensity is not particularly limited. The target particles can be formed by using the precursor particles as a material and performing hydrothermal synthesis again to promote grain growth.

LiFe1-y-zPO粒子の合成方法は特に限定されないが、例えば、Li源、Fe源、A(Mn、CoおよびNiからなる群から選択される少なくとも1種)源、M(Mg、Ca、Co、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Geおよび希土類元素からなる群から選択される少なくとも1種)源およびP源を、水を主成分とする溶媒に投入し、撹拌してLiFe1-y-zPOの前駆体を含む原料スラリーαを調製する。 Although the method for synthesizing the Li x Fe 1-yz A y M z PO 4 particles is not particularly limited, for example, Li source, Fe source, A (at least one selected from the group consisting of Mn, Co and Ni) source, M (at least one selected from the group consisting of Mg, Ca, Co, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge and rare earth elements) source and P source, water and stirred to prepare a raw material slurry α containing a precursor of Li x Fe 1-yz A y M z PO 4 .

これらLi源、Fe源、A源、M源およびP源を、これらのモル比(Li源:Fe源:A源:M源:P源)、すなわち、Li:Fe:A:M:Pのモル比が0.85~5:0.1~2:0~2:0~2:1~2となるように水を主成分とする溶媒に投入し、撹拌・混合して原料スラリーαを調製する。
これらLi源、Fe源、A源、M源およびP源は、均一に混合する点を考慮すると、Li源、Fe源、A源、M源およびP源をそれぞれ、一旦、水溶液の状態とした後、混合することが好ましい。
この原料スラリーαにおけるLi源、Fe源、A源、M源およびP源のモル濃度は、高純度であり、結晶性が高くかつ非常に微細なLiFe1-y-zPO粒子を得る必要があることから、0.1mol/L以上かつ3mol/L以下であることが好ましい。
These Li source, Fe source, A source, M source and P source are combined in their molar ratio (Li source: Fe source: A source: M source: P source), that is, Li: Fe: A: M: P It is added to a solvent containing water as a main component so that the molar ratio is 0.85-5:0.1-2:0-2:0-2:1-2, and stirred and mixed to form a raw material slurry α. Prepare.
Considering that these Li source, Fe source, A source, M source and P source are uniformly mixed, each of the Li source, Fe source, A source, M source and P source was once made into an aqueous solution. After that, it is preferable to mix.
The molar concentrations of the Li source, the Fe source, the A source, the M source and the P source in this raw material slurry α are highly pure, highly crystalline and extremely fine Li x Fe 1-yz A y M z . Since it is necessary to obtain PO4 particles, it is preferably 0.1 mol/L or more and 3 mol/L or less.

Li源としては、例えば、水酸化リチウム(LiOH)等の水酸化物、炭酸リチウム(LiCO)、塩化リチウム(LiCl)、硝酸リチウム(LiNO)、リン酸リチウム(LiPO)、リン酸水素二リチウム(LiHPO)、リン酸二水素リチウム(LiHPO)等のリチウム無機酸塩、酢酸リチウム(LiCHCOO)、蓚酸リチウム((COOLi))等のリチウム有機酸塩、および、これらの水和物が挙げられる。Li源としては、これらの群から選択される少なくとも1種が好適に用いられる。
なお、リン酸リチウム(LiPO)は、Li源およびP源としても用いることができる。
Li sources include, for example, hydroxides such as lithium hydroxide (LiOH), lithium carbonate (Li 2 CO 3 ), lithium chloride (LiCl), lithium nitrate (LiNO 3 ), lithium phosphate (Li 3 PO 4 ). , lithium inorganic acid salts such as dilithium hydrogen phosphate (Li 2 HPO 4 ), lithium dihydrogen phosphate (LiH 2 PO 4 ), lithium acetate (LiCH 3 COO), lithium oxalate ((COOLi) 2 ), etc. Examples include organic acid salts and hydrates thereof. At least one selected from these groups is preferably used as the Li source.
Lithium phosphate (Li 3 PO 4 ) can also be used as a Li source and a P source.

Fe源としては、例えば、2価Fe化合物としては塩化鉄(II)(FeCl)、硫酸鉄(II)(FeSO)、酢酸鉄(II)(Fe(CHCOO))等の鉄化合物またはその水和物等が用いられ、3価Fe化合物としてはリン酸鉄リチウム(III)(FePO)、硝酸鉄(III)(Fe(NO)、塩化鉄(III)(FeCl)、クエン酸鉄(III)(FeC)等の鉄化合物またはその水和物等が用いられる。2価Fe化合物のみFe源としてもよいし、3価Fe化合物のみをFe源としてもよいし、2価Fe化合物と3価Fe化合物を共にFe源としてもよい。2価Fe化合物と3価Fe化合物を共にFe源とすれば、結晶内に3価のFeを固溶させやすくなるので好ましい。 Examples of the Fe source include iron such as iron (II) chloride (FeCl 2 ), iron (II) sulfate (FeSO 4 ), and iron (II) acetate (Fe(CH 3 COO) 2 ) as divalent Fe compounds. A compound or a hydrate thereof is used, and trivalent Fe compounds include lithium iron phosphate (III) (FePO 4 ), iron nitrate (III) (Fe(NO 3 ) 3 ), iron chloride (III) (FeCl 3 ), an iron compound such as iron (III) citrate (FeC 6 H 5 O 7 ), or a hydrate thereof. Only the divalent Fe compound may be used as the Fe source, only the trivalent Fe compound may be used as the Fe source, or both the divalent Fe compound and the trivalent Fe compound may be used as the Fe source. If both a divalent Fe compound and a trivalent Fe compound are used as Fe sources, trivalent Fe can easily be dissolved in the crystal, which is preferable.

Mn源としては、Mn塩が好ましく、例えば、塩化マンガン(II)(MnCl)、硫酸マンガン(II)(MnSO)、硝酸マンガン(II)(Mn(NO)、酢酸マンガン(II)(Mn(CHCOO))、および、これらの水和物が挙げられる。Mn源としては、これらの群から選択される少なくとも1種が好適に用いられる。 Mn sources are preferably Mn salts such as manganese (II) chloride (MnCl 2 ), manganese (II) sulfate (MnSO 4 ), manganese (II) nitrate (Mn(NO 3 ) 2 ), manganese (II) acetate )(Mn(CH 3 COO) 2 ) and hydrates thereof. At least one selected from these groups is preferably used as the Mn source.

Co源としては、Co塩が好ましく、例えば、塩化コバルト(II)(CoCl)、硫酸コバルト(II)(CoSO)、硝酸コバルト(II)(Co(NO)、酢酸コバルト(II)(Co(CHCOO))、および、これらの水和物が挙げられる。Co源としては、これらの群から選択される少なくとも1種が好適に用いられる。 Co sources are preferably Co salts such as cobalt (II) chloride (CoCl 2 ), cobalt (II) sulfate (CoSO 4 ), cobalt (II) nitrate (Co(NO 3 ) 2 ), cobalt (II) acetate )(Co(CH 3 COO) 2 ) and hydrates thereof. At least one selected from these groups is preferably used as the Co source.

Ni源としては、Ni塩が好ましく、例えば、塩化ニッケル(II)(NiCl)、硫酸ニッケル(II)(NiSO)、硝酸ニッケル(II)(Ni(NO)、酢酸ニッケル(II)(Ni(CHCOO))および、これらの水和物が挙げられる。Ni源としては、これらの群から選択される少なくとも1種が好適に用いられる。 Ni sources are preferably Ni salts such as nickel (II) chloride (NiCl 2 ), nickel (II) sulfate (NiSO 4 ), nickel (II) nitrate (Ni(NO 3 ) 2 ), nickel (II) acetate )(Ni(CH 3 COO) 2 ) and hydrates thereof. At least one selected from these groups is preferably used as the Ni source.

Mg源としては、Mg塩が好ましく、例えば、塩化マグネシウム(II)(MgCl)、硫酸マグネシウム(II)(MgSO)、硝酸マグネシウム(II)(Mg(NO)、酢酸マグネシウム(II)(Mg(CHCOO))、および、これらの水和物が挙げられる。Mg源としては、これらの群から選択される少なくとも1種が好適に用いられる。 Mg sources are preferably Mg salts such as magnesium (II) chloride (MgCl 2 ), magnesium (II) sulfate (MgSO 4 ), magnesium (II) nitrate (Mg(NO 3 ) 2 ), magnesium (II) acetate ) (Mg(CH 3 COO) 2 ) and hydrates thereof. At least one selected from these groups is preferably used as the Mg source.

Ca源としては、Ca塩が好ましく、例えば、塩化カルシウム(II)(CaCl)、硫酸カルシウム(II)(CaSO)、硝酸カルシウム(II)(Ca(NO)、酢酸カルシウム(II)(Ca(CHCOO))、および、これらの水和物が挙げられ、これらからなる群から選択される少なくとも1種が好適に用いられる。 Ca sources are preferably Ca salts such as calcium chloride (II) (CaCl 2 ), calcium sulfate (II) (CaSO 4 ), calcium nitrate (II) (Ca(NO 3 ) 2 ), calcium acetate (II) ) (Ca(CH 3 COO) 2 ) and hydrates thereof, and at least one selected from the group consisting of these is preferably used.

Co源としては、Co塩が好ましく、例えば、塩化コバルト(II)(CoCl)、硫酸コバルト(II)(CoSO)、硝酸コバルト(II)(Co(NO)、酢酸コバルト(II)(Co(CHCOO))、および、これらの水和物が挙げられる。Co源としては、これらの群から選択される少なくとも1種が好適に用いられる。 Co sources are preferably Co salts such as cobalt (II) chloride (CoCl 2 ), cobalt (II) sulfate (CoSO 4 ), cobalt (II) nitrate (Co(NO 3 ) 2 ), cobalt (II) acetate )(Co(CH 3 COO) 2 ) and hydrates thereof. At least one selected from these groups is preferably used as the Co source.

Sr源としては、Sr塩が好ましく、例えば、炭酸ストロンチウム(SrCo)、硫酸ストロンチウム(SrSO)、水酸化ストロンチウム(Sr(OH))が挙げられ、これらからなる群から選択される少なくとも1種が好適に用いられる。 Sr sources are preferably Sr salts such as strontium carbonate (SrCo 3 ), strontium sulfate (SrSO 4 ), strontium hydroxide (Sr(OH) 2 ), and at least one selected from the group consisting of these. Seeds are preferably used.

Ba源としては、Ba塩が好ましく、例えば、塩化バリウム(II)(BaCl)、硫酸バリウム(II)(BaSO)、硝酸バリウム(II)(Ba(NO)、酢酸バリウム(II)(Ba(CHCOO))、および、これらの水和物が挙げられ、これらからなる群から選択される少なくとも1種が好適に用いられる。 As a Ba source, Ba salts are preferred, for example, barium (II) chloride (BaCl 2 ), barium (II) sulfate (BaSO 4 ), barium (II) nitrate (Ba(NO 3 ) 2 ), barium (II) acetate )(Ba(CH 3 COO) 2 ) and hydrates thereof, and at least one selected from the group consisting of these is preferably used.

Ti源としては、Ti塩が好ましく、例えば、塩化チタン(TiCl、TiCl、TiCl)、酸化チタン(TiO)、および、これらの水和物が挙げられ、これらからなる群から選択される少なくとも1種が好適に用いられる。 Ti sources are preferably Ti salts, such as titanium chloride (TiCl 4 , TiCl 3 , TiCl 2 ), titanium oxide (TiO), and hydrates thereof, which are selected from the group consisting of these. At least one is preferably used.

Zn源としては、Zn塩が好ましく、例えば、塩化亜鉛(II)(ZnCl)、硫酸亜鉛(II)(ZnSO)、硝酸亜鉛(II)(Zn(NO)、酢酸亜鉛(II)(Zn(CHCOO))、および、これらの水和物が挙げられる。Zn源としては、これらの群から選択される少なくとも1種が好適に用いられる。 As a Zn source, Zn salts are preferred, such as zinc (II) chloride (ZnCl 2 ), zinc (II) sulfate (ZnSO 4 ), zinc (II) nitrate (Zn(NO 3 ) 2 ), zinc (II) acetate )(Zn(CH 3 COO) 2 ) and hydrates thereof. At least one selected from these groups is preferably used as the Zn source.

B源としては、例えば、塩化物、硫酸化物、硝酸化物、酢酸化物、水酸化物、酸化物等のホウ素化合物が挙げられ、これらからなる群から選択される少なくとも1種が好適に用いられる。 Examples of the B source include boron compounds such as chlorides, sulfates, nitrates, acetates, hydroxides and oxides, and at least one selected from the group consisting of these is preferably used.

Al源としては、例えば、塩化物、硫酸化物、硝酸化物、酢酸化物、水酸化物等のアルミニウム化合物が挙げられ、これらからなる群から選択される少なくとも1種が好適に用いられる。 Examples of the Al source include aluminum compounds such as chlorides, sulfates, nitrates, acetates, and hydroxides, and at least one selected from the group consisting of these is preferably used.

Ga源としては、例えば、塩化物、硫酸化物、硝酸化物、酢酸化物、水酸化物等のガリウム化合物が挙げられ、これらからなる群から選択される少なくとも1種が好適に用いられる。 Examples of Ga sources include gallium compounds such as chlorides, sulfates, nitrates, acetates and hydroxides, and at least one selected from the group consisting of these is preferably used.

In源としては、例えば、塩化物、硫酸化物、硝酸化物、酢酸化物、水酸化物等のインジウム化合物が挙げられ、これらからなる群から選択される少なくとも1種が好適に用いられる。 Examples of the In source include indium compounds such as chlorides, sulfates, nitrates, acetates and hydroxides, and at least one selected from the group consisting of these is preferably used.

Si源としては、例えば、ケイ酸ナトリウム、ケイ酸カリウム、四塩化珪素(SiCl)、ケイ酸塩、有機ケイ素化合物等が挙げられ、これらからなる群から選択される少なくとも1種が好適に用いられる。 Examples of Si sources include sodium silicate, potassium silicate, silicon tetrachloride (SiCl 4 ), silicates, organosilicon compounds, etc. At least one selected from the group consisting of these is preferably used. be done.

Ge源としては、例えば、塩化物、硫酸化物、硝酸化物、酢酸化物、水酸化物、酸化物等のゲルマニウム化合物が挙げられ、これらからなる群から選択される少なくとも1種が好適に用いられる。 Ge sources include, for example, germanium compounds such as chlorides, sulfates, nitrates, acetates, hydroxides and oxides, and at least one selected from the group consisting of these is preferably used.

希土類元素源としては、例えば、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuの塩化物、硫酸化物、硝酸化物、酢酸化物、水酸化物、酸化物等が挙げられ、これらからなる群から選択される少なくとも1種が好適に用いられる。 Examples of rare earth element sources include chlorides, sulfates, nitrates of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. , acetates, hydroxides, oxides, etc., and at least one selected from the group consisting of these is preferably used.

P源としては、例えば、オルトリン酸(HPO)、メタリン酸(HPO)等のリン酸、リン酸二水素アンモニウム(NHPO)、リン酸水素二アンモニウム((NHHPO)、リン酸アンモニウム((NHPO)、リン酸リチウム(LiPO)、リン酸水素二リチウム(LiHPO)、リン酸二水素リチウム(LiHPO)等のリン酸塩、および、これらの水和物の中から選択される少なくとも1種が好適に用いられる。 Examples of P sources include phosphoric acids such as orthophosphoric acid (H 3 PO 4 ) and metaphosphoric acid (HPO 3 ), ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ), ammonium phosphate ((NH 4 ) 3 PO 4 ), lithium phosphate (Li 3 PO 4 ), dilithium hydrogen phosphate (Li 2 HPO 4 ), lithium dihydrogen phosphate (LiH 2 PO 4 ), etc., and at least one selected from these hydrates are preferably used.

水を主成分とする溶媒とは、水単独、あるいは、水を主成分とし、必要に応じてアルコール等の水性溶媒を含む水系溶媒、のいずれかである。
水性溶媒としては、Li源、Fe源、A源、M源およびP源を溶解させることのできる溶媒であれば、特に制限されない。例えば、メタノール、エタノール、1-プロパノール、2-プロパノール(イソプロピルアルコール:IPA)、ブタノール、ペンタノール、ヘキサノール、オクタノール、ジアセトンアルコール等のアルコール類、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ-ブチロラクトン等のエステル類、ジエチルエーテル、エチレングルコールモノメチルエーテル(メチルセロソルブ)、エチレングルコールモノエチルエーテル(エチルセロソルブ)、エチレングルコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、アセチルアセトン、シクロヘキサノン等のケトン類、ジメチルホルムアミド、N,N-ジメチルアセトアセトアミド、N-メチルピロリドン等のアミド類、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類等が挙げられる。これらの水性溶媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
The solvent containing water as the main component is either water alone or an aqueous solvent containing water as the main component and optionally containing an aqueous solvent such as alcohol.
The aqueous solvent is not particularly limited as long as it can dissolve the Li source, Fe source, A source, M source and P source. For example, alcohols such as methanol, ethanol, 1-propanol, 2-propanol (isopropyl alcohol: IPA), butanol, pentanol, hexanol, octanol, diacetone alcohol, ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether Esters such as acetate, propylene glycol monoethyl ether acetate, γ-butyrolactone, diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve), Ethers such as diethylene glycol monomethyl ether and diethylene glycol monoethyl ether, acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), acetylacetone, ketones such as cyclohexanone, dimethylformamide, N,N-dimethylacetoacetamide, N-methylpyrrolidone and amides such as ethylene glycol, diethylene glycol and propylene glycol. These aqueous solvents may be used singly or in combination of two or more.

次いで、この原料スラリーαを耐圧容器に入れ、100℃以上かつ300℃以下、好ましくは100℃以上かつ250℃以下の範囲の温度に加熱し、1時間以上かつ72時間以下、水熱処理を行い、LiFe1-y-zPO粒子を得る。
この場合、水熱処理時の温度および時間を調整することにより、LiFe1-y-zPO粒子の粒子径を所望の大きさに制御することが可能である。
Next, this raw material slurry α is placed in a pressure vessel, heated to a temperature in the range of 100° C. or higher and 300° C. or lower, preferably 100° C. or higher and 250° C. or lower, and hydrothermally treated for 1 hour or more and 72 hours or less, Li x Fe 1-yz A y M z PO 4 particles are obtained.
In this case, the particle size of the Li x Fe 1-yz A y M z PO 4 particles can be controlled to a desired size by adjusting the temperature and time during the hydrothermal treatment.

次いで、炭素源を含む水溶媒中に、LiFe1-y-zPO粒子を分散させて、原料スラリーβを調製する。
次いで、この原料スラリーβを、乾燥して、造粒した後、500℃以上かつ1000℃以下、好ましくは500℃以上かつ800℃以下の範囲の温度にて、1時間以上かつ100時間以下加熱し、LiFe1-y-zPO粒子の表面を炭素質被膜によって被覆し、本実施形態のリチウムイオン二次電池用正極材料を得る。ここで、500℃未満の温度で加熱した場合、炭素質被膜の炭化が不十分となり、導電性が著しく低下するので好ましくない。一方、1000℃を超える温度で加熱した場合、リチウムが一部揮発し、電池容量が低下するので好ましくない。
Next, the Li x Fe 1-yz A y M z PO 4 particles are dispersed in an aqueous solvent containing a carbon source to prepare a raw material slurry β.
Next, this raw material slurry β is dried and granulated, and then heated at a temperature in the range of 500° C. or higher and 1000° C. or lower, preferably 500° C. or higher and 800° C. or lower for 1 hour or longer and 100 hours or shorter. , Li x Fe 1-yz A y M z PO 4 particles are coated with a carbonaceous film to obtain a positive electrode material for a lithium ion secondary battery of the present embodiment. Here, heating at a temperature of less than 500° C. is not preferable because carbonization of the carbonaceous film is insufficient and the electrical conductivity is remarkably lowered. On the other hand, heating at a temperature exceeding 1000° C. is not preferable because some of the lithium volatilizes and the battery capacity decreases.

「炭素源」
炭素源としては、電極活物質粒子の表面に炭素質被膜を形成することができる有機化合物であれば特に限定されない。
有機化合物としては、水への溶解性もしくは水への分散性を有する化合物が好ましい。
例えば、サリチル酸、カテコール、ヒドロキノン、レゾルシノール、ピロガロール、フロログルシノール、ヘキサヒドロキシベンゼン、安息香酸、フタル酸、テレフタル酸、フェニルアラニン、水分散型フェノール樹脂等、スクロース、グルコース、ラクトース等の糖類、リンゴ酸、クエン酸などのカルボン酸、アリルアルコール、プロパルギルアルコール等の不飽和一価アルコール、アスコルビン酸、ポリビニルアルコール等が挙げられ、1種類または2種類以上を混合して炭素の純度を42.00%以上として使用することができる。
"carbon source"
The carbon source is not particularly limited as long as it is an organic compound capable of forming a carbonaceous film on the surface of the electrode active material particles.
As the organic compound, a compound having solubility in water or dispersibility in water is preferable.
For example, salicylic acid, catechol, hydroquinone, resorcinol, pyrogallol, phloroglucinol, hexahydroxybenzene, benzoic acid, phthalic acid, terephthalic acid, phenylalanine, water-dispersed phenol resin, sugars such as sucrose, glucose, lactose, malic acid, Carboxylic acids such as citric acid, unsaturated monohydric alcohols such as allyl alcohol and propargyl alcohol, ascorbic acid, polyvinyl alcohol, etc., may be mentioned, and one type or two or more types may be mixed to make the carbon purity 42.00% or more. can be used.

本実施形態のリチウムイオン二次電池用正極材料の製造方法において、炭素源の添加量(添加率)は、電極活物質粒子と炭素源の合計質量を100質量%とした場合に、0.5質量%以上かつ15質量%以下であることが好ましく、1質量%以上かつ10質量%以下がより好ましい。 In the method for producing a positive electrode material for a lithium ion secondary battery of the present embodiment, the amount (addition rate) of the carbon source added is 0.5 when the total mass of the electrode active material particles and the carbon source is 100% by mass. It is preferably 1% by mass or more and 15% by mass or less, more preferably 1% by mass or more and 10% by mass or less.

炭素源の添加量が0.5質量%未満であると、リチウムイオン二次電池用正極材料における混合安定性が低下するため好ましくない。一方、炭素源の添加量が15質量%を超えると、相対的に正極活物質の含有量が少なくなり、電池特性が低下するため好ましくない。 If the amount of the carbon source added is less than 0.5% by mass, the mixing stability in the positive electrode material for lithium ion secondary batteries is lowered, which is not preferable. On the other hand, when the amount of the carbon source added exceeds 15% by mass, the content of the positive electrode active material becomes relatively small, and the battery characteristics deteriorate, which is not preferable.

また、炭素源として、複数種類の有機化合物を用いる場合、その有機化合物の炭素の純度が42.00%以上かつ60.00%以下となるように、上述のように、各有機化合物の配合量を調整する。 In addition, when using a plurality of types of organic compounds as the carbon source, the blending amount of each organic compound is adjusted as described above so that the purity of carbon in the organic compound is 42.00% or more and 60.00% or less. to adjust.

[リチウムイオン二次電池用正極]
本実施形態のリチウムイオン二次電池用正極は、電極集電体と、その電極集電体上に形成された正極合剤層(正極)と、を備え、正極合剤層が、本実施形態のリチウムイオン二次電池用正極材料を含有するものである。
すなわち、本実施形態のリチウムイオン二次電池用正極は、本実施形態のリチウムイオン二次電池用正極材料を用いて、電極集電体の一主面に正極合剤層が形成されてなるものである。
[Positive electrode for lithium ion secondary battery]
The positive electrode for a lithium ion secondary battery of the present embodiment includes an electrode current collector and a positive electrode mixture layer (positive electrode) formed on the electrode current collector, and the positive electrode mixture layer is contains a positive electrode material for a lithium ion secondary battery.
That is, the positive electrode for a lithium ion secondary battery of the present embodiment is formed by forming a positive electrode mixture layer on one main surface of an electrode current collector using the positive electrode material for a lithium ion secondary battery of the present embodiment. is.

本実施形態のリチウムイオン二次電池用正極の製造方法は、本実施形態のリチウムイオン二次電池用正極材料を用いて、電極集電体の一主面に正極を形成できる方法であれば特に限定されない。本実施形態のリチウムイオン二次電池用正極の製造方法としては、例えば、以下の方法が挙げられる。
まず、本実施形態のリチウムイオン二次電池用正極材料と、結着剤と、導電助剤と、溶媒とを混合してなる、リチウムイオン二次電池用正極材料ペーストを調製する。
The method for producing the positive electrode for a lithium ion secondary battery of the present embodiment is particularly a method that can form a positive electrode on one main surface of an electrode current collector using the positive electrode material for a lithium ion secondary battery of the present embodiment. Not limited. Examples of the method for producing the positive electrode for a lithium ion secondary battery of the present embodiment include the following methods.
First, a positive electrode material paste for lithium ion secondary batteries is prepared by mixing the positive electrode material for lithium ion secondary batteries of the present embodiment, a binder, a conductive agent, and a solvent.

「結着剤」
結着剤、すなわちバインダー樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)樹脂、ポリフッ化ビニリデン(PVdF)樹脂、フッ素ゴム等が好適に用いられる。
"Binder"
As the binding agent, that is, binder resin, for example, polytetrafluoroethylene (PTFE) resin, polyvinylidene fluoride (PVdF) resin, fluororubber, and the like are preferably used.

リチウムイオン二次電池用正極材料ペーストにおける結着剤の含有率は、本実施形態に係るリチウムイオン二次電池用正極材料と結着剤と導電助剤の合計質量を100質量%とした場合に、1質量%以上かつ10質量%以下であることが好ましく、2質量%以上かつ6質量%以下であることがより好ましい。 The content of the binder in the positive electrode material paste for lithium ion secondary batteries is 100% by mass when the total mass of the positive electrode material for lithium ion secondary batteries, the binder, and the conductive aid according to the present embodiment is , preferably 1% by mass or more and 10% by mass or less, more preferably 2% by mass or more and 6% by mass or less.

「導電助剤」
導電助剤としては、特に限定されるものではないが、例えば、アセチレンブラック、ケッチェンブラック、ファーネスブラック、気相成長炭素繊維(VGCF)、カーボンナノチューブ等の繊維状炭素の群から選択される少なくとも1種が用いられる。
"Conductivity aid"
The conductive agent is not particularly limited, but at least selected from the group of fibrous carbon such as acetylene black, ketjen black, furnace black, vapor grown carbon fiber (VGCF), carbon nanotube, etc. One type is used.

リチウムイオン二次電池用正極材料ペーストにおける導電助剤の含有率は、本実施形態に係るリチウムイオン二次電池用正極材料と結着剤と導電助剤の合計質量を100質量%とした場合に、1質量%以上かつ15質量%以下であることが好ましく、3質量%以上かつ10質量%以下であることがより好ましい。 The content of the conductive agent in the positive electrode material paste for lithium ion secondary batteries is 100% by mass when the total mass of the positive electrode material for lithium ion secondary batteries, the binder, and the conductive agent according to the present embodiment is 100% by mass. , preferably 1% by mass or more and 15% by mass or less, more preferably 3% by mass or more and 10% by mass or less.

「溶媒」
本実施形態に係るリチウムイオン二次電池用正極材料を含むリチウムイオン二次電池用正極材料ペーストでは、電極集電体等の被塗布物に対して塗布し易くするために、溶媒を適宜添加してもよい。
電極形成用塗料または電極形成用ペーストに用いる溶媒としては、バインダー樹脂の性質に合わせて適宜選択すればよい。
溶媒としては、例えば、水、メタノール、エタノール、1-プロパノール、2-プロパノール(イソプロピルアルコール:IPA)、ブタノール、ペンタノール、ヘキサノール、オクタノール、ジアセトンアルコール等のアルコール類、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ-ブチロラクトン等のエステル類、ジエチルエーテル、エチレングルコールモノメチルエーテル(メチルセロソルブ)、エチレングルコールモノエチルエーテル(エチルセロソルブ)、エチレングルコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、アセチルアセトン、シクロヘキサノン等のケトン類、ジメチルホルムアミド、N,N-ジメチルアセトアセトアミド、N-メチルピロリドン等のアミド類、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類等を挙げることができる。これらは、1種のみを用いてもよく、2種以上を混合して用いてもよい。
"solvent"
In the positive electrode material paste for lithium ion secondary batteries containing the positive electrode material for lithium ion secondary batteries according to the present embodiment, a solvent is added as appropriate in order to facilitate coating on an object to be coated such as an electrode current collector. may
The solvent used in the electrode-forming paint or electrode-forming paste may be appropriately selected according to the properties of the binder resin.
Examples of solvents include alcohols such as water, methanol, ethanol, 1-propanol, 2-propanol (isopropyl alcohol: IPA), butanol, pentanol, hexanol, octanol, and diacetone alcohol, ethyl acetate, butyl acetate, and lactic acid. Esters such as ethyl, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, γ-butyrolactone, diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol Ethers such as monobutyl ether (butyl cellosolve), diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), acetylacetone, ketones such as cyclohexanone, dimethylformamide, N,N-dimethylacetate Amides such as acetamide and N-methylpyrrolidone, glycols such as ethylene glycol, diethylene glycol and propylene glycol can be used. These may be used alone or in combination of two or more.

リチウムイオン二次電池用正極材料ペーストにおける溶媒の含有率は、本実施形態に係るリチウムイオン二次電池用正極材料と結着剤と溶媒の合計質量を100質量部とした場合に、60質量部以上かつ400質量部以下であることが好ましく、80質量部以上かつ300質量部以下であることがより好ましい。
上記の範囲で溶媒が含有されることにより、電極形成性に優れ、かつ電池特性に優れた、リチウムイオン二次電池用正極材料ペーストを得ることができる。
The content of the solvent in the positive electrode material paste for lithium ion secondary batteries is 60 parts by mass when the total mass of the positive electrode material for lithium ion secondary batteries, the binder and the solvent according to the present embodiment is 100 parts by mass. It is preferably at least 400 parts by mass and more preferably at least 80 parts by mass and not more than 300 parts by mass.
By containing the solvent in the above range, it is possible to obtain a positive electrode material paste for a lithium ion secondary battery that is excellent in electrode formability and battery characteristics.

本実施形態のリチウムイオン二次電池用正極材料と、結着剤と、導電助剤と、溶媒とを混合する方法としては、これらの成分を均一に混合できる方法であれば特に限定されない。例えば、ボールミル、サンドミル、プラネタリー(遊星式)ミキサー、ペイントシェーカー、ホモジナイザー等の混錬機を用いた方法が挙げられる。 The method for mixing the positive electrode material for a lithium ion secondary battery of the present embodiment, the binder, the conductive aid, and the solvent is not particularly limited as long as it is a method capable of uniformly mixing these components. For example, a method using a kneader such as a ball mill, sand mill, planetary mixer, paint shaker, homogenizer or the like can be mentioned.

次いで、リチウムイオン二次電池用正極材料ペーストを、電極集電体の一主面に塗布して塗膜とし、この塗膜を乾燥し、次いで、加圧圧着することにより、電極集電体の一主面に正極合剤層が形成されたリチウムイオン二次電池用正極を得ることができる。 Next, the positive electrode material paste for a lithium ion secondary battery is applied to one main surface of the electrode current collector to form a coating film, the coating film is dried, and then pressure-bonded to form an electrode current collector. A positive electrode for a lithium ion secondary battery having a positive electrode material mixture layer formed on one main surface can be obtained.

本実施形態のリチウムイオン二次電池用正極によれば、本実施形態のリチウムイオン二次電池用正極材料を含有しているため、サイクル特性に優れるリチウムイオン二次電池を得ることができる。 According to the positive electrode for lithium ion secondary batteries of the present embodiment, since the positive electrode material for lithium ion secondary batteries of the present embodiment is contained, a lithium ion secondary battery having excellent cycle characteristics can be obtained.

[リチウムイオン二次電池]
本実施形態のリチウムイオン二次電池は、本実施形態のリチウムイオン二次電池用正極と、負極と、セパレータと、電解液とを備えてなる。
[Lithium ion secondary battery]
The lithium ion secondary battery of this embodiment includes the positive electrode for lithium ion secondary battery of this embodiment, a negative electrode, a separator, and an electrolytic solution.

本実施形態のリチウムイオン二次電池では、負極、電解液、セパレータ等は特に限定されない。
負極としては、例えば、金属Li、炭素材料、Li合金、LiTi12等の負極材料を用いることができる。
また、電解液とセパレータの代わりに、固体電解質を用いてもよい。
In the lithium-ion secondary battery of the present embodiment, the negative electrode, electrolytic solution, separator and the like are not particularly limited.
As the negative electrode, for example, negative electrode materials such as metal Li, carbon materials, Li alloys, and Li 4 Ti 5 O 12 can be used.
Also, a solid electrolyte may be used instead of the electrolytic solution and the separator.

電解液は、例えば、エチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)とを、体積比で1:1となるように混合し、得られた混合溶媒に六フッ化リン酸リチウム(LiPF)を、例えば、濃度1モル/dmとなるように溶解することで作製することができる。
セパレータとしては、例えば、多孔質プロピレンを用いることができる。
The electrolytic solution is, for example, ethylene carbonate (EC) and ethyl methyl carbonate (EMC) mixed in a volume ratio of 1:1, and lithium hexafluorophosphate ( LiPF6 ) to a concentration of 1 mol/dm 3 , for example.
Porous propylene, for example, can be used as the separator.

本実施形態のリチウムイオン二次電池では、本実施形態のリチウムイオン二次電池用正極を備えるため、サイクル特性に優れる。 Since the lithium ion secondary battery of the present embodiment includes the positive electrode for a lithium ion secondary battery of the present embodiment, it has excellent cycle characteristics.

以下、実施例および比較例を挙げて本発明を具体的に説明する。なお、本発明は、実施例に記載の形態に限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples. In addition, this invention is not limited to the form as described in an Example.

〔リチウムイオン二次電池用正極材料の製造〕
[実施例1]
Li源としてLiOH、P源としてNHPO、Fe源としてFeSO・7HOを用い、これらを物質量比でLi:Fe:P=3:1:1となるように純水に混合して、200mLの均一なスラリー状の混合物を調製した。
次いで、この混合物を容量500mLの耐圧密閉容器に入れ、170℃にて2時間、水熱合成を行った。この反応後に、室温(25℃)になるまで冷却して、沈殿しているケーキ状態の反応生成物を得た。この反応生成物を蒸留水で複数回、十分に水洗し、乾燥しないように含水率を30%に保持して、前駆物質とした。
さらに、再度、上記と同様に、スラリー状の混合物を200mL調製した。そのスラリー状の混合物に前駆物質を2g添加し、容量500mLの耐圧密閉容器に入れ、170℃にて12時間、2回目の水熱合成を行った。この反応後に、室温(25℃)になるまで冷却して、沈殿しているケーキ状態の反応生成物を得た。この反応生成物を蒸留水で複数回、十分に水洗し、乾燥しないように含水率を30%に保持して、ケーキ状物質とした。ケーキ状物質を若干量採取し、70℃にて2時間真空乾燥させて、得られた粉末をX線回折で測定したところ、単相のLiFePOが形成されていることが確認された。
得られたケーキ状LiFePO(電極活物質)20gと、炭素源としてポリビニルアルコール0.73gとを、総量が100gとなるように水と混合し、直径0.1mmのジルコニアビーズ150gとともに、ビーズミルを行い、分散粒径(d50)が100nmとなるスラリー(混合物)を得た。
その後、スプレードライヤーを用いて、乾燥出口温度が60℃となる温度で乾燥、造粒し、造粒粉を得た。
得られた造粒粉を窒素雰囲気のロータリーキルンを用いて、700℃にて1時間、熱処理を行い、炭素質被覆された造粒体(以下、「炭素質被覆造粒体」と言う。)を得た。
得られた炭素質被覆造粒体を、ジェットミル装置(商品名:SJ-100、日清エンジニアリング社製)を用いて、供給速度180g/時間の条件で解砕し、炭素質被覆された電極活物質(以下、「炭素質被覆電極活物質」と言う。)を含む正極材料を得た。
[Production of positive electrode material for lithium ion secondary battery]
[Example 1]
LiOH was used as the Li source, NH 4 H 2 PO 4 was used as the P source, and FeSO 4 .7H 2 O was used as the Fe source. to prepare a uniform slurry mixture of 200 mL.
Then, this mixture was placed in a pressure-resistant sealed container with a capacity of 500 mL, and hydrothermal synthesis was performed at 170° C. for 2 hours. After the reaction, the reaction product was cooled to room temperature (25° C.) to obtain a precipitated cake-like reaction product. The reaction product was thoroughly washed several times with distilled water and kept at 30% moisture content so as not to dry out to obtain a precursor.
Furthermore, 200 mL of a slurry mixture was prepared again in the same manner as above. 2 g of the precursor was added to the slurry mixture, placed in a 500 mL pressure-resistant sealed container, and the second hydrothermal synthesis was performed at 170° C. for 12 hours. After the reaction, the reaction product was cooled to room temperature (25° C.) to obtain a precipitated cake-like reaction product. The reaction product was thoroughly washed several times with distilled water, and the moisture content was kept at 30% so as not to dry out to form a cake-like substance. A small amount of the cake-like material was sampled and vacuum-dried at 70° C. for 2 hours, and the resulting powder was measured by X-ray diffraction, which confirmed the formation of single-phase LiFePO 4 .
20 g of the resulting cake-like LiFePO 4 (electrode active material) and 0.73 g of polyvinyl alcohol as a carbon source were mixed with water so that the total amount was 100 g. A slurry (mixture) having a dispersed particle diameter (d50) of 100 nm was obtained.
Then, using a spray dryer, the mixture was dried and granulated at a temperature at which the drying outlet temperature was 60° C. to obtain a granulated powder.
The obtained granulated powder was heat-treated at 700° C. for 1 hour using a rotary kiln in a nitrogen atmosphere to obtain a carbonaceous-coated granule (hereinafter referred to as “carbonaceous-coated granule”). Obtained.
The obtained carbonaceous-coated granules were pulverized using a jet mill apparatus (trade name: SJ-100, manufactured by Nisshin Engineering Co., Ltd.) at a supply rate of 180 g/hour to obtain a carbonaceous-coated electrode. A positive electrode material containing an active material (hereinafter referred to as "carbonaceous-coated electrode active material") was obtained.

[実施例2]
2回目の水熱合成時に添加する前駆物質の量を1gにしたこと以外は実施例1と同様にして、炭素質被覆電極活物質を含む正極材料を得た。
[Example 2]
A positive electrode material containing a carbonaceous-coated electrode active material was obtained in the same manner as in Example 1, except that the amount of the precursor added during the second hydrothermal synthesis was changed to 1 g.

[実施例3]
2回目の水熱合成時に添加する前駆物質の量を4gにしたこと以外は実施例1と同様にして、炭素質被覆電極活物質を含む正極材料を得た。
[Example 3]
A positive electrode material containing a carbonaceous-coated electrode active material was obtained in the same manner as in Example 1, except that the amount of the precursor added during the second hydrothermal synthesis was changed to 4 g.

[比較例1]
Li源としてLiOH、P源としてNHPO、Fe源としてFeSO・7HOを用い、これらを物質量比でLi:Fe:P=3:1:1となるように純水に混合して、200mLの均一なスラリー状の混合物を調製した。
次いで、この混合物を容量500mLの耐圧密閉容器に入れ、170℃にて12時間、水熱合成を行った。この反応後に、室温(25℃)になるまで冷却して、沈殿しているケーキ状態の反応生成物を得た。この反応生成物を蒸留水で複数回、十分に水洗し、乾燥しないように含水率を30%に保持して、ケーキ状物質とした。ケーキ状物質を若干量採取し、70℃にて2時間真空乾燥させて、得られた粉末をX線回折で測定したところ、単相のLiFePOが形成されていることが確認された。
得られたケーキ状LiFePO(電極活物質)20gと、炭素源としてポリビニルアルコール0.73gとを、総量が100gとなるように水と混合し、直径0.1mmのジルコニアビーズ150gとともに、ビーズミルを行い、分散粒径(d50)が100nmとなるスラリー(混合物)を得た。
その後、スプレードライヤーを用いて、乾燥出口温度が60℃となる温度で乾燥、造粒し、造粒粉を得た。
得られた造粒粉を窒素雰囲気のロータリーキルンを用いて、800℃にて1時間、熱処理を行い、炭素質被覆造粒体を得た。
得られた炭素質被覆造粒体を、ジェットミル装置(商品名:SJ-100、日清エンジニアリング社製)を用いて、供給速度180g/時間の条件で解砕し、炭素質被覆電極活物質を含む正極材料を得た。
[Comparative Example 1]
LiOH was used as the Li source, NH 4 H 2 PO 4 was used as the P source, and FeSO 4 .7H 2 O was used as the Fe source. to prepare a uniform slurry mixture of 200 mL.
Next, this mixture was placed in a pressure-resistant sealed container with a capacity of 500 mL, and hydrothermal synthesis was performed at 170° C. for 12 hours. After the reaction, the reaction product was cooled to room temperature (25° C.) to obtain a precipitated cake-like reaction product. The reaction product was thoroughly washed several times with distilled water, and the moisture content was kept at 30% so as not to dry out to form a cake-like substance. A small amount of the cake-like material was sampled and vacuum-dried at 70° C. for 2 hours, and the resulting powder was measured by X-ray diffraction, which confirmed the formation of single-phase LiFePO 4 .
20 g of the resulting cake-like LiFePO 4 (electrode active material) and 0.73 g of polyvinyl alcohol as a carbon source were mixed with water so that the total amount was 100 g. A slurry (mixture) having a dispersed particle diameter (d50) of 100 nm was obtained.
Then, using a spray dryer, the mixture was dried and granulated at a temperature at which the drying outlet temperature was 60° C. to obtain a granulated powder.
The obtained granulated powder was heat-treated at 800° C. for 1 hour using a rotary kiln in a nitrogen atmosphere to obtain carbonaceous-coated granules.
The obtained carbonaceous-coated granules were pulverized using a jet mill apparatus (trade name: SJ-100, manufactured by Nisshin Engineering Co., Ltd.) at a supply rate of 180 g/hour to obtain a carbonaceous-coated electrode active material. A positive electrode material containing

[比較例2]
熱処理温度を700℃にし、ジェットミル装置での解砕を実施しなかったこと以外は比較例1と同様にして、炭素質被覆電極活物質を含む正極材料を得た。
[Comparative Example 2]
A positive electrode material containing a carbonaceous-coated electrode active material was obtained in the same manner as in Comparative Example 1, except that the heat treatment temperature was set to 700° C. and the pulverization by the jet mill was not performed.

[比較例3]
炭素源の添加量を2.5gにしたこと以外は比較例2と同様にして、炭素質被覆電極活物質を含む正極材料を得た。
[Comparative Example 3]
A positive electrode material containing a carbonaceous-coated electrode active material was obtained in the same manner as in Comparative Example 2, except that the amount of the carbon source added was 2.5 g.

「評価」
実施例1~実施例3および比較例1~比較例3で得られた正極材料について、下記の評価を行った。結果を表1に示す。
"evaluation"
The positive electrode materials obtained in Examples 1 to 3 and Comparative Examples 1 to 3 were evaluated as follows. Table 1 shows the results.

〔リチウムイオン二次電池用正極材料の評価〕
(1)正極材料の粒度分布
正極材料を水に分散させ、分散液に含まれる正極材料の粒度分布を、粒度分布計(商品名:LA-920、株式会社堀場製作所製)を用い、JIS Z8825「粒子径解析-レーザー回折・散乱法」に準ずる方法で測定した。
[Evaluation of positive electrode material for lithium ion secondary battery]
(1) Particle size distribution of positive electrode material The positive electrode material is dispersed in water, and the particle size distribution of the positive electrode material contained in the dispersion is measured using a particle size distribution meter (trade name: LA-920, manufactured by Horiba, Ltd.), using JIS Z8825. It was measured by a method according to "Particle Size Analysis - Laser Diffraction/Scattering Method".

(2)一次粒子の平均粒子径の測定
電極活物質粒子と、電極活物質粒子の表面に形成された炭素質被膜とを含む一次粒子の平均粒子径を、走査型電子顕微鏡像(SEM)観察により測定した200個以上の一次粒子の粒子径を個数平均することで求めた。
(2) Measurement of average particle size of primary particles The average particle size of the primary particles containing the electrode active material particles and the carbonaceous coating formed on the surface of the electrode active material particles is observed with a scanning electron microscope (SEM). It was obtained by averaging the particle diameters of 200 or more primary particles measured by .

(3)炭素質被膜の厚さの測定
炭素質被膜の厚さを、透過型電子顕微鏡(TEM)観察により、30視野での各被覆炭素層の厚さを平均することで求めた。
(3) Measurement of thickness of carbonaceous coating The thickness of the carbonaceous coating was obtained by averaging the thickness of each coated carbon layer in 30 fields of view by observation with a transmission electron microscope (TEM).

(4)メスバウアースペクトル測定
実施例1~実施例3および比較例1~比較例3の正極材料について、メスバウアー分光法によるメスバウアー分光分析を行った。メスバウアースペクトルを透過法により測定した。詳細を下記に示す。
測定方法:等加速モード、室温、常圧下
線源:57Co/Rh マトリクス、1.85[GBq]
速度軸検量の方法:純鉄箔の室温でのスペクトルの6本の磁気分裂ピークのうち、内側4本のピーク中心位置をX2、X3、X4、X5[channel]として、下記の式で求めた。
X0[channel]=(X2+X3+X4+X5)/4
Γ[channel]=20.422/{0.0835(X5-X2)+0.8385(X4-X3)}
このメスバウアー分光分析により得られたスペクトルがローレンツ型の理論線型式で近似できるものとし、数値計算ソフトを用いたフィッティングを行い、各ピークの強度を算出した。強度比は高エネルギー側のピーク強度/低エネルギー側のピーク強度として算出した。
図2に、実施例1の正極材料のメスバウアースペクトルを示す。図3に、比較例1の正極材料のメスバウアースペクトルを示す。
(4) Mössbauer Spectral Measurement The positive electrode materials of Examples 1 to 3 and Comparative Examples 1 to 3 were subjected to Mössbauer spectroscopic analysis by Mössbauer spectroscopy. Mössbauer spectra were measured by transmission method. Details are shown below.
Measurement method: uniform acceleration mode, room temperature, under normal pressure Radiation source: 57 Co/Rh matrix, 1.85 [GBq]
Method of velocity axis calibration: Of the six magnetic splitting peaks of the spectrum of the pure iron foil at room temperature, the center positions of the four inner peaks were defined as X2, X3, X4, and X5 [channel], and were obtained by the following formula. .
X0[channel]=(X2+X3+X4+X5)/4
Γ[channel]=20.422/{0.0835(X5−X2)+0.8385(X4−X3)}
Assuming that the spectrum obtained by this Mössbauer spectroscopic analysis can be approximated by a Lorentzian theoretical linear equation, fitting was performed using numerical calculation software, and the intensity of each peak was calculated. The intensity ratio was calculated as peak intensity on the high energy side/peak intensity on the low energy side.
2 shows the Mössbauer spectrum of the positive electrode material of Example 1. FIG. 3 shows the Mössbauer spectrum of the positive electrode material of Comparative Example 1. FIG.

〔リチウムイオン二次電池の作製〕
実施例1~実施例3および比較例1~比較例3の正極材料を用いて、リチウムイオン二次電池を作製した。
溶媒であるN-メチル-2-ピロリジノン(NMP)に、正極材料と、導電助剤としてのアセチレンブラック(AB)と、結着剤としてのポリフッ化ビニリデン(PVdF)とを、ペースト中の質量比で、正極材料:AB:PVdF=90:5:5となるように加えて、これらを混合し、正極材料ペーストを調製した。
次いで、この正極材料ペーストを、厚さ30μmのアルミニウム箔(電極集電体)の表面に塗布して塗膜を形成し、その塗膜を乾燥し、塗膜が所定の密度となるように圧着して、アルミニウム箔の表面に正極合剤層を形成し、アルミニウム箔と正極合剤層とを有する正極板を得た。
その後、正極板を、成形機を用いて正極面積が9cmの正方形の周りにタブしろを有する板状に打ち抜いた。さらに、タブしろにタブを溶接して試験電極(正極)を作製した。
[Production of lithium ion secondary battery]
Using the positive electrode materials of Examples 1 to 3 and Comparative Examples 1 to 3, lithium ion secondary batteries were produced.
N-methyl-2-pyrrolidinone (NMP) as a solvent, a positive electrode material, acetylene black (AB) as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder are added to the mass ratio in the paste. Then, positive electrode material:AB:PVdF=90:5:5 and mixed to prepare a positive electrode material paste.
Next, this positive electrode material paste is applied to the surface of an aluminum foil (electrode current collector) having a thickness of 30 μm to form a coating film, the coating film is dried, and the coating film is crimped so that it has a predetermined density. Then, a positive electrode mixture layer was formed on the surface of the aluminum foil to obtain a positive electrode plate having the aluminum foil and the positive electrode mixture layer.
Thereafter, the positive electrode plate was punched out into a plate shape having a tab margin around a square with a positive electrode area of 9 cm 2 using a molding machine. Furthermore, a test electrode (positive electrode) was produced by welding a tab to the tab margin.

次いで、溶媒である純水に、負極活物質としての天然黒鉛と、結着剤としてのスチレンブタジエンラテックス(SBR)と、粘度調整材としてカルボキシメチルセルロース(CMC)とを、ペーストの質量比で、天然黒鉛:SBR:CMC=98:1:1となるように加えて、これらを混合し、負極材料ペースト(負極用)を調製した。
調製した負極材料ペースト(負極用)を、厚さ10μmの銅箔(集電体)の表面に塗布して塗膜を形成し、その塗膜を乾燥し、銅箔表面に負極合剤層を形成し、銅箔と負極合剤層とを有する負極板を得た。
その後、負極板を、成形機を用いて負極面積9cmの正方形の周りにタブしろを有する板状に打ち抜いた。さらに、タブしろにタブを溶接して負極を作製した。
Next, natural graphite as a negative electrode active material, styrene-butadiene latex (SBR) as a binder, and carboxymethyl cellulose (CMC) as a viscosity modifier are added to pure water as a solvent in a mass ratio of the paste. Graphite:SBR:CMC=98:1:1 was added and these were mixed to prepare a negative electrode material paste (for negative electrode).
The prepared negative electrode material paste (for negative electrode) is applied to the surface of a copper foil (current collector) having a thickness of 10 μm to form a coating film, the coating film is dried, and a negative electrode mixture layer is formed on the copper foil surface. Thus, a negative electrode plate having a copper foil and a negative electrode mixture layer was obtained.
Thereafter, the negative electrode plate was punched out into a plate shape having a tab margin around a square with a negative electrode area of 9 cm 2 using a molding machine. Further, a tab was welded to the tab margin to prepare a negative electrode.

作製した正極と負極とを、多孔質ポリプロピレンからなる厚さ25μmのセパレータを介して対向させ、非水電解液(非水電解質溶液)としての1mol/Lのヘキサフルオロリン酸リチウム(LiPF)溶液500mLに浸漬した後、ラミネートフィルムにて封止して、リチウムイオン二次電池を作製した。LiPF溶液としては、炭酸エチレンと、炭酸ジエチルとを、体積比で1:1となるように混合したものを用いた。 The prepared positive electrode and negative electrode are opposed to each other via a 25 μm thick separator made of porous polypropylene, and a 1 mol/L lithium hexafluorophosphate (LiPF 6 ) solution as a non-aqueous electrolyte (non-aqueous electrolyte solution). After being immersed in 500 mL, it was sealed with a laminate film to produce a lithium ion secondary battery. As the LiPF 6 solution, a mixture of ethylene carbonate and diethyl carbonate in a volume ratio of 1:1 was used.

〔リチウムイオン二次電池の評価〕
(1)容量維持率の測定
環境温度25℃にて、充電電流を2C、放電電流を2Cとして、定電流充放電により放電容量を測定し、測定された値を初期放電容量とした。
その後、環境温度を45℃に設定し、充電電流を2C、放電電流を2Cとして、定電流充放電を600回行い、その後、再度、環境温度を25℃にて、充電電流を2C、放電電流を2Cとして、定電流充放電により放電容量を測定し、サイクル後の放電容量を得た。
下記の式(3)に従って、サイクル試験による容量維持率を算出した。
サイクル試験容量維持率=サイクル後の放電容量/初期放電容量 (3)
[Evaluation of Lithium Ion Secondary Battery]
(1) Measurement of capacity retention rate At an environmental temperature of 25°C, the discharge capacity was measured by constant current charge/discharge with a charge current of 2C and a discharge current of 2C, and the measured value was taken as the initial discharge capacity.
After that, set the environmental temperature to 45° C., set the charging current to 2 C and the discharging current to 2 C, and perform constant current charging and discharging 600 times. Then, set the environmental temperature to 25° C. again, charge current to 2 C, discharge current was set to 2 C, the discharge capacity was measured by constant current charging and discharging, and the discharging capacity after the cycle was obtained.
The capacity retention rate was calculated according to the cycle test according to the following formula (3).
Cycle test capacity retention rate = discharge capacity after cycle / initial discharge capacity (3)

Figure 2022157172000002
Figure 2022157172000002

表1に示す結果から、実施例1~実施例3のリチウムイオン二次電池用正極材料を用いたリチウムイオン二次電池は、鉄イオンの四極子分裂の高エネルギー側のピークの強度が、鉄イオンの四極子分裂の低エネルギー側のピークの強度よりも大きいため、サイクル試験容量維持率が高く、サイクル特性に優れる。
一方、比較例1~比較例3のリチウムイオン二次電池用正極材料を用いたリチウムイオン二次電池は、鉄イオンの四極子分裂の高エネルギー側のピークの強度と、鉄イオンの四極子分裂の低エネルギー側のピークの強度とが等しいため、サイクル試験容量維持率が低く、サイクル特性に劣る。なお、比較例3のリチウムイオン二次電池用正極材料を用いたリチウムイオン二次電池と実施例2のリチウムイオン二次電池用正極材料を用いたリチウムイオン二次電池とは、サイクル試験容量維持率が等しいが、比較例3のリチウムイオン二次電池用正極材料を用いたリチウムイオン二次電池は1サイクル目容量が低く、その点において、実施例2のリチウムイオン二次電池用正極材料を用いたリチウムイオン二次電池よりも性能が劣る。
From the results shown in Table 1, in the lithium ion secondary batteries using the positive electrode materials for lithium ion secondary batteries of Examples 1 to 3, the intensity of the peak on the high energy side of quadrupolar splitting of iron ions is Since the intensity is higher than the peak intensity on the low energy side of quadrupole splitting of ions, the cycle test capacity retention rate is high and the cycle characteristics are excellent.
On the other hand, in the lithium ion secondary batteries using the positive electrode materials for lithium ion secondary batteries of Comparative Examples 1 to 3, the intensity of the peak on the high energy side of the quadrupolar splitting of iron ions and the quadrupolar splitting of iron ions Since the intensity of the peak on the low energy side is equal to that of , the cycle test capacity retention rate is low and the cycle characteristics are poor. In addition, the lithium ion secondary battery using the positive electrode material for lithium ion secondary batteries of Comparative Example 3 and the lithium ion secondary battery using the positive electrode material for lithium ion secondary batteries of Example 2 are different from each other. Although the ratio is the same, the lithium ion secondary battery using the positive electrode material for lithium ion secondary batteries of Comparative Example 3 has a low first cycle capacity. The performance is inferior to that of the lithium ion secondary battery used.

本発明のリチウムイオン二次電池用正極材料は、リチウムイオン二次電池の正極として有用である。 The positive electrode material for lithium ion secondary batteries of the present invention is useful as a positive electrode for lithium ion secondary batteries.

Claims (6)

メスバウアー分光法により得られるメスバウアースペクトルにおいて、
鉄イオンの四極子分裂の高エネルギー側のピークの強度が、鉄イオンの四極子分裂の低エネルギー側のピークの強度よりも大きい、リチウムイオン二次電池用正極材料。
In the Mössbauer spectrum obtained by Mössbauer spectroscopy,
A positive electrode material for a lithium ion secondary battery, wherein the intensity of the quadrupolar splitting of iron ions on the high energy side is higher than the intensity of the quadrupolar splitting of iron ions on the low energy side.
電極活物質粒子の表面に炭素質被膜が形成された一次粒子と、該一次粒子が複数個集合した凝集粒子と、を含み、
レーザー式回折粒度分布測定装置で測定された平均粒子径が0.3μm以上5.0μm以下である、請求項1に記載のリチウムイオン二次電池用正極材料。
including primary particles in which a carbonaceous coating is formed on the surface of the electrode active material particles, and aggregated particles in which a plurality of the primary particles are aggregated,
2. The positive electrode material for a lithium ion secondary battery according to claim 1, having an average particle size of 0.3 [mu]m or more and 5.0 [mu]m or less as measured by a laser diffraction particle size distribution analyzer.
前記一次粒子が、平均粒子径が50nm以上500nm以下のオリビン構造を有する、請求項2に記載のリチウムイオン二次電池用正極材料。 3. The positive electrode material for a lithium ion secondary battery according to claim 2, wherein said primary particles have an olivine structure with an average particle size of 50 nm or more and 500 nm or less. 前記炭素質被膜の厚さが0.5nm以上10nm以下である、請求項2または3に記載のリチウムイオン二次電池用正極材料。 4. The positive electrode material for a lithium ion secondary battery according to claim 2, wherein said carbonaceous film has a thickness of 0.5 nm or more and 10 nm or less. 電極集電体と、該電極集電体上に形成された正極合剤層と、を備えたリチウムイオン二次電池用正極であって、
前記正極合剤層は、請求項1~4のいずれか1項に記載のリチウムイオン二次電池用正極材料を含有する、リチウムイオン二次電池用正極。
A positive electrode for a lithium ion secondary battery comprising an electrode current collector and a positive electrode mixture layer formed on the electrode current collector,
A positive electrode for a lithium ion secondary battery, wherein the positive electrode mixture layer contains the positive electrode material for a lithium ion secondary battery according to any one of claims 1 to 4.
正極、負極および非水電解質を有するリチウムイオン二次電池であって、
正極として、請求項5に記載のリチウムイオン二次電池用正極を備えた、リチウムイオン二次電池。
A lithium ion secondary battery having a positive electrode, a negative electrode and a non-aqueous electrolyte,
A lithium ion secondary battery comprising the positive electrode for a lithium ion secondary battery according to claim 5 as a positive electrode.
JP2021061253A 2021-03-31 2021-03-31 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery Pending JP2022157172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021061253A JP2022157172A (en) 2021-03-31 2021-03-31 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021061253A JP2022157172A (en) 2021-03-31 2021-03-31 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2022157172A true JP2022157172A (en) 2022-10-14

Family

ID=83558506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021061253A Pending JP2022157172A (en) 2021-03-31 2021-03-31 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2022157172A (en)

Similar Documents

Publication Publication Date Title
CA2741406C (en) Multi-component-system lithium phosphate compound particles having an olivine structure, manufacturing method thereof and lithium secondary battery employing the lithium phosphate compound particles as a positive electrode material
EP2966713A1 (en) Porous manganese lithium phosphate-carbon composite material, preparation method and application thereof
El Khalfaouy et al. Synthesis and characterization of Na-substituted LiMnPO4 as a cathode material for improved lithium ion batteries
EP3301741B1 (en) Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
JP6128181B2 (en) Electrode material for lithium ion secondary battery, method for producing electrode material for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
US9793544B2 (en) Method of manufacturing positive electrode material for lithium ion secondary battery, positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP5971378B1 (en) Method for producing positive electrode material for lithium ion secondary battery
JP6168218B1 (en) Electrode material for lithium ion secondary battery and method for producing the same
CA3034495A1 (en) Cathode material including agglomerated particles, electrode including the cathode material, and lithium ion secondary battery including the electrode
US11158852B2 (en) Positive electrode material for lithium-ion secondary batteries, positive electrode for lithium-ion secondary batteries, and lithium-ion secondary battery
JP5381115B2 (en) Lithium phosphate powder and lithium phosphate-containing slurry, method for producing electrode active material, and lithium ion battery
US9960426B2 (en) Electrode material for lithium-ion secondary battery, method for manufacturing same, electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP6604451B1 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
JP6593511B1 (en) Electrode material for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery
US10547048B2 (en) Electrode material for lithium ion battery and lithium ion battery
JP6477948B1 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
US10074853B2 (en) Electrode material for lithium-ion rechargeable battery, electrode for lithium-ion rechargeable battery, and lithium-ion rechargeable battery
JP2022157172A (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6583459B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
JP6996647B1 (en) Positive electrode material for lithium-ion batteries, positive electrode for lithium-ion batteries, and lithium-ion batteries
JP2023155001A (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6547891B1 (en) Electrode material, method of manufacturing the electrode material, electrode, and lithium ion battery
JP2023155000A (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US20160190635A1 (en) Eletrode material for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220502

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231221