JP2022157126A - Ridge coating method - Google Patents

Ridge coating method Download PDF

Info

Publication number
JP2022157126A
JP2022157126A JP2021061178A JP2021061178A JP2022157126A JP 2022157126 A JP2022157126 A JP 2022157126A JP 2021061178 A JP2021061178 A JP 2021061178A JP 2021061178 A JP2021061178 A JP 2021061178A JP 2022157126 A JP2022157126 A JP 2022157126A
Authority
JP
Japan
Prior art keywords
ridge
powder
ridge coating
granules
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021061178A
Other languages
Japanese (ja)
Inventor
俊吉 須藤
Shunkichi Sudo
隆 神谷
Takashi Kamiya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2021061178A priority Critical patent/JP2022157126A/en
Publication of JP2022157126A publication Critical patent/JP2022157126A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catching Or Destruction (AREA)

Abstract

To provide a ridge coating method capable of satisfactorily maintaining a working environment by suppressing scattering of dust-like particles and forming a ridge having sufficient strength (uniaxial compressive strength) as a ridge by ridge coating.SOLUTION: A ridge coating method uses a ridge coating machine, as the ridge coating machine including tilling means for tilling a ridge before ridge coating to fill up the ridge to a ridge shape, and molding means for molding soil tilled by the tilling means to a ridge, and includes the following steps for: (a) forming a powder layer by spraying powder made of magnesium oxide-based solidified materials with a Blaine specific surface area being 2,000 cm2/g or more on the surface of the ridge before ridge coating; (b) forming a granule layer by spraying grains including the grain size of 300 μm or more with a ratio of 80 mass% or more on the granule layer; and (c) tilling and molding the ridge before ridge coating undergoing the formation of the powder layer and the granule layer by using the ridge coating machine to form a ridge after ridge coating.SELECTED DRAWING: None

Description

本発明は、畔塗り方法に関する。 The present invention relates to a ridge coating method.

水田において、水を張る前に、畔の修理を行う畔塗りという作業が、知られている。
この畔塗りは、通常、畔塗り機と称されるトラクターで行われる。
畔塗り機として、畔塗り前の畔を耕耘して畔状に盛り上げるための耕耘手段(前処理手段)、及び、耕耘手段(前処理手段)によって耕耘された土壌を畔に成形するための成形手段(整畔手段)を有するものが、知られている。
一例として、特許文献1に、走行機体の後部に装着され、該走行機体から動力を受け、元畦及び圃場を耕耘して畦状に盛り上げる前処理体、及びこの前処理体により耕耘された土壌を畦に成形する整畦体を備え、該前処理体に土飛散防止のためのサイドカバーを設けた畦塗り機において、上記サイドカバーを平行リンクにより上下動自在に支持して、該サイドカバーの高さ調整が自動的に行われるようにしたことを特徴とする畦塗り機が、記載されている。
In paddy fields, there is known a process called ridge coating, in which ridges are repaired before watering.
This ridge coating is usually performed with a tractor called a ridge coating machine.
As a ridge coating machine, tillage means (pretreatment means) for plowing the ridge before ridge coating and raising it into a ridge shape, and shaping for shaping the soil plowed by the tillage means (pretreatment means) into a ridge. Those with means (lever leveling means) are known.
As an example, Patent Document 1 describes a pretreatment body that is attached to the rear part of a traveling machine body, receives power from the traveling machine body, plows a base ridge and a field and raises it into a ridge shape, and the soil plowed by this pretreatment body. A ridge coating machine comprising a ridge body for forming a ridge, and a side cover for preventing soil scattering on the pretreatment body, wherein the side cover is vertically movably supported by a parallel link, and the side cover A ridge coating machine is described which is characterized in that the height adjustment of the ridge is made automatically.

他の例として、特許文献2に、機体に支持されて、畔の法面部及び畔際部を耕耘して膨軟にするための複数本の耕耘爪が、片持支持構造の耕耘軸に取付けられた耕耘ユニットと、前記機体における当該耕耘ユニットの後方に配置されたドラム軸に畔塗りドラムが一体に取付けられて、耕耘された膨軟な土壌を前記畔の法面部及び上面部に塗り付けるための畔塗りドラムユニットと、タンクに収容された土壌固化材をホースにより、前記耕耘ユニットの耕耘爪により膨軟にされた土壌に添加させるための土壌固化材供給ユニットとを備えた畔塗り機であって、前記耕耘軸は、畔の長手方向と直交する方向に沿った長さを有し、当該耕耘軸における前記機体に近い部分に、前記畔際の土を切り起こして畔側に移送させるスクリューコンベアが取付けられて、前記耕耘軸における当該スクリューコンベアに対して自由端側に複数本の前記耕耘爪が取付けられていることを特徴とする畔塗り機が、記載されている。 As another example, in Patent Document 2, a plurality of tillage tines, which are supported by the machine body and used to plow and soften the slope and edge of the bank, are attached to a tillage shaft with a cantilever support structure. and a ridge coating drum is integrally attached to a drum shaft arranged behind the cultivating unit in the machine body to coat the plowed and swollen soil on the slope and upper surface of the ridge. and a soil solidifying material supplying unit for adding the soil solidifying material contained in a tank to the soil expanded by the tillage tines of the tilling unit through a hose. The tillage shaft has a length along the direction perpendicular to the longitudinal direction of the ridge, and a screw for cutting and raising the soil at the ridge and transferring it to the ridge is provided in a portion of the tillage shaft near the machine body. A ridge coating machine is described in which a conveyor is mounted and a plurality of the tillage tines are mounted on the tillage shaft on the free end side with respect to the screw conveyor.

一方、畔の造成において、軽焼酸化マグネシウム粉末からなる固化材を用いることが、知られている。
一例として、特許文献3に、畦の造成に使用する土壌を採掘する地盤から、土壌の試料を採取する土壌採取工程、上記土壌の試料と、使用予定の固化材(軽焼酸化マグネシウム粉末)を混合して、混合物を得た後、上記混合物について固化後の強度を測定し、得られた測定値に基いて、雑草の生育を抑制するための固化材の種類及び量を定める固化材決定工程、及び、上記固化材決定工程で定めた固化材の種類及び量で、地盤に畦を造成する畦造成工程、を含むことを特徴とする畦造成方法が、記載されている。
On the other hand, it is known to use a hardening material made of light-burnt magnesium oxide powder in creating a ridge.
As an example, in Patent Document 3, a soil sampling process for sampling soil samples from the ground for mining the soil used for creating ridges, the above soil samples, and a solidification material to be used (light-burnt magnesium oxide powder). After mixing to obtain a mixture, the strength of the mixture after solidification is measured, and based on the obtained measured value, the type and amount of the solidification material for suppressing the growth of weeds is determined. and a ridge forming step of forming ridges in the ground using the type and amount of the solidifying material determined in the above-described solidifying material determining step.

特開平11-46508号公報JP-A-11-46508 特開2018-191527号公報JP 2018-191527 A 特開2019-176755号公報JP 2019-176755 A

特許文献1に記載されている畦塗り機は、土飛散防止のためのサイドカバーを有する。
しかし、サイドカバーは、特定の方向に飛散する大きな粒度を有する土粒子に比べて、舞い上がる粉塵状の土粒子に対しては、その飛散防止効果が小さいと考えられる。
特許文献2には、特許文献1のサイドカバーのような土飛散防止手段は、記載されていない。
一方、特許文献3に記載されている、畔の造成に用いられる軽焼酸化マグネシウム粉末からなる固化材は、実施例でのブレーン比表面積が5,500cm/gであり、耕耘時に、舞い上がるなどの問題が生じる可能性がある。
本発明の目的は、畔塗り機を用いた畔塗り方法であって、畔塗りの作業中に、粉塵状の粒子が舞い上がるのを抑制して、作業環境を良好に維持することができ、かつ、畔塗りによって、畔として十分な強度(例えば、一軸圧縮強さ)を有する畔を形成させることができる畔塗り方法を提供することである。
A ridge coating machine described in Patent Document 1 has a side cover for preventing soil from scattering.
However, it is considered that the side cover has a smaller effect of preventing scattering of dust-like soil particles that scatter in a specific direction than that of large-sized soil particles that scatter in a specific direction.
Patent Document 2 does not describe a soil scattering prevention means such as the side cover of Patent Document 1.
On the other hand, the solidification material made of light-burnt magnesium oxide powder used for creating ridges, which is described in Patent Document 3, has a Blaine specific surface area of 5,500 cm 2 /g in an example, and is soared during tillage. problems may arise.
An object of the present invention is a ridge coating method using a ridge coating machine, which suppresses dust-like particles from being blown up during ridge coating work, can maintain a good working environment, and To provide a ridge coating method capable of forming a ridge having sufficient strength (for example, uniaxial compressive strength) as a ridge by ridge coating.

本発明者は、上記課題を解決するために鋭意検討した結果、畔塗り機として、特定の構造を有するものを用い、かつ、畔塗り方法として、特定の粉体の散布と、特定の粒体の散布と、畔塗り機を用いた耕耘及び成形とを組み合わせた方法を採用することによって、上記目的を達成しうることを見出し、本発明を完成した。
本発明は、以下の[1]~[5]を提供するものである。
As a result of intensive studies to solve the above problems, the inventors of the present invention have found that a ridge coating machine having a specific structure is used as the ridge coating method, and the ridge coating method consists of spraying of specific powder and specific granules. The inventors have found that the above object can be achieved by adopting a method of combining the spraying of , and the tillage and molding using a ridge coating machine, and have completed the present invention.
The present invention provides the following [1] to [5].

[1] 畔塗り機を用いた畔塗り方法であって、上記畔塗り機は、畔塗り前の畔を耕耘して畔状に盛り上げるための耕耘手段、及び、上記耕耘手段によって耕耘された土壌を畔に成形するための成形手段を有するものであり、上記畔塗り方法が、畔塗り前の畔の表面に、マグネシウム系固化材からなる、ブレーン比表面積が2,000cm/g以上の粉体を散布して、粉体層を形成させる粉体散布工程と、上記粉体層の上に、300μm以上の粒度を有するものを80質量%以上の割合で含む粒体を散布して、粒体層を形成させる粒体散布工程と、上記粉体層及び上記粒体層が形成された、上記畔塗り前の畔に対して、上記畔塗り機を用いて、耕耘及び成形を行い、畔塗り後の畔を形成させる耕耘及び成形工程、を含むことを特徴とする畔塗り方法。
[2] 上記粒体散布工程で散布される上記粒体が、マグネシウム系固化材(ただし、上記粒体を構成するマグネシウム系固化材は、上記粉体散布工程で散布される粉体を構成するマグネシウム系固化材と同じでも異なってもよい。)からなる、上記[1]に記載の畔塗り方法。
[3] 上記粉体を構成する上記マグネシウム系固化材、及び、上記粒体を構成する上記マグネシウム系固化材が、軽焼マグネシアである、上記[2]に記載の畔塗り方法。
[4] 上記粉体と上記粒体の合計量100質量部中の上記粉体の量が、20~80質量部である、上記[1]~[3]のいずれかに記載の畔塗り方法。
[5] 上記粉体及び上記粒体の各散布量は、上記粉体及び上記粒体を含む部分の一軸圧縮強さが、「JGS 0821-2009(安定処理土の締固めをしない供試体作製方法)」及び「JIS A 1216:2020(土の一軸圧縮試験方法)」に準拠して測定される7日後の値として、100kN/m以上となるように定められる、上記[1]~[4]のいずれかに記載の畔塗り方法。
[1] A ridge coating method using a ridge coating machine, wherein the ridge coating machine comprises a tilling means for plowing the ridge before ridge coating and raising it into a ridge shape, and the soil plowed by the tilling means. In the ridge coating method, a powder having a specific surface area of Blaine of 2,000 cm 2 /g or more, which is made of a magnesium-based solidifying material, is applied to the surface of the ridge before the ridge coating. a powder spraying step of forming a powder layer by spraying a powder layer; A granule spraying step for forming a body layer, and the ridge before ridge coating on which the powder layer and the granule layer are formed are plowed and shaped using the ridge coating machine, and the ridge is formed. A ridge coating method, characterized by including a tillage and shaping step to form a ridge after coating.
[2] The granules dispersed in the granule scattering step are magnesium-based solidifying materials (however, the magnesium-based solidifying material constituting the granules constitutes the powder dispersed in the powder scattering step The ridge coating method according to the above [1], which may be the same as or different from the magnesium-based solidifying material.
[3] The ridge coating method according to [2] above, wherein the magnesium-based solidifying material that constitutes the powder and the magnesium-based solidifying material that constitutes the granules are light burnt magnesia.
[4] The ridge coating method according to any one of [1] to [3] above, wherein the amount of the powder in 100 parts by mass of the total amount of the powder and the granules is 20 to 80 parts by mass. .
[5] The spraying amount of the powder and the granules should be such that the uniaxial compressive strength of the part containing the powder and the granules is determined according to "JGS 0821-2009 (Preparation of specimens without compaction of stabilized soil method)” and “JIS A 1216:2020 (soil uniaxial compression test method)”, the value after 7 days is determined to be 100 kN / m 2 or more, above [1] to [ 4].

本発明によれば、畔塗りの作業中に、粉塵状の粒子(マグネシウム系固化材からなる粉体)が舞い上がるのを抑制して、作業環境を良好に維持することができる。
また、本発明によれば、畔塗りによって、畔として十分な強度(例えば、一軸圧縮強さ)を有する畔を形成させることができる。
According to the present invention, it is possible to suppress dust-like particles (powder made of a magnesium-based solidifying material) from being blown up during ridge coating work, and to maintain a good working environment.
In addition, according to the present invention, ridges having sufficient strength (for example, uniaxial compressive strength) can be formed by ridge coating.

本発明の畔塗り方法で用いる畔塗り機は、畔塗り前の畔を耕耘して畔状に盛り上げるための耕耘手段、及び、上記耕耘手段によって耕耘された土壌を畔に成形するための成形手段を有するものである。
畔塗り機の構成部分である耕耘手段は、畔塗り機の進行方向に対して垂直の方向(畔塗り機の側方の方向)に延びる耕耘用の軸と、この耕耘用の軸の周面に固着された複数(例えば、3~4個)の耕耘用の爪とを有する。約1年前の畔塗り作業以来修理されていない畔は、複数の耕耘用の爪によって耕耘されて、畔状に盛り上げられる。
なお、耕耘用の爪は、水平面である上面を耕耘するための上面用の爪と、傾斜面である側面(法面)を耕耘するための法面用の爪とで構成することもできる。この場合、法面用の爪は、上面用の爪よりも大きな長さ寸法を有する。
The ridge plastering machine used in the ridge plastering method of the present invention includes plowing means for plowing the ridge before levee plastering and raising it into a ridge shape, and shaping means for shaping the soil plowed by the plowing means into a ridge. It has
The tilling means, which is a constituent part of the ridge coating machine, includes a tillage shaft extending in a direction perpendicular to the traveling direction of the ridge coating machine (side direction of the ridge coating machine) and a peripheral surface of the tillage shaft. and a plurality (eg, 3-4) of tillage tines affixed to it. A ridge that has not been repaired since the ridge coating operation about a year ago is tilled with a plurality of plowing tines and raised into a ridge shape.
The tines for tillage can be composed of an upper surface tine for tilling a horizontal top surface and a slope surface tine for tilling an inclined surface (slope). In this case, the claws for the slope have a larger length dimension than the claws for the top.

畔塗り機の構成部分である成形手段は、畔の上面を成形するための円柱状の部分(上面形成用の部分)と、該円柱状の部分の端部から拡径して形成された円錐台形状の部分であって、畔の法面を形成するための部分(法面形成用の部分)とを有する。
本発明で用いる畔塗り機に該当する畔塗り機は、複数の製造元で市販されており、容易に入手可能である。例えば、小橋工業株式会社製の畔塗り機、松山株式会社製の畔塗り機、株式会社クボタ製の畔塗り機等が挙げられる。
Forming means, which is a constituent part of the ridge coating machine, includes a cylindrical portion for forming the upper surface of the ridge (a portion for forming the upper surface) and a cone formed by expanding the diameter from the end of the cylindrical portion. It is a trapezoidal part and has a part for forming the slope of the ridge (part for slope formation).
A ridge coating machine corresponding to the ridge coating machine used in the present invention is commercially available from a plurality of manufacturers and can be easily obtained. For example, a ridge coating machine manufactured by Kobashi Kogyo Co., Ltd., a ridge coating machine manufactured by Matsuyama Co., Ltd., a ridge coating machine manufactured by Kubota Corporation, and the like can be mentioned.

次に、本発明の畔塗り方法を構成する各工程について説明する。
[粉体散布工程]
粉体散布工程は、畔塗り前の畔の表面に、マグネシウム系固化材からなる、ブレーン比表面積が2,000cm/g以上の粉体を散布して、粉体層を形成させる工程である。
ここで、上記「畔塗り前の畔の表面」とは、少なくとも、畔の表面の一部であればよい。
本発明において、上記「畔塗り前の畔の表面」は、好ましくは、法面の全面、さらに好ましくは、上面及び法面の全面である。このような好ましい面を対象にして、粉体を散布することによって、畔の強度(一軸圧縮強さ)をより高めることができる。
本発明で用いられるマグネシウム系固化材としては、酸化マグネシウム等が挙げられる。
酸化マグネシウム(マグネシアとも称される。)は、土壌に添加してもpHが強アルカリ性にならず、かつ、硫黄分を含まないため硫化水素の発生のおそれもない点で、好ましい。
中でも、軽焼マグネシアは、比表面積が大きく、高い反応性を有する点で、特に好ましい。
軽焼マグネシアは、炭酸マグネシウムと水酸化マグネシウムの少なくとも1種を主成分とする鉱物を、650~1,000℃で焼成することによって製造される。
Next, each step constituting the ridge coating method of the present invention will be described.
[Powder spraying process]
The powder spraying step is a step of forming a powder layer by spraying powder made of a magnesium-based solidifying material and having a Blaine specific surface area of 2,000 cm 2 /g or more on the surface of the ridge before ridge coating. .
Here, the "surface of the ridge before ridge coating" may be at least a part of the surface of the ridge.
In the present invention, the "surface of the ridge before ridge coating" is preferably the entire surface of the slope, more preferably the upper surface and the entire surface of the slope. By sprinkling powder on such a preferable surface, the strength of the ridge (uniaxial compressive strength) can be further increased.
Examples of the magnesium-based solidifying material used in the present invention include magnesium oxide.
Magnesium oxide (also referred to as magnesia) is preferable because even when added to soil, the pH does not become strongly alkaline, and since it does not contain sulfur, there is no risk of generation of hydrogen sulfide.
Among them, light-burnt magnesia is particularly preferable because it has a large specific surface area and high reactivity.
Light-burnt magnesia is produced by firing a mineral containing at least one of magnesium carbonate and magnesium hydroxide as a main component at 650 to 1,000°C.

粉体散布工程で用いられるマグネシウム系固化材のブレーン比表面積は、2,000cm/g以上、好ましくは3,000~10,000cm/g、より好ましくは3,500~8,000cm/g、さらに好ましくは4,000~7,000cm/g、特に好ましくは4,500~6,500cm/gである。
該ブレーン比表面積が2,000cm/g以上であれば、畔塗り後の畔の強度(一軸圧縮強さ)が、より高くなる。該ブレーン比表面積が10,000cm/g以下であれば、畔塗り作業時における粉塵状の粒子の飛散の量が、より少なくなる。
粉体の散布量は、畔塗り後の畔の強度(一軸圧縮強さ)を高める観点から、畔の長さ1m当たり、好ましくは1kg以上、より好ましくは2kg以上、特に好ましくは3kg以上である。該散布量の上限は、特に設定する理由はないものの、畔が過剰な強度を有する必要はなく、また、材料のコストを抑える観点からは、好ましくは10kgである。
The Blaine specific surface area of the magnesium-based solidifying material used in the powder spraying step is 2,000 cm 2 /g or more, preferably 3,000 to 10,000 cm 2 /g, more preferably 3,500 to 8,000 cm 2 /g. g, more preferably 4,000 to 7,000 cm 2 /g, particularly preferably 4,500 to 6,500 cm 2 /g.
If the Blaine specific surface area is 2,000 cm 2 /g or more, the strength (uniaxial compressive strength) of the ridges after ridge coating becomes higher. If the Blaine specific surface area is 10,000 cm 2 /g or less, the amount of dust-like particles scattered during the ridge coating operation is further reduced.
The amount of powder applied is preferably 1 kg or more, more preferably 2 kg or more, and particularly preferably 3 kg or more per 1 m of ridge length, from the viewpoint of increasing the strength (uniaxial compressive strength) of the ridge after ridge coating. . Although there is no particular reason for setting the upper limit of the spray amount, it is not necessary for the ridges to have excessive strength, and from the viewpoint of reducing material costs, it is preferably 10 kg.

[粒体散布工程]
粒体散布工程は、粉体散布工程で形成された粉体層の上に、300μm以上の粒度を有するものを80質量%以上の割合で含む粒体を散布して、粒体層を形成させる工程である。
粒体散布工程で用いられる粒体の粒度分布は、好ましくは、600μm以上の粒度を有するものを80質量%以上の割合で含むものであり、より好ましくは、600μm以上の粒度を有するものを80質量%以上の割合で含み、かつ850μm以上の粒度を有するものを50質量%以上の割合で含むものである。
また、該粒体の粒度分布は、畔塗り後の畔の強度(一軸圧縮強さ)の低下を避ける観点から、好ましくは、10mm以上の粒度を有するものを含まない、または20質量%以下(好ましくは10質量%以下)の割合で含むものであり、より好ましくは、8mm以上の粒度を有するものを含まない、または20質量%以下(好ましくは10質量%以下)の割合で含むものであり、特に好ましくは、6mm以上の粒度を有するものを含まない、または20質量%以下(好ましくは10質量%以下)の割合で含むものである。
[Grain spraying process]
In the granule spraying step, granules containing 80% by mass or more of particles having a particle size of 300 μm or more are sprayed on the powder layer formed in the powder spraying step to form a granule layer. It is a process.
The particle size distribution of the granules used in the granule spraying step preferably contains particles having a particle size of 600 μm or more at a rate of 80% by mass or more, more preferably 80% having a particle size of 600 μm or more. It contains 50% by mass or more of particles having a particle size of 850 μm or more.
In addition, the particle size distribution of the granules preferably does not include those having a particle size of 10 mm or more, or 20% by mass or less ( preferably 10% by mass or less), and more preferably does not contain particles having a particle size of 8 mm or more, or contains 20% by mass or less (preferably 10% by mass or less). Particularly preferably, it does not contain particles having a particle size of 6 mm or more, or contains particles having a particle size of 20% by mass or less (preferably 10% by mass or less).

粒体散布工程で用いられる粒体としては、砂、セラミックス粒体、マグネシウム系固化材からなる粒体等が挙げられる。
中でも、畔塗り後の畔の強度を向上させる観点から、マグネシウム系固化材からなる粒体が、好ましい。例えば、上述の粉体散布工程で用いる粉体と同じマグネシウム系固化材を用いる場合、まず、塊状等のマグネシウム系固化材を破砕して、粒体散布工程で用いられる粒体を得た後、その一部をさらに粉砕して、粉体散布工程で用いられる粉体を得てもよい。あるいは、粒体散布工程で用いる粒体として、マグネシウム系固化材からなる成形物を用いてもよい。
粒体散布工程で用いられるマグネシウム系固化材は、粉体散布工程で用いられるマグネシウム系固化材と同じもの(例えば、軽焼マグネシア)でもよいし、異なるもの(例えば、重焼マグネシア、軽焼ドロマイト等)でもよい。
ここで、重焼マグネシアとは、焼成温度が1,000℃を超えること以外は軽焼マグネシアと同様にして製造されるものをいう。
Granules used in the granule spraying step include sand, ceramic granules, and granules made of a magnesium-based solidifying material.
Among them, granules made of a magnesium-based solidifying material are preferable from the viewpoint of improving the strength of the ridge after ridge coating. For example, when using the same magnesium-based solidifying material as the powder used in the above-described powder spreading step, first, the magnesium-based solidifying material such as lumps is crushed to obtain granules to be used in the granule spreading step, A portion thereof may be further pulverized to obtain the powder used in the powder application step. Alternatively, a molding made of a magnesium-based solidifying material may be used as the granules used in the granule dispersion step.
The magnesium-based solidifying material used in the granule spraying process may be the same as the magnesium-based solidifying material used in the powder spraying process (e.g., light burnt magnesia), or may be different (e.g., heavy burnt magnesia, light burnt dolomite, etc.). etc.).
Here, heavy-burnt magnesia refers to magnesia produced in the same manner as light-burnt magnesia, except that the sintering temperature exceeds 1,000°C.

粒体の散布量は、畔塗り作業時における粉塵状の粒子の飛散の量を、より低減させる観点から、畔の長さ1m当たり、好ましくは1kg以上、より好ましくは2kg以上、特に好ましくは3kg以上である。該散布量の上限は、特に設定する理由はないものの、散布量が過大であると、粉塵状の粒子の飛散量を抑制する効果が飽和すること、及び、材料のコストの観点から、好ましくは10kgである。
粉体散布工程で散布される粉体と、粒体散布工程で散布される粒体の合計量は、畔の長さ1m当たり、好ましくは2kg以上、より好ましくは4kg以上、特に好ましくは6kg以上である。該合計量の上限は、特に限定されないが、材料のコスト等の観点から、好ましくは20kgである。
粉体散布工程で散布される粉体と、粒体散布工程で散布される粒体の合計量100質量部中の上記粉体の量は、畔塗り作業時における粉塵状の粒子の飛散の防止と、畔塗り後の畔の強度(一軸圧縮強さ)の向上をバランス良く両立させる観点から、好ましくは20~80質量部、より好ましくは25~75質量部、さらに好ましくは30~70質量部、特に好ましくは35~65質量部である。
From the viewpoint of further reducing the amount of dusty particles scattered during the ridge coating work, the amount of granules to be applied is preferably 1 kg or more, more preferably 2 kg or more, and particularly preferably 3 kg per 1 m of ridge length. That's it. Although there is no particular reason for setting the upper limit of the spraying amount, if the spraying amount is too large, the effect of suppressing the scattering of dust-like particles is saturated, and from the viewpoint of material cost, it is preferable 10 kg.
The total amount of the powder to be sprayed in the powder spraying step and the granules to be sprayed in the granule spraying step is preferably 2 kg or more, more preferably 4 kg or more, and particularly preferably 6 kg or more per 1 m of ridge length. is. Although the upper limit of the total amount is not particularly limited, it is preferably 20 kg from the viewpoint of material cost and the like.
The amount of the powder in the total amount of 100 parts by mass of the powder sprayed in the powder spraying step and the granules sprayed in the granule spraying step is the prevention of scattering of dust-like particles during the ridge coating work. And, from the viewpoint of achieving both the improvement of the strength (uniaxial compressive strength) of the ridge after ridge coating in a well-balanced manner, it is preferably 20 to 80 parts by mass, more preferably 25 to 75 parts by mass, and still more preferably 30 to 70 parts by mass. , particularly preferably 35 to 65 parts by mass.

上記粉体及び上記粒体の各散布量は、後述の耕耘及び成形工程における耕耘及び成形を行った時を基準時として、上記粉体及び上記粒体を含む部分(換言すると、耕耘及び成形によって形成された、土壌、上記粉体、及び上記粒体の混合物)の一軸圧縮強さが、「JGS 0821-2009(安定処理土の締固めをしない供試体作製方法)」及び「JIS A 1216:2020(土の一軸圧縮試験方法)」に準拠して測定される7日後の値として、好ましくは100kN/m以上、より好ましくは150kN/m以上、さらに好ましくは200kN/m以上、特に好ましくは250kN/m以上となるように、定めればよい。
一軸圧縮強さは、畔塗り後の畔をコア抜きしたり、一部採取して削り出しなどにより成形した供試体を対象にして、測定することができる。
該一軸圧縮強さの上限は、特に設定する理由はないものの、畔が過剰な強度を有する必要はない観点から、通常、400kN/mである
The amount of each of the powder and the granules to be sprayed is the portion containing the powder and the granules (in other words, the portion containing the powder and the granules (in other words, by tilling and forming The uniaxial compressive strength of the formed soil, the powder, and the granule mixture) is "JGS 0821-2009 (test sample preparation method without compaction of stabilized soil)" and "JIS A 1216: 2020 (soil uniaxial compression test method)”, the value after 7 days is preferably 100 kN/m 2 or more, more preferably 150 kN/m 2 or more, still more preferably 200 kN/m 2 or more, especially Preferably, it should be determined to be 250 kN/m 2 or more.
Unconfined compressive strength can be measured by using a test piece formed by removing cores from the ridges after the ridge coating or by cutting out a part of the ridges.
Although there is no particular reason for setting the upper limit of the unconfined compressive strength, it is usually 400 kN/m 2 from the viewpoint that the ridge does not need to have excessive strength.

[耕耘及び成形工程]
耕耘及び成形工程は、粉体層及び粒体層が形成された、畔塗り前の畔に対して、上述の畔塗り機を用いて、耕耘及び成形を行い、畔塗り後の畔を形成させる工程である。
ここで、「耕耘」とは、畔塗り機の耕耘手段を構成する耕耘用の爪によって、畔塗り前の畔を切り崩して、畔状に盛り上げることをいう。
また、「成形」とは、耕耘によって畔状に盛り上げた膨軟な土壌を加圧して、特定の形状を有する畔を形成させることをいう。ここで、畔の特定の形状は、畔塗り機の成形手段を構成する2つの部分(上面形成用の部分、及び法面形成用の部分)の形状によって定まる。
[Tillage and forming process]
In the plowing and forming step, the ridge before ridge coating on which the powder layer and the grain layer are formed is plowed and shaped using the ridge coating machine described above to form a ridge after ridge coating. It is a process.
Here, the term "tillage" refers to cutting down a ridge before ridge coating and raising it into a ridge shape with a tine for tillage, which constitutes the tilling means of the ridge coating machine.
Further, "shaping" refers to pressurizing the swollen and soft soil that has been plowed up into a ridge shape to form a ridge having a specific shape. Here, the specific shape of the ridge is determined by the shapes of the two parts (the part for forming the upper surface and the part for forming the slope) that constitute the shaping means of the ridge coating machine.

本発明において、粉塵状の粒子の舞い上がり(飛散)の抑制効果は、後述の実施例における試験方法による飛散量の減少割合で示すと、以下のものが好ましい。
粉体と粒体の併用(合計量:100質量部)による粉塵状の粒子の飛散量の減少割合は、粉体100質量部のみを用いた場合に比べて、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上、特に好ましくは80質量%以上である。
In the present invention, the effect of suppressing dust-like particles from flying up (scattering) is preferably as follows when expressed by the reduction rate of the amount of scattering according to the test method in the examples described later.
The ratio of reduction in the amount of scattered dust particles due to the combined use of powder and granules (total amount: 100 parts by mass) is preferably 50% by mass or more, more than when only 100 parts by mass of powder is used. It is preferably 60% by mass or more, more preferably 70% by mass or more, and particularly preferably 80% by mass or more.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[使用材料]
(1)土壌:荒木田土(含水率:35%)
(2)粉体:軽焼マグネシア粉体(マグネサイトを850℃で焼成してなる軽焼マグネシアの粉砕物;ブレーン比表面積:5,500cm/g;表1中の「粉体」)
(3)粒体A:軽焼マグネシア粒体(マグネサイトを850℃で焼成してなる軽焼マグネシアの破砕物の分級品;目開き850μm~2.36mmの範囲内の粒度を有するもの;表1中の「粒体A」)
(4)粒体B:軽焼マグネシア粒体(マグネサイトを850℃で焼成してなる軽焼マグネシアの破砕物の分級品;目開き2.36mm~4mmの範囲内の粒度を有するもの;表1中の「粒体B」)
EXAMPLES The present invention will be specifically described below by way of examples, but the present invention is not limited to these examples.
[Materials used]
(1) Soil: Arakida soil (water content: 35%)
(2) Powder: light-burnt magnesia powder (pulverized light-burnt magnesia obtained by firing magnesite at 850°C; Blaine specific surface area: 5,500 cm 2 /g; “Powder” in Table 1)
(3) Grain A: Light-burnt magnesia granules (classified product of crushed light-burnt magnesia obtained by sintering magnesite at 850 ° C.; having a grain size within the range of 850 μm to 2.36 mm in opening; Table "Particle A" in 1)
(4) Granules B: light-burnt magnesia granules (classified product of crushed light-burnt magnesia obtained by firing magnesite at 850 ° C.; having a grain size within the range of 2.36 mm to 4 mm in opening; Table "Particle B" in 1)

[実施例1]
粉体7.5質量部、「粒体A」2.5質量部、及び、土壌90質量部を用いて、以下の試験を行った。
(A)一軸圧縮強さ
「JGS 0821-2009(安定処理土の締固めをしない供試体作製方法)」に準拠して、供試体を作製した。この供試体の作製において、ホバート型ミキサに各材料(粉体7.5質量部、「粒体A」2.5質量部、及び、土壌90質量部)を投入し、10分間混合した後、7日間密封養生を行った。
養生後の供試体について、「JIS A 1216:2020(土の一軸圧縮試験方法)」に準拠して、一軸圧縮強さを測定した。
[Example 1]
The following test was performed using 7.5 parts by mass of powder, 2.5 parts by mass of "granule A", and 90 parts by mass of soil.
(A) Uniaxial Compressive Strength A specimen was prepared according to "JGS 0821-2009 (Method for preparing specimen without compaction of stabilized soil)". In the preparation of this test piece, each material (7.5 parts by mass of powder, 2.5 parts by mass of "granule A", and 90 parts by mass of soil) was added to a Hobart mixer and mixed for 10 minutes. Sealed curing was performed for 7 days.
The unconfined compressive strength of the specimen after curing was measured according to "JIS A 1216:2020 (Unconfined Compression Test Method for Soil)".

(B)粉塵状の粒子の飛散割合
以下の手順で、固化材(軽焼マグネシアからなる粉体及び粒体)の全量中の飛散した固化材の割合(飛散割合)を算出した。
a) 練り鉢(容量:1.3リットル)に、0.36リットルの土壌90質量部を収容した。
b) 練り鉢の中の土壌の上面全体に、粉体7.5質量部を散布し、粉体層を形成させた。
c) さらに、練り鉢の中の粉体層の上面全体に、「粒体A」2.5質量部を散布し、粒体層を形成させた。
d) 練り鉢中の収容物(土壌に粉体及び粒体Aを散布してなるもの)を均一に混合するためのパドルを、練り鉢とパドルとを接触させた状態でホバート型ミキサ本体に設置した後、1分間、上記の収容物を撹拌した。
e) 上記d)における撹拌によって練り鉢から舞い上がって飛散した固化材の質量を測定した。上記c)において練り鉢の中に収容されていた固化材の全量(10質量部)に対する飛散した固化材の割合(質量%)を算出し、得られた値を「飛散割合(質量%)」とした。
(B) Scattering ratio of dust-like particles The ratio of the scattered solidifying material (scattering ratio) in the total amount of the solidifying material (powder and granules made of light-burnt magnesia) was calculated according to the following procedure.
a) A mortar (capacity: 1.3 liters) was filled with 0.36 liters of 90 parts by mass of soil.
b) 7.5 parts by mass of powder was sprinkled over the entire upper surface of the soil in the kneading bowl to form a powder layer.
c) Further, 2.5 parts by mass of "granules A" were dispersed over the entire upper surface of the powder layer in the kneading bowl to form a granule layer.
d) A paddle for uniformly mixing the content in the kneading bowl (those obtained by spraying the powder and granules A on the soil) is attached to the main body of the Hobart mixer while the kneading bowl and the paddle are in contact. After placement, the contents were agitated for 1 minute.
e) The mass of the solidifying material blown up and scattered from the kneading bowl by the stirring in d) above was measured. In the above c), the ratio (% by mass) of the scattered solidifying material to the total amount (10 parts by mass) of the solidifying material contained in the kneading bowl is calculated, and the obtained value is referred to as the "scattering ratio (% by mass)". and

[実施例2~11、比較例1~2]
表1に示す材料を用いる以外は実施例1と同様にして、試験を行った。
以上の結果を表1に示す。
表1から、実施例1~11では、一軸圧縮強さが131~345kN/mであり、比較例2の一軸圧縮強さ(98kN/m)に比べて、雑草の根の生長を抑制しうる土壌の強度を得ていることがわかる。
また、実施例1~11では、粉塵状の粒子(固化材)の飛散割合が0.01~0.85質量%であり、比較例1の飛散割合(1.40質量%)に比べて、粉塵状の粒子(固化材)の飛散量を大幅に低減させたことがわかる。
軽焼マグネシア粉体を投入した場合の一軸圧縮強さは、投入量にほぼ比例するので、例えば、粉体の量が2.5質量部である実施例5または実施例10において、粒体A(実施例5)または粒体B(実施例10)に代えて、砂を用いた場合であっても、粉塵状の粒子(マグネシウム系固化材)の飛散量が低減され、所定の一軸圧縮強さ(100kN/m以上)を得ることができる。
[Examples 2-11, Comparative Examples 1-2]
The test was conducted in the same manner as in Example 1 except that the materials shown in Table 1 were used.
Table 1 shows the above results.
From Table 1, in Examples 1 to 11, the uniaxial compressive strength was 131 to 345 kN/m 2 , and compared to the uniaxial compressive strength (98 kN/m 2 ) in Comparative Example 2, weed root growth was suppressed. It can be seen that the strength of wet soil is obtained.
In Examples 1 to 11, the scattering ratio of dust-like particles (solidifying material) was 0.01 to 0.85% by mass, and compared to the scattering ratio (1.40% by mass) of Comparative Example 1, It can be seen that the scattering amount of dust-like particles (solidifying material) was greatly reduced.
The unconfined compressive strength when the light-burnt magnesia powder is added is approximately proportional to the amount of input. Even when sand is used instead of (Example 5) or granules B (Example 10), the scattering amount of dust-like particles (magnesium-based solidifying material) is reduced, and the predetermined uniaxial compressive strength (100 kN/m 2 or more) can be obtained.

Figure 2022157126000001
Figure 2022157126000001

Claims (5)

畔塗り機を用いた畔塗り方法であって、
上記畔塗り機は、畔塗り前の畔を耕耘して畔状に盛り上げるための耕耘手段、及び、上記耕耘手段によって耕耘された土壌を畔に成形するための成形手段を有するものであり、
上記畔塗り方法が、
畔塗り前の畔の表面に、マグネシウム系固化材からなる、ブレーン比表面積が2,000cm/g以上の粉体を散布して、粉体層を形成させる粉体散布工程と、
上記粉体層の上に、300μm以上の粒度を有するものを80質量%以上の割合で含む粒体を散布して、粒体層を形成させる粒体散布工程と、
上記粉体層及び上記粒体層が形成された、上記畔塗り前の畔に対して、上記畔塗り機を用いて、耕耘及び成形を行い、畔塗り後の畔を形成させる耕耘及び成形工程、
を含むことを特徴とする畔塗り方法。
A ridge coating method using a ridge coating machine,
The ridge coating machine has tillage means for plowing the ridge before ridge coating and raising it into a ridge shape, and forming means for shaping the soil plowed by the tillage means into a ridge,
The above ridge coating method is
a powder spraying step of forming a powder layer by spraying powder made of a magnesium-based solidifying material and having a Blaine specific surface area of 2,000 cm 2 /g or more on the surface of the ridge before ridge coating;
a granule spreading step of forming a granule layer by spreading granules containing 80% by mass or more of particles having a particle size of 300 μm or more on the powder layer;
A plowing and forming step of using the ridge coating machine to till and shape the ridge before ridge coating on which the powder layer and the granular layer are formed, thereby forming a ridge after coating. ,
A ridge coating method comprising:
上記粒体散布工程で散布される上記粒体が、マグネシウム系固化材(ただし、上記粒体を構成するマグネシウム系固化材は、上記粉体散布工程で散布される粉体を構成するマグネシウム系固化材と同じでも異なってもよい。)からなる請求項1に記載の畔塗り方法。 The granules dispersed in the granule dispersion step are magnesium-based solidification materials (however, the magnesium-based solidification material constituting the granules is the magnesium-based solidification material that constitutes the powder dispersed in the powder dispersion step. 2. The ridge coating method according to claim 1, wherein the ridge coating method is made of the same or different material. 上記粉体を構成する上記マグネシウム系固化材、及び、上記粒体を構成する上記マグネシウム系固化材が、軽焼マグネシアである請求項2に記載の畔塗り方法。 3. The ridge coating method according to claim 2, wherein the magnesium-based solidifying material that constitutes the powder and the magnesium-based solidifying material that constitutes the granules are light burnt magnesia. 上記粉体と上記粒体の合計量100質量部中の上記粉体の量が、20~80質量部である請求項1~3のいずれか1項に1又は2に記載の畔塗り方法。 The ridge coating method according to any one of claims 1 to 3, wherein the amount of the powder is 20 to 80 parts by mass in 100 parts by mass of the total amount of the powder and the granules. 上記粉体及び上記粒体の各散布量は、上記粉体及び上記粒体を含む部分の一軸圧縮強さが、「JGS 0821-2009(安定処理土の締固めをしない供試体作製方法)」及び「JIS A 1216:2020(土の一軸圧縮試験方法)」に準拠して測定される7日後の値として、100kN/m以上となるように定められる請求項1~4のいずれか1項に記載の畔塗り方法。 The amount of each of the powder and the granules sprayed is such that the uniaxial compressive strength of the portion containing the powder and the granules is "JGS 0821-2009 (Method for preparing a specimen without compaction of stabilized soil)". and ``JIS A 1216: 2020 (soil uniaxial compression test method)'', which is determined to be 100 kN/ m2 or more as a value after 7 days measured in accordance with any one of claims 1 to 4. The ridge coating method described in .
JP2021061178A 2021-03-31 2021-03-31 Ridge coating method Pending JP2022157126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021061178A JP2022157126A (en) 2021-03-31 2021-03-31 Ridge coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021061178A JP2022157126A (en) 2021-03-31 2021-03-31 Ridge coating method

Publications (1)

Publication Number Publication Date
JP2022157126A true JP2022157126A (en) 2022-10-14

Family

ID=83559597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021061178A Pending JP2022157126A (en) 2021-03-31 2021-03-31 Ridge coating method

Country Status (1)

Country Link
JP (1) JP2022157126A (en)

Similar Documents

Publication Publication Date Title
JP6474059B2 (en) Ground solidification method
JP2019176755A (en) Ridge making method
AU2018282390B2 (en) Steelmaking slag for fertilizer raw material, method for producing steelmaking slag for fertilizer raw material, method for producing fertilizer, and fertilizer application method
JP2022157126A (en) Ridge coating method
JP5183530B2 (en) Method for producing anhydrous gypsum powder
EA001542B1 (en) Compositions for treating soils, method of preparation and use thereof
CN108865168A (en) A kind of heavy-metal contaminated soil renovation agent and preparation method thereof
JP3485140B2 (en) Silicate fertilizer or silicic acid fertilizer mixed single fertilizer
AU2018282388B2 (en) Steelmaking slag for fertilizer raw material, method for producing steelmaking slag for fertilizer raw material, method for producing fertilizer, and fertilizer application method
JP4370314B2 (en) Granulation method of highly dehydrated lime cake
JP2007321005A (en) Cement-based solidifying material, and conditioning method of ground by using the solidifying material
JP4235231B2 (en) A processing machine that harmonizes clumps.
JP4202254B2 (en) Production method of raw material for siliceous fertilizer
JP6619193B2 (en) Residual soil processing material and processing method of residual soil
JPS6053589A (en) Chemical blend for soil stability and polyacrylate dispersive dust control
JP6006654B2 (en) Method for producing siliceous fertilizer
WO2000078893A1 (en) Liquid soil conditioner
JP7014511B2 (en) Weed control material and how to use it
JP2717222B2 (en) Filling material for vegetation in pores of alkali-cured material
CN204816682U (en) Caking fertilizer breaker among saline soil reclamation
JPH09157077A (en) Granular mixed fertilizer containing granular oyster shell
JPH0977584A (en) Granular mixed phosphatic fertilizer
JP2017205049A (en) Weed control material and method of using the same
JP3087944B2 (en) Oyster shell mixed fertilizer
JPH11190030A (en) Greening material and greening method therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20241001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241018