JP2022156993A - Ferrite composition, electronic component and power supply - Google Patents

Ferrite composition, electronic component and power supply Download PDF

Info

Publication number
JP2022156993A
JP2022156993A JP2021060970A JP2021060970A JP2022156993A JP 2022156993 A JP2022156993 A JP 2022156993A JP 2021060970 A JP2021060970 A JP 2021060970A JP 2021060970 A JP2021060970 A JP 2021060970A JP 2022156993 A JP2022156993 A JP 2022156993A
Authority
JP
Japan
Prior art keywords
mass
terms
main component
ferrite composition
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021060970A
Other languages
Japanese (ja)
Inventor
徹 氏家
Toru Ujiie
健太郎 森
Kentaro Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2021060970A priority Critical patent/JP2022156993A/en
Priority to CN202210323363.3A priority patent/CN115148435A/en
Publication of JP2022156993A publication Critical patent/JP2022156993A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0311Compounds
    • H01F1/0313Oxidic compounds
    • H01F1/0315Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F2027/348Preventing eddy currents

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dc-Dc Converters (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

To provide: a ferrite composition capable of reducing the change of eddy current loss due to a difference in the size or shape of a core; an electronic component using the ferrite composition; and a power supply using the electronic component.SOLUTION: A ferrite composition has a main component and an accessory component. The main component is constituted of 51.0 to 53.5 mol% of iron oxide in terms of Fe2O3, 7 to 14 mol% of zinc oxide in terms of ZnO and the remainder consisting of manganese oxide; and the accessory component includes 0.09 to 0.27 pts.mass of cobalt in terms of CoO, 0.13 to 0.45 pts.mass of titanium in terms of TiO2, 0.06 to 0.25 pts.mass of calcium in terms of CaCO3 and 0.015 to 0.045 pts.mass of niobium in terms of Nb2O5 to 100 pts.mass of the main component.SELECTED DRAWING: None

Description

本発明は、フェライト組成物と、当該フェライト組成物を含む電子部品ならびに電源装置に関する。 TECHNICAL FIELD The present invention relates to a ferrite composition, and an electronic component and a power supply device containing the ferrite composition.

近年、電子機器の小型化と高効率化が進み、電源装置などに使用される電子部品にも小型化・高効率化が強く求められている。小型化・高効率化のためコイルやトランスなどの電子部品に用いられるフェライト焼結体には低損失特性が要求される。 In recent years, electronic devices have become smaller and more efficient, and there is a strong demand for smaller and more efficient electronic components used in power supply devices and the like. Low-loss characteristics are required for ferrite sintered bodies used in electronic parts such as coils and transformers for miniaturization and high efficiency.

一般的にフェライト組成物の磁心損失Pcvは、ヒステリシス損失Phv、渦電流損失Pevおよび残留損失Prvからなり、渦電流損失Pevは、コア(磁心)のサイズまたは形状により大きく変化する。これまでの技術では、コアのサイズまたは形状の違いによる渦電流損失Pevの変化を抑制することができず、実際にフェライトコアを作製した際に、設計通りの値を得られないことが多かった。 In general, the core loss Pcv of a ferrite composition consists of hysteresis loss Phv, eddy current loss Pev and residual loss Prv, and eddy current loss Pev varies greatly depending on the size or shape of the core (magnetic core). With conventional technologies, changes in eddy current loss Pev due to differences in core size or shape could not be suppressed, and when actually manufacturing ferrite cores, it was often not possible to obtain the value as designed. .

特許文献1では、磁気異方性と磁歪が小さくなる主成分の調整、十分な電気抵抗率が得られる副成分の調整、不可避不純物量の制御により、300kHz-100mT,100℃での低損失化がなされている。 In Patent Document 1, the loss is reduced at 300 kHz-100 mT and 100° C. by adjusting the main component that reduces magnetic anisotropy and magnetostriction, adjusting the sub-component that provides sufficient electrical resistivity, and controlling the amount of unavoidable impurities. is done.

また、特許文献2では、トランスの熱暴走防止に主眼を置き、CoOおよびTiOを同時に添加することにより、120℃以上での損失低減がなされている。 Moreover, in Patent Document 2, the loss is reduced at 120° C. or higher by adding CoO and TiO 2 simultaneously, focusing on preventing thermal runaway of the transformer.

さらに、特許文献3では、CoOおよびTiOを同時添加した組成物で100~300kHzでの損失低減がなされている。 Furthermore, in Patent Document 3, loss reduction at 100 to 300 kHz is achieved with a composition to which CoO and TiO 2 are added simultaneously.

しかし、特許文献1~特許文献3ではコア形状の違いによる渦電流損失の変化について検討されていない。 However, Patent Documents 1 to 3 do not discuss changes in eddy current loss due to differences in core shape.

特許第6730545号公報Japanese Patent No. 6730545 特許第5786322号公報Japanese Patent No. 5786322 特開2004-35372号公報JP-A-2004-35372

本発明は、このような実情を鑑みてなされ、その目的は、コアのサイズまたは形状の違いによる渦電流損失の変化を低減することができるフェライト組成物と、当該フェライト組成物を用いた電子部品と、当該電子部品を用いた電源装置を提供することである。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a ferrite composition capable of reducing changes in eddy current loss due to differences in core size or shape, and an electronic component using the ferrite composition. and to provide a power supply device using the electronic component.

上記の目的を達成するために、本発明に係るフェライト組成物は、
主成分と副成分とを有し、
前記主成分は、Fe換算で51.0~53.5モル%の酸化鉄と、ZnO換算で7~14モル%の酸化亜鉛と、残部である酸化マンガンと、で構成され、
前記主成分100質量部に対して、前記副成分として、コバルトをCoO換算で0.09~0.27質量部、チタンをTiO換算で0.13~0.45質量部、カルシウムをCaCO換算で0.06~0.25質量部、ニオブをNb換算で0.015~0.045質量部、含有している。
In order to achieve the above object, the ferrite composition according to the present invention is
having a main component and a subcomponent,
The main component is composed of 51.0 to 53.5 mol% iron oxide in terms of Fe 2 O 3 , 7 to 14 mol% zinc oxide in terms of ZnO, and the balance manganese oxide,
With respect to 100 parts by mass of the main component, as the secondary components, cobalt is 0.09 to 0.27 parts by mass in terms of CoO, titanium is 0.13 to 0.45 parts by mass in terms of TiO 2 , calcium is CaCO 3 It contains 0.06 to 0.25 parts by mass in terms of conversion, and 0.015 to 0.045 parts by mass in terms of Nb 2 O 5 of niobium.

一般的に、比較的磁路断面積が小さいコアの特性を元にして製品設計を行う。しかし、実際の製品は磁路断面積が大きい場合が多く、また、形状が複雑であり磁路断面積が均一ではないことが多い。このため製品設計段階の特性と実製品の特性とが一致しないことがある。これに対して、本発明に係るフェライト組成物は、上記の構成を有することで、コアの形状またはサイズの違いによる渦電流損失の変化を低減できる、すなわち、コアのサイズまたは形状の違いによる渦電流損失の変化を抑制できる。 In general, product design is based on the characteristics of the core, which has a relatively small magnetic path cross-sectional area. However, actual products often have a large magnetic path cross-sectional area, and often have complex shapes and uneven magnetic path cross-sectional areas. For this reason, the characteristics at the product design stage may not match the characteristics of the actual product. In contrast, the ferrite composition according to the present invention, having the above configuration, can reduce changes in eddy current loss due to differences in core shape or size, that is, eddy current loss due to differences in core size or shape. A change in current loss can be suppressed.

本発明に係るフェライト組成物は、インダクタ、トランス、チョークコイル、リアクトル、アンテナ、非接触給電用コイルなどの各種電子部品において、当該電子部品に含まれる磁心や磁性シート(非接触給電用、電磁波吸収体、ノイズフィルタなど)として用いることができる。特に、本発明に係るフェライト組成物は、電源用トランスの磁心として用いることが好ましく、この電源用トランスは、たとえば、EV(Electric Vehicle:電動輸送機器)、PHV(Plug-in Hybrid Vehicle:プラグインハイブリッド自動車)、あるいはコミュータ(車両)などで用いられる車載用のスイッチング電源装置、家庭用または産業用の電気機器の電源装置、もしくはコンピュータ機器の電源装置などに組み込んで利用することができる。 The ferrite composition according to the present invention is used in various electronic parts such as inductors, transformers, choke coils, reactors, antennas, and contactless power supply coils. object, noise filter, etc.). In particular, the ferrite composition according to the present invention is preferably used as a magnetic core of a power transformer. It can be used by being incorporated in a switching power supply for a vehicle such as a hybrid vehicle, a commuter (vehicle), a power supply for household or industrial electrical equipment, or a power supply for computer equipment.

以下、本発明の実施形態について詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail.

本実施形態に係るフェライト組成物は、焼結体などのバルク状の形態、粉末状の形態、もしくは薄膜状の形態であってもよく、その形態は特に限定されない。そして、本実施形態のフェライト組成物は、主成分と副成分とを有する。主成分は、酸化鉄と、酸化亜鉛と、酸化マンガンとで構成される。一方、副成分としては、少なくとも、コバルト(Co)と、チタン(Ti)と、カルシウム(Ca)と、ニオブ(Nb)と、を含む。 The ferrite composition according to this embodiment may be in a bulk form such as a sintered body, a powder form, or a thin film form, and the form is not particularly limited. And the ferrite composition of this embodiment has a main component and a subcomponent. The main components are iron oxide, zinc oxide and manganese oxide. On the other hand, the subcomponents include at least cobalt (Co), titanium (Ti), calcium (Ca), and niobium (Nb).

まず、主成分の組成について説明する。主成分全体を100モル%とすると、酸化鉄の含有率は、基準となる範囲がFe換算で51.0~53.5モル%であり、好ましくは51.25~52.8モル%である。酸化亜鉛の含有率は、基準となる範囲がZnO換算で7~14モル%であり、好ましくは8.6~12モル%である。また、酸化マンガンの含有率は、他の主成分である酸化鉄の含有率および酸化亜鉛の含有率を定めることで、主成分のうちの残部として定まる。 First, the composition of the main component will be explained. Assuming that the total amount of the main components is 100 mol%, the iron oxide content is in the range of 51.0 to 53.5 mol%, preferably 51.25 to 52.8 mol, in terms of Fe 2 O 3 . %. The standard range of zinc oxide content is 7 to 14 mol %, preferably 8.6 to 12 mol %, in terms of ZnO. In addition, the content of manganese oxide is determined as the balance of the main components by determining the content of iron oxide and zinc oxide, which are other main components.

上記の主成分は、フェライト組成物の断面において、スピネル型の結晶構造を有する主成分粒子を構成している。ここで、スピネル型の結晶構造は、化学量論組成式ABで表記され、Aサイトには、MnおよびZnが入り、Bサイトには、Feが入る。本実施形態において、スピネル構造の主成分粒子は、円相当径での平均粒径が、6~18μmであることが好ましく、8~14μmであることがより好ましい。なお、主成分粒子の平均粒径は、フェライト組成物の断面をSEM(走査型電子顕微鏡)もしくはSTEM(走査透過型電子顕微鏡)などで観察し、得られる断面写真を画像解析することで測定できる。 The above main component constitutes main component particles having a spinel crystal structure in the cross section of the ferrite composition. Here, the spinel-type crystal structure is represented by the stoichiometric formula AB 2 O 4 , Mn and Zn enter the A site, and Fe enters the B site. In the present embodiment, the main component particles having a spinel structure preferably have an average particle diameter of 6 to 18 μm, more preferably 8 to 14 μm, in equivalent circle diameter. The average particle size of the main component particles can be measured by observing the cross section of the ferrite composition with a SEM (scanning electron microscope) or STEM (scanning transmission electron microscope) and analyzing the resulting cross-sectional photograph. .

一方、副成分の含有率については、上記の主成分100質量部に対する比率、すなわち外枠量として表される。本実施形態において、Coの含有率は、基準となる範囲がCoO換算で0.09~0.27質量部であり、好ましくは0.13~0.27質量部、より好ましくは0.21~0.27質量部である。また、Tiの含有率は、基準となる範囲がTiO換算で0.13~0.45質量部であり、好ましくは0.13~0.35質量部であり、より好ましくは0.13~0.225質量部である。また、Caの含有率は、基準となる範囲がCaCO換算で0.06~0.25質量部であり、より好ましくは0.07~0.21質量部である。また、Nbの含有率は、基準となる範囲がNb換算で0.015~0.045質量部である。 On the other hand, the content of subcomponents is expressed as a ratio to 100 parts by mass of the main component, that is, as an outer frame amount. In the present embodiment, the content of Co is 0.09 to 0.27 parts by mass, preferably 0.13 to 0.27 parts by mass, more preferably 0.21 to 0.27 parts by mass in terms of CoO. It is 0.27 parts by mass. In addition, the content of Ti is 0.13 to 0.45 parts by mass, preferably 0.13 to 0.35 parts by mass, more preferably 0.13 to 0.45 parts by mass in terms of TiO 2 . It is 0.225 parts by mass. In addition, the reference range for the Ca content is 0.06 to 0.25 parts by mass, more preferably 0.07 to 0.21 parts by mass in terms of CaCO 3 . The standard range of the Nb content is 0.015 to 0.045 parts by mass in terms of Nb 2 O 5 .

フェライト組成物の内部における各副成分の存在形態は、特に限定されない。たとえば、各副成分は、主成分粒子に固溶していてもよいし、主成分粒子の粒界において酸化物、複合酸化物、炭酸塩などの各種化合物として存在していてもよい。 The form in which each subcomponent exists inside the ferrite composition is not particularly limited. For example, each subcomponent may be solid-dissolved in the main component particles, or may exist as various compounds such as oxides, composite oxides, and carbonates at the grain boundaries of the main component particles.

より具体的には、CoおよびTiは、主として主成分粒子に固溶し、スピネル格子中のFeの一部が、固溶したCoまたはTiに置換されると考えられる。特に、CoとTiとを同時に添加することで、スピネル格子のAサイトではなく、BサイトであるFeがCoまたはTiに置換されやすくなると考えられる。スピネル格子のFeがCoまたはTiに置換されると、磁気異方性定数の温度依存性が小さくなり、その結果、磁気損失の温度依存性も小さくなると考えられる。 More specifically, it is believed that Co and Ti are mainly dissolved in the main component particles, and part of the Fe in the spinel lattice is replaced by dissolved Co or Ti. In particular, it is believed that simultaneous addition of Co and Ti facilitates the substitution of Co or Ti for Fe, which is the B-site, not the A-site, of the spinel lattice. When Fe in the spinel lattice is replaced with Co or Ti, the temperature dependence of the magnetic anisotropy constant is reduced, and as a result, the temperature dependence of the magnetic loss is also reduced.

一方、Caについては、主として、主成分粒子の粒界において化合物として存在すると共に、主成分粒子の粒界近傍に固溶していると考えられる。Caが上記の形態で存在することで、フェライト組成物の焼結性が向上すると共に、粒界抵抗が高められると考えられる。また、Nbは、フェライト組成物の結晶組織の均一化に寄与すると考えられる。 On the other hand, Ca is considered to be mainly present as a compound at the grain boundaries of the main component particles and dissolved in the vicinity of the grain boundaries of the main component particles. Presumably, the presence of Ca in the form described above improves the sinterability of the ferrite composition and increases the grain boundary resistance. In addition, Nb is considered to contribute to homogenization of the crystal structure of the ferrite composition.

また、本実施形態のフェライト組成物には、Zrが実質的に含まれないことが好ましい。本実施形態において、「Zrが実質的に含まれない」とは、Zrの含有率が、主成分100質量部に対して、ZrO換算で0.009質量部以下であることを意味する。なお、Zrの含有率は、より好ましくは0~0.005質量部未満である。 Moreover, it is preferable that the ferrite composition of the present embodiment does not substantially contain Zr. In the present embodiment, “substantially free of Zr” means that the content of Zr is 0.009 parts by mass or less in terms of ZrO 2 with respect to 100 parts by mass of the main component. The Zr content is more preferably 0 to less than 0.005 parts by mass.

なお、本実施形態のフェライト組成物には、上述した副成分以外に、Si、V、Pなどの他の副成分や不可避不純物が含まれていてもよい。他の副成分や不可避不純物の含有率は、Pev変化抑制を妨げない量とする。たとえば、不可避不純物の総含有率は、主成分100質量部に対して0~0.001質量部程度とすることが好ましい。また、他の副成分としては、Siまたは/およびVを選択することが好ましい。この場合、主成分100質量部に対して、Siの含有率がSiO換算で0.005~0.02質量部であることが好ましく、Vの含有率がV換算で0.005~0.04質量部であることが好ましい。Siは、フェライト組成物の焼結性の向上に貢献すると考えられる。また、Vは、主として、主成分粒子の粒界において化合物として存在すると考えられ、粒界抵抗を高める働きをすると考えられる。 In addition, the ferrite composition of the present embodiment may contain other subcomponents such as Si, V, and P and unavoidable impurities in addition to the subcomponents described above. The contents of other subcomponents and unavoidable impurities are set so as not to hinder the suppression of Pev change. For example, the total content of unavoidable impurities is preferably about 0 to 0.001 parts by mass with respect to 100 parts by mass of the main component. Moreover, it is preferable to select Si and/or V as other subcomponents. In this case, the content of Si is preferably 0.005 to 0.02 parts by mass in terms of SiO 2 and the content of V is preferably 0.005 in terms of V 2 O 5 with respect to 100 parts by mass of the main component. It is preferably up to 0.04 parts by mass. Si is believed to contribute to improving the sinterability of the ferrite composition. Moreover, V is considered to exist mainly as a compound at the grain boundaries of the main component grains, and is thought to function to increase the grain boundary resistance.

上述したような主成分の含有率、および、副成分の含有率は、蛍光X線分析装置(XRF)を用いて成分分析することで測定できる。また、SEMやSTEMでの断面観察時に、電子線マイクロアナライザ(EPMA)により成分分析することで測定してもよく、X線回折(XRD)を用いて測定することもできる。 The content rate of the main component and the content rate of the subcomponent as described above can be measured by component analysis using an X-ray fluorescence spectrometer (XRF). In addition, when observing a cross section with an SEM or STEM, it may be measured by component analysis using an electron probe microanalyzer (EPMA), or it may be measured using X-ray diffraction (XRD).

次に、本実施形態に係るフェライト組成物の製造方法の一例について説明する。 Next, an example of a method for producing a ferrite composition according to this embodiment will be described.

まず、主成分の出発原料を準備し、焼成後に所定の組成となるように秤量する。主成分の出発原料としては、酸化物の粉末、または、加熱により酸化物となる化合物の粉末(炭酸塩の粉末など)を用いることができ、具体的には、α-Fe粉末、Mn粉末、ZnO粉末を用いることが好ましい。また、2種以上の金属を含む複合酸化物の粉末を、主成分の出発原料として用いてもよい。たとえば、塩化鉄および塩化マンガンを含有する水溶液を酸化焙焼することにより、FeおよびMnを含む複合酸化物の粉末を得る。そして、この複合酸化物の粉末にZnO粉末を加えて混合することで、主成分の原料としてもよい。なお、上述した各出発原料の平均粒径は、0.1~3.0μmとすることが好ましい。 First, starting materials for the main component are prepared and weighed so as to have a predetermined composition after firing. As the starting material for the main component, an oxide powder or a compound powder that becomes an oxide when heated (carbonate powder, etc.) can be used. Specifically, α-Fe 2 O 3 powder, It is preferable to use Mn3O4 powder and ZnO powder. Further, a composite oxide powder containing two or more kinds of metals may be used as a starting material for the main component. For example, by subjecting an aqueous solution containing iron chloride and manganese chloride to oxidative roasting, a composite oxide powder containing Fe and Mn is obtained. Then, ZnO powder may be added to and mixed with this composite oxide powder to form a raw material for the main component. The average particle size of each starting material described above is preferably 0.1 to 3.0 μm.

次に、秤量した主成分の出発原料を、ボールミルなどの混合機で混合し、その後、仮焼き処理する。この際、混合は、湿式混合でも乾式混合でもよく、湿式混合を選択した場合は、混合後に適宜乾燥してから、仮焼き処理する。また、仮焼き処理の条件は、保持温度を800~1100℃とすることが好ましく、温度保持時間(温度安定時間)を0.5~5時間とすることが好ましい。このような条件で仮焼きして得られた仮焼き材については、各種粉砕機を用いて、平均粒径が0.5~3.0μm程度となるまで粉砕する。なお、主成分の出発原料として、FeおよびMnを含む複合酸化物の粉末を用いる場合には、仮焼き処理を省略してもよい。 Next, the weighed starting materials of the main component are mixed in a mixer such as a ball mill, and then calcined. At this time, the mixing may be either wet mixing or dry mixing. When wet mixing is selected, the mixture is appropriately dried after mixing and then calcined. Further, as for the conditions of the calcination treatment, it is preferable to set the holding temperature to 800 to 1100° C., and the temperature holding time (temperature stabilization time) to be 0.5 to 5 hours. The calcined material obtained by calcining under such conditions is pulverized using various pulverizers until the average particle size reaches about 0.5 to 3.0 μm. Note that the calcination process may be omitted when a composite oxide powder containing Fe and Mn is used as the starting material of the main component.

次に、仮焼き後の原料に、副成分の出発原料を添加し混合する。副成分の出発原料としては、主成分の場合と同様に、酸化物の粉末、または、加熱により酸化物となる化合物の粉末を用いることができる。具体的には、CoO粉末、TiO粉末、CaCO粉末、Nb粉末、を用いることができる。副成分の出発原料の平均粒径についても、0.1~3.0μmとすることが好ましい。なお、副成分の出発原料は、仮焼き処理後に添加し、その後、上記の粉砕処理を行うことで、主成分と副成分とを混合しつつ仮焼き材を粉砕してもよい。また、副成分の出発原料は、仮焼き材の粉砕後に添加し、混合してもよい。さらに、CoO粉末およびTiO粉末については、予め主成分の出発原料と共に混合し、仮焼き処理に供してもよい。 Next, starting materials of subcomponents are added to and mixed with the raw materials after calcination. As a starting material for the subcomponent, as in the case of the main component, an oxide powder or a compound powder that becomes an oxide by heating can be used. Specifically, CoO powder, TiO2 powder, CaCO3 powder, and Nb2O5 powder can be used. The average particle size of the starting materials of the subcomponents is also preferably 0.1 to 3.0 μm. The starting materials for the subcomponents may be added after the calcination process, and then the above-described pulverization process may be performed to pulverize the calcined material while mixing the main and subcomponents. Also, the starting materials of the subcomponents may be added and mixed after the calcined material is pulverized. Further, the CoO powder and TiO 2 powder may be mixed in advance with the starting raw materials of the main components and subjected to calcination treatment.

次に、上記で得られた主成分と副成分との混合粉末に、ポリビニルアルコールなどの適当な結合材(バインダ)を加えて混錬し、複合材を得る。そして、この複合材を、射出成形や機械プレス成形などの手法により所定の形状に成形して、成形体を得る。たとえば、射出成形では、上記の複合材をスラリー化して金型に流し込むことで成形体を得る。また、機械プレス成形では、顆粒状の複合材を金型に充填して加圧することで成形体を得る。 Next, a suitable binder such as polyvinyl alcohol is added to the mixed powder of the main component and subcomponent obtained above, and kneaded to obtain a composite material. Then, this composite material is molded into a predetermined shape by a technique such as injection molding or mechanical press molding to obtain a molded body. For example, in injection molding, a molded article is obtained by making the composite material slurry and pouring it into a mold. In mechanical press molding, a compact is obtained by filling a granular composite material into a mold and applying pressure.

次に、上記で得られた成形体を焼成する。焼成の条件は、保持温度を1150℃~1400℃、より好ましくは1200℃~1300℃とし、温度保持時間を1~10時間、より好ましくは2~6時間とする。また、加熱開始から保持温度までの昇温過程では、昇温速度を50~300℃/時間とすることが好ましく、保持温度から900℃までの降温過程では、冷却速度を50~200℃/時間とすることが好ましい。また、焼成時の雰囲気は、酸素と窒素の混合雰囲気とし、昇温過程および温度保持過程での酸素分圧を0.1~5.0vol%とすることが好ましい。さらに、保持温度から1000℃までの降温過程では、酸素分圧を徐々に低下させ、1000℃以下では、酸素分圧を0.02vol%以下とすることが好ましい。 Next, the compact obtained above is fired. The firing conditions are a holding temperature of 1150° C. to 1400° C., more preferably 1200° C. to 1300° C., and a temperature holding time of 1 to 10 hours, more preferably 2 to 6 hours. Further, in the temperature rising process from the start of heating to the holding temperature, the temperature rising rate is preferably 50 to 300° C./hour, and in the temperature dropping process from the holding temperature to 900° C., the cooling rate is 50 to 200° C./hour. It is preferable to The atmosphere during firing is preferably a mixed atmosphere of oxygen and nitrogen, and the partial pressure of oxygen is preferably 0.1 to 5.0 vol % during the temperature rising process and the temperature holding process. Furthermore, it is preferable to gradually decrease the oxygen partial pressure in the process of lowering the temperature from the holding temperature to 1000° C., and to set the oxygen partial pressure to 0.02 vol % or less at 1000° C. or lower.

上記のような条件で焼成することで、焼結体としてのフェライト組成物が得られる。本実施形態に係る焼結体としてのフェライト組成物は、各種電子部品において、磁心や磁性シートとして用いることができる。 By firing under the above conditions, a ferrite composition as a sintered body can be obtained. The ferrite composition as a sintered body according to this embodiment can be used as a magnetic core or a magnetic sheet in various electronic components.

本実施形態に係るフェライト組成物を磁心(コア)として用いる場合の形状は、E字型、F字型、I字型、T字型、U字型、ドラム型、トロイダル型、ポット型、カップ型、もしくは単なる板状、角柱状の形状とすることができる。 When the ferrite composition according to the present embodiment is used as a magnetic core, the shape is E-shaped, F-shaped, I-shaped, T-shaped, U-shaped, drum-shaped, toroidal-shaped, pot-shaped, cup-shaped. It can be in the form of a mold, or simply a plate-like or prismatic shape.

なお、焼成後に得られた焼結体を粉砕して、粉末状のフェライト組成物を得てもよい。この場合、さらに、得られた焼結体粉末にバインダや溶媒を添加してペースト化することができる。そして、このペーストをシート法や押出法などの手法によりシート化し、その後、適宜乾燥や熱処理を施すことで、薄膜状のフェライト組成物が得られる。このような薄膜状のフェライト組成物は、たとえば、薄膜インダクタの磁心や、アンテナや非接触給電用などの磁性シート(非接触給電用、電磁波吸収体、ノイズフィルタ)として用いることができる。 The sintered body obtained after firing may be pulverized to obtain a powdery ferrite composition. In this case, a binder and a solvent can be further added to the obtained sintered body powder to form a paste. Then, the paste is formed into a sheet by a method such as a sheet method or an extrusion method, and then dried or heat-treated as appropriate to obtain a thin-film ferrite composition. Such a thin-film ferrite composition can be used, for example, as a magnetic core of a thin-film inductor, an antenna, or a magnetic sheet for non-contact power supply (for non-contact power supply, electromagnetic wave absorber, noise filter).

フェライト組成物の磁心損失Pcvは、ヒステリシス損失Phv、渦電流損失Pevおよび残留損失Prvからなり、従来の渦電流損失Pevは、コアのサイズまたは形状により大きく変化する。具体的には、コアのサイズが大きくなる程、渦電流損失が増加する傾向となり、特にコアの磁路断面積が大きくなる程、渦電流損失が増加する傾向となる。 The core loss Pcv of the ferrite composition consists of hysteresis loss Phv, eddy current loss Pev and residual loss Prv, and the conventional eddy current loss Pev varies greatly depending on the size or shape of the core. Specifically, the eddy current loss tends to increase as the size of the core increases, and in particular, the eddy current loss tends to increase as the cross-sectional area of the magnetic path of the core increases.

これに対して、本実施形態に係るフェライト組成物は主成分と副成分の含有率が所定の範囲内であることにより、コア(磁心)のサイズまたは形状の違いによる渦電流損失の変化を抑制できる。 On the other hand, in the ferrite composition according to the present embodiment, the content ratio of the main component and the subcomponent is within a predetermined range, so that the change in eddy current loss due to the difference in the size or shape of the core (magnetic core) is suppressed. can.

したがって、本実施形態に係るフェライト組成物は、そのサイズおよび形状が、特に限定されない。 Therefore, the size and shape of the ferrite composition according to this embodiment are not particularly limited.

本実施形態のフェライト組成物は、前述したように、磁心材料や磁性シートとして好適であり、トランス、インダクタ、チョークコイル、リアクトル、アンテナ、非接触給電用コイルなどの電子部品に用いることができる。上記の電子部品のなかでも、特にトランスとしての応用が好適である。本実施形態のフェライト組成物を含むトランスは、特に電源装置に組み込んで用いることが好ましい。電源装置としては、たとえば、上記のトランスに、入力フィルタや、スイッチング回路、整流回路、平滑回路などを組み合わせたスイッチング電源装置が挙げられる。 As described above, the ferrite composition of the present embodiment is suitable as a magnetic core material and a magnetic sheet, and can be used for electronic parts such as transformers, inductors, choke coils, reactors, antennas, and contactless power supply coils. Among the above electronic components, application as a transformer is particularly suitable. A transformer containing the ferrite composition of the present embodiment is preferably incorporated in a power supply device for use. Examples of the power supply include a switching power supply in which the above transformer is combined with an input filter, a switching circuit, a rectifying circuit, a smoothing circuit, and the like.

以上、本発明の実施形態について説明してきたが、本発明は上述した実施形態に限定されるものではなく、本発明の範囲内で種々に改変することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention.

以下、実施例および比較例を用いて、本発明をさらに詳細に説明する。ただし、本発明は、以下の実施例に限定されるものではない。 EXAMPLES The present invention will be described in more detail below using examples and comparative examples. However, the present invention is not limited to the following examples.

本実験では、表1~表5に示す組成を有する実施例1~41および比較例1~20のフェライトコアを作成し、その渦電流損失Pevを測定した。各実施例および各比較例のフェライトコアは、以下に示す手順で作製した。 In this experiment, ferrite cores of Examples 1 to 41 and Comparative Examples 1 to 20 having compositions shown in Tables 1 to 5 were produced and their eddy current loss Pev was measured. The ferrite cores of each example and each comparative example were produced by the procedure shown below.

まず、主成分の出発原料として、α-Fe粉末、Mn粉末、ZnO粉末を準備し、焼成後に所定の比率となるように秤量した。そして、秤量した各粉末を、ボールミルで湿式混合し、原料混合物を得た。さらに、この原料混合物を乾燥させた後、大気雰囲気において、900℃で3時間、仮焼きし、仮焼き材を得た。 First, α-Fe 2 O 3 powder, Mn 3 O 4 powder, and ZnO powder were prepared as starting materials for the main components, and weighed so as to have a predetermined ratio after firing. Then, the weighed powders were wet mixed in a ball mill to obtain a raw material mixture. Furthermore, after drying this raw material mixture, it was calcined at 900° C. for 3 hours in an air atmosphere to obtain a calcined material.

次に、上記の仮焼き材を、鉄鋼製ボールを充填したボールミルに投入し、16時間粉砕することで、平均粒径が1~2μmの粉砕粉を得た。そして、この粉砕粉と副成分の出発原料とを湿式混合し、その後乾燥させることで、混合粉末を得た。この際、副成分の出発原料としては、CoO粉末、TiO粉末、CaCO粉末、Nb粉末を準備し、焼成後に所定の比率となるように秤量した。また、各実施例および各比較例では、上記以外に副成分としてSiO粉末およびV粉末も所定量添加した。 Next, the above calcined material was put into a ball mill filled with steel balls, and pulverized for 16 hours to obtain a pulverized powder having an average particle size of 1 to 2 μm. Then, the pulverized powder and the starting material of the subcomponent were wet-mixed and then dried to obtain a mixed powder. At this time, CoO powder, TiO 2 powder, CaCO 3 powder, and Nb 2 O 5 powder were prepared as starting materials for the subcomponents, and weighed so as to have a predetermined ratio after firing. In each example and each comparative example, a predetermined amount of SiO 2 powder and V 2 O 5 powder were also added as subcomponents in addition to the above.

次に、上記の混合粉末100質量部に対して、ポリビニルアルコールを0.8質量部添加し、これをスプレードライヤで噴霧、乾燥することで顆粒にした。そして、得られた顆粒を、2種類の金型にそれぞれ充填し、100MPaの圧力で加圧成形することで、トロイダル形状の成形体を得た。 Next, 0.8 parts by mass of polyvinyl alcohol was added to 100 parts by mass of the mixed powder, and the mixture was sprayed with a spray dryer and dried to form granules. Then, the obtained granules were filled in two types of molds, respectively, and pressure-molded at a pressure of 100 MPa to obtain a toroidal-shaped compact.

ここで、「2種類の金型」とは、より小さいサイズである「小コア」を得るための金型と、より大きいサイズである「大コア」を得るための金型である。すなわち、上記の工程により、焼成後に「小コア」となる「小成形体」と、焼成後に「大コア」となる「大成形体」とを得た。 Here, "two kinds of molds" are a mold for obtaining a "small core" of a smaller size and a mold for obtaining a "large core" of a larger size. That is, through the above steps, a "small compact" that will become a "small core" after firing and a "large compact" that will become a "large core" after firing were obtained.

次に、上記の各成形体(「小成形体」および「大成形体」)を以下の条件で焼成した。焼成の条件は、保持温度を1250℃とし、保持時間を5時間とし、焼成雰囲気を酸素と窒素の混合雰囲気とした。なお、温度保持過程での酸素分圧は、4vol%とし、降温過程においては、1250℃~1000℃の温度帯で酸素分圧を単調減少させ、1000℃以下の温度帯で酸素分圧が0.02vol%となるように制御した。また、昇温速度は200℃/時間とし、冷却速度は100℃/時間とした。このような条件で焼成することで、焼結体としてのフェライトコア(「大コア」および「小コア」)が得られた。 Next, each of the above compacts (“small compact” and “large compact”) was fired under the following conditions. The firing conditions were a holding temperature of 1250° C., a holding time of 5 hours, and a mixed atmosphere of oxygen and nitrogen as the firing atmosphere. The oxygen partial pressure in the temperature holding process is 4 vol%, and in the temperature lowering process, the oxygen partial pressure is monotonically decreased in the temperature range of 1250 ° C. to 1000 ° C., and the oxygen partial pressure is 0 in the temperature range of 1000 ° C. or less. It was controlled to be .02 vol%. The temperature rising rate was 200° C./hour, and the cooling rate was 100° C./hour. By firing under these conditions, ferrite cores (“large core” and “small core”) were obtained as sintered bodies.

なお、得られたフェライトコアの形状は、小コアと大コアのいずれの場合においても上述したようにトロイダル形状であった。また、作製した小コアおよび大コアの寸法は、下記の通りであった。
小コア・・・外径:20mm,内径:10mm,高さ:5mm,磁路断面積:25mm
大コア・・・外径:50mm,内径:10mm,高さ:10mm,磁路断面積:200mm
The shape of the obtained ferrite core was a toroidal shape as described above in both cases of the small core and the large core. In addition, the dimensions of the small core and the large core produced were as follows.
Small core: outer diameter: 20 mm, inner diameter: 10 mm, height: 5 mm, magnetic path cross-sectional area: 25 mm 2
Large core: outer diameter: 50 mm, inner diameter: 10 mm, height: 10 mm, magnetic path cross-sectional area: 200 mm 2

また、作製したフェライトコアについては、その組成をXRFにより分析した。測定した結果を表1~表5に示す。 Moreover, the composition of the produced ferrite core was analyzed by XRF. Tables 1 to 5 show the measurement results.

また、各実施例および各比較例の各小コアおよび各大コアについて、周波数200kHz、300kHz、400kHz、磁束密度100mTの条件で、100℃での磁気損失Pcvを測定した。下記の方法により渦電流損失Pevを計算した。
式(1)に示すように、周波数200kHz~400kHzでの磁気損失Pcvは、ヒステリシス損失Phvと、渦電流損失Pevとの和で表せる。
Pcv=Phv+Pev ・・・(1)
次にヒステリシス損失Phvは周波数fに比例し、Pevはfの2乗に比例するため、式(2)のように表せる。
Pcv=Kh×f+Ke×f ・・・(2)
ここで、Khはヒステリシス損失係数であり、Keは渦電流損失係数である。
式(2)の両辺を周波数fで割ると、式(3)のように表せる。
Pcv/f=Kh+Ke×f ・・・(3)
式(3)より、Pcv/fが周波数fの一次関数となるため、傾きから渦電流損失係数Keが得られる。
すなわち、周波数200kHz、300kHzおよび400kHzのそれぞれの磁気損失Pcvに基づき、渦電流損失係数Keを得た。
得られた渦電流損失係数Keに基づき、下記の式(4)により渦電流損失Pevを計算した。
Pev=Ke×f ・・・(4)
Further, the magnetic loss Pcv at 100° C. was measured under conditions of frequencies of 200 kHz, 300 kHz and 400 kHz and a magnetic flux density of 100 mT for each small core and each large core of each example and each comparative example. The eddy current loss Pev was calculated by the following method.
As shown in Equation (1), magnetic loss Pcv at frequencies of 200 kHz to 400 kHz can be expressed as the sum of hysteresis loss Phv and eddy current loss Pev.
Pcv=Phv+Pev (1)
Next, since the hysteresis loss Phv is proportional to the frequency f, and Pev is proportional to the square of f, it can be expressed by Equation (2).
Pcv=Kh×f+Ke×f 2 (2)
where Kh is the hysteresis loss factor and Ke is the eddy current loss factor.
Dividing both sides of the equation (2) by the frequency f yields the equation (3).
Pcv/f=Kh+Ke×f (3)
Since Pcv/f is a linear function of the frequency f from equation (3), the eddy current loss coefficient Ke can be obtained from the slope.
That is, the eddy current loss coefficient Ke was obtained based on the respective magnetic losses Pcv at frequencies of 200 kHz, 300 kHz and 400 kHz.
Based on the obtained eddy current loss coefficient Ke, the eddy current loss Pev was calculated by the following formula (4).
Pev=Ke×f 2 (4)

さらに、各実施例および各比較例の各小コアおよび各大コアのPevに基づき、下記式(5)によりΔPevを算出した。結果を表1~表5に示す。なお、ΔPevが400kW/m以下である場合を良好であると判断した。
ΔPev=(大コアのPev)-(小コアのPev)・・・(5)
Furthermore, ΔPev was calculated by the following formula (5) based on the Pev of each small core and each large core in each example and each comparative example. The results are shown in Tables 1-5. A ΔPev of 400 kW/m 3 or less was judged to be good.
ΔPev=(Pev of large core)−(Pev of small core) (5)

Figure 2022156993000001
Figure 2022156993000001

表1では、主に、副成分の含有率を固定して、主成分の組成を変更した実験結果を示している。 Table 1 mainly shows experimental results in which the content of the subcomponent was fixed and the composition of the main component was changed.

表1に示すように、主成分が、Fe換算で51.0~53.5モル%の酸化鉄と、ZnO換算で7~14モル%の酸化亜鉛と、残部である酸化マンガンと、で構成してあり、所定量の副成分を含有する場合(実施例1~9)は、ΔPevが400kW/以下であり、なおかつ、比較例1~4に比べて、ΔPevが小さいことが確認できた。 As shown in Table 1, the main components are 51.0 to 53.5 mol% iron oxide in terms of Fe 2 O 3 , 7 to 14 mol% zinc oxide in terms of ZnO, and the balance manganese oxide. , and containing a predetermined amount of subcomponents (Examples 1 to 9), the ΔPev is 400 kW/ 3 or less, and the ΔPev is smaller than that of Comparative Examples 1 to 4. It could be confirmed.

Figure 2022156993000002
Figure 2022156993000002

Figure 2022156993000003
Figure 2022156993000003

表2および表3では、主成分がFe換算で52.6モル%の酸化鉄と、ZnO換算で9.5モル%の酸化亜鉛と、残部である酸化マンガンと、で構成してある場合において、副成分であるCoおよびTiの含有率を変更した場合の実験結果を示している。 In Tables 2 and 3, the main components are 52.6 mol% iron oxide in terms of Fe 2 O 3 , 9.5 mol% zinc oxide in terms of ZnO, and the balance manganese oxide. In a certain case, the experimental results are shown when the contents of Co and Ti, which are subcomponents, are changed.

表2および表3に示すように、副成分として、コバルトをCoO換算で0.09~0.27質量部、チタンをTiO換算で0.13~0.45質量部、含有する場合(実施例10~22)は、ΔPevが400kW/m以下であり、比較例5~12に比べて、ΔPevが小さいことが確認できた。 As shown in Tables 2 and 3, when 0.09 to 0.27 parts by mass of cobalt in terms of CoO and 0.13 to 0.45 parts by mass of titanium in terms of TiO 2 are contained as subcomponents (implementation Examples 10 to 22) had a ΔPev of 400 kW/m 3 or less, and it was confirmed that the ΔPev was smaller than those of Comparative Examples 5 to 12.

Figure 2022156993000004
Figure 2022156993000004

表4では、主成分がFe換算で52.2モル%の酸化鉄と、ZnO換算で11.5モル%の酸化亜鉛と、残部である酸化マンガンと、で構成してある場合において、副成分であるCoおよびTiの含有率を変更した場合の実験結果を示している。 In Table 4, in the case where the main component is composed of 52.2 mol% iron oxide in terms of Fe 2 O 3 , 11.5 mol% zinc oxide in terms of ZnO, and the balance manganese oxide , shows experimental results when the contents of Co and Ti, which are subcomponents, are changed.

表4に示すように、副成分として、コバルトをCoO換算で0.09~0.27質量部、チタンをTiO換算で0.13~0.45質量部、含有する場合(実施例23~29)は、ΔPevが400kW/m以下であることが確認できた。 As shown in Table 4, when 0.09 to 0.27 parts by mass of cobalt in terms of CoO and 0.13 to 0.45 parts by mass of titanium in terms of TiO 2 are contained as subcomponents (Examples 23 to 29) was confirmed to have a ΔPev of 400 kW/m 3 or less.

Figure 2022156993000005
Figure 2022156993000005

表5では、副成分であるCaおよびNbの含有率を変更した場合の実験結果を示している。 Table 5 shows experimental results when the contents of Ca and Nb, which are subcomponents, were changed.

表5に示すように、副成分として、カルシウムをCaCO換算で0.06~0.25質量部、ニオブをNb換算で0.015~0.045質量部、含有する場合(実施例30~41)は、ΔPevが400kW/m以下であることが確認できた。 As shown in Table 5, when 0.06 to 0.25 parts by mass of calcium in terms of CaCO 3 and 0.015 to 0.045 parts by mass of niobium in terms of Nb 2 O 5 are contained as auxiliary components (implementation Examples 30 to 41) were confirmed to have a ΔPev of 400 kW/m 3 or less.

表1~表5の結果を総合すると、主成分の組成と、各副成分(Co,Ti,Ca,Nb)の含有率とが、全て本発明の基準となる範囲を満足することで、コアのサイズまたは形状の違いによる渦電流損失の変化を抑制できることが確認できた。また、主成分と副成分のうち1種でも、基準となる範囲を満足しない場合には、コアのサイズまたは形状の違いによる渦電流損失の変化が増大することが確認できた。 Combining the results in Tables 1 to 5, it can be seen that the composition of the main component and the content of each of the subcomponents (Co, Ti, Ca, Nb) all satisfy the ranges serving as the criteria of the present invention, and the core It was confirmed that the change in eddy current loss due to the difference in size or shape can be suppressed. It was also confirmed that if even one of the main component and the subcomponent did not satisfy the standard range, the change in eddy current loss due to the difference in core size or shape increased.

Claims (3)

主成分と副成分とを有するフェライト組成物であって、
前記主成分は、Fe換算で51.0~53.5モル%の酸化鉄と、ZnO換算で7~14モル%の酸化亜鉛と、残部である酸化マンガンと、で構成され、
前記主成分100質量部に対して、前記副成分として、コバルトをCoO換算で0.09~0.27質量部、チタンをTiO換算で0.13~0.45質量部、カルシウムをCaCO換算で0.06~0.25質量部、ニオブをNb換算で0.015~0.045質量部、含有するフェライト組成物。
A ferrite composition having a main component and a subcomponent,
The main component is composed of 51.0 to 53.5 mol% iron oxide in terms of Fe 2 O 3 , 7 to 14 mol% zinc oxide in terms of ZnO, and the balance manganese oxide,
With respect to 100 parts by mass of the main component, as the secondary components, cobalt is 0.09 to 0.27 parts by mass in terms of CoO, titanium is 0.13 to 0.45 parts by mass in terms of TiO 2 , calcium is CaCO 3 A ferrite composition containing 0.06 to 0.25 parts by mass of niobium in an amount of 0.015 to 0.045 parts by mass of niobium in terms of Nb 2 O 5 .
請求項1に記載のフェライト組成物で構成された焼結体を含む電子部品。 An electronic component comprising a sintered body composed of the ferrite composition according to claim 1 . 請求項2に記載の電子部品を備える電源装置。 A power supply device comprising the electronic component according to claim 2 .
JP2021060970A 2021-03-31 2021-03-31 Ferrite composition, electronic component and power supply Pending JP2022156993A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021060970A JP2022156993A (en) 2021-03-31 2021-03-31 Ferrite composition, electronic component and power supply
CN202210323363.3A CN115148435A (en) 2021-03-31 2022-03-30 Ferrite composition, electronic component, and power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021060970A JP2022156993A (en) 2021-03-31 2021-03-31 Ferrite composition, electronic component and power supply

Publications (1)

Publication Number Publication Date
JP2022156993A true JP2022156993A (en) 2022-10-14

Family

ID=83405932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021060970A Pending JP2022156993A (en) 2021-03-31 2021-03-31 Ferrite composition, electronic component and power supply

Country Status (2)

Country Link
JP (1) JP2022156993A (en)
CN (1) CN115148435A (en)

Also Published As

Publication number Publication date
CN115148435A (en) 2022-10-04

Similar Documents

Publication Publication Date Title
KR20170028918A (en) Ferrite composition and electronic device
JP5423962B2 (en) Ferrite composition, ferrite core and electronic component
JP2011096977A (en) Ferrite composition, ferrite core, and electronic component
JP2010285310A (en) Ferrite composition, ferrite core and electronic component
CN115215642B (en) Ferrite composition, electronic component, and power supply device
KR102414450B1 (en) Ferrite composition, electronic component, and power supply device
JP5699540B2 (en) Ferrite composition, ferrite core and electronic component
JP5699542B2 (en) Ferrite composition, ferrite core and electronic component
JP6558505B2 (en) Ni-based ferrite sintered body, coil component, and manufacturing method of Ni-based ferrite sintered body
JP5737117B2 (en) Ferrite composition, ferrite core and electronic component
JP5510273B2 (en) Ferrite composition, ferrite core and electronic component
JP5510296B2 (en) Ferrite composition, ferrite core and electronic component
JP2022156993A (en) Ferrite composition, electronic component and power supply
WO2022070634A1 (en) MnZn-BASED FERRITE AND METHOD OF MANUFACTURING SAME
JP2013010685A (en) Ferrite sintered body and noise filter including the same
JP6064526B2 (en) Ferrite composition, ferrite core and electronic component
JP5831256B2 (en) Ferrite composition, ferrite core and electronic component
JP2010285311A (en) Ferrite composition, ferrite core and electronic component
JP2005108977A (en) Mn-Zn SYSTEM FERRITE, MAGNETIC CORE FOR TRANSFORMER, AND TRANSFORMER
JP3584437B2 (en) Method for producing Mn-Zn ferrite
JP5716538B2 (en) Ferrite composition and electronic component
JP6323042B2 (en) Ferrite composition, ferrite core and electronic component
JP5929119B2 (en) Ferrite composition and electronic component
JP5831255B2 (en) Ferrite composition, ferrite core and electronic component
JP5742504B2 (en) Ferrite composition and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231121