JP2022155561A - Water purification filter - Google Patents
Water purification filter Download PDFInfo
- Publication number
- JP2022155561A JP2022155561A JP2022054171A JP2022054171A JP2022155561A JP 2022155561 A JP2022155561 A JP 2022155561A JP 2022054171 A JP2022054171 A JP 2022054171A JP 2022054171 A JP2022054171 A JP 2022054171A JP 2022155561 A JP2022155561 A JP 2022155561A
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- water purification
- water
- purification filter
- carbon layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
本発明は、浄水フィルターに関する。 The present invention relates to water purification filters.
水道水の消毒には、主に次亜塩素酸ナトリウムが使用されており、該次亜塩素酸ナトリウムが水に溶解した時に生ずる次亜塩素酸や次亜塩素酸イオンは遊離残留塩素と呼ばれる。遊離残留塩素は殺菌ないし消毒効果を有する。しかし、自然水に存在するアンモニアや窒素酸化物と添加された次亜塩素酸や次亜塩素酸イオンとの反応から、クロラミン等の結合残留塩素が生成される。結合残留塩素と遊離残留塩素は合わせて残留塩素と呼ばれる。取水した原水の状態、添加する遊離残留塩素の量、さらには、クロラミンの量によっては臭気が問題となることが多い。 Sodium hypochlorite is mainly used for disinfection of tap water, and hypochlorous acid and hypochlorite ions generated when sodium hypochlorite dissolves in water are called free residual chlorine. Free residual chlorine has a bactericidal or disinfecting effect. However, combined residual chlorine such as chloramine is generated from reactions between ammonia and nitrogen oxides present in natural water and added hypochlorous acid and hypochlorite ions. Combined residual chlorine and free residual chlorine are called residual chlorine. Odor often becomes a problem depending on the condition of raw water taken, the amount of free residual chlorine added, and the amount of chloramine.
水道水等の飲料用水から、これら残留塩素を取り除く目的で浄水器が用いられる。このような浄水器は、活性炭やセラミック等の無機材料の吸着部材と、必要によりろ過用の有機高分子膜等を備えた構造である。近年では、浄水器や空気清浄器の高性能化の要望に伴い、これらのフィルター等には活性炭が多用されている。 A water purifier is used for the purpose of removing residual chlorine from drinking water such as tap water. Such a water purifier has a structure including an adsorption member made of an inorganic material such as activated carbon or ceramic, and an organic polymer membrane for filtration, if necessary. In recent years, along with the demand for higher performance of water purifiers and air purifiers, activated carbon is often used in these filters and the like.
例えば、活性炭吸着材とフィブリル化繊維バインダーと亜硫酸カルシウムとを水中で混合して混合スラリー状物とし、前記混合スラリー状物を中空円筒形芯部材の側面より吸引しながら被着させて吸着被着物とし、前記吸着被着物を加熱乾燥させてなる水中の残留塩素を除去する残留塩素除去フィルター体であって、前記活性炭吸着材は粒状活性炭又は繊維状活性炭のいずれか一方もしくは両方よりなり、前記活性炭吸着材を100重量部として、前記活性炭吸着材の重量を基準に前記フィブリル化繊維バインダー7~22重量部と、前記亜硫酸カルシウムを10~100重量部で配合されている残留塩素除去フィルター体が知られている(例えば、特許文献1参照。)。該フィルター体によれば、良好な通水性を有し、遊離残留塩素と結合残留塩素の両者を含む残留塩素の除去性能を高度に維持することができるとされている。 For example, an activated carbon adsorbent, a fibrillated fiber binder, and calcium sulfite are mixed in water to form a mixed slurry. and a residual chlorine removal filter body for removing residual chlorine in water obtained by heating and drying the adsorption deposit, wherein the activated carbon adsorbent is made of either one or both of granular activated carbon and fibrous activated carbon, and the activated carbon With 100 parts by weight of the adsorbent as the adsorbent, 7 to 22 parts by weight of the fibrillated fiber binder and 10 to 100 parts by weight of the calcium sulfite are blended based on the weight of the activated carbon adsorbent. (See Patent Document 1, for example). According to this filter body, it has good water permeability and is said to be able to maintain a high level of performance for removing residual chlorine containing both free residual chlorine and combined residual chlorine.
上記特許文献1の実施例のフィルターでは、結合残留塩素の濃度を0.2ppm(mg/L)とする飲料水を、水温20℃、通水流量2.5L/minに設定し、SV値500hr-1として通水、測定した結合残留塩素ろ過水量が、せいぜい1.1m3であり、結合残留塩素のろ過能力が不十分なものであった。 In the filter of the example of Patent Document 1, drinking water with a combined residual chlorine concentration of 0.2 ppm (mg / L) was set at a water temperature of 20 ° C. and a water flow rate of 2.5 L / min, and an SV value of 500 hr. The amount of filtered water with combined residual chlorine measured was 1.1 m 3 at most, indicating that the ability to filter out combined residual chlorine was insufficient.
そこで、本発明は、上記問題を解決し、結合残留塩素と遊離残留塩素のろ過能力の両立を図ることが可能な、浄水フィルターの提供を主な課題とする。 Accordingly, the main object of the present invention is to provide a water purifying filter that solves the above problems and is capable of filtering both combined residual chlorine and free residual chlorine.
本発明者等は、上記課題を解決すべく、酸性官能基量の高い活性炭を用いることを検討した。しかしながら、本発明者等が検討したところ、単に酸性官能基量の高い活性炭を用いるのみでは、結合残留塩素のろ過能力は優れたものとできても、遊離残留塩素のろ過能力を優れたものとすることが困難であった。 In order to solve the above problems, the present inventors studied using activated carbon with a high amount of acidic functional groups. However, as a result of investigations by the present inventors, it has been found that even though the ability to filter bound residual chlorine can be improved simply by using activated carbon with a high amount of acidic functional groups, the ability to filter free residual chlorine can be improved. it was difficult to
ここで、本発明者等は、上記遊離残留塩素のろ過能力を優れたものとすることが困難であった原因について検討した。遊離残留塩素の活性炭によるろ過メカニズムとしては、次のような酸化還元反応が考えられる。
HClO(遊離残留塩素)+C(活性炭)→CO+HCl
Here, the inventors of the present invention have investigated the cause of the difficulty in improving the ability to filter free residual chlorine. The following oxidation-reduction reaction can be considered as a mechanism of filtration of free residual chlorine by activated carbon.
HClO (free residual chlorine) + C (activated carbon) → CO + HCl
すなわち、C(活性炭)は、還元剤として働き、遊離残留塩素を分解する。ここで、酸性官能基量が高い活性炭としては、炭素原子に環状及び鎖状カルボキシル基、ラクトン基、フェノール基、水酸基、ケトン基、スルホン基等の酸性官能基が導入された活性炭が挙げられる。そして、酸性官能基を導入した活性炭表面では、還元剤として働く部分が減るため、酸性官能基を導入していない活性炭と比べて、上記酸化還元反応が進みにくくなると考えた。すなわち、活性炭の酸性官能量が大きいほど、また、酸性官能基の酸性度が高いほど、上記酸化還元反応は阻害されると考えられる。 That is, C (activated carbon) acts as a reducing agent and decomposes free residual chlorine. Activated carbon having a high amount of acidic functional groups includes activated carbon in which acidic functional groups such as cyclic and chain carboxyl groups, lactone groups, phenol groups, hydroxyl groups, ketone groups and sulfone groups are introduced into carbon atoms. Then, on the surface of the activated carbon introduced with the acidic functional group, the portion that acts as a reducing agent is reduced, so it was thought that the oxidation-reduction reaction would be less likely to proceed compared to the activated carbon not introduced with the acidic functional group. That is, it is considered that the oxidation-reduction reaction is inhibited as the amount of acidic functional groups of activated carbon increases and as the acidity of the acidic functional groups increases.
そこで、本発明者等がさらに検討したところ、例えば、酸性官能基量が高い活性炭と、酸性官能基量が低くかつ比表面積が一定の範囲である活性炭と、を併用し、それらの平均粒子径及び配合比を、浄水フィルターの酸性官能基量が0.8~3.0mmol/g、浄水フィルターの比表面積が1600~1900m2/gとなるように調整して活性炭層とすることにより、上記課題を解決できることを見出した。本発明は、かかる知見に基づき、鋭意検討を重ねることにより完成された発明である。 Therefore, as a result of further studies by the present inventors, for example, activated carbon with a high amount of acidic functional groups and activated carbon with a low amount of acidic functional groups and a specific surface area within a certain range are used in combination, and their average particle diameter and the mixing ratio is adjusted so that the amount of acidic functional groups in the water purification filter is 0.8 to 3.0 mmol/g, and the specific surface area of the water purification filter is 1600 to 1900 m 2 /g to form the activated carbon layer. I found that the problem can be solved. The present invention is an invention that has been completed through intensive studies based on such findings.
すなわち、本発明は、下記に掲げる態様の発明を提供する。
項1.活性炭層を含む浄水フィルターであって、前記活性炭層の比表面積が1600~1900m2/gであり、前記活性炭層の下記測定方法で測定される酸性官能基量が0.8~3.0mmol/gである、浄水フィルター。
(酸性官能基量の測定方法)
前記活性炭層の一部をカッターナイフで削り出し、削り出したものを粒子径分布が2mm以下となるまで細かく粉砕・分級し、1.0g採取し、測定用試料とする。アルカリ溶液として0.1mol/Lの水酸化ナトリウム溶液50mLに、測定用試料を加え、30分間振盪した後、24時間、25℃で静置する。その後、ガラス繊維ろ紙(Whatman社製GF/C)を用いてろ過を行い、得られたろ液10mLを0.1mol/L塩酸溶液で中和滴定を行い、酸性官能基量(mmol/g)を求める。
項2.円筒状のコアと、前記活性炭層の外周側に含まれるカバー層と、を含み、前記活性炭層が前記コアの外周側に含まれ、前記浄水フィルターの厚さに対する前記活性炭層の厚さの比(活性炭層の厚さ/浄水フィルターの厚さ)が0.7~0.9であり、
前記浄水フィルターの下記測定方法で測定される圧力損失Aが0.010~0.040MPaである、項1に記載の浄水フィルター。
(圧力損失Aの測定方法)
浄水フィルターの両端面を発泡ポリエチレン製のキャップをホットメルト又はシリコーンシーラントを用いて接着してシールした後、樹脂製ハウジングに充填し、純水を空塔速度(SV)が2781/hとなるように外側から内側に通過させ、10分間その流量を保持した後、ブルドン管圧力計にて圧力損失X1(MPa)を測定する。また、同様に予め浄水フィルターを除いたブランクでの圧力損失X2(MPa)を測定する。圧力損失X1から圧力損失X2を差し引いた値を浄水フィルターの通水圧力損失A(MPa)とする。
項3.前記浄水フィルターの下記測定方法で測定される結合残留塩素ろ過水量が20~100m3であり、前記浄水フィルターの下記測定方法で測定される遊離残留塩素ろ過水量が40~140m3である、項1又は2に記載の浄水フィルター。
(結合残留塩素ろ過水量の測定方法)
浄水フィルターの両端面を発泡ポリエチレン製のキャップをホットメルト又はシリコーンシーラントを用いて接着してシールした後、ステンレス製ハウジングに充填する。日本国の水道法第4条の規定に基づき、「水質基準に関する省令(平成15年5月30日厚生労働省令第101号)」で規定する水質基準に適合する水道水に、塩化アンモニウム及び次亜塩素酸ナトリウムを添加し、撹拌混合して、結合残留塩素の濃度を0.5mg/Lとなるように原水を調製する。空塔速度(SV)が370/hとなるように流量2.0L/minで、浄水フィルターの外側から内側に調整原水の通水を行う。浄水フィルター通過前後で結合残留塩素の濃度をDPD試薬吸光光度法にて定量測定し、流入水(調整原水)に対する流出水(フィルター通過液)の結合残留塩素の水中濃度が初期20%以上になる点を破過点とし、該破過点までの総ろ過水量(m3)を求める。
(遊離残留塩素ろ過水量の測定方法)
浄水フィルターの両端面を発泡ポリエチレン製のキャップをホットメルト又はシリコーンシーラントを用いて接着してシールした後、ステンレス製ハウジングに充填する。日本国の水道法第4条の規定に基づき、「水質基準に関する省令(平成15年5月30日厚生労働省令第101号)」で規定する水質基準に適合する水道水に、遊離残留塩素濃度が2.0±0.2mg/Lとなるように次亜塩素酸ナトリウムを添加したものを調整原水とし調製する。空塔速度(SV)が741/hとなるように浄水フィルターの外側から内側に調整原水の通水を行う。浄水フィルター通過前後で遊離残留塩素の濃度をDPD試薬吸光光度法にて定量測定し、流入水(調整原水)に対する流出水(フィルター通過液)の遊離残留塩素の水中濃度が初期20%以上になる点を破過点とし、該破過点までの総ろ過水量(m3)を求める。
That is, the present invention provides inventions in the following aspects.
Section 1. A water purification filter including an activated carbon layer, wherein the activated carbon layer has a specific surface area of 1600 to 1900 m 2 /g, and the amount of acidic functional groups of the activated carbon layer measured by the following measuring method is 0.8 to 3.0 mmol/ g, a water purification filter.
(Method for measuring the amount of acidic functional groups)
A part of the activated carbon layer is cut out with a cutter knife, and the cut-out part is finely pulverized and classified until the particle size distribution becomes 2 mm or less, and 1.0 g is taken as a sample for measurement. A measurement sample is added to 50 mL of a 0.1 mol/L sodium hydroxide solution as an alkaline solution, shaken for 30 minutes, and then allowed to stand at 25° C. for 24 hours. Thereafter, filtration is performed using glass fiber filter paper (GF/C manufactured by Whatman), 10 mL of the obtained filtrate is subjected to neutralization titration with 0.1 mol / L hydrochloric acid solution, and the amount of acidic functional groups (mmol / g) is determined. Ask.
Section 2. A cylindrical core and a cover layer included on the outer peripheral side of the activated carbon layer, wherein the activated carbon layer is included on the outer peripheral side of the core, and the ratio of the thickness of the activated carbon layer to the thickness of the water purification filter (thickness of activated carbon layer/thickness of water purification filter) is 0.7 to 0.9,
Item 2. The water purifying filter according to item 1, wherein the water purifying filter has a pressure loss A of 0.010 to 0.040 MPa measured by the following measuring method.
(Method for measuring pressure loss A)
After sealing both end faces of the water purification filter by adhering foamed polyethylene caps using hot melt or silicone sealant, the resin housing is filled, and pure water is added so that the superficial velocity (SV) becomes 2781 / h. After holding the flow rate for 10 minutes, the pressure loss X1 (MPa) is measured with a Bourdon tube pressure gauge. Similarly, the pressure loss X2 (MPa) in a blank from which the water purification filter is previously removed is measured. The value obtained by subtracting the pressure loss X2 from the pressure loss X1 is defined as the water flow pressure loss A (MPa) of the water purification filter.
Item 3. Item 1, wherein the water purification filter has a combined residual chlorine filtered water amount measured by the following measuring method of 20 to 100 m 3 and a free residual chlorine filtered water amount measured by the following measuring method of the water purifying filter is 40 to 140 m 3 . Or the water purification filter according to 2.
(Method for measuring combined residual chlorine filtered water volume)
Both end faces of the water purification filter are sealed by adhering foamed polyethylene caps using hot-melt or silicone sealant, and then filled into a stainless steel housing. Based on the provisions of Article 4 of the Water Supply Law of Japan, ammonium chloride and Sodium chlorite is added and mixed with stirring to prepare raw water so that the concentration of combined residual chlorine is 0.5 mg/L. Adjusted raw water is passed from the outside to the inside of the water purification filter at a flow rate of 2.0 L/min so that the superficial velocity (SV) is 370/h. Quantitatively measure the concentration of combined residual chlorine before and after passing through the water filter using the DPD reagent absorption photometry method, and the concentration of combined residual chlorine in the effluent (filter-passing liquid) relative to the influent (adjusted raw water) becomes 20% or more at the initial stage. The point is defined as the breakthrough point, and the total filtered water volume (m 3 ) up to the breakthrough point is determined.
(Method for measuring amount of free residual chlorine filtered water)
Both end faces of the water purification filter are sealed by adhering foamed polyethylene caps using hot-melt or silicone sealant, and then filled into a stainless steel housing. Based on the provisions of Article 4 of the Water Supply Law of Japan, the free residual chlorine concentration is Sodium hypochlorite is added so that the concentration is 2.0±0.2 mg/L, and the raw water is prepared as adjusted raw water. Adjusted raw water is passed from the outside to the inside of the water purification filter so that the superficial velocity (SV) becomes 741/h. Quantitatively measure the concentration of free residual chlorine before and after passing through the water purification filter using the DPD reagent absorption photometry method, and the concentration of free residual chlorine in the effluent (filter-passing liquid) relative to the influent (adjusted raw water) becomes 20% or more at the initial stage. The point is defined as the breakthrough point, and the total filtered water volume (m 3 ) up to the breakthrough point is determined.
本発明の浄水フィルターによれば、結合残留塩素と遊離残留塩素のろ過能力の両立を図ることが可能となる。 According to the water purification filter of the present invention, it is possible to achieve both filtering capacity for combined residual chlorine and free residual chlorine.
<本発明の浄水フィルターの構成>
本発明の浄水フィルターは、活性炭層を含む浄水フィルターであって、前記活性炭層の比表面積が1600~1900m2/gであり、前記活性炭層の下記測定方法で測定される酸性官能基量が0.8~3.0mmol/gである。
<Configuration of the water purification filter of the present invention>
The water purification filter of the present invention includes an activated carbon layer, the specific surface area of the activated carbon layer is 1600 to 1900 m 2 /g, and the amount of acidic functional groups of the activated carbon layer measured by the following measuring method is 0. .8 to 3.0 mmol/g.
(酸性官能基量の測定方法)
前記活性炭層の一部をカッターナイフで削り出し、削り出したものを粒子径分布が2mm以下となるまで細かく粉砕・分級し、1.0g採取し、測定用試料とする。アルカリ溶液として0.1mol/Lの水酸化ナトリウム溶液50mLに、測定用試料を加え、30分間振盪した後、24時間、25℃で静置する。その後、ガラス繊維ろ紙(Whatman社製GF/C)を用いてろ過を行い、得られたろ液10mLを0.1mol/L塩酸溶液で中和滴定を行い、酸性官能基量(mmol/g)を求める。
(Method for measuring the amount of acidic functional groups)
A part of the activated carbon layer is cut out with a cutter knife, and the cut-out part is finely pulverized and classified until the particle size distribution becomes 2 mm or less, and 1.0 g is taken as a sample for measurement. A measurement sample is added to 50 mL of a 0.1 mol/L sodium hydroxide solution as an alkaline solution, shaken for 30 minutes, and then allowed to stand at 25° C. for 24 hours. Thereafter, filtration is performed using glass fiber filter paper (GF/C manufactured by Whatman), 10 mL of the obtained filtrate is subjected to neutralization titration with 0.1 mol / L hydrochloric acid solution, and the amount of acidic functional groups (mmol / g) is determined. Ask.
本発明の浄水フィルターの好ましい構成として、円筒状のコアと、前記活性炭層の外周側に含まれるカバー層と、を含み、前記活性炭層が前記コアの外周側に含まれることが挙げられる。この場合、活性炭層は円筒形状であることが好ましい。 A preferable configuration of the water purification filter of the present invention includes a cylindrical core and a cover layer included on the outer peripheral side of the activated carbon layer, and the activated carbon layer is included on the outer peripheral side of the core. In this case, the activated carbon layer is preferably cylindrical.
以下、本発明の浄水フィルターを構成する各部材について詳述する。 Hereinafter, each member constituting the water purification filter of the present invention will be described in detail.
1.活性炭層
本発明の浄水フィルターは、活性炭層を含む。
1. Activated carbon layer The water purification filter of the present invention includes an activated carbon layer.
本発明の浄水フィルターにおいて、活性炭層は、比表面積が1600~1900m2/gである。当該比表面積であるということは、それだけ活性炭層に炭素原子が多く存在することを意味する。そして、上記比表面積の範囲であり、かつ、後述する酸性官能基量を特定範囲とすることは、活性炭層に、酸性官能基が導入された炭素原子と、酸性官能基が導入されていない炭素原子とがそれぞれ特定量となるように存在していることを意味しており、これにより、得られる浄水フィルターは、結合残留塩素ろ過能力と遊離残留塩素ろ過能力とが優れたものとなる。上記比表面積の範囲であり、かつ、後述する酸性官能基量を特定範囲とすることは、例えば、後述する、酸性官能基量が高い活性炭(例えば、2mmol/g以上)と、酸性官能基量が低い活性炭(例えば、0.2mmol/g以下)とを併用し、それらの配合比を調整することによって実現できる。上記比表面積は、結合残留塩素ろ過能力をより優れたものとする観点から、1700~1900m2/gが好ましい。 In the water purification filter of the present invention, the activated carbon layer has a specific surface area of 1600-1900 m 2 /g. The specific surface area means that the activated carbon layer contains a large number of carbon atoms. In addition, the range of the specific surface area and the specific range of the amount of the acidic functional group described later means that the carbon atoms to which the acidic functional group has been introduced and the carbon atoms to which the acidic functional group has not been introduced are added to the activated carbon layer. Atoms are present in specific amounts, respectively, so that the obtained water purification filter has excellent combined residual chlorine filtering capacity and free residual chlorine filtering capacity. The range of the specific surface area and the specific range of the amount of acidic functional groups described later can be achieved by, for example, using activated carbon with a high amount of acidic functional groups (for example, 2 mmol / g or more) and the amount of acidic functional groups, which will be described later. It can be realized by using together with activated carbon having a low molecular weight (for example, 0.2 mmol/g or less) and adjusting their compounding ratio. The specific surface area is preferably 1,700 to 1,900 m 2 /g from the viewpoint of improving the ability to filter combined residual chlorine.
本発明において、活性炭層の比表面積は、77.4Kにおいて窒素吸着等温線に基づいて算出する。具体的には、先ず、自動ガス吸着量測定装置(商品名「AUTOSORB-1-MP」、QUANTCHROME製)を用いて、サンプル(活性炭層)を77.4K(窒素の沸点)に冷却し、窒素ガスを導入して容量法により窒素ガスの吸着量V[cc/g]を測定する。このとき、導入する窒素ガスの圧力P[hPa]を徐々に上げ、窒素ガスの飽和蒸気圧P0[hPa]で除した値を相対圧力P/P0として、各相対圧力に対する吸着量をプロットすることにより窒素吸着等温線を作成する。上記装置に付属する解析プログラムを使用して、得られた窒素吸着等温線に基づき、BET法に従って比表面積を求める。なお、上記サンプルとしては、質量が0.1gとなるようにサンプリングをおこなう。 In the present invention, the specific surface area of the activated carbon layer is calculated based on the nitrogen adsorption isotherm at 77.4K. Specifically, first, the sample (activated carbon layer) was cooled to 77.4 K (the boiling point of nitrogen) using an automatic gas adsorption amount measuring device (trade name “AUTOSORB-1-MP” manufactured by QUANTCHROME). A gas is introduced and the adsorption amount V [cc/g] of nitrogen gas is measured by the volumetric method. At this time, the pressure P [hPa] of the nitrogen gas to be introduced is gradually increased, and the value obtained by dividing by the saturated vapor pressure P0 [hPa] of the nitrogen gas is taken as the relative pressure P/P0, and the adsorption amount is plotted against each relative pressure. Create a nitrogen adsorption isotherm by Using the analysis program attached to the above apparatus, the specific surface area is determined according to the BET method based on the obtained nitrogen adsorption isotherm. As for the above sample, sampling is performed so that the mass becomes 0.1 g.
本発明の浄水フィルターにおいて、活性炭層は、下記測定方法で測定される酸性官能基量が0.8~3.0mmol/gである。
(酸性官能基量の測定方法)
前記活性炭層の一部をカッターナイフで削り出し、削り出したものを粒子径分布が2mm以下となるまで細かく粉砕・分級し、1.0g採取し、測定用試料とする。アルカリ溶液として0.1mol/Lの水酸化ナトリウム溶液50mLに、測定用試料を加え、30分間振盪した後、24時間、25℃で静置する。その後、ガラス繊維ろ紙(Whatman社製GF/C)を用いてろ過を行い、得られたろ液10mLを0.1mol/L塩酸溶液で中和滴定を行い、酸性官能基量(mmol/g)を求める。
In the water purification filter of the present invention, the activated carbon layer has an amount of acidic functional groups of 0.8 to 3.0 mmol/g as measured by the following measuring method.
(Method for measuring the amount of acidic functional groups)
A part of the activated carbon layer is cut out with a cutter knife, and the cut-out part is finely pulverized and classified until the particle size distribution becomes 2 mm or less, and 1.0 g is taken as a sample for measurement. A measurement sample is added to 50 mL of a 0.1 mol/L sodium hydroxide solution as an alkaline solution, shaken for 30 minutes, and then allowed to stand at 25° C. for 24 hours. Thereafter, filtration is performed using glass fiber filter paper (GF/C manufactured by Whatman), 10 mL of the obtained filtrate is subjected to neutralization titration with 0.1 mol / L hydrochloric acid solution, and the amount of acidic functional groups (mmol / g) is determined. Ask.
なお、上記活性炭層を粉砕・分級したものの粒子径分布は、レーザー回折/散乱式粒子径分布測定装置(堀場製作所社製の商品名LA-920)を用いて測定された、粒状活性炭の体積基準の粒子径分布である。 The particle size distribution of the pulverized and classified activated carbon layer was measured using a laser diffraction/scattering particle size distribution analyzer (trade name LA-920 manufactured by Horiba, Ltd.), based on the volume of granular activated carbon. is the particle size distribution of
前述の様に、前記比表面積の範囲であり、かつ、後述する酸性官能基量を特定範囲とすることは、活性炭層に、酸性官能基が導入された炭素原子と、酸性官能基が導入されていない炭素原子とがそれぞれ特定量となるように存在していることを意味しており、これにより、得られる浄水フィルターは、結合残留塩素ろ過能力と遊離残留塩素ろ過能力とが優れたものとなる。上記比表面積の範囲であり、かつ、後述する酸性官能基量を特定範囲とすることは、例えば、後述する、酸性官能基量が高い活性炭(例えば、2mmol/g以上)と、酸性官能基量が低い活性炭(例えば、0.5mmol/g以下)とを併用し、それらの配合比を調整することによって実現できる。上記酸性官能基量は、結合残留塩素ろ過能力をより優れたものとする観点から、1.5~3.0mmol/gが好ましい。 As described above, the range of the specific surface area and the specific range of the amount of the acidic functional group described later means that the activated carbon layer contains carbon atoms into which the acidic functional group is introduced, and carbon atoms into which the acidic functional group is introduced. It means that the carbon atoms that are not present are present in specific amounts, respectively, and as a result, the resulting water purification filter is said to have excellent combined residual chlorine filtering capacity and free residual chlorine filtering capacity. Become. The range of the specific surface area and the specific range of the amount of acidic functional groups described later can be achieved by, for example, using activated carbon with a high amount of acidic functional groups (for example, 2 mmol / g or more) and the amount of acidic functional groups, which will be described later. It can be realized by using together with activated carbon having a low molecular weight (for example, 0.5 mmol/g or less) and adjusting their compounding ratio. The amount of acidic functional groups is preferably 1.5 to 3.0 mmol/g from the viewpoint of improving the ability to filter combined residual chlorine.
本発明の活性炭層が備える酸性官能基としては、特に制限されないが、例えば、環状及び鎖状カルボキシル基、ラクトン基、フェノール基、水酸基、ケトン基、スルホン基が挙げられる。 The acidic functional groups provided in the activated carbon layer of the present invention are not particularly limited, and examples thereof include cyclic and chain carboxyl groups, lactone groups, phenol groups, hydroxyl groups, ketone groups, and sulfone groups.
活性炭層の見かけ密度としては、例えば、0.25~0.5g/cm3が挙げられ、0.3~0.45g/cm3が好ましく挙げられる。また、活性炭層を円筒形状とする場合、活性炭層の厚さとしては、例えば、5~30mmが挙げられ、10~25mmが好ましく挙げられる。 The apparent density of the activated carbon layer is, for example, 0.25 to 0.5 g/cm 3 , preferably 0.3 to 0.45 g/cm 3 . When the activated carbon layer has a cylindrical shape, the thickness of the activated carbon layer is, for example, 5 to 30 mm, preferably 10 to 25 mm.
<活性炭層を構成する好ましい原材料の例>
(1)酸性官能基量が高い活性炭
本発明の浄水フィルターにおいて、活性炭層は、酸性官能基量が高い活性炭、具体的には酸性官能基量が2mmol/g以上の活性炭を原材料として含むことが好ましい。これにより、活性炭層の酸性官能基量が0.8~3.0mmol/gに調整しやすくなる。上記酸性官能基量は、2~4mmol/gがより好ましく、2.5~3.5mmol/gがさらに好ましい。
<Examples of preferred raw materials for composing the activated carbon layer>
(1) Activated carbon with a high amount of acidic functional groups In the water purification filter of the present invention, the activated carbon layer may contain activated carbon with a high amount of acidic functional groups, specifically activated carbon with an amount of acidic functional groups of 2 mmol/g or more, as a raw material. preferable. This makes it easier to adjust the amount of acidic functional groups in the activated carbon layer to 0.8 to 3.0 mmol/g. The amount of the acidic functional group is more preferably 2 to 4 mmol/g, still more preferably 2.5 to 3.5 mmol/g.
本発明において、活性炭の酸性官能基量は、次のように測定されるものである。
(測定方法)
活性炭を1.0g採取し、測定用試料とする。アルカリ溶液として0.1mol/Lの水酸化ナトリウム溶液50mLに、測定用試料を加え、30分間振盪した後、24時間、25℃で静置する。その後、ガラス繊維ろ紙(Whatman社製GF/C)を用いてろ過を行い、得られたろ液10mLを0.1mol/L塩酸溶液で中和滴定を行い、酸性官能基量(mmol/g)を求める。
In the present invention, the amount of acidic functional groups in activated carbon is measured as follows.
(Measuring method)
1.0 g of activated carbon is sampled and used as a sample for measurement. A measurement sample is added to 50 mL of a 0.1 mol/L sodium hydroxide solution as an alkaline solution, shaken for 30 minutes, and then allowed to stand at 25° C. for 24 hours. Thereafter, filtration is performed using glass fiber filter paper (GF/C manufactured by Whatman), 10 mL of the obtained filtrate is subjected to neutralization titration with 0.1 mol / L hydrochloric acid solution, and the amount of acidic functional groups (mmol / g) is determined. Ask.
また、酸性官能基量が高い活性炭の比表面積としては、1800~2500m2/gが好ましく、2000~2300m2/gがより好ましい。これにより、酸性官能基が導入された炭素原子を表面により多く存在させることができ、浄水フィルターの結合残留塩素ろ過能力をより優れたものとしやすくなる。活性炭の比表面積の測定方法は、浄水フィルターの比表面積と同様である。 Further, the specific surface area of activated carbon having a high amount of acidic functional groups is preferably 1800 to 2500 m 2 /g, more preferably 2000 to 2300 m 2 /g. As a result, more carbon atoms to which an acidic functional group has been introduced can be present on the surface, making it easier to improve the combined residual chlorine filtering ability of the water purification filter. The method for measuring the specific surface area of activated carbon is the same as that for the water purification filter.
また、酸性官能基量が高い活性炭は、粒状活性炭であることが好ましく、平均粒子径としては、150~200μmが好ましく、160~200μmがより好ましい。このような平均粒子径とすることにより、得られる浄水フィルターは後述する圧力損失の範囲としやすくなる。なお、粒状活性炭の平均粒子径は、レーザー回折/散乱式粒子径分布測定装置(堀場製作所社製の商品名LA-920)を用いて測定された、粒状活性炭の粒子径分布における積算体積値が50%になる粒度をいう。 The activated carbon having a high amount of acidic functional groups is preferably granular activated carbon, and the average particle size is preferably 150 to 200 μm, more preferably 160 to 200 μm. By setting it as such an average particle diameter, it becomes easy to make the water-purifying filter obtained the range of the pressure loss mentioned later. The average particle size of the granular activated carbon is measured using a laser diffraction/scattering particle size distribution analyzer (trade name LA-920 manufactured by Horiba, Ltd.), and the cumulative volume value in the particle size distribution of the granular activated carbon is It refers to the particle size that becomes 50%.
本発明の浄水フィルターに含まれる活性炭層において、酸性官能基量が高い活性炭の含有量としては、20~90質量%が挙げられ、浄水フィルターの結合残留塩素と遊離残留塩素のろ過能力をより一層両立させやすくするという観点から、45~90質量%が好ましく挙げられる。 In the activated carbon layer contained in the water purification filter of the present invention, the content of activated carbon with a high amount of acidic functional groups is 20 to 90% by mass, and the filtering ability of the water purification filter for combined residual chlorine and free residual chlorine is further enhanced. 45 to 90% by mass is preferable from the viewpoint of making it easier to achieve both.
(2)酸性官能基量が低い活性炭
本発明の浄水フィルターにおいて、活性炭層は、酸性官能基量が低い活性炭、具体的には酸性官能基量が0.5mmol/g以下の活性炭を原材料として含むことが好ましい。これにより、活性炭層の酸性官能基量が0.8~3.0mmol/gに調整しやすくなる。上記酸性官能基量は、0.3mmol/g以下がより好ましく、0.2mmol/g以下がさらに好ましい。
(2) Activated carbon with a low amount of acidic functional groups In the water purification filter of the present invention, the activated carbon layer contains activated carbon with a low amount of acidic functional groups, specifically activated carbon with an amount of acidic functional groups of 0.5 mmol/g or less, as a raw material. is preferred. This makes it easier to adjust the amount of acidic functional groups in the activated carbon layer to 0.8 to 3.0 mmol/g. The amount of acidic functional groups is more preferably 0.3 mmol/g or less, even more preferably 0.2 mmol/g or less.
また、酸性官能基量が低い活性炭の比表面積としては、1400~2000m2/gが好ましく、1500~1900m2/gがより好ましい。これにより、酸性官能基が導入されていない炭素原子を表面により多く存在させることができ、浄水フィルターの遊離残留塩素のろ過能力をより優れたものとしやすくなる。 The specific surface area of activated carbon having a low amount of acidic functional groups is preferably 1400 to 2000 m 2 /g, more preferably 1500 to 1900 m 2 /g. As a result, more carbon atoms to which no acidic functional group has been introduced can be present on the surface, and the ability of the water purification filter to filter free residual chlorine can be easily improved.
また、酸性官能基量が低い活性炭は、粒状活性炭であることが好ましく、平均粒子径としては、120μm~300μmが好ましく、130~280μmがより好ましい。このような平均粒子径とすることにより、得られる浄水フィルターは後述する圧力損失の範囲としやすくなる。また、得られる浄水フィルターを後述する圧力損失の範囲により一層しやすくなる観点から、酸性官能基量が低い活性炭は、平均粒子径が130~170μmである活性炭と、平均粒子径が200~300μmである活性炭とを併用することがより好ましい。 Further, the activated carbon having a low amount of acidic functional groups is preferably granular activated carbon, and the average particle size is preferably 120 μm to 300 μm, more preferably 130 to 280 μm. By setting it as such an average particle diameter, it becomes easy to make the water-purifying filter obtained the range of the pressure loss mentioned later. In addition, from the viewpoint of making the water purification filter to be obtained more easily in the range of pressure loss described later, the activated carbon with a low amount of acidic functional groups has an average particle size of 130 to 170 μm and an activated carbon with an average particle size of 200 to 300 μm. It is more preferable to use a certain activated carbon together.
本発明の浄水フィルターに含まれる活性炭層において、酸性官能基量が低い活性炭の含有量としては、5~70質量%が挙げられ、浄水フィルターの結合残留塩素と遊離残留塩素のろ過能力をより一層両立させやすくするという観点から、5~50質量%が好ましく挙げられる。 In the activated carbon layer contained in the water purification filter of the present invention, the content of activated carbon with a low amount of acidic functional groups is 5 to 70% by mass, and the filtering ability of the water purification filter for combined residual chlorine and free residual chlorine is further enhanced. From the viewpoint of making it easier to achieve both, 5 to 50% by mass is preferable.
(3)その他の成分
本発明の浄水フィルターに含まれる活性炭層は、原材料として、前述した酸性官能基量が高い活性炭及び酸性官能基量が低い活性炭以外の、その他の成分を含むことができる。当該その他の成分としては、バインダー繊維が挙げられる。バインダー繊維とは、上記の粒状活性炭と一体化されることにより、粒状活性炭を絡めて円筒形状に賦形するものである。本発明の浄水フィルターに含まれる活性炭層においては、バインダー繊維に粒状活性炭が融着していてもよい。バインダー繊維としては、活性炭層に使用される公知のフィブリル化されたバインダー繊維を用いることができる。このようなフィブリル化されたバインダー繊維の繊維種の具体例としては、アクリル繊維、アクリル系繊維、ポリエチレン繊維、セルロース繊維、アラミド繊維などが挙げられる。バインダー繊維は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
(3) Other components The activated carbon layer contained in the water purification filter of the present invention can contain other components as raw materials other than the above-described activated carbon with a high amount of acidic functional groups and activated carbon with a low amount of acidic functional groups. The other component includes binder fibers. The binder fiber is integrated with the granular activated carbon to form a cylindrical shape by entangling the granular activated carbon. Granular activated carbon may be fused to binder fibers in the activated carbon layer contained in the water purification filter of the present invention. As binder fibers, known fibrillated binder fibers used for activated carbon layers can be used. Specific examples of such fibrillated binder fibers include acrylic fibers, acrylic fibers, polyethylene fibers, cellulose fibers, and aramid fibers. Binder fibers may be used singly or in combination of two or more.
本発明の浄水フィルターに含まれる活性炭層において、バインダー繊維の含有量としては、例えば2~7質量%程度、好ましくは3~5質量%程度が挙げられる。 In the activated carbon layer contained in the water purification filter of the present invention, the binder fiber content is, for example, about 2 to 7% by mass, preferably about 3 to 5% by mass.
2.コア
本発明の浄水フィルターは、円筒状のコアを含むものとすることができる。コアは、浄化する水を通水可能な細孔を有しており、芯部材として浄水フィルターの強度を高める役割を果たし、また、活性炭層からの炭塵の脱落を低減する役割を果たす。
2. Core The water purification filter of the present invention may include a cylindrical core. The core has pores through which the water to be purified can pass, and serves as a core member to increase the strength of the water purification filter and to reduce the shedding of coal dust from the activated carbon layer.
コアの材質としては、公知のものが使用でき、例えば、多孔質セラミック、多孔質金属フィルター、不織布等が挙げられる。また、樹脂、金属等を原料として細孔を持つ円筒状部材を成型してコアとして使用してもよい。中でも、不織布が好ましく、不織布を圧縮成型して得られたものがより好ましい。また、不織布を構成する繊維材料としては、特に制限されないが、ポリエステル繊維が好ましく挙げられる。 Known materials can be used for the core, and examples thereof include porous ceramics, porous metal filters, and non-woven fabrics. Alternatively, a cylindrical member having pores may be molded from resin, metal, or the like, and used as the core. Among them, nonwoven fabrics are preferred, and those obtained by compression-molding nonwoven fabrics are more preferred. Moreover, the fiber material that constitutes the nonwoven fabric is not particularly limited, but preferably includes polyester fiber.
コアを成型する不織布の目付としては、例えば、30~100g/m2が挙げられ、50~90g/m2が好ましく挙げられる。コアの厚さとしては、例えば、1~5mmが挙げられ、2~4mmがより好ましく挙げられる。コアの見かけ密度としては、0.2~0.6g/cm3が挙げられ、0.25~0.35g/cm3が好ましく挙げられる。 The basis weight of the nonwoven fabric for molding the core is, for example, 30 to 100 g/m 2 , preferably 50 to 90 g/m 2 . The thickness of the core is, for example, 1 to 5 mm, more preferably 2 to 4 mm. The apparent density of the core is 0.2 to 0.6 g/cm 3 , preferably 0.25 to 0.35 g/cm 3 .
3.カバー層
本発明の浄水フィルターは、活性炭層の外周側にカバー層を含むものとすることができる。カバー層は、浄化する水を通水可能な細孔を有しており、活性炭層からの炭塵の脱落を低減する役割を果たす。
3. Cover Layer The water purification filter of the present invention may include a cover layer on the outer peripheral side of the activated carbon layer. The cover layer has pores through which the water to be purified can pass, and plays a role in reducing falling-off of coal dust from the activated carbon layer.
カバー層としては、特に制限されないが、織物、編物、不織布等の布が好ましく挙げられ、不織布が好ましく挙げられる。中でも、引裂強度が比較的高く、取り扱い性や加工性がより優れるという観点から、長繊維又は連続繊維からなる不織布が好ましい。 The cover layer is not particularly limited, but fabrics such as woven fabrics, knitted fabrics, and nonwoven fabrics are preferred, and nonwoven fabrics are preferred. Among them, a nonwoven fabric made of long fibers or continuous fibers is preferable from the viewpoint of relatively high tear strength and excellent handleability and workability.
長繊維又は連続繊維からなる不織布としては特に制限されないが、スパンボンド不織布とすることが好ましい。スパンボンド不織布を構成する長繊維または連続繊維としては、鞘部に熱融着性成分、芯部に、融点が鞘部の融点よりも好ましくは20℃以上、より好ましくは30℃以上高い合成樹脂成分を配した、芯鞘型の熱融着性繊維が挙げられる。上記芯鞘型の熱融着性繊維の芯部としては、例えば融点が150~300℃、より好ましくは200~300℃であって、融点が鞘部の融点よりも20℃以上高い合成樹脂成分が挙げられ、より具体的には、ポリエチレンテレフタレートが挙げられる。上記芯鞘型の熱融着性繊維の鞘部としては、好ましくは融点が80~170℃、より好ましくは80~140℃であるものが挙げられ、より具体的には、ポリプロピレン、ポリエチレン等のオレフィン系樹脂、又はイソフタル酸等共重合成分が共重合した共重合ポリエチレンテレフタレート等のポリエステル系樹脂が挙げられる。中でも、柔軟性及び活性炭成型体に対する熱融着性により優れ、取り扱い性や加工性により優れるという観点から、ポリオレフィン系樹脂が好ましく、ポリエチレンがより好ましい。 The nonwoven fabric made of long fibers or continuous fibers is not particularly limited, but a spunbond nonwoven fabric is preferred. As the long fibers or continuous fibers constituting the spunbond nonwoven fabric, the heat-fusible component in the sheath and the synthetic resin in the core whose melting point is preferably 20°C or more, more preferably 30°C or more higher than the melting point of the sheath A core-sheath type heat-fusible fiber in which components are arranged is exemplified. As the core of the core-sheath type heat-fusible fiber, for example, a synthetic resin component having a melting point of 150 to 300° C., more preferably 200 to 300° C., and a melting point higher than that of the sheath by 20° C. or more. and more specifically polyethylene terephthalate. The sheath portion of the core-sheath type heat-fusible fiber preferably has a melting point of 80 to 170°C, more preferably 80 to 140°C. Olefin-based resins or polyester-based resins such as copolymerized polyethylene terephthalate obtained by copolymerizing copolymer components such as isophthalic acid can be used. Among them, polyolefin-based resins are preferable, and polyethylene is more preferable, from the viewpoints of superior flexibility and heat-sealability to the activated carbon molded body, and superior handleability and workability.
カバー層の目付としては、例えば、20~100g/m2が挙げられ、40~60g/m2が好ましく挙げられる。カバー層の厚さとしては、例えば、0.03~1.0mmが挙げられ、0.05~0.6mmが好ましく挙げられる。カバー層の見かけ密度としては、0.05~0.5g/cm3が挙げられ、0.08~0.4g/cm3が好ましく挙げられる。 The basis weight of the cover layer is, for example, 20 to 100 g/m 2 , preferably 40 to 60 g/m 2 . The thickness of the cover layer is, for example, 0.03 to 1.0 mm, preferably 0.05 to 0.6 mm. The apparent density of the cover layer is 0.05 to 0.5 g/cm 3 , preferably 0.08 to 0.4 g/cm 3 .
4.浄水フィルター
本発明の浄水フィルターは、円筒状のコアと、前記コアの外周側に含まれる活性炭層と、前記活性炭層の外周側に含まれるカバー層と、を含むものとすることができる。そして、浄水フィルターの厚さに対する前記活性炭層の厚さの比(活性炭層の厚さ/浄水フィルターの厚さ)が0.7~0.9であることが好ましい。
4. Water Purification Filter The water purification filter of the present invention can include a cylindrical core, an activated carbon layer included on the outer peripheral side of the core, and a cover layer included on the outer peripheral side of the activated carbon layer. The ratio of the thickness of the activated carbon layer to the thickness of the water purification filter (thickness of activated carbon layer/thickness of water purification filter) is preferably 0.7 to 0.9.
本発明の浄水フィルターは、下記測定方法で測定される圧力損失Aが0.010~0.040MPaであることが好ましい。
(圧力損失の測定方法)
(圧力損失Aの測定方法)
浄水フィルターの両端面を発泡ポリエチレン製のキャップをホットメルト又はシリコーンシーラントを用いて接着してシールした後、樹脂製ハウジングに充填し、純水を空塔速度(SV)が2781/hとなるように外側から内側に通過させ、10分間その流量を保持した後、ブルドン管圧力計にて圧力損失X1(MPa)を測定する。また、同様に予め浄水フィルターを除いたブランクでの圧力損失X2(MPa)を測定する。圧力損失X1から圧力損失X2を差し引いた値を浄水フィルターの通水圧力損失A(MPa)とする。
The water purification filter of the present invention preferably has a pressure loss A of 0.010 to 0.040 MPa as measured by the following measuring method.
(Method for measuring pressure loss)
(Method for measuring pressure loss A)
After sealing both end faces of the water purification filter by adhering foamed polyethylene caps using hot melt or silicone sealant, the resin housing is filled, and pure water is added so that the superficial velocity (SV) becomes 2781 / h. After holding the flow rate for 10 minutes, the pressure loss X1 (MPa) is measured with a Bourdon tube pressure gauge. Similarly, the pressure loss X2 (MPa) in a blank from which the water purification filter is previously removed is measured. The value obtained by subtracting the pressure loss X2 from the pressure loss X1 is defined as the water flow pressure loss A (MPa) of the water purification filter.
上記圧力損失Aは、前述した、酸性官能基量が高い活性炭(例えば、2mmol/g以上)の平均粒子径と酸性官能基量が低い活性炭(例えば、0.2mmol/g以下)の平均粒子径とがそれぞれ特定範囲となっていることを示し、これにより、得られる浄水フィルターは、結合残留塩素ろ過能力と遊離残留塩素ろ過能力とがより優れたものとしやすくなる。すなわち、上記圧力損失Aの範囲とすることにより、活性炭層が適度な密度となり、活性炭層内に結合残留塩素ろ過能力と遊離残留塩素ろ過能力とをより発揮する流路が保たれる結果、結合残留塩素ろ過能力と遊離残留塩素ろ過能力とがより優れたものとなる。上記圧力損失Aは、結合残留塩素ろ過能力をより一層優れたものとする観点から、0.015~0.028MPaとすることが好ましい。 The pressure drop A is the average particle size of activated carbon with a high amount of acidic functional groups (e.g., 2 mmol/g or more) and the average particle size of activated carbon with a low amount of acidic functional groups (e.g., 0.2 mmol/g or less). and are within specific ranges, which makes it easier for the obtained water purification filter to have more excellent combined residual chlorine filtering capacity and free residual chlorine filtering capacity. That is, by setting the pressure loss A within the above range, the activated carbon layer has an appropriate density, and a flow path that exhibits the combined residual chlorine filtration ability and the free residual chlorine filtration ability is maintained in the activated carbon layer. The residual chlorine filtration ability and the free residual chlorine filtration ability become more excellent. The pressure loss A is preferably 0.015 to 0.028 MPa from the viewpoint of further improving the combined residual chlorine filtering ability.
本発明の浄水フィルターは、下記測定方法で測定される圧力損失Bが0.010~0.030MPaであることが好ましく、0.010~0.018MPaであることがより好ましい。
(圧力損失Bの測定方法)
浄水フィルターの両端面を発泡ポリエチレン製のキャップをホットメルト又はシリコーンシーラントを用いて接着してシールした後、樹脂製ハウジングに充填し、純水を空塔速度(SV)が1854/hとなるように外側から内側に通過させ、10分間その流量を保持した後、ブルドン管圧力計にて圧力損失Y1(MPa)を測定する。また、同様に予め浄水フィルターを除いたブランクでの圧力損失Y2(MPa)を測定する。圧力損失Y1から圧力損失Y2を差し引いた値を浄水フィルターの通水圧力損失B(MPa)とする。
The water purification filter of the present invention preferably has a pressure loss B of 0.010 to 0.030 MPa, more preferably 0.010 to 0.018 MPa, as measured by the following measuring method.
(Method for measuring pressure loss B)
After sealing both end faces of the water purification filter by adhering foamed polyethylene caps using hot melt or silicone sealant, the resin housing is filled, and pure water is added so that the superficial velocity (SV) becomes 1854 / h. After maintaining the flow rate for 10 minutes, the pressure loss Y1 (MPa) is measured with a Bourdon tube pressure gauge. Similarly, the pressure loss Y2 (MPa) is measured in a blank from which the water purification filter has been previously removed. The value obtained by subtracting the pressure loss Y2 from the pressure loss Y1 is defined as the water flow pressure loss B (MPa) of the water purification filter.
本発明の浄水フィルターは、下記測定方法で測定される結合残留塩素ろ過水量が20~100m3であることが好ましく、下記測定方法で測定される遊離残留塩素ろ過水量が40~140m3であることが好ましい。 The water purification filter of the present invention preferably has a combined residual chlorine filtered water amount of 20 to 100 m 3 measured by the following measuring method, and a free residual chlorine filtered water amount of 40 to 140 m 3 measured by the following measuring method. is preferred.
(結合残留塩素ろ過水量の測定方法)
浄水フィルターの両端面を発泡ポリエチレン製のキャップをホットメルト又はシリコーンシーラントを用いて接着してシールした後、ステンレス製ハウジングに充填する。日本国の水道法第4条の規定に基づき、「水質基準に関する省令(平成15年5月30日厚生労働省令第101号)」で規定する水質基準に適合する水道水に、塩化アンモニウム及び次亜塩素酸ナトリウムを添加し、撹拌混合して、結合残留塩素の濃度を0.5mg/Lとなるように原水を調製する。空塔速度(SV)が370/hとなるように流量2.0L/minで、浄水フィルターの外側から内側に調整原水の通水を行う。浄水フィルター通過前後で結合残留塩素の濃度をDPD試薬吸光光度法にて定量測定し、流入水(調整原水)に対する流出水(フィルター通過液)の結合残留塩素の水中濃度が初期20%以上になる点を破過点とし、該破過点までの総ろ過水量(m3)を求める。
(Method for measuring combined residual chlorine filtered water volume)
Both end faces of the water purification filter are sealed by adhering foamed polyethylene caps using hot-melt or silicone sealant, and then filled into a stainless steel housing. Based on the provisions of Article 4 of the Water Supply Law of Japan, ammonium chloride and Sodium chlorite is added and mixed with stirring to prepare raw water so that the concentration of combined residual chlorine is 0.5 mg/L. Adjusted raw water is passed from the outside to the inside of the water purification filter at a flow rate of 2.0 L/min so that the superficial velocity (SV) is 370/h. Quantitatively measure the concentration of combined residual chlorine before and after passing through the water filter using the DPD reagent absorption photometry method, and the concentration of combined residual chlorine in the effluent (filter-passing liquid) relative to the influent (adjusted raw water) becomes 20% or more at the initial stage. The point is defined as the breakthrough point, and the total filtered water volume (m 3 ) up to the breakthrough point is determined.
(遊離残留塩素ろ過水量の測定方法)
浄水フィルターの両端面を発泡ポリエチレン製のキャップをホットメルト又はシリコーンシーラントを用いて接着してシールした後、ステンレス製ハウジングに充填する。別途、日本国の水道法第4条の規定に基づき、「水質基準に関する省令(平成15年5月30日厚生労働省令第101号)」で規定する水質基準に適合する水道水に、遊離残留塩素濃度が2.0±0.2mg/Lとなるように次亜塩素酸ナトリウムを添加したものを調整原水とし調製する。空塔速度(SV)が741/hとなるように浄水フィルターの外側から内側に調整原水の通水を行う。浄水フィルター通過前後で遊離残留塩素の濃度をDPD試薬吸光光度法にて定量測定し、流入水(調整原水)に対する流出水(フィルター通過液)の遊離残留塩素の水中濃度が初期20%以上になる点を破過点とし、該破過点までの総ろ過水量(m3)を求める。
(Method for measuring amount of free residual chlorine filtered water)
Both end faces of the water purification filter are sealed by adhering foamed polyethylene caps using hot-melt or silicone sealant, and then filled into a stainless steel housing. Separately, based on the provisions of Article 4 of the Water Supply Law of Japan, free residue is added to tap water that meets the water quality standards stipulated in the "Ministerial Ordinance on Water Quality Standards (Ministry of Health, Labor and Welfare Ordinance No. 101, May 30, 2003)". Adjusted raw water is prepared by adding sodium hypochlorite so that the chlorine concentration becomes 2.0±0.2 mg/L. Adjusted raw water is passed from the outside to the inside of the water purification filter so that the superficial velocity (SV) becomes 741/h. Quantitatively measure the concentration of free residual chlorine before and after passing through the water purification filter using the DPD reagent absorption photometry method, and the concentration of free residual chlorine in the effluent (filter-passing liquid) relative to the influent (adjusted raw water) becomes 20% or more at the initial stage. The point is defined as the breakthrough point, and the total filtered water volume (m 3 ) up to the breakthrough point is determined.
前述の様に、酸性官能基量が高い活性炭と、酸性官能基量が低くかつ比表面積が一定の範囲である活性炭と、を併用し、それらの配合比を、活性炭層の酸性官能基量が0.8~3.0mmol/g、活性炭層の比表面積が1600~1900m2/gとなるように調整したり、それらの平均粒子径を、前述した圧力損失A及び/又は圧力損失Bの範囲となるように調整したりすることにより、上記のような結合残留塩素と遊離残留塩素のろ過水量の両立をより図ることが可能となる。結合残留塩素と遊離残留塩素のろ過能力の両立をより一層担保するという観点から、結合残留塩素ろ過水量及び遊離残留塩素ろ過水量が50~100m3であることが好ましい。 As described above, activated carbon having a high amount of acidic functional groups and activated carbon having a low amount of acidic functional groups and having a specific surface area within a certain range are used in combination, and the blending ratio thereof is adjusted so that the amount of acidic functional groups in the activated carbon layer is 0.8 to 3.0 mmol/g, the specific surface area of the activated carbon layer is adjusted to 1600 to 1900 m 2 /g, or the average particle size thereof is adjusted to the pressure loss A and / or pressure loss B range described above. By adjusting so as to be, it is possible to achieve both the combined residual chlorine and free residual chlorine filtered water amounts as described above. From the viewpoint of further securing both combined residual chlorine and free residual chlorine filtration capabilities, the combined residual chlorine filtered water amount and the free residual chlorine filtered water amount are preferably 50 to 100 m 3 .
本発明の浄水フィルターの高さ(一方の底面から他方の底面までの長さ)は、使用する浄水器のタイプ等に応じて適宜設定すればよいが、例えば10~300mmが挙げられる。 The height (length from one bottom surface to the other bottom surface) of the water purification filter of the present invention may be appropriately set according to the type of water purifier used, and is, for example, 10 to 300 mm.
本発明の浄水フィルターは、その厚さについては、使用する浄水器のタイプ等に応じて適宜設定すればよいが、浄水性能及び通水性の観点から、例えば、厚さが2.5~50mmが挙げられる。本発明において、円筒状の浄水フィルターの厚さとは、外径から内径を差し引いた値である。また、内径とは、浄水フィルターの高さ方向に対して垂直方向の断面において、一方の底面の中心部から他方の底面の中心部まで連通する空間部の直径である。また、外径とは、浄水フィルターの高さ方向に対して垂直方向の断面において、空間部を含めた浄水フィルターの直径である。 The thickness of the water purification filter of the present invention may be appropriately set according to the type of water purifier to be used. mentioned. In the present invention, the thickness of the cylindrical water purification filter is the value obtained by subtracting the inner diameter from the outer diameter. In addition, the inner diameter is the diameter of the space that communicates from the center of one bottom surface to the center of the other bottom surface in a cross section perpendicular to the height direction of the water purification filter. In addition, the outer diameter is the diameter of the water purification filter including the space in a cross section perpendicular to the height direction of the water purification filter.
本発明の浄水フィルターが円筒状である場合、その内径及び外径については、前述する厚さを満たすように適宜設定すればよいが、具体的には、内径が5mm以上、外径が15~150mmが挙げられる。 When the water purification filter of the present invention is cylindrical, its inner and outer diameters may be appropriately set so as to satisfy the thickness described above. Specifically, the inner diameter is 5 mm or more and the outer diameter is 15 to 150 mm can be mentioned.
<浄水フィルターの製造方法>
本発明の浄水フィルターの製造方法としては、特に制限されず、例えば、次のような方法が挙げられる。
<Manufacturing method of water purification filter>
The method for producing the water purification filter of the present invention is not particularly limited, and includes, for example, the following methods.
まず、コアと、前述した活性炭層を構成する好ましい原材料を準備し、スラリー吸引法によりコアと活性炭層が一体化した中間体を製造する。具体的に、上記の酸性官能基量が高い粒状活性炭、上記の酸性官能基量が低い粒状活性炭及び上記のバインダー繊維を水と混合してスラリーを得る。次に、例えば、多数の小孔が形成された内管と外管とを備えた二重管状容器を用い、内管の外周側にコアをセットし、コアと外管との間にスラリーを流し込み、中心部からスラリーを吸引することによって円筒型の成形体を得る。この成型体を乾燥させることにより、上記中間体が得られる。成形体は、必要に応じて、加熱処理、圧縮処理に供してもよい。なお、スラリー中の粉末状活性炭とバインダー繊維の割合は、浄水フィルター中における上記の割合となる様に設定することができる。また、スラリー吸引法においては、浄水フィルターの形状は、スラリーを流し込む容器の形状に対応する形状となるため、容器の形状を変更することにより、浄水フィルターの形状を種々の形状とすることができる。次いで、得られた中間体の外周側にカバー層を捲き付け、本発明の浄水フィルターを製造することができる。 First, the core and the above-mentioned preferred raw materials for forming the activated carbon layer are prepared, and an intermediate body in which the core and the activated carbon layer are integrated is manufactured by a slurry suction method. Specifically, the granular activated carbon having a high amount of acidic functional groups, the granular activated carbon having a low amount of acidic functional groups, and the binder fibers are mixed with water to obtain a slurry. Next, for example, using a double tubular container having an inner tube and an outer tube in which a large number of small holes are formed, a core is set on the outer peripheral side of the inner tube, and the slurry is placed between the core and the outer tube. A cylindrical compact is obtained by pouring and sucking the slurry from the center. By drying this molded product, the intermediate is obtained. The molded body may be subjected to heat treatment and compression treatment as necessary. The ratio of the powdery activated carbon and the binder fiber in the slurry can be set so as to be the above ratio in the water purification filter. In addition, in the slurry suction method, the shape of the water purification filter corresponds to the shape of the container into which the slurry is poured, so by changing the shape of the container, the shape of the water purification filter can be made into various shapes. . Then, a cover layer is wound around the outer peripheral side of the obtained intermediate to manufacture the water purification filter of the present invention.
上記スラリー吸引法によりコアと活性炭層が一体化した中間体を製造する方法の別の具体例について説明する。図1は、上記コアと活性炭層が一体化した中間体の、スラリー吸引法による製造装置の一例を説明する模式図である。図1の製造装置では、表面に多数の吸引用小孔61を有する円筒形状の芯体62と、当該芯体62の両端に配置される、芯体に対して着脱可能なフランジと、を備える成型型6、芯体62の円筒内部と通気及び通液可能に接続された吸引管7、並びに、上記の酸性官能基量が高い粒状活性炭、上記の酸性官能基量が低い粒状活性炭及び上記のバインダー繊維を水と混合して得られたスラリー8が入れられた容器9、を備える。
Another specific example of the method for producing the intermediate in which the core and the activated carbon layer are integrated by the slurry suction method will be described. FIG. 1 is a schematic diagram illustrating an example of an apparatus for producing an intermediate body in which the core and the activated carbon layer are integrated by a slurry suction method. The manufacturing apparatus of FIG. 1 includes a
まず、所定の割合で酸性官能基量が高い粒状活性炭、上記の酸性官能基量が低い粒状活性炭及び上記のバインダー繊維を含有する均一な水性スラリーを調製する。水性スラリー中の固形分濃度は、特に限定されるものではないが、取扱いの容易さ、成形の容易さ等の観点から0.1~4質量%程度とするのが好ましい。スラリーの調製に際しては、ビーターなどで機械的分散、撹拌、叩解を行うことができる。 First, a uniform aqueous slurry is prepared containing granular activated carbon with a high amount of acidic functional groups, the aforementioned granular activated carbon with a low amount of acidic functional groups, and the aforementioned binder fibers in a predetermined ratio. The solid content concentration in the aqueous slurry is not particularly limited, but is preferably about 0.1 to 4% by mass from the viewpoint of ease of handling, ease of molding, and the like. When preparing the slurry, mechanical dispersion, stirring and beating can be performed using a beater or the like.
得られたスラリー8を容器9に入れる。次に成型型6の一方のフランジを取り外し、芯体62に前述した円筒形状のコアを挿入し、再び当該フランジを取り付けて、スラリー8中に浸漬する。そして、ポンプを用い、吸引管7を通じて芯体62内部を減圧することにより、スラリー中の酸性官能基量が高い粒状活性炭、上記の酸性官能基量が低い粒状活性炭及び上記のバインダー繊維を芯体62に挿入したコアの表面に堆積させる。
The resulting
そして、スラリー8から成型型6を引き上げ、コアと活性炭層が一体化した中間体を引き抜き、乾燥させる。乾燥温度としては例えば80~150℃程度が挙げられる。なお、図示しないが、前述したスラリーを吸引中、またはスラリー8から成型型6を引き上げた後に、成型型6上に堆積した酸性官能基量が高い粒状活性炭、上記の酸性官能基量が低い粒状活性炭及び上記のバインダー繊維を含む層を圧縮する工程を備えることが好ましい。圧縮する方法としては、特に制限されないが、例えば、当該層に回転ローラーを活性炭層が所定の見かけ密度となるように押し当て、成型型6も円筒長軸を中心に回転させながら成型型6上に堆積した酸性官能基量が高い粒状活性炭、上記の酸性官能基量が低い粒状活性炭及び上記のバインダー繊維を含む活性炭層を圧縮させることが挙げられる。そして、乾燥後、得られた中間体の外周側にカバー層を捲き付け、本発明の浄水フィルターを製造することができる。
Then, the molding die 6 is pulled up from the
<浄水フィルターの用途>
本発明の浄水フィルターの用途としては、水道水等の原水を飲料水とするためにろ過する浄水器、人工透析を行うための透析用水を得るために原水をろ過する浄水器が挙げられる。
<Uses of water filters>
Applications of the water purification filter of the present invention include water purifiers that filter raw water such as tap water to make it drinking water, and water purifiers that filter raw water to obtain dialysis water for performing artificial dialysis.
以下に、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は、実施例に限定されない。 EXAMPLES The present invention will be described in detail below with reference to examples and comparative examples. However, the invention is not limited to the examples.
<実施例1>
(1)活性炭層の原材料の準備
以下の原材料を準備した。
・酸性官能基量が高い活性炭:フェノール樹脂を原料とする炭化物と水酸化カリウムを質量比(水酸化カリウム/炭化物)で3となるように混合し、この混合物を炉に入れ、窒素流通下(1L/min)、昇温速度10℃/minで800℃まで昇温した後、2時間保持してアルカリ賦活処理を行った。次に、5.25重量%の塩酸(HCl)水溶液中で煮沸した後、ろ過した。ろ過後の試料に対し60℃の温水で洗浄・真空ろ過を行い、ろ液のpHが6.5以上になるまで繰り返し洗浄、脱水した後、115℃で乾燥させた。乾燥後、空気雰囲気下で300℃まで昇温(昇温速度10℃/min)した後、24時間保持して酸化処理を行った。酸化処理を行った後に、ボールミルで粉砕し、平均粒子径が180μmとなるように調整した。この活性炭の酸性官能基量及び比表面積を測定したところ、酸性官能基量:2.73mmol/g、比表面積:2180m2/gであった。
・酸性官能基量が低い活性炭A:ヤシ殻を原料とする炭化物を炉に入れ、900℃まで昇温(10℃/min)した後、該温度を保持しながら水蒸気を窒素(1L/min)と共に炉内に流通させ(水蒸気濃度70vol%)、水蒸気賦活を行った。次に、ボールミルで粉砕し、平均粒子径が250μmとなるように調整した。この活性炭の酸性官能基量及び比表面積を測定したところ、酸性官能基量:0.13mmol/g、比表面積:1700m2/gであった。
・酸性官能基量が低い活性炭B:前述の酸性官能基量が低い活性炭Aをボールミルで粉砕し、平均粒子径が150μmとなるように調製し、酸性官能基量が低い活性炭Bを得た。この活性炭の酸性官能基量及び比表面積を測定したところ、酸性官能基量:0.13mmol/g、比表面積:1700m2/gであった。
・バインダー繊維:日本エクスラン工業株式会社製商品名ビィパル(登録商標)、フィブリル化されたアクリル繊維
<Example 1>
(1) Preparation of raw materials for activated carbon layer The following raw materials were prepared.
・Activated carbon with a high amount of acidic functional groups: Carbide made from phenolic resin and potassium hydroxide are mixed so that the mass ratio (potassium hydroxide/carbide) is 3, the mixture is placed in a furnace, and nitrogen is circulated ( 1 L/min), the temperature was raised to 800° C. at a rate of temperature rise of 10° C./min, and then held for 2 hours for alkali activation treatment. Next, it was boiled in a 5.25% by weight hydrochloric acid (HCl) aqueous solution and then filtered. The sample after filtration was washed with hot water at 60°C and vacuum filtered, repeatedly washed and dehydrated until the pH of the filtrate reached 6.5 or higher, and then dried at 115°C. After drying, the temperature was raised to 300° C. in an air atmosphere (heating rate: 10° C./min), and then held for 24 hours for oxidation treatment. After the oxidation treatment, it was pulverized with a ball mill and adjusted to have an average particle size of 180 μm. When the amount of acidic functional groups and the specific surface area of this activated carbon were measured, the amount of acidic functional groups was 2.73 mmol/g and the specific surface area was 2180 m 2 /g.
- Activated carbon A with a low amount of acidic functional groups: Charcoal made from coconut shells is placed in a furnace and heated to 900°C (10°C/min). It was circulated in the furnace together (steam concentration 70 vol%) to perform steam activation. Next, it was pulverized with a ball mill and adjusted to have an average particle size of 250 μm. When the amount of acidic functional groups and the specific surface area of this activated carbon were measured, the amount of acidic functional groups was 0.13 mmol/g and the specific surface area was 1700 m 2 /g.
- Activated carbon B with a low amount of acidic functional groups: Activated carbon A with a low amount of acidic functional groups was pulverized with a ball mill to prepare an average particle size of 150 µm to obtain activated carbon B with a low amount of acidic functional groups. When the amount of acidic functional groups and the specific surface area of this activated carbon were measured, the amount of acidic functional groups was 0.13 mmol/g and the specific surface area was 1700 m 2 /g.
・ Binder fiber: Trade name Vipal (registered trademark) manufactured by Nihon Exlan Kogyo Co., Ltd., fibrillated acrylic fiber
(2)浄水フィルターの製造
(2-1)不織布コアの準備
ポリエステル繊維A(テトロンポリエステルステープル(サフメット)、東レ株式会社製)とポリエステル繊維B(テトロンポリエステルステープル(SD)、東レ株式会社製)とをカーディングして薄いウェブを形成し、該ウェブにニードルパンチ加工を施して温度163℃で熱処理、冷却することにより、不織布を得た。この不織布は目付80g/m2、厚み0.32mm、見かけ密度0.25g/cm3であった。芯として外径が30.0mmの鉄製の円筒状パイプを準備し、当該芯に、該不織布をコアの外径が37mmとなるように捲回し、炉に入れ、雰囲気温度150℃で2時間熱処理を施した後、自然冷却した。その後、芯を除去した後、カット機で124mm及び248mmの長さにカットし、不織布コアを得た。得られた不織布コアは、内径が30.0mm、外径が37.0mm、厚さが3.5mm、見かけ密度が0.30g/cm3であった。
(2) Production of water purification filter (2-1) Preparation of nonwoven fabric core Polyester fiber A (Tetron polyester staple (Safmet), manufactured by Toray Industries, Inc.) and polyester fiber B (Tetron polyester staple (SD), manufactured by Toray Industries, Inc.) and was carded to form a thin web, and the web was subjected to needle punching, heat treatment at a temperature of 163° C., and cooling to obtain a nonwoven fabric. This nonwoven fabric had a basis weight of 80 g/m 2 , a thickness of 0.32 mm and an apparent density of 0.25 g/cm 3 . An iron cylindrical pipe with an outer diameter of 30.0 mm is prepared as a core, and the nonwoven fabric is wound around the core so that the core has an outer diameter of 37 mm, placed in a furnace, and heat-treated at an atmospheric temperature of 150 ° C. for 2 hours. After applying, it was naturally cooled. Then, after removing the core, it was cut into lengths of 124 mm and 248 mm with a cutting machine to obtain nonwoven fabric cores. The resulting nonwoven core had an inner diameter of 30.0 mm, an outer diameter of 37.0 mm, a thickness of 3.5 mm and an apparent density of 0.30 g/cm 3 .
(2-2)浄水フィルターの製造
表1の組成となるように上記酸性官能基量が高い活性炭、上記酸性官能基量が低い活性炭A、上記酸性官能基量が低い活性炭B及びバインダー繊維と、水と混合し、スラリーを得た。成型型の芯体に準備した124mmのコアをセットして、中心部からスラリーを吸引し、引き抜き、120℃の乾燥炉で15時間乾燥させることによって、外径64.32mm、内径30mm、長さ124mmの、コアと活性炭層が一体化した中間体を得た。この中間体にカバー層として不織布(エルベスS0503、ユニチカ株式会社製、芯部がポリエステル系樹脂からなり、鞘部がポリオレフィン系樹脂からなる芯鞘型複合繊維である連続繊維からなるスパンボンド不織布であり、堆積された連続繊維同士が、熱エンボス加工により部分的に圧着されることにより一体化された不織布、該不織布の目付50g/m2、厚さ0.34mm、見かけ密度0.15g/cm3)を捲きつけて外層を覆い、捲き始めと捲き終わりを150℃に加熱したアイロンで熱接着することにより浄水フィルター1Aを得た。また、同様にして、準備した長さ248mmのコアを用いて、外径64.32mm、内径30mm、長さ248mmの、コアと活性炭層が一体化した中間体を得て、カバー層として不織布(エルベスS0503、ユニチカ株式会社製)を捲きつけて外層を覆い、捲き始めと捲き終わりを150℃に加熱したアイロンで熱接着することにより浄水フィルター1Bを得た。浄水フィルター1Aの体積は324cm3であり、浄水フィルター1Bの体積は648cm3であった。また、浄水フィルター1A及び1Bの外径は65mm、内径は30mm、厚さは17.5mm、浄水フィルター1A及び1Bにおける不織布コアは内径が30.0mm、外径が37.0mm、厚さが3.5mm、見かけ密度が0.30g/cm3、浄水フィルター1Aにおける活性炭層の質量は100g、浄水フィルター1Bにおける活性炭層の質量は199g、浄水フィルター1A及び1Bにおける活性炭層の外径は64.32mm、厚さは13.66mm、見かけ密度は0.37g/cm3、浄水フィルター1A及び1Bの厚さに対するそれぞれの活性炭層の厚さの比(活性炭層の厚さ/浄水フィルターの厚さ)は0.78であった。
(2-2) Production of water purification filter: activated carbon having a high amount of acidic functional groups, activated carbon A having a low amount of acidic functional groups, activated carbon B having a low amount of acidic functional groups, and binder fibers, so as to have the composition shown in Table 1; Mixed with water to obtain a slurry. The prepared 124 mm core was set on the core of the molding die, the slurry was sucked from the center, pulled out, and dried in a drying oven at 120 ° C. for 15 hours to obtain an outer diameter of 64.32 mm, an inner diameter of 30 mm, and a length of An intermediate of 124 mm in which the core and the activated carbon layer were integrated was obtained. A nonwoven fabric (Elves S0503, manufactured by Unitika Ltd., a spunbond nonwoven fabric made of continuous fibers that are core-sheath type composite fibers with a core made of a polyester resin and a sheath made of a polyolefin resin) is used as a cover layer for this intermediate. , A nonwoven fabric in which stacked continuous fibers are partially pressed together by heat embossing to be integrated, and the nonwoven fabric has a basis weight of 50 g/m 2 , a thickness of 0.34 mm, and an apparent density of 0.15 g/cm 3 . ) was wound to cover the outer layer, and the beginning and end of winding were thermally bonded with an iron heated to 150° C. to obtain a water purification filter 1A. In the same way, using a prepared core with a length of 248 mm, an intermediate having an outer diameter of 64.32 mm, an inner diameter of 30 mm, and a length of 248 mm, in which the core and the activated carbon layer are integrated, is obtained. Elves S0503, manufactured by Unitika Ltd.) was wound to cover the outer layer, and the beginning and end of winding were thermally bonded with an iron heated to 150°C to obtain a water purification filter 1B. The volume of water purification filter 1A was 324 cm 3 and the volume of water purification filter 1B was 648 cm 3 . The water purification filters 1A and 1B have an outer diameter of 65 mm, an inner diameter of 30 mm, and a thickness of 17.5 mm. .5 mm, apparent density is 0.30 g/cm 3 , mass of activated carbon layer in water purification filter 1A is 100 g, mass of activated carbon layer in water purification filter 1B is 199 g, outer diameter of activated carbon layers in water purification filters 1A and 1B is 64.32 mm , the thickness is 13.66 mm, the apparent density is 0.37 g/cm 3 , the ratio of the thickness of each activated carbon layer to the thickness of the water purification filters 1A and 1B (thickness of activated carbon layer/thickness of water purification filter) is was 0.78.
<実施例2>
(1)活性炭層の原材料の準備
実施例1と同一の原材料を準備した。
<Example 2>
(1) Preparation of Raw Materials for Activated Carbon Layer The same raw materials as in Example 1 were prepared.
(2)浄水フィルターの製造
(2-1)不織布コアの準備
実施例1と同一の不織布コアを準備した。
(2) Production of water purification filter (2-1) Preparation of nonwoven fabric core The same nonwoven fabric core as in Example 1 was prepared.
(2-2)浄水フィルターの製造
表1の組成となるように上記酸性官能基量が高い活性炭、上記酸性官能基量が低い活性炭A、上記酸性官能基量が低い活性炭B及びバインダー繊維と、水と混合し、スラリーを得た。成型型の芯体に準備した124mmのコアをセットして、中心部からスラリーを吸引し、引き抜き、120℃の乾燥炉で15時間乾燥させることによって、外径64.32mm、内径30mm、長さ124mmの、コアと活性炭層が一体化した中間体を得た。この中間体にカバー層として不織布(エルベスS0503、ユニチカ株式会社製、芯部がポリエステル系樹脂からなり、鞘部がポリオレフィン系樹脂からなる芯鞘型複合繊維である連続繊維からなるスパンボンド不織布であり、堆積された連続繊維同士が、熱エンボス加工により部分的に圧着されることにより一体化された不織布、該不織布の目付50g/m2、厚さ0.34mm、見かけ密度0.15g/cm3)を捲きつけて外層を覆い、捲き始めと捲き終わりを150℃に加熱したアイロンで熱接着することにより浄水フィルター2Aを得た。また、同様にして、準備した長さ248mmのコアを用いて、外径64.32mm、内径30mm、長さ248mmの、コアと活性炭層が一体化した中間体を得て、カバー層として不織布(エルベスS0503、ユニチカ株式会社製)を捲きつけて外層を覆い、捲き始めと捲き終わりを150℃に加熱したアイロンで熱接着することにより浄水フィルター2Bを得た。浄水フィルター2Aの体積は324cm3であり、浄水フィルター2Bの体積は648cm3であった。また、浄水フィルター2A及び2Bの外径は65mm、内径は30mm、厚さは17.5mm、浄水フィルター2A及び2Bにおける不織布コアは内径が30.0mm、外径が37.0mm、厚さが3.5mm、見かけ密度が0.30g/cm3、浄水フィルター2Aにおける活性炭層の質量は100g、浄水フィルター2Bにおける活性炭層の質量は200g、浄水フィルター2A及び2Bにおける活性炭層の外径は64.32mm、厚さは13.66mm、見かけ密度は0.37g/cm3、浄水フィルター2A及び2Bの厚さに対するそれぞれの活性炭層の厚さの比(活性炭層の厚さ/浄水フィルターの厚さ)は0.78であった。
(2-2) Production of water purification filter: activated carbon having a high amount of acidic functional groups, activated carbon A having a low amount of acidic functional groups, activated carbon B having a low amount of acidic functional groups, and binder fibers, so as to have the composition shown in Table 1; Mixed with water to obtain a slurry. The prepared 124 mm core was set on the core of the molding die, the slurry was sucked from the center, pulled out, and dried in a drying oven at 120 ° C. for 15 hours to obtain an outer diameter of 64.32 mm, an inner diameter of 30 mm, and a length of An intermediate of 124 mm in which the core and the activated carbon layer were integrated was obtained. A nonwoven fabric (Elves S0503, manufactured by Unitika Ltd., a spunbond nonwoven fabric made of continuous fibers that are core-sheath type composite fibers with a core made of a polyester resin and a sheath made of a polyolefin resin) is used as a cover layer for this intermediate. , A nonwoven fabric in which stacked continuous fibers are partially pressed together by heat embossing to be integrated, and the nonwoven fabric has a basis weight of 50 g/m 2 , a thickness of 0.34 mm, and an apparent density of 0.15 g/cm 3 . ) was wound to cover the outer layer, and the beginning and end of winding were thermally bonded with an iron heated to 150° C. to obtain a water purification filter 2A. In the same way, using a prepared core with a length of 248 mm, an intermediate having an outer diameter of 64.32 mm, an inner diameter of 30 mm, and a length of 248 mm, in which the core and the activated carbon layer are integrated, is obtained. Elbes S0503, manufactured by Unitika Ltd.) was wound to cover the outer layer, and the beginning and end of winding were thermally bonded with an iron heated to 150°C to obtain a water purification filter 2B. The volume of the water purification filter 2A was 324 cm 3 and the volume of the water purification filter 2B was 648 cm 3 . The water purification filters 2A and 2B have an outer diameter of 65 mm, an inner diameter of 30 mm, and a thickness of 17.5 mm. .5 mm, apparent density 0.30 g/cm 3 , mass of activated carbon layer in water purification filter 2A: 100 g, mass of activated carbon layer in water purification filter 2B: 200 g, outer diameter of activated carbon layers in water purification filters 2A and 2B: 64.32 mm , the thickness is 13.66 mm, the apparent density is 0.37 g/cm 3 , the ratio of the thickness of each activated carbon layer to the thickness of the water purification filters 2A and 2B (thickness of activated carbon layer/thickness of water purification filter) is was 0.78.
<実施例3>
(1)活性炭層の原材料の準備
実施例1と同一の原材料を準備した。
<Example 3>
(1) Preparation of Raw Materials for Activated Carbon Layer The same raw materials as in Example 1 were prepared.
(2)浄水フィルターの製造
(2-1)不織布コアの準備
実施例1と同一の不織布コアを準備した。
(2) Production of water purification filter (2-1) Preparation of nonwoven fabric core The same nonwoven fabric core as in Example 1 was prepared.
(2-2)浄水フィルターの製造
表1の組成となるように上記酸性官能基量が高い活性炭、上記酸性官能基量が低い活性炭A、上記酸性官能基量が低い活性炭B及びバインダー繊維と、水と混合し、スラリーを得た。成型型の芯体に準備した124mmのコアをセットして、中心部からスラリーを吸引し、引き抜き、120℃の乾燥炉で15時間乾燥させることによって、外径64.32mm、内径30mm、長さ124mmの、コアと活性炭層が一体化した中間体を得た。この中間体にカバー層として不織布(エルベスS0503、ユニチカ株式会社製、芯部がポリエステル系樹脂からなり、鞘部がポリオレフィン系樹脂からなる芯鞘型複合繊維である連続繊維からなるスパンボンド不織布であり、堆積された連続繊維同士が、熱エンボス加工により部分的に圧着されることにより一体化された不織布、該不織布の目付50g/m2、厚さ0.34mm、見かけ密度0.15g/cm3)を捲きつけて外層を覆い、捲き始めと捲き終わりを150℃に加熱したアイロンで熱接着することにより浄水フィルター3Aを得た。また、同様にして、準備した長さ248mmのコアを用いて、外径64.32mm、内径30mm、長さ248mmの、コアと活性炭層が一体化した中間体を得て、カバー層として不織布(エルベスS0503、ユニチカ株式会社製)を捲きつけて外層を覆い、捲き始めと捲き終わりを150℃に加熱したアイロンで熱接着することにより浄水フィルター3Bを得た。浄水フィルター3Aの体積は324cm3であり、浄水フィルター3Bの体積は648cm3であった。また、浄水フィルター3A及び3Bの外径は65mm、内径は30mm、厚さは17.5mm、浄水フィルター3A及び3Bにおける不織布コアは内径が30.0mm、外径が37.0mm、厚さが3.5mm、見かけ密度が0.30g/cm3、浄水フィルター3Aにおける活性炭層の質量は100g、浄水フィルター3Bにおける活性炭層の質量は201g、浄水フィルター3A及び3Bにおける活性炭層の外径は64.32mm、厚さは13.66mm、見かけ密度は0.37g/cm3、浄水フィルター3A及び3Bの厚さに対するそれぞれの活性炭層の厚さの比(活性炭層の厚さ/浄水フィルターの厚さ)は0.78であった。
(2-2) Production of water purification filter: activated carbon having a high amount of acidic functional groups, activated carbon A having a low amount of acidic functional groups, activated carbon B having a low amount of acidic functional groups, and binder fibers, so as to have the composition shown in Table 1; Mixed with water to obtain a slurry. The prepared 124 mm core was set on the core of the molding die, the slurry was sucked from the center, pulled out, and dried in a drying oven at 120 ° C. for 15 hours to obtain an outer diameter of 64.32 mm, an inner diameter of 30 mm, and a length of An intermediate of 124 mm in which the core and the activated carbon layer were integrated was obtained. A nonwoven fabric (Elves S0503, manufactured by Unitika Ltd., a spunbond nonwoven fabric made of continuous fibers that are core-sheath type composite fibers with a core made of a polyester resin and a sheath made of a polyolefin resin) is used as a cover layer for this intermediate. , A nonwoven fabric in which stacked continuous fibers are partially pressed together by heat embossing to be integrated, and the nonwoven fabric has a basis weight of 50 g/m 2 , a thickness of 0.34 mm, and an apparent density of 0.15 g/cm 3 . ) was wound to cover the outer layer, and the beginning and end of winding were thermally bonded with an iron heated to 150° C. to obtain water purification filter 3A. In the same way, using a prepared core with a length of 248 mm, an intermediate having an outer diameter of 64.32 mm, an inner diameter of 30 mm, and a length of 248 mm, in which the core and the activated carbon layer are integrated, is obtained. Elves S0503, manufactured by Unitika Ltd.) was wound to cover the outer layer, and the beginning and end of winding were thermally bonded with an iron heated to 150°C to obtain water purification filter 3B. The volume of water purification filter 3A was 324 cm 3 and the volume of water purification filter 3B was 648 cm 3 . The water purification filters 3A and 3B have an outer diameter of 65 mm, an inner diameter of 30 mm, and a thickness of 17.5 mm. .5 mm, apparent density is 0.30 g/cm 3 , mass of activated carbon layer in water purification filter 3A is 100 g, mass of activated carbon layer in water purification filter 3B is 201 g, outer diameter of activated carbon layers in water purification filters 3A and 3B is 64.32 mm , the thickness is 13.66 mm, the apparent density is 0.37 g/cm 3 , the ratio of the thickness of each activated carbon layer to the thickness of the water purification filters 3A and 3B (thickness of activated carbon layer/thickness of water purification filter) is was 0.78.
<実施例4>
(1)活性炭層の原材料の準備
実施例1と同一の原材料を準備した。
<Example 4>
(1) Preparation of Raw Materials for Activated Carbon Layer The same raw materials as in Example 1 were prepared.
(2)浄水フィルターの製造
(2-1)不織布コアの準備
実施例1と同一の不織布コアを準備した。
(2) Production of water purification filter (2-1) Preparation of nonwoven fabric core The same nonwoven fabric core as in Example 1 was prepared.
(2-2)浄水フィルターの製造
表1の組成となるように上記酸性官能基量が高い活性炭、上記酸性官能基量が低い活性炭A、上記酸性官能基量が低い活性炭B及びバインダー繊維と、水と混合し、スラリーを得た。成型型の芯体に準備した124mmのコアをセットして、中心部からスラリーを吸引し、引き抜き、120℃の乾燥炉で15時間乾燥させることによって、外径64.32mm、内径30mm、長さ124mmの、コアと活性炭層が一体化した中間体を得た。この中間体にカバー層として不織布(エルベスS0503、ユニチカ株式会社製、芯部がポリエステル系樹脂からなり、鞘部がポリオレフィン系樹脂からなる芯鞘型複合繊維である連続繊維からなるスパンボンド不織布であり、堆積された連続繊維同士が、熱エンボス加工により部分的に圧着されることにより一体化された不織布、該不織布の目付50g/m2、厚さ0.34mm、見かけ密度0.15g/cm3)を捲きつけて外層を覆い、捲き始めと捲き終わりを150℃に加熱したアイロンで熱接着することにより浄水フィルター4Aを得た。また、同様にして、準備した長さ248mmのコアを用いて、外径64.32mm、内径30mm、長さ248mmの、コアと活性炭層が一体化した中間体を得て、カバー層として不織布(エルベスS0503、ユニチカ株式会社製)を捲きつけて外層を覆い、捲き始めと捲き終わりを150℃に加熱したアイロンで熱接着することにより浄水フィルター4Bを得た。浄水フィルター4Aの体積は324cm3であり、浄水フィルター4Bの体積は648cm3であった。また、浄水フィルター4A及び4Bの外径は65mm、内径は30mm、厚さは17.5mm、浄水フィルター4A及び4Bにおける不織布コアは内径が30.0mm、外径が37.0mm、厚さが3.5mm、見かけ密度が0.30g/cm3、浄水フィルター4Aにおける活性炭層の質量は98g、浄水フィルター4Bにおける活性炭層の質量は197g、浄水フィルター4A及び4Bにおける活性炭層の外径は64.32mm、厚さは13.66mm、見かけ密度は0.37g/cm3、浄水フィルター4A及び4Bの厚さに対するそれぞれの活性炭層の厚さの比(活性炭層の厚さ/浄水フィルターの厚さ)は0.78であった。
(2-2) Production of water purification filter: activated carbon having a high amount of acidic functional groups, activated carbon A having a low amount of acidic functional groups, activated carbon B having a low amount of acidic functional groups, and binder fibers, so as to have the composition shown in Table 1; Mixed with water to obtain a slurry. The prepared 124 mm core was set on the core of the molding die, the slurry was sucked from the center, pulled out, and dried in a drying oven at 120 ° C. for 15 hours to obtain an outer diameter of 64.32 mm, an inner diameter of 30 mm, and a length of An intermediate of 124 mm in which the core and the activated carbon layer were integrated was obtained. A nonwoven fabric (Elves S0503, manufactured by Unitika Ltd., a spunbond nonwoven fabric made of continuous fibers that are core-sheath type composite fibers with a core made of a polyester resin and a sheath made of a polyolefin resin) is used as a cover layer for this intermediate. , A nonwoven fabric in which stacked continuous fibers are partially pressed together by heat embossing to be integrated, and the nonwoven fabric has a basis weight of 50 g/m 2 , a thickness of 0.34 mm, and an apparent density of 0.15 g/cm 3 . ) was wound to cover the outer layer, and the beginning and end of winding were thermally bonded with an iron heated to 150° C. to obtain a water purification filter 4A. In the same way, using a prepared core with a length of 248 mm, an intermediate having an outer diameter of 64.32 mm, an inner diameter of 30 mm, and a length of 248 mm, in which the core and the activated carbon layer are integrated, is obtained. Elbes S0503, manufactured by Unitika Ltd.) was wound to cover the outer layer, and the beginning and end of winding were thermally bonded with an iron heated to 150°C to obtain water purification filter 4B. The volume of the water purification filter 4A was 324 cm 3 and the volume of the water purification filter 4B was 648 cm 3 . The water purification filters 4A and 4B have an outer diameter of 65 mm, an inner diameter of 30 mm, and a thickness of 17.5 mm. .5 mm, apparent density is 0.30 g/cm 3 , mass of activated carbon layer in water purification filter 4A is 98 g, mass of activated carbon layer in water purification filter 4B is 197 g, outer diameter of activated carbon layers in water purification filters 4A and 4B is 64.32 mm , the thickness is 13.66 mm, the apparent density is 0.37 g/cm 3 , the ratio of the thickness of each activated carbon layer to the thickness of the water purification filters 4A and 4B (thickness of activated carbon layer/thickness of water purification filter) is was 0.78.
<実施例5>
(1)活性炭層の原材料の準備
実施例1と同一の原材料を準備した。
<Example 5>
(1) Preparation of Raw Materials for Activated Carbon Layer The same raw materials as in Example 1 were prepared.
(2)浄水フィルターの製造
(2-1)不織布コアの準備
実施例1と同一の不織布コアを準備した。
(2) Production of water purification filter (2-1) Preparation of nonwoven fabric core The same nonwoven fabric core as in Example 1 was prepared.
(2-2)浄水フィルターの製造
表1の組成となるように上記酸性官能基量が高い活性炭、上記酸性官能基量が低い活性炭A、上記酸性官能基量が低い活性炭B及びバインダー繊維と、水と混合し、スラリーを得た。成型型の芯体に準備した124mmのコアをセットして、中心部からスラリーを吸引し、引き抜き、120℃の乾燥炉で15時間乾燥させることによって、外径64.32mm、内径30mm、長さ124mmの、コアと活性炭層が一体化した中間体を得た。この中間体にカバー層として不織布(エルベスS0503、ユニチカ株式会社製、芯部がポリエステル系樹脂からなり、鞘部がポリオレフィン系樹脂からなる芯鞘型複合繊維である連続繊維からなるスパンボンド不織布であり、堆積された連続繊維同士が、熱エンボス加工により部分的に圧着されることにより一体化された不織布、該不織布の目付50g/m2、厚さ0.34mm、見かけ密度0.15g/cm3)を捲きつけて外層を覆い、捲き始めと捲き終わりを150℃に加熱したアイロンで熱接着することにより浄水フィルター5Aを得た。また、同様にして、準備した長さ248mmのコアを用いて、外径64.32mm、内径30mm、長さ248mmの、コアと活性炭層が一体化した中間体を得て、カバー層として不織布(エルベスS0503、ユニチカ株式会社製)を捲きつけて外層を覆い、捲き始めと捲き終わりを150℃に加熱したアイロンで熱接着することにより浄水フィルター5Bを得た。浄水フィルター5Aの体積は324cm3であり、浄水フィルター5Bの体積は648cm3であった。また、浄水フィルター5A及び5Bの外径は65mm、内径は30mm、厚さは17.5mm、浄水フィルター5A及び5Bにおける不織布コアは内径が30.0mm、外径が37.0mm、厚さが3.5mm、見かけ密度が0.30g/cm3、浄水フィルター5Aにおける活性炭層の質量は100g、浄水フィルター5Bにおける活性炭層の質量は200g、浄水フィルター5A及び5Bにおける活性炭層の外径は64.32mm、厚さは13.66mm、見かけ密度は0.37g/cm3、浄水フィルター5A及び5Bの厚さに対するそれぞれの活性炭層の厚さの比(活性炭層の厚さ/浄水フィルターの厚さ)は0.78であった。
(2-2) Production of water purification filter: activated carbon having a high amount of acidic functional groups, activated carbon A having a low amount of acidic functional groups, activated carbon B having a low amount of acidic functional groups, and binder fibers, so as to have the composition shown in Table 1; Mixed with water to obtain a slurry. The prepared 124 mm core was set on the core of the molding die, the slurry was sucked from the center, pulled out, and dried in a drying oven at 120 ° C. for 15 hours to obtain an outer diameter of 64.32 mm, an inner diameter of 30 mm, and a length of An intermediate of 124 mm in which the core and the activated carbon layer were integrated was obtained. A nonwoven fabric (Elves S0503, manufactured by Unitika Ltd., a spunbond nonwoven fabric made of continuous fibers that are core-sheath type composite fibers with a core made of a polyester resin and a sheath made of a polyolefin resin) is used as a cover layer for this intermediate. , A nonwoven fabric in which stacked continuous fibers are partially pressed together by heat embossing to be integrated, and the nonwoven fabric has a basis weight of 50 g/m 2 , a thickness of 0.34 mm, and an apparent density of 0.15 g/cm 3 . ) was wound to cover the outer layer, and the beginning and end of winding were thermally bonded with an iron heated to 150° C. to obtain a water purification filter 5A. In the same way, using a prepared core with a length of 248 mm, an intermediate having an outer diameter of 64.32 mm, an inner diameter of 30 mm, and a length of 248 mm, in which the core and the activated carbon layer are integrated, is obtained. Elves S0503, manufactured by Unitika Ltd.) was wound to cover the outer layer, and the beginning and end of winding were thermally bonded with an iron heated to 150°C to obtain water purification filter 5B. The volume of the water purification filter 5A was 324 cm 3 and the volume of the water purification filter 5B was 648 cm 3 . The water purification filters 5A and 5B have an outer diameter of 65 mm, an inner diameter of 30 mm, and a thickness of 17.5 mm. .5 mm, apparent density is 0.30 g/cm 3 , mass of activated carbon layer in water purification filter 5A is 100 g, mass of activated carbon layer in water purification filter 5B is 200 g, outer diameter of activated carbon layers in water purification filters 5A and 5B is 64.32 mm , the thickness is 13.66 mm, the apparent density is 0.37 g/cm 3 , and the ratio of the thickness of each activated carbon layer to the thickness of the water purification filters 5A and 5B (thickness of activated carbon layer/thickness of water purification filter) is was 0.78.
<実施例6>
(1)活性炭層の原材料の準備
以下の原材料を準備した。
・酸性官能基量が高い活性炭:フェノール樹脂を原料とする炭化物と水酸化カリウムを質量比(水酸化カリウム/炭化物)で3となるように混合し、この混合物を炉に入れ、窒素流通下(1L/min)、昇温速度10℃/minで800℃まで昇温した後、2時間保持してアルカリ賦活処理を行った。次に、5.25重量%の塩酸(HCl)水溶液中で煮沸した後、ろ過した。ろ過後の試料に対し60℃の温水で洗浄・真空ろ過を行い、ろ液のpHが6.5以上になるまで繰り返し洗浄、脱水した後、115℃で乾燥させた。乾燥後、空気雰囲気下で300℃まで昇温(昇温速度10℃/min)した後、24時間保持して酸化処理を行った。酸化処理を行った後に、ボールミルで粉砕し、平均粒子径が180μmとなるように調整した。この活性炭の酸性官能基量及び比表面積を測定したところ、酸性官能基量:2.73mmol/g、比表面積:2180m2/gであった。
・酸性官能基量が低い活性炭B:前述の酸性官能基量が低い活性炭Aをボールミルで粉砕し、平均粒子径が150μmとなるように調製し、酸性官能基量が低い活性炭Bを得た。この活性炭の酸性官能基量及び比表面積を測定したところ、酸性官能基量:0.13mmol/g、比表面積:1700m2/gであった。
・バインダー繊維:日本エクスラン工業株式会社製商品名ビィパル(登録商標)、フィブリル化されたアクリル繊維
<Example 6>
(1) Preparation of raw materials for activated carbon layer The following raw materials were prepared.
・Activated carbon with a high amount of acidic functional groups: Carbide made from phenolic resin and potassium hydroxide are mixed so that the mass ratio (potassium hydroxide/carbide) is 3, the mixture is placed in a furnace, and nitrogen is circulated ( 1 L/min), the temperature was raised to 800° C. at a rate of temperature rise of 10° C./min, and then held for 2 hours for alkali activation treatment. Next, it was boiled in a 5.25% by weight hydrochloric acid (HCl) aqueous solution and then filtered. The sample after filtration was washed with hot water at 60°C and vacuum filtered, repeatedly washed and dehydrated until the pH of the filtrate reached 6.5 or higher, and then dried at 115°C. After drying, the temperature was raised to 300° C. in an air atmosphere (heating rate: 10° C./min), and then held for 24 hours for oxidation treatment. After the oxidation treatment, it was pulverized with a ball mill and adjusted to have an average particle size of 180 μm. When the amount of acidic functional groups and the specific surface area of this activated carbon were measured, the amount of acidic functional groups was 2.73 mmol/g and the specific surface area was 2180 m 2 /g.
- Activated carbon B with a low amount of acidic functional groups: Activated carbon A with a low amount of acidic functional groups was pulverized with a ball mill to prepare an average particle size of 150 µm to obtain activated carbon B with a low amount of acidic functional groups. When the amount of acidic functional groups and the specific surface area of this activated carbon were measured, the amount of acidic functional groups was 0.13 mmol/g and the specific surface area was 1700 m 2 /g.
・ Binder fiber: Trade name Vipal (registered trademark) manufactured by Nihon Exlan Kogyo Co., Ltd., fibrillated acrylic fiber
(2)浄水フィルターの製造
(2-1)不織布コアの準備
実施例1と同一の不織布コアを準備した。
(2) Production of water purification filter (2-1) Preparation of nonwoven fabric core The same nonwoven fabric core as in Example 1 was prepared.
(2-2)浄水フィルターの製造
表1の組成となるように上記酸性官能基量が高い活性炭、上記酸性官能基量が低い活性炭B及びバインダー繊維と、水と混合し、スラリーを得た。成型型の芯体に準備した124mmのコアをセットして、中心部からスラリーを吸引し、引き抜き、120℃の乾燥炉で15時間乾燥させることによって、外径64.32mm、内径30mm、長さ124mmの、コアと活性炭層が一体化した中間体を得た。この中間体にカバー層として不織布(エルベスS0503、ユニチカ株式会社製、芯部がポリエステル系樹脂からなり、鞘部がポリオレフィン系樹脂からなる芯鞘型複合繊維である連続繊維からなるスパンボンド不織布であり、堆積された連続繊維同士が、熱エンボス加工により部分的に圧着されることにより一体化された不織布、該不織布の目付50g/m2、厚さ0.34mm、見かけ密度0.15g/cm3)を捲きつけて外層を覆い、捲き始めと捲き終わりを150℃に加熱したアイロンで熱接着することにより浄水フィルター6Aを得た。また、同様にして、準備した長さ248mmのコアを用いて、外径64.32mm、内径30mm、長さ248mmの、コアと活性炭層が一体化した中間体を得て、カバー層として不織布(エルベスS0503、ユニチカ株式会社製)を捲きつけて外層を覆い、捲き始めと捲き終わりを150℃に加熱したアイロンで熱接着することにより浄水フィルター6Bを得た。浄水フィルター6Aの体積は324cm3であり、浄水フィルター6Bの体積は648cm3であった。また、浄水フィルター6A及び6Bの外径は65mm、内径は30mm、厚さは17.5mm、浄水フィルター6A及び6Bにおける不織布コアは内径が30.0mm、外径が37.0mm、厚さが3.5mm、見かけ密度が0.30g/cm3、浄水フィルター6Aにおける活性炭層の質量は100g、浄水フィルター6Bにおける活性炭層の質量は199g、浄水フィルター6A及び6Bにおける活性炭層の外径は64.32mm、厚さは13.66mm、見かけ密度は0.37g/cm3、浄水フィルター6A及び6Bの厚さに対するそれぞれの活性炭層の厚さの比(活性炭層の厚さ/浄水フィルターの厚さ)は0.78であった。
(2-2) Production of Water Purification Filter The activated carbon having a high amount of acidic functional groups, the activated carbon B having a low amount of acidic functional groups, and binder fibers were mixed with water so as to have the composition shown in Table 1 to obtain a slurry. The prepared 124 mm core was set on the core of the molding die, the slurry was sucked from the center, pulled out, and dried in a drying oven at 120 ° C. for 15 hours to obtain an outer diameter of 64.32 mm, an inner diameter of 30 mm, and a length of An intermediate of 124 mm in which the core and the activated carbon layer were integrated was obtained. A nonwoven fabric (Elves S0503, manufactured by Unitika Ltd., a spunbond nonwoven fabric made of continuous fibers that are core-sheath type composite fibers with a core made of a polyester resin and a sheath made of a polyolefin resin) is used as a cover layer for this intermediate. , A nonwoven fabric in which stacked continuous fibers are partially pressed together by heat embossing to be integrated, and the nonwoven fabric has a basis weight of 50 g/m 2 , a thickness of 0.34 mm, and an apparent density of 0.15 g/cm 3 . ) was wound to cover the outer layer, and the beginning and end of winding were thermally bonded with an iron heated to 150° C. to obtain a water purification filter 6A. In the same way, using a prepared core with a length of 248 mm, an intermediate having an outer diameter of 64.32 mm, an inner diameter of 30 mm, and a length of 248 mm, in which the core and the activated carbon layer are integrated, is obtained. Elves S0503, manufactured by Unitika Ltd.) was wound to cover the outer layer, and the beginning and end of winding were thermally bonded with an iron heated to 150° C. to obtain a water purification filter 6B. The volume of the water purification filter 6A was 324 cm 3 and the volume of the water purification filter 6B was 648 cm 3 . The water purification filters 6A and 6B have an outer diameter of 65 mm, an inner diameter of 30 mm, and a thickness of 17.5 mm. 0.5 mm, apparent density of 0.30 g/cm 3 , mass of activated carbon layer in water purification filter 6A: 100 g, mass of activated carbon layer in water purification filter 6B: 199 g, outer diameter of activated carbon layers in water purification filters 6A and 6B: 64.32 mm , the thickness is 13.66 mm, the apparent density is 0.37 g/cm 3 , the ratio of the thickness of each activated carbon layer to the thickness of the water purification filters 6A and 6B (thickness of activated carbon layer/thickness of water purification filter) is was 0.78.
<比較例1>
(1)活性炭層の原材料の準備
以下の原材料を準備した。
・酸性官能基量が低い活性炭A:実施例1と同様にして、酸性官能基量が低い活性炭Aを準備した。(酸性官能基量:0.13mmol/g、比表面積:1700m2/g、平均粒子径250μm)
・酸性官能基量が低い活性炭B:実施例1と同様にして、酸性官能基量が低い活性炭Bを準備した。(酸性官能基量:0.13mmol/g、比表面積:1700m2/g、平均粒子径150μm)
・活性炭繊維:株式会社アドール製商品名A-15(酸性官能基量:0.37mmol、比表面積1700m2/g、平均繊維径16μm)
・バインダー繊維:日本エクスラン工業株式会社製商品名ビィパル(登録商標)、フィブリル化されたアクリル繊維
<Comparative Example 1>
(1) Preparation of raw materials for activated carbon layer The following raw materials were prepared.
• Activated carbon A with a low amount of acidic functional groups: Activated carbon A with a low amount of acidic functional groups was prepared in the same manner as in Example 1. (Acidic functional group content: 0.13 mmol/g, specific surface area: 1700 m 2 /g, average particle size: 250 µm)
- Activated carbon B having a low amount of acidic functional groups: Activated carbon B having a low amount of acidic functional groups was prepared in the same manner as in Example 1. (Acidic functional group content: 0.13 mmol/g, specific surface area: 1700 m 2 /g, average particle size: 150 µm)
- Activated carbon fiber: trade name A-15 manufactured by Ador Co., Ltd. (Amount of acidic functional groups: 0.37 mmol, specific surface area: 1700 m 2 /g, average fiber diameter: 16 μm)
・ Binder fiber: Trade name Vipal (registered trademark) manufactured by Nihon Exlan Kogyo Co., Ltd., fibrillated acrylic fiber
(2)浄水フィルターの製造
(2-1)不織布コアの準備
実施例1と同一の不織布コアを準備した。
(2-2)浄水フィルターの製造
表1の組成となるように上記酸性官能基量が低い活性炭A、上記酸性官能基量が低い活性炭B、上記活性炭繊維及びバインダー繊維と、水と混合し、スラリーを得た。成型型の芯体に準備した124mmのコアをセットして、中心部からスラリーを吸引し、引き抜き、120℃の乾燥炉で15時間乾燥させることによって、外径64.32mm、内径30mm、長さ124mmの、コアと活性炭層が一体化した中間体を得た。この中間体にカバー層として不織布(エルベスS0503、ユニチカ株式会社製、芯部がポリエステル系樹脂からなり、鞘部がポリオレフィン系樹脂からなる芯鞘型複合繊維である連続繊維からなるスパンボンド不織布であり、堆積された連続繊維同士が、熱エンボス加工により部分的に圧着されることにより一体化された不織布、該不織布の目付50g/m2、厚さ0.34mm、見かけ密度0.15g/cm3)を捲きつけて外層を覆い、捲き始めと捲き終わりを150℃に加熱したアイロンで熱接着することにより浄水フィルター7Aを得た。また、同様にして、準備した長さ248mmのコアを用いて、外径64.32mm、内径30mm、長さ248mmのコアと活性炭層が一体化した中間体を得て、カバー層として不織布(エルベスS0503、ユニチカ株式会社製)を捲きつけて外層を覆い、捲き始めと捲き終わりを150℃に加熱したアイロンで熱接着することにより浄水フィルター7Bを得た。浄水フィルター7Aの体積は324cm3であり、浄水フィルター7Bの体積は648cm3であった。また、浄水フィルター7A及び7Bの外径は65mm、内径は30mm、厚さは17.5mm、浄水フィルター7A及び7Bにおける不織布コアは内径が30.0mm、外径が37.0mm、厚さが3.5mm、見かけ密度が0.30g/cm3、浄水フィルター7Aにおける活性炭層の質量は98g、浄水フィルター7Bにおける活性炭層の質量は196g、浄水フィルター7A及び7Bにおける活性炭層の外径は64.32mm、厚さは13.66mm、見かけ密度は0.37g/cm3浄水フィルター7A及び7Bの厚さに対するそれぞれの活性炭層の厚さの比(活性炭層の厚さ/浄水フィルターの厚さ)は0.78であった。
(2) Production of water purification filter (2-1) Preparation of nonwoven fabric core The same nonwoven fabric core as in Example 1 was prepared.
(2-2) Production of water purification filter The activated carbon A having a low amount of acidic functional groups, the activated carbon B having a low amount of acidic functional groups, the activated carbon fiber and the binder fiber are mixed with water so as to have the composition shown in Table 1, A slurry was obtained. The prepared 124 mm core was set on the core of the molding die, the slurry was sucked from the center, pulled out, and dried in a drying oven at 120 ° C. for 15 hours to obtain an outer diameter of 64.32 mm, an inner diameter of 30 mm, and a length of An intermediate of 124 mm in which the core and the activated carbon layer were integrated was obtained. A nonwoven fabric (Elves S0503, manufactured by Unitika Ltd., a spunbond nonwoven fabric made of continuous fibers that are core-sheath type composite fibers with a core made of a polyester resin and a sheath made of a polyolefin resin) is used as a cover layer for this intermediate. , A nonwoven fabric in which stacked continuous fibers are partially pressed together by heat embossing to be integrated, and the nonwoven fabric has a basis weight of 50 g/m 2 , a thickness of 0.34 mm, and an apparent density of 0.15 g/cm 3 . ) was wound to cover the outer layer, and the beginning and end of winding were thermally bonded with an iron heated to 150° C. to obtain water purification filter 7A. Similarly, using a prepared core with a length of 248 mm, an intermediate was obtained by integrating a core with an outer diameter of 64.32 mm, an inner diameter of 30 mm, and a length of 248 mm with an activated carbon layer. S0503, manufactured by Unitika Ltd.) was wound to cover the outer layer, and the start and end of winding were thermally bonded with an iron heated to 150°C to obtain water purification filter 7B. The volume of the water purification filter 7A was 324 cm 3 and the volume of the water purification filter 7B was 648 cm 3 . The water purification filters 7A and 7B have an outer diameter of 65 mm, an inner diameter of 30 mm, and a thickness of 17.5 mm. .5 mm, apparent density is 0.30 g/cm 3 , mass of activated carbon layer in water purification filter 7A is 98 g, mass of activated carbon layer in water purification filter 7B is 196 g, outer diameter of activated carbon layers in water purification filters 7A and 7B is 64.32 mm , the thickness is 13.66 mm, the apparent density is 0.37 g / cm 3 The ratio of the thickness of each activated carbon layer to the thickness of water purification filters 7A and 7B (thickness of activated carbon layer / thickness of water purification filter) is 0 0.78.
<各種物性等の測定方法>
(1)活性炭及び活性炭層の酸性官能基量
前述のように測定した。
<Methods for measuring various physical properties>
(1) Amount of acidic functional groups in activated carbon and activated carbon layer Measured as described above.
(2)浄水フィルターの圧力損失A及び圧力損失B
浄水フィルター1B、2B、3B、4B、5B、6B及び7Bを用いて、前述のように圧力損失A及び圧力損失Bを測定した。
(2) Water purification filter pressure loss A and pressure loss B
Using the water purification filters 1B, 2B, 3B, 4B, 5B, 6B and 7B, pressure drop A and pressure drop B were measured as described above.
(3)活性炭及び活性炭層の比表面積
前述のように測定した。
(3) Specific Surface Area of Activated Carbon and Activated Carbon Layer Measured as described above.
(4)活性炭の平均粒子径
前述のように測定した。
(4) Average particle size of activated carbon Measured as described above.
(5)結合残留塩素ろ過水量
浄水フィルター1A、2A、3A、4A、5A、6A及び7Aを用いて、前述のように測定した。
(5) Amount of combined residual chlorine in filtered water Measured as described above using water purification filters 1A, 2A, 3A, 4A, 5A, 6A and 7A.
(6)遊離残留塩素ろ過水量
浄水フィルター1A、2A、3A、4A、5A、6A及び7Aを用いて、前述のように測定した。
(6) Amount of Free Residual Chlorine in Filtrated Water Measured as described above using water purification filters 1A, 2A, 3A, 4A, 5A, 6A and 7A.
(7)浄水フィルターの炭塵発生の程度の評価
浄水フィルター1B、2B、3B、4B、5B、6B及び7Bの両端面を発泡ポリエチレン製のキャップをホットメルト又はシリコーンシーラントを用いて接着してシールした後、樹脂製ハウジングに充填し、純水を空塔速度(SV)が463/hとなるように外側から内側に通過させ、5分後に浄水フィルターを通過した水を0.5L採取し、白色のメンブレンフィルター(孔径0.45μm)を用いてろ過し、メンブレンフィルター上に残った炭塵量を以下の基準により評価した。△以上を合格とした。
〇:目視では炭塵は確認できない。
△:目視でわずかに炭塵が確認できる。
×:目視で明らかに炭塵が確認できる。
(7) Evaluation of the degree of coal dust generation of water purification filters Both end faces of water purification filters 1B, 2B, 3B, 4B, 5B, 6B and 7B are sealed by adhering foamed polyethylene caps using hot melt or silicone sealant. After that, it is filled in a resin housing, pure water is passed from the outside to the inside so that the superficial velocity (SV) is 463 / h, and after 5 minutes, 0.5 L of water that has passed through the water purification filter is sampled, It was filtered using a white membrane filter (pore size 0.45 μm), and the amount of coal dust remaining on the membrane filter was evaluated according to the following criteria. △ or more was set as the pass.
O: Coal dust cannot be visually confirmed.
Δ: Coal dust can be slightly confirmed visually.
x: Coal dust can be clearly confirmed visually.
結果を表1に示す。 Table 1 shows the results.
表1から明らかなように、実施例1~6の浄水フィルターは、活性炭層を含む浄水フィルターであって、前記活性炭層の比表面積が1600~1900m2/gであり、前記活性炭層の下記測定方法で測定される酸性官能基量が0.8~3.0mmol/gであることから、結合残留塩素と遊離残留塩素のろ過能力の両立を図ることが可能なものであった。 As is clear from Table 1, the water purification filters of Examples 1 to 6 include an activated carbon layer, the specific surface area of the activated carbon layer is 1600 to 1900 m 2 /g, and the following measurements of the activated carbon layer Since the amount of acidic functional groups measured by the method was 0.8 to 3.0 mmol/g, it was possible to achieve both the ability to filter bound residual chlorine and free residual chlorine.
一方、比較例1の浄水フィルターは、活性炭層の酸性官能基量が0.8mmol/g未満であったことから、結合残留塩素ろ過能力に劣るものであった。 On the other hand, the water purifying filter of Comparative Example 1 had an amount of acidic functional groups of less than 0.8 mmol/g in the activated carbon layer, and thus was inferior in filtering ability of combined residual chlorine.
Claims (3)
前記活性炭層の比表面積が1600~1900m2/gであり、
前記活性炭層の下記測定方法で測定される酸性官能基量が0.8~3.0mmol/gである、浄水フィルター。
(酸性官能基量の測定方法)
前記活性炭層の一部をカッターナイフで削り出し、削り出したものを粒子径分布が2mm以下となるまで細かく粉砕・分級し、1.0g採取し、測定用試料とする。アルカリ溶液として0.1mol/Lの水酸化ナトリウム溶液50mLに、測定用試料を加え、30分間振盪した後、24時間、25℃で静置する。その後、ガラス繊維ろ紙(Whatman社製GF/C)を用いてろ過を行い、得られたろ液10mLを0.1mol/L塩酸溶液で中和滴定を行い、酸性官能基量(mmol/g)を求める。 A water purification filter including an activated carbon layer,
The activated carbon layer has a specific surface area of 1600 to 1900 m 2 /g,
A water purification filter, wherein the amount of acidic functional groups in the activated carbon layer measured by the following measuring method is 0.8 to 3.0 mmol/g.
(Method for measuring the amount of acidic functional groups)
A part of the activated carbon layer is cut out with a cutter knife, and the cut-out part is finely pulverized and classified until the particle size distribution becomes 2 mm or less, and 1.0 g is taken as a sample for measurement. A measurement sample is added to 50 mL of a 0.1 mol/L sodium hydroxide solution as an alkaline solution, shaken for 30 minutes, and then allowed to stand at 25° C. for 24 hours. Thereafter, filtration is performed using glass fiber filter paper (GF/C manufactured by Whatman), 10 mL of the obtained filtrate is subjected to neutralization titration with 0.1 mol / L hydrochloric acid solution, and the amount of acidic functional groups (mmol / g) is determined. Ask.
前記活性炭層の外周側に含まれるカバー層と、を含み、
前記活性炭層が前記コアの外周側に含まれ、
前記浄水フィルターの厚さに対する前記活性炭層の厚さの比(活性炭層の厚さ/浄水フィルターの厚さ)が0.7~0.9であり、
前記浄水フィルターの下記測定方法で測定される圧力損失Aが0.010~0.040MPaである、請求項1に記載の浄水フィルター。
(圧力損失Aの測定方法)
浄水フィルターの両端面を発泡ポリエチレン製のキャップをホットメルト又はシリコーンシーラントを用いて接着してシールした後、樹脂製ハウジングに充填し、純水を空塔速度(SV)が2781/hとなるように外側から内側に通過させ、10分間その流量を保持した後、ブルドン管圧力計にて圧力損失X1(MPa)を測定する。また、同様に予め浄水フィルターを除いたブランクでの圧力損失X2(MPa)を測定する。圧力損失X1から圧力損失X2を差し引いた値を浄水フィルターの通水圧力損失A(MPa)とする。 a cylindrical core;
and a cover layer included on the outer peripheral side of the activated carbon layer,
The activated carbon layer is included on the outer peripheral side of the core,
The ratio of the thickness of the activated carbon layer to the thickness of the water purification filter (thickness of activated carbon layer/thickness of water purification filter) is 0.7 to 0.9,
2. The water purifying filter according to claim 1, wherein the water purifying filter has a pressure loss A of 0.010 to 0.040 MPa measured by the following measuring method.
(Method for measuring pressure loss A)
After sealing both end faces of the water purification filter by adhering foamed polyethylene caps using hot melt or silicone sealant, the resin housing is filled, and pure water is added so that the superficial velocity (SV) becomes 2781 / h. After holding the flow rate for 10 minutes, the pressure loss X1 (MPa) is measured with a Bourdon tube pressure gauge. Similarly, the pressure loss X2 (MPa) in a blank from which the water purification filter is previously removed is measured. The value obtained by subtracting the pressure loss X2 from the pressure loss X1 is defined as the water flow pressure loss A (MPa) of the water purification filter.
前記浄水フィルターの下記測定方法で測定される遊離残留塩素ろ過水量が40~140m3である、請求項1又は2に記載の浄水フィルター。
(結合残留塩素ろ過水量の測定方法)
浄水フィルターの両端面を発泡ポリエチレン製のキャップをホットメルト又はシリコーンシーラントを用いて接着してシールした後、ステンレス製ハウジングに充填する。日本国の水道法第4条の規定に基づき、「水質基準に関する省令(平成15年5月30日厚生労働省令第101号)」で規定する水質基準に適合する水道水に、塩化アンモニウム及び次亜塩素酸ナトリウムを添加し、撹拌混合して、結合残留塩素の濃度を0.5mg/Lとなるように原水を調製する。空塔速度(SV)が370/hとなるように流量2.0L/minで、浄水フィルターの外側から内側に調整原水の通水を行う。浄水フィルター通過前後で結合残留塩素の濃度をDPD試薬吸光光度法にて定量測定し、流入水(調整原水)に対する流出水(フィルター通過液)の結合残留塩素の水中濃度が初期20%以上になる点を破過点とし、該破過点までの総ろ過水量(m3)を求める。
(遊離残留塩素ろ過水量の測定方法)
浄水フィルターの両端面を発泡ポリエチレン製のキャップをホットメルト又はシリコーンシーラントを用いて接着してシールした後、ステンレス製ハウジングに充填する。日本国の水道法第4条の規定に基づき、「水質基準に関する省令(平成15年5月30日厚生労働省令第101号)」で規定する水質基準に適合する水道水に、遊離残留塩素濃度が2.0±0.2mg/Lとなるように次亜塩素酸ナトリウムを添加したものを調整原水とし調製する。空塔速度(SV)が741/hとなるように浄水フィルターの外側から内側に調整原水の通水を行う。浄水フィルター通過前後で遊離残留塩素の濃度をDPD試薬吸光光度法にて定量測定し、流入水(調整原水)に対する流出水(フィルター通過液)の遊離残留塩素の水中濃度が初期20%以上になる点を破過点とし、該破過点までの総ろ過水量(m3)を求める。 The combined residual chlorine filtered water amount of the water purification filter measured by the following measuring method is 20 to 100 m 3 ,
3. The water purifying filter according to claim 1, wherein the filtered water amount of free residual chlorine measured by the following measuring method of the water purifying filter is 40 to 140 m 3 .
(Method for measuring combined residual chlorine filtered water volume)
Both end faces of the water purification filter are sealed by adhering foamed polyethylene caps using hot-melt or silicone sealant, and then filled into a stainless steel housing. Based on the provisions of Article 4 of the Water Supply Law of Japan, ammonium chloride and Sodium chlorite is added and mixed with stirring to prepare raw water so that the concentration of combined residual chlorine is 0.5 mg/L. Adjusted raw water is passed from the outside to the inside of the water purification filter at a flow rate of 2.0 L/min so that the superficial velocity (SV) is 370/h. Quantitatively measure the concentration of combined residual chlorine before and after passing through the water filter using the DPD reagent absorption photometry method, and the concentration of combined residual chlorine in the effluent (filter-passing liquid) relative to the influent (adjusted raw water) becomes 20% or more at the initial stage. The point is defined as the breakthrough point, and the total filtered water volume (m 3 ) up to the breakthrough point is determined.
(Method for measuring amount of free residual chlorine filtered water)
Both end faces of the water purification filter are sealed by adhering foamed polyethylene caps using hot-melt or silicone sealant, and then filled into a stainless steel housing. Based on the provisions of Article 4 of the Water Supply Law of Japan, the free residual chlorine concentration is Sodium hypochlorite is added so that the concentration is 2.0±0.2 mg/L, and the raw water is prepared as adjusted raw water. Adjusted raw water is passed from the outside to the inside of the water purification filter so that the superficial velocity (SV) becomes 741/h. Quantitatively measure the concentration of free residual chlorine before and after passing through the water purification filter using the DPD reagent absorption photometry method, and the concentration of free residual chlorine in the effluent (filter-passing liquid) relative to the influent (adjusted raw water) becomes 20% or more at the initial stage. The point is defined as the breakthrough point, and the total filtered water volume (m 3 ) up to the breakthrough point is determined.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021058166 | 2021-03-30 | ||
JP2021058166 | 2021-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022155561A true JP2022155561A (en) | 2022-10-13 |
Family
ID=83556781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022054171A Pending JP2022155561A (en) | 2021-03-30 | 2022-03-29 | Water purification filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022155561A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7427849B1 (en) | 2023-03-01 | 2024-02-05 | 関西熱化学株式会社 | Activated carbon for water treatment |
-
2022
- 2022-03-29 JP JP2022054171A patent/JP2022155561A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7427849B1 (en) | 2023-03-01 | 2024-02-05 | 関西熱化学株式会社 | Activated carbon for water treatment |
WO2024180739A1 (en) * | 2023-03-01 | 2024-09-06 | 関西熱化学株式会社 | Activated carbon for water treatment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6283435B2 (en) | Activated carbon molded body and water purifier using the same | |
EP0107494A2 (en) | Sorbent comprising spherical particles of activated carbon | |
JP2012061390A (en) | Filter for purification | |
AU2008283876A1 (en) | Liquid filtration systems | |
KR20190005997A (en) | Activated carbon, adsorption filter and water purifier using it | |
JP2022155561A (en) | Water purification filter | |
JP3164470U (en) | Water purifier filter and water purifier using the same | |
JP4064309B2 (en) | Water purifier | |
JP7356458B2 (en) | Water purification filter and water purifier using it | |
JP5933771B2 (en) | Activated carbon sheet for water purification and water purification filter | |
JP5745865B2 (en) | Activated carbon sheet for water purification and water purification filter | |
JP2008149267A (en) | Organic halide based compound removal filter | |
CN101544375A (en) | Silica gel and manufacturing method thereof, silica gel loaded paper and silica gel element | |
JP6243180B2 (en) | Activated carbon molded body and method for producing activated carbon molded body | |
JP6080827B2 (en) | Manufacturing method of molded adsorbent | |
CN117138601A (en) | TEMPO oxidizing bacteria cellulose/hydroxyapatite ultra-long nanowire composite film and preparation method and application thereof | |
KR20130077686A (en) | Activated carbon sheet, filter cartridge for water purification using the same and manufacturing method thereof | |
RU2112582C1 (en) | Filter material for cleaning liquid and gaseous agents, methods for making such material, articles made from this materials and device produced with this material | |
WO2021171854A1 (en) | Water purification filter | |
JP7301591B2 (en) | Manufacturing method for residual chlorine removal filter body | |
JPH09239214A (en) | Water purifying filter | |
WO2024158002A1 (en) | Filter | |
KR20080009260A (en) | Filter for water purifier, process of the same and water purifier using the same | |
JP2021176609A (en) | Water purification cartridge and water purifier | |
KR102714217B1 (en) | Filter For Water Treatment and Method of Manufacturing The Same |