JP2022154850A - Method for culturing cardiomyocytes - Google Patents

Method for culturing cardiomyocytes Download PDF

Info

Publication number
JP2022154850A
JP2022154850A JP2021058101A JP2021058101A JP2022154850A JP 2022154850 A JP2022154850 A JP 2022154850A JP 2021058101 A JP2021058101 A JP 2021058101A JP 2021058101 A JP2021058101 A JP 2021058101A JP 2022154850 A JP2022154850 A JP 2022154850A
Authority
JP
Japan
Prior art keywords
cardiomyocytes
culture
methyl
culturing
cardiomyocyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021058101A
Other languages
Japanese (ja)
Inventor
久陽 矢内
Hisaaki Yanai
任信 西條
Masanobu Saijo
仰 天野
Aogu Amano
勝弘 江刺家
Katsuhiro Esashiya
寛 宮廻
Hiroshi Miyasako
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2021058101A priority Critical patent/JP2022154850A/en
Publication of JP2022154850A publication Critical patent/JP2022154850A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

To provide a method for culturing cardiomyocytes that can improve the functions of cardiomyocytes.SOLUTION: A method for culturing cardiomyocytes includes a step (A) for inoculating a culture face of a culture vessel with cardiomyocytes and a step (B) for culturing the cardiomyocytes in a medium. At least part of the culture face of the culture vessel is formed from a substrate comprising a 4-methyl-1-pentene polymer.SELECTED DRAWING: None

Description

本発明は、心筋細胞の培養方法に関する。 The present invention relates to a method for culturing cardiomyocytes.

成体の心筋細胞は自己複製能に乏しいため、心筋組織が損傷を受けた場合、その修復は極めて困難である。近年、損傷した心筋組織を修復するために、in vitroでの培養により作製した心筋細胞及び/又は組織を患部に移植する試みがなされている。
また、ヒトiPS細胞を分化させて心筋細胞を作製し、培養する方法が開発され、心臓疾患に対する新たな治療薬及び治療法の開発や、心疾患を引き起こすメカニズムを解明するための研究に用いられている。例えば、特許文献1には、心筋細胞を用いた薬剤応答性試験方法が開示されている。
Since adult myocardial cells have poor self-renewal ability, it is extremely difficult to repair damaged myocardial tissue. In recent years, in order to repair damaged myocardial tissue, attempts have been made to transplant cardiomyocytes and/or tissue produced by in vitro culture into the affected area.
In addition, a method of differentiating human iPS cells to produce and culture cardiomyocytes has been developed, which is used in research to develop new therapeutic agents and treatment methods for heart disease and to elucidate the mechanisms that cause heart disease. ing. For example, Patent Literature 1 discloses a drug responsiveness test method using cardiomyocytes.

国際公開第2019/131806号WO2019/131806

本発明者らは、心筋細胞をin vitroで培養すると、その培養条件によっては、心筋細胞の機能が適切に発現されない場合があるという問題を発見した。本発明は上記事情に鑑みてなされたものであり、心筋細胞の機能を向上させることができる心筋細胞の培養方法を提供することを課題とする。 The present inventors have discovered a problem that when cardiomyocytes are cultured in vitro, the functions of cardiomyocytes may not be expressed appropriately depending on the culture conditions. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for culturing cardiomyocytes capable of improving the function of cardiomyocytes.

本発明者らは上記課題を解決すべく鋭意検討した。その結果、以下の構成を有する培養方法により上記課題を解決できることを見出し、本発明を完成するに至った。本発明は、例えば以下の〔1〕~〔13〕である。
〔1〕 培養容器の培養面に心筋細胞を播種する工程(A)、及び前記心筋細胞を培地中で培養する工程(B)を含む、心筋細胞の培養方法であって、前記培養容器の培養面の少なくとも一部が4-メチル-1-ペンテン重合体を含む基材から形成されている、心筋細胞の培養方法。
〔2〕 前記4-メチル-1-ペンテン重合体が、4-メチル-1-ペンテンとエチレン及び炭素数3~20のα―オレフィン(4-メチル-1-ペンテンを除く)から選ばれる少なくとも1種の共重合体である、〔1〕に記載の心筋細胞の培養方法。
〔3〕 前記培養容器の培養面全体が、4-メチル-1-ペンテン重合体を含む基材から形成されている、〔1〕または〔2〕に記載の心筋細胞の培養方法。
〔4〕 前記心筋細胞が、人工多能性幹細胞から分化させた心筋細胞である、〔1〕~〔3〕のいずれかに記載の心筋細胞の培養方法。
〔5〕 前記心筋細胞が、人工多能性幹細胞からプロテインフリー心筋分化誘導(PFCD)法により分化させた心筋細胞である、〔4〕に記載の心筋細胞の培養方法。
〔6〕 心筋細胞のマーカー及び筋小胞体マーカーから選ばれる少なくとも1種の遺伝子の発現量が増加する、〔4〕または〔5〕に記載の心筋細胞の培養方法。
〔7〕 前記心筋細胞のマーカーが、心筋トロポニンT(Troponin T,cardiac muscle)及びMLC-2(Myosin regulatory light chain 2,ventricular/cardiac muscle isoform)から選ばれる少なくとも1種である、〔6〕に記載の心筋細胞の培養方法。
〔8〕 前記筋小胞体マーカーが、SERCA2(sarcoplasmic/endoplasmic reticulum calsium ATPase 2)である、〔6〕に記載の心筋細胞の培養方法。
〔9〕 エネルギー代謝制御に関与する因子の遺伝子の発現量が増加する、〔1〕~〔5〕のいずれかに記載の心筋細胞の培養方法。
〔10〕 前記エネルギー代謝制御に関与する因子が、PGC-1α(Peroxisome proliferator-activated receptor gamma coactivator 1-alpha)、PPARα(Peroxisome proliferator-activated receptor alpha)、及びGLUT‐4(Solute carrier family 2,facilitated glucose transporter member 4)から選ばれる少なくとも1種である、〔9〕に記載の心筋細胞の培養方法。
〔11〕 心筋細胞の虚血マーカーの遺伝子の発現量が減少する、〔1〕~〔5〕のいずれかに記載の心筋細胞の培養方法。
〔12〕 前記心筋細胞の虚血マーカーが、BNP(brain natriuretic peptide)である、〔11〕に記載の心筋細胞の培養方法。
〔13〕 前記培養容器の培養面から、培地上面までの垂直方向での最長距離が、7mmより大きい、〔1〕~〔12〕のいずれかに記載の心筋細胞の培養方法。
The present inventors have diligently studied to solve the above problems. As a result, the present inventors have found that the above problems can be solved by a culture method having the following configuration, and have completed the present invention. The present invention is, for example, the following [1] to [13].
[1] A method for culturing cardiomyocytes, comprising the step (A) of seeding cardiomyocytes on the culture surface of a culture vessel and the step (B) of culturing the cardiomyocytes in a medium, wherein the culture in the culture vessel A method for culturing cardiomyocytes, wherein at least part of the surface is formed from a substrate containing a 4-methyl-1-pentene polymer.
[2] the 4-methyl-1-pentene polymer is at least one selected from 4-methyl-1-pentene, ethylene and α-olefins having 3 to 20 carbon atoms (excluding 4-methyl-1-pentene); The method for culturing cardiomyocytes according to [1], which is a copolymer of seeds.
[3] The method for culturing cardiomyocytes according to [1] or [2], wherein the entire culture surface of the culture vessel is formed from a substrate containing a 4-methyl-1-pentene polymer.
[4] The method for culturing cardiomyocytes according to any one of [1] to [3], wherein the cardiomyocytes are cardiomyocytes differentiated from induced pluripotent stem cells.
[5] The cardiomyocyte culture method of [4], wherein the cardiomyocytes are cardiomyocytes differentiated from induced pluripotent stem cells by a protein-free cardiomyocyte differentiation induction (PFCD) method.
[6] The cardiomyocyte culture method of [4] or [5], wherein the expression level of at least one gene selected from a cardiomyocyte marker and a sarcoplasmic reticulum marker is increased.
[7] the cardiomyocyte marker is at least one selected from cardiac troponin T (cardiac muscle) and MLC-2 (Myosin regulatory light chain 2, ventricular/cardiac muscle isoform); A method for culturing cardiomyocytes as described.
[8] The cardiomyocyte culture method of [6], wherein the sarcoplasmic reticulum marker is SERCA2 (sarcoplasmic/endoplasmic reticulum calcium ATPase 2).
[9] The method for culturing cardiomyocytes according to any one of [1] to [5], wherein the gene expression level of a factor involved in regulation of energy metabolism is increased.
[10] The factors involved in the regulation of energy metabolism include PGC-1α (Peroxisome proliferator-activated receptor gamma coactivator 1-alpha), PPARα (Peroxisome proliferator-activated receptor alpha), The method for culturing cardiomyocytes according to [9], which is at least one selected from glucose transporter members 4).
[11] The method for culturing cardiomyocytes according to any one of [1] to [5], wherein the expression level of an ischemic marker gene for cardiomyocytes is decreased.
[12] The cardiomyocyte culture method of [11], wherein the cardiomyocyte ischemia marker is BNP (brain natural peptide).
[13] The method for culturing cardiomyocytes according to any one of [1] to [12], wherein the maximum vertical distance from the culture surface of the culture vessel to the upper surface of the medium is greater than 7 mm.

本発明によれば、心筋細胞の機能を向上させることができる心筋細胞の培養方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method for culturing cardiomyocytes capable of improving the function of cardiomyocytes.

図1は、cTnTの発現量を比較したグラフである。FIG. 1 is a graph comparing the expression levels of cTnT. 図2は、MYL2の発現量を比較したグラフである。FIG. 2 is a graph comparing the expression levels of MYL2. 図3は、ATP2A2の発現量を比較したグラフである。FIG. 3 is a graph comparing the expression levels of ATP2A2. 図4は、PPARGC1Aの発現量を比較したグラフである。FIG. 4 is a graph comparing the expression levels of PPARGC1A. 図5は、PPARAの発現量を比較したグラフである。FIG. 5 is a graph comparing expression levels of PPARA. 図6は、SLC2A4の発現量を比較したグラフである。FIG. 6 is a graph comparing the expression levels of SLC2A4. 図7は、BNPの発現量を比較したグラフである。FIG. 7 is a graph comparing the expression levels of BNP.

次に本発明の心筋細胞の培養方法について具体的に説明する。
本発明は、培養容器に心筋細胞を播種する工程(A)、及び前記心筋細胞を培地中で培養する工程(B)を含む、心筋細胞の培養方法であって、前記培養容器の培養面の少なくとも一部が4-メチル-1-ペンテン重合体を含む基材から形成されている、心筋細胞の培養方法である。
なお、培養面の少なくとも一部が4-メチル-1-ペンテン重合体を含む基材から形成されている培養容器を、培養容器(α)とも称する。
また、数値範囲に関する「A~B」との記載は、特に断りがなければ、A以上B以下であることを表す。例えば、「1~5%」との記載は、1%以上5%以下を意味する。
また、本明細書において、「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
Next, the method for culturing cardiomyocytes of the present invention will be specifically described.
The present invention provides a method for culturing cardiomyocytes, comprising a step (A) of seeding cardiomyocytes in a culture vessel and a step (B) of culturing the cardiomyocytes in a medium, wherein the culture surface of the culture vessel is A method for culturing cardiomyocytes, at least a portion of which is formed from a substrate containing a 4-methyl-1-pentene polymer.
A culture vessel in which at least part of the culture surface is formed from a substrate containing a 4-methyl-1-pentene polymer is also referred to as a culture vessel (α).
In addition, the description “A to B” regarding the numerical range means that the range is A or more and B or less unless otherwise specified. For example, the description "1 to 5%" means 1% or more and 5% or less.
Also, in this specification, the term "step" is used not only for independent steps, but also when the intended purpose of the step is achieved even if it cannot be clearly distinguished from other steps. include.

[培養容器(α)]
培養容器(α)は、培養面の少なくとも一部が4-メチル-1-ペンテン重合体を含む基材から形成されている。
[Culture vessel (α)]
At least part of the culture surface of the culture vessel (α) is formed from a substrate containing a 4-methyl-1-pentene polymer.

本発明において、培養容器とは、細胞の培養に用いられる容器全てを意味する。前記培養容器としては、公知の各種の培養容器を用いることができ、形状や大きさは特に制限されない。前記培養容器としては、例えば、ディッシュ、フラスコ、プレート、ボトル、バッグ、チューブ等が挙げられる。前記培養容器は通常、インキュベーター、大量培養装置、又は灌流培養装置などの装置内で用いられる。
ここで培養面とは、細胞を培養する際に、培地及び/又は細胞が接触している面、若しくは培地及び/又は細胞が接触する予定の面を意味する。
In the present invention, the culture vessel means all vessels used for culturing cells. As the culture vessel, various known culture vessels can be used, and the shape and size are not particularly limited. Examples of the culture vessel include dishes, flasks, plates, bottles, bags, tubes and the like. The culture vessels are typically used in devices such as incubators, mass culture devices, or perfusion culture devices.
Here, the culture surface means a surface with which the medium and/or the cells are in contact, or a surface to be contacted with the medium and/or the cells when the cells are cultured.

前記培養容器において、「培養面の少なくとも一部が、4-メチル-1-ペンテン重合体を含む基材から形成されている」とは、培養面の少なくとも一部の範囲が4-メチル-1-ペンテン重合体を含む基材から形成されていることを意味し、培養面の全ての範囲が4-メチル-1-ペンテン重合体を含む基材から形成されていてもよい。 In the culture vessel, the phrase “at least a portion of the culture surface is formed from a substrate containing a 4-methyl-1-pentene polymer” means that at least a portion of the culture surface has a range of 4-methyl-1 -means formed from a substrate containing a pentene polymer, and the entire area of the culture surface may be formed from a substrate containing a 4-methyl-1-pentene polymer.

培養容器(α)は、培地を保持あるいは貯留するため、底面が培養面を含む培養容器であることが好ましい。培養容器(α)が、例えばディッシュ、フラスコ又はプレートの場合、底面が培養面を含むので、これらの底面、側面、上面のうち、少なくとも、底面の一部又は全部は、4-メチル-1-ペンテン重合体を含む基材から形成されている。少なくとも、底面の一部又は全部が4-メチル-1-ペンテン重合体を含む基材から形成されていると、前記4-メチル-1-ペンテン重合体を含む基材を介して培地中に酸素を効率的に供給でき、培地中にある心筋細胞の機能を向上させやすくなる。また、心筋細胞の機能を保持したまま、細胞を高密度で培養しやすくなる。 The culture vessel (α) is preferably a culture vessel whose bottom surface includes a culture surface in order to hold or store a culture medium. When the culture vessel (α) is, for example, a dish, flask or plate, the bottom surface includes the culture surface. It is formed from a substrate comprising a pentene polymer. When at least part or all of the bottom surface is formed from a substrate containing a 4-methyl-1-pentene polymer, oxygen is introduced into the medium through the substrate containing the 4-methyl-1-pentene polymer. can be efficiently supplied, making it easier to improve the function of cardiomyocytes in the medium. In addition, it becomes easier to culture cells at high density while maintaining the function of cardiomyocytes.

培養容器(α)は、培養面全体が4-メチル-1-ペンテン重合体を含む基材から形成されていることが好ましい。すなわち、培養容器(α)が、例えばディッシュ、フラスコ又はプレートの場合、底面が培養面を含むので、これらの底面、側面、上面のうち、底面の全部が4-メチル-1-ペンテン重合体を含む基材から形成されていることが好ましい。 The culture vessel (α) preferably has a base material containing a 4-methyl-1-pentene polymer over the entire culture surface. That is, when the culture vessel (α) is, for example, a dish, a flask or a plate, the bottom includes the culture surface. It is preferably formed from a base material containing.

前記4-メチル-1-ペンテン重合体を含む基材の厚さは特に限定されないが、好ましくは20μm~400μm、より好ましくは20μm~300μm、さらに好ましくは20μm~200μmの厚さである。前記4-メチル-1-ペンテン重合体を含む基材の厚さは、培養容器の形態に応じて適宜選ばれるが、前記範囲に調整することで心筋細胞が増殖し機能を発現する上で必要な適度な培地中の酸素濃度が得られやすく、また、培養容器としての強度も充分に得やすい。 Although the thickness of the substrate containing the 4-methyl-1-pentene polymer is not particularly limited, it is preferably 20 μm to 400 μm, more preferably 20 μm to 300 μm, still more preferably 20 μm to 200 μm. The thickness of the base material containing the 4-methyl-1-pentene polymer is appropriately selected according to the form of the culture vessel. A moderate oxygen concentration in the medium can be easily obtained, and sufficient strength as a culture vessel can be easily obtained.

培養容器(α)は、少なくとも1つのウェルを有する培養容器であることが好ましく、少なくとも1つのウェルを有するプレートであることがさらに好ましく、6ウェル、12ウェル、24ウェル、48ウェル、96ウェル、384ウェル、1536ウェル等のウェルを有するプレートであることがさらに好ましい。一般にウェルのようなくぼみ形状を底面に有する培養容器は、底面の複雑な形状を安定させるために底面を厚くする必要があり、心筋細胞への酸素供給が充分に行われ難い。底面が4-メチル-1-ペンテン重合体を含む基材から形成されていると、1ウェル、6ウェル、12ウェル、24ウェル、48ウェル、96ウェル、384ウェル、1536ウェル等のウェルを有するプレートであっても、形状が安定しており、心筋細胞への酸素供給も充分である。 The culture vessel (α) is preferably a culture vessel having at least one well, more preferably a plate having at least one well, 6 wells, 12 wells, 24 wells, 48 wells, 96 wells, A plate with wells such as 384 wells and 1536 wells is more preferable. In general, a culture vessel having a concave bottom surface such as a well needs to have a thick bottom surface in order to stabilize the complex shape of the bottom surface, which makes it difficult to sufficiently supply oxygen to cardiomyocytes. If the bottom is formed from a substrate containing a 4-methyl-1-pentene polymer, it has 1 well, 6 wells, 12 wells, 24 wells, 48 wells, 96 wells, 384 wells, 1536 wells, etc. Even with a plate, the shape is stable and the oxygen supply to myocardial cells is sufficient.

培養容器(α)の底面の形状は特に制限されず、平底(F底)、丸底(U底)、円錐底(V底)、平底+カーブエッジ等が挙げられる。丸底(U底)、平底(F底)、円錐底(V底)、平底+カーブエッジ等に加工する場合には、一般の射出成形やプレス成形で一度に加工してもよいし、フィルム又はシートを作成しておき、真空成形や圧空成形などで2次加工を行い作成することも可能である。底面の形状は培養の目的に応じて選択されるが、心筋細胞を2次元培養する際には、平底(F底)であることが通常は望ましく、3次元培養する際には丸底(U底)又は円錐底(V底)であることが通常は望ましい。 The shape of the bottom surface of the culture vessel (α) is not particularly limited, and examples thereof include a flat bottom (F bottom), a round bottom (U bottom), a conical bottom (V bottom), a flat bottom with curved edges, and the like. When processing to a round bottom (U bottom), flat bottom (F bottom), conical bottom (V bottom), flat bottom + curved edge, etc., it may be processed at once by general injection molding or press molding, or a film Alternatively, it is also possible to prepare a sheet and perform secondary processing such as vacuum forming or pressure forming. The shape of the bottom surface is selected according to the purpose of culture, but when cardiomyocytes are cultured two-dimensionally, a flat bottom (F-bottom) is usually desirable, and when cardiomyocytes are cultured three-dimensionally, a round-bottom (U-bottom) is desirable. bottom) or a conical bottom (V-bottom) is usually desirable.

培養容器(α)の培養面以外の部分は、前記4-メチル-1-ペンテン重合体を含む基材以外の材料で構成してもよい。前記材料は特に制限されず、公知の材料を用いることができる。かかる材料としては、例えば、ポリスチレン(PS)、ポリジメチルシロキサン(PDMS)、熱硬化性樹脂、環状オレフィンポリマー、環状オレフィンコポリマー、ガラス等が挙げられる。 The portion of the culture vessel (α) other than the culture surface may be composed of a material other than the substrate containing the 4-methyl-1-pentene polymer. The material is not particularly limited, and known materials can be used. Such materials include, for example, polystyrene (PS), polydimethylsiloxane (PDMS), thermosetting resins, cyclic olefin polymers, cyclic olefin copolymers, glass, and the like.

培養容器(α)は、少なくともその培養面を天然高分子材料、合成高分子材料、又は無機材料でコーティングしてもよい。コーティングは公知の方法により行うことができる。 The culture vessel (α) may be coated at least on its culture surface with a natural polymeric material, a synthetic polymeric material, or an inorganic material. Coating can be performed by a known method.

コーティングされた培養容器(α)は、心筋細胞の接着性、増殖性がより優れる。これは、培養面にコーティングされている天然高分子材料、合成高分子材料、又は無機材料が、心筋細胞の足場となるためと考えられる。したがって、心筋細胞を付着させて培養する際には、培養容器(α)に天然高分子材料、合成高分子材料、又は無機材料をコーティングしてから用いることが好ましい一形態である。 The coated culture vessel (α) has superior cardiomyocyte adhesion and proliferation. This is probably because the natural polymer material, synthetic polymer material, or inorganic material coated on the culture surface serves as a scaffold for myocardial cells. Therefore, when the cardiomyocytes are adhered and cultured, it is preferable to coat the culture vessel (α) with a natural polymer material, a synthetic polymer material, or an inorganic material before use.

前記天然高分子材料、合成高分子材料、又は無機材料は特に制限されないが、天然高分子材料として、コラーゲン、ゼラチン、アルギン酸、ヒアルロン酸やコンドロイチン硫酸等のグリコサミノグリカン、フィブロネクチン、ラミニン、フィブリノーゲン、オステオポンチン、テネイシン、ビトロネクチン、トロンボスポンジン、アガロース、エラスチン、ケラチン、キトサン、フィブリン、フィブロイン、糖類、合成高分子材料として、ポリグルコール酸、ポリ乳酸、ポリエチレングリコール、ポリカプロラクトン、合成ペプチド類、合成タンパク質類、ポリヒドロキシエチルメタクリラート、ポリエチレンイミン、無機材料として、β-リン酸三カルシウム、炭酸カルシウムなどが挙げられる。 The natural polymer material, synthetic polymer material, or inorganic material is not particularly limited, but examples of natural polymer materials include collagen, gelatin, alginic acid, glycosaminoglycans such as hyaluronic acid and chondroitin sulfate, fibronectin, laminin, fibrinogen, Osteopontin, tenascin, vitronectin, thrombospondin, agarose, elastin, keratin, chitosan, fibrin, fibroin, sugars, synthetic polymer materials such as polyglycolic acid, polylactic acid, polyethylene glycol, polycaprolactone, synthetic peptides, synthetic proteins , polyhydroxyethyl methacrylate, polyethyleneimine, and inorganic materials such as β-tricalcium phosphate and calcium carbonate.

また、前記天然高分子材料、合成高分子材料、又は無機材料としては、従来の細胞外マトリックス成分等のハイドロゲルをガラス化した後に再水和して得られるビトリゲルなども挙げられる。例えば、細胞外マトリックス成分の一つであるコラーゲンから作製された高密度のコラーゲン繊維網で構成されるコラーゲンビトリゲルも挙げられる。 Examples of the natural polymer material, synthetic polymer material, or inorganic material include vitrigel obtained by vitrifying a conventional hydrogel such as an extracellular matrix component and then rehydrating the vitrigel. For example, collagen vitrigel composed of a high-density collagen fiber network made from collagen, which is one of the extracellular matrix components, can be used.

心筋細胞の接着性や心筋細胞の増殖性を向上させる、心筋細胞の機能をより長期に維持させる、などの観点から、コラーゲン、ゼラチン、ラミニン、ポリリジン等のタンパク質、又はペプチドによるコーティングが好ましく、ラミニン、コラーゲン又はポリリジンによるコーティング処理がより好ましく、ラミニンによるコーティング処理がさらに好ましい。これらのコーティングは、1種単独でもよいし、2種以上を組み合わせて行ってもよい。 From the viewpoint of improving cardiomyocyte adhesion and cardiomyocyte proliferation, and maintaining cardiomyocyte functions for a longer period of time, coating with proteins such as collagen, gelatin, laminin, polylysine, or peptides, or laminin is preferable. , collagen or polylysine is more preferred, and laminin coating is even more preferred. These coatings may be used singly or in combination of two or more.

培養容器(α)は、少なくともその培養面の表面を加工してもよい。表面の加工としては、例えば、凹凸構造の形成加工、親水化処理、疎水化処理等の表面改質処理が挙げられる。 At least the culture surface of the culture vessel (α) may be processed. Surface processing includes, for example, uneven structure forming processing, surface modification processing such as hydrophilic processing, and hydrophobic processing.

表面改質処理に用いる方法は特に限定されないが、例えばコロナ処理、プラズマ処理、オゾン処理、紫外線処理等の親水化処理、エステル化、シリル化、フッ化等の疎水化処理、表面グラフト重合、化学蒸着、エッチング、又は、ヒドロキシル基、アミノ基、スルホン基、チオール基、カルボキシル基等の特定の官能基付加、シランカップリング、チタンカップリング、ジルコニウムカップリング等の特定の官能基による処理、酸化剤等による表面粗化、ラビングやサンドブラスト等の物理的処理等が挙げられる。これらの表面改質処理は、単独で行ってもよいし、2種以上を組み合わせて行ってもよい。なお、表面改質処理を行う場合には、少なくとも培養面に行うことが好ましい。 The method used for the surface modification treatment is not particularly limited. Vapor deposition, etching, addition of specific functional groups such as hydroxyl group, amino group, sulfone group, thiol group, carboxyl group, treatment with specific functional groups such as silane coupling, titanium coupling, zirconium coupling, oxidizing agent and physical treatment such as rubbing and sandblasting. These surface modification treatments may be performed singly or in combination of two or more. In addition, when surface modification treatment is performed, it is preferable to perform it at least on the culture surface.

培養容器(α)は、少なくともその培養面を親水化処理することが好ましく、コロナ処理、又はプラズマ処理することがより好ましい。培養容器(α)の表面を親水化処理することで、前記培養容器(α)の表面の濡れ性が上がり、培養容器(α)と心筋細胞との密着性が良くなり、培養容器(α)の表面で心筋細胞が均一に増殖できる。また、培養容器(α)の表面を親水化処理することで、培養容器(α)の培養面上に天然高分子材料、合成高分子材料、または無機材料をコーティングしやすくなる。特に、培養容器(α)の培養面上に均一に天然高分子材料、合成高分子材料、または無機材料を積載し、密着させやすくなり、また、積載処理後においても、生理食塩水による洗浄や、細胞培養の環境において、天然高分子材料、合成高分子材料、または無機材料が剥がれず、安定な初期状態を保って細胞培養に用いることができる。
プラズマ処理を行う場合には、同伴させるガスとして、窒素、水素、ヘリウム、酸素、アルゴンなどが用いられ、好ましくは、窒素、ヘリウム、アルゴンから選択される少なくとも一種のガスが選ばれる。
At least the culture surface of the culture vessel (α) is preferably hydrophilized, more preferably corona-treated or plasma-treated. By hydrophilizing the surface of the culture vessel (α), the wettability of the surface of the culture vessel (α) is increased, the adhesion between the culture vessel (α) and the cardiomyocytes is improved, and the culture vessel (α) is improved. cardiomyocytes can grow uniformly on the surface of Further, by hydrophilizing the surface of the culture vessel (α), it becomes easier to coat the culture surface of the culture vessel (α) with a natural polymer material, a synthetic polymer material, or an inorganic material. In particular, the natural polymer material, synthetic polymer material, or inorganic material is uniformly loaded on the culture surface of the culture vessel (α), and it becomes easier to adhere. In the environment of cell culture, the natural polymer material, synthetic polymer material, or inorganic material does not peel off and can be used for cell culture while maintaining a stable initial state.
When plasma treatment is performed, nitrogen, hydrogen, helium, oxygen, argon, or the like is used as the accompanying gas, and at least one gas selected from nitrogen, helium, and argon is preferably selected.

培養容器(α)は、コンタミネーション防止のために、消毒又は滅菌処理を施してもよい。消毒又は滅菌処理の方法としては、特に制限されず、流通蒸気法、煮沸法、間歇法、紫外線法等の物理的消毒法、オゾン等の気体、エタノール等の消毒薬を用いる化学的消毒法;高圧蒸気法、乾熱法等の加熱滅菌法;ガンマ線法、高周波法等の照射滅菌法;酸化エチレンガス法、過酸化水素ガスプラズマ法等のガス滅菌法等が挙げられる。中でも操作が簡便で、充分に滅菌が行えることから、エタノール消毒法、高圧蒸気滅菌法、ガンマ線滅菌法、又は酸化エチレンガス滅菌法が好ましい。これらの消毒又は滅菌処理は、1種単独で行ってもよいし、2種以上を組み合わせて行ってもよい。 The culture vessel (α) may be disinfected or sterilized to prevent contamination. The method of disinfection or sterilization is not particularly limited, and physical disinfection methods such as the circulation steam method, boiling method, intermittent method, and ultraviolet method, chemical disinfection methods using gases such as ozone, and disinfectants such as ethanol; Heat sterilization methods such as high pressure steam method and dry heat method; irradiation sterilization methods such as gamma ray method and high frequency method; gas sterilization methods such as ethylene oxide gas method and hydrogen peroxide gas plasma method. Among them, the ethanol sterilization method, the autoclave sterilization method, the gamma ray sterilization method, or the ethylene oxide gas sterilization method is preferable because the operation is simple and the sterilization can be performed sufficiently. These disinfection or sterilization treatments may be performed singly or in combination of two or more.

培養容器(α)の培養面は、水接触角が50°~100°であることが好ましく、55°~100°であることがより好ましく、60°~100°であることがさらに好ましい。また、水接触角の好ましい別の態様としては、84°以下が挙げられ、50°~84°がより好ましい。 The culture surface of the culture vessel (α) preferably has a water contact angle of 50° to 100°, more preferably 55° to 100°, even more preferably 60° to 100°. Another preferred aspect of the water contact angle is 84° or less, more preferably 50° to 84°.

培養容器(α)の培養面の水接触角を上記範囲に調整することで、例えば心筋細胞が培養面に接着しやすくなり、培養面で均一に増殖しやすい。また、培養容器(α)の培養面上に均一に天然高分子材料、合成高分子材料、または無機材料をコーティングし、密着させやすくなり、また、コーティング後においても、生理食塩水による洗浄や、細胞培養の環境において、天然高分子材料、合成高分子材料、または無機材料が剥がれず、安定な初期状態を保って細胞培養に用いることができる。 By adjusting the water contact angle of the culture surface of the culture vessel (α) within the above range, cardiomyocytes, for example, easily adhere to the culture surface and easily proliferate uniformly on the culture surface. In addition, the culture surface of the culture vessel (α) is evenly coated with a natural polymer material, a synthetic polymer material, or an inorganic material, making it easier to adhere. In a cell culture environment, the natural polymer material, synthetic polymer material, or inorganic material does not peel off and can be used for cell culture while maintaining a stable initial state.

水接触角の測定方法は特に制限されず、公知の方法を用いることができるが、好ましくは静滴法である。水接触角は、例えば、日本工業規格JIS-R3257(基板ガラス表面のぬれ性試験方法)に準じて、25±5℃、50±10%の恒温恒湿条件下で水滴の形状を球形とみなせる4μL以下の容量の水滴を、培養容器と同一の材料を用いて作成された測定サンプルの表面に滴下し、静滴法により、測定サンプル表面に水滴が接触した直後から1分以内の測定サンプルと水滴の接触界面の角度を計測する方法で測定することができる。 The method for measuring the water contact angle is not particularly limited, and a known method can be used, preferably the sessile drop method. For the water contact angle, for example, the shape of a water droplet can be regarded as spherical under constant temperature and humidity conditions of 25 ± 5 ° C. and 50 ± 10% according to Japanese Industrial Standard JIS-R3257 (test method for wettability of substrate glass surface). A water droplet with a volume of 4 μL or less is dropped on the surface of a measurement sample made using the same material as the culture vessel, and the measurement sample is measured within 1 minute immediately after the water droplet contacts the measurement sample surface by the sessile drop method. It can be measured by a method of measuring the angle of the contact interface of water droplets.

培養容器(α)の製造方法は、特に制限されず、製造に用いる機器も制限されない。培養容器の全部が4-メチル-1-ペンテン重合体を含む基材から形成される場合には、例えば、4-メチル-1-ペンテン重合体を含むフィルム又はシートを形成し、必要に応じてそのフィルム又はシートを成形して所望の形状として培養容器を作製することができる。また、培養容器は、押出成形、溶液キャスト成形、射出成形、ブロー成形等の方法により、直接成形することによっても得られる。培養容器の一部が4-メチル-1-ペンテン重合体を含む基材から形成される場合には、例えば、4-メチル-1-ペンテン重合体を含むフィルム又はシートを形成し、該フィルム又はシートと、その他の基材とを、適宜接合することにより培養容器を得ることができる。接合する方法としては特に制限はなく4-メチル-1-ペンテン重合体を含む基材と、その他の基材とを一体で形成してもよく、接着剤や粘着剤を介して密着させてもよい。 The method of manufacturing the culture vessel (α) is not particularly limited, and the equipment used for manufacturing is also not limited. When the entire culture vessel is formed from a substrate containing a 4-methyl-1-pentene polymer, for example, a film or sheet containing the 4-methyl-1-pentene polymer is formed, and if necessary The film or sheet can be formed into a desired shape to produce a culture vessel. The culture vessel can also be obtained by direct molding by methods such as extrusion molding, solution casting molding, injection molding, and blow molding. When part of the culture vessel is formed from a substrate containing a 4-methyl-1-pentene polymer, for example, a film or sheet containing the 4-methyl-1-pentene polymer is formed, and the film or A culture vessel can be obtained by appropriately joining the sheet and other base material. The bonding method is not particularly limited, and the substrate containing the 4-methyl-1-pentene polymer and another substrate may be integrally formed, or they may be adhered to each other via an adhesive or pressure-sensitive adhesive. good.

前記フィルム又はシートを形成する方法としては、具体的には、例えば、通常のインフレーション法、T-ダイ押出法などが採用される。製造は通常加温して行う。T-ダイ押出法を採用する場合、押出温度は100℃~400℃が好ましく、200℃~300℃が特に好ましい。また、ロール温度は45℃~75℃が好ましく、55℃~65℃が特に好ましい。 As a method for forming the film or sheet, for example, a normal inflation method, a T-die extrusion method, or the like is employed. Manufacture is usually carried out warm. When the T-die extrusion method is employed, the extrusion temperature is preferably 100°C to 400°C, particularly preferably 200°C to 300°C. The roll temperature is preferably 45°C to 75°C, particularly preferably 55°C to 65°C.

また、前記フィルム又はシートは4-メチル-1-ペンテン重合体を溶剤に溶解し、樹脂や金属上に流し、レベリングしながらゆっくりと乾かしフィルム化(シート化)する溶液キャスト法で製造してもよい。用いられる溶剤は特に制限ないが、シクロヘキサン、ヘキサン、デカン、トルエンなどの炭化水素溶剤を用いてもよい。また、溶剤は、前記4-メチル-1-ペンテン重合体の溶解性や乾燥効率を考慮して2種類以上を混合してもよい。テーブルコート、スピンコート、ディップコート、ダイコート、スプレーコート、バーコート、ロールコート、カーテンフローコートなどの方法でポリマー溶液を塗布し、乾燥、剥離することでフィルム又はシートに加工することができる。 Alternatively, the film or sheet may be produced by a solution casting method in which a 4-methyl-1-pentene polymer is dissolved in a solvent, poured onto a resin or metal, slowly dried while leveling, and formed into a film (sheet). good. The solvent used is not particularly limited, but hydrocarbon solvents such as cyclohexane, hexane, decane and toluene may be used. Two or more solvents may be mixed in consideration of the solubility and drying efficiency of the 4-methyl-1-pentene polymer. A polymer solution is applied by a method such as table coating, spin coating, dip coating, die coating, spray coating, bar coating, roll coating, or curtain flow coating, dried, and peeled off to form a film or sheet.

〈4-メチル-1-ペンテン重合体〉
本発明においては、4-メチル-1-ペンテン単独重合体、及び4-メチル-1-ペンテンと他のモノマーとの共重合体を総称して「4-メチル-1-ペンテン重合体」と称する。
<4-methyl-1-pentene polymer>
In the present invention, 4-methyl-1-pentene homopolymers and copolymers of 4-methyl-1-pentene and other monomers are collectively referred to as "4-methyl-1-pentene polymers". .

4-メチル-1-ペンテン重合体の一例である、4-メチル-1-ペンテンと、他のモノマーとの共重合体としては、ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体のいずれであってもよい。4-メチル-1-ペンテンと、他のモノマーとの共重合体としては、4-メチル-1-ペンテンと、エチレン及び炭素数3~20のα-オレフィン(4-メチル-1-ペンテンを除く)から選ばれる少なくとも1種のオレフィンとの共重合体が、強度が高く、基材として用いても破れにくく割れにくく、撓みも少ないため好ましい。 Copolymers of 4-methyl-1-pentene, which is an example of 4-methyl-1-pentene polymers, with other monomers include random copolymers, alternating copolymers, block copolymers, and grafts. Any copolymer may be used. Copolymers of 4-methyl-1-pentene with other monomers include 4-methyl-1-pentene, ethylene and α-olefins having 3 to 20 carbon atoms (excluding 4-methyl-1-pentene A copolymer with at least one olefin selected from ) is preferable because it has high strength, is resistant to breakage and cracking even when used as a base material, and has little deflection.

4-メチル-1-ペンテン重合体としては、4-メチル-1-ペンテン単独重合体並びに、4-メチル-1-ペンテンと、エチレン及び炭素数3~20のα-オレフィン(4-メチル-1-ペンテンを除く)から選ばれる少なくとも1種のオレフィンとの共重合体から選択される少なくとも1種の重合体であることが好ましく、4-メチル-1-ペンテンと、エチレン及び炭素数3~20のα-オレフィン(4-メチル-1-ペンテンを除く)から選ばれる少なくとも1種のオレフィンとの共重合体であることがより好ましい。 The 4-methyl-1-pentene polymer includes 4-methyl-1-pentene homopolymer, 4-methyl-1-pentene, ethylene and an α-olefin having 3 to 20 carbon atoms (4-methyl-1 - is preferably at least one polymer selected from copolymers with at least one olefin selected from (excluding pentene), 4-methyl-1-pentene, ethylene and 3 to 20 carbon atoms is more preferably a copolymer with at least one olefin selected from α-olefins (excluding 4-methyl-1-pentene).

前記オレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-テトラデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-エイコセンが挙げられる。前記オレフィンは、基材に必要な物性に応じて適宜選択することができる。例えば、前記オレフィンとしては、適度な酸素透過度と、優れた剛性という観点からは、炭素数8~18のα-オレフィンが好ましく、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-ヘプタデセン及び1-オクタデセンから選ばれる少なくとも1種がより好ましい。オレフィンの炭素数が上記範囲にあると、重合体の加工性がより良好になり、クラックや端部の割れによる基材の外観不良が生じにくくなる傾向にある。また、基材の不良品発生率が低くなる。 Examples of the olefin include ethylene, propylene, 1-butene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-tetradecene, 1-hexadecene, 1-heptadecene, 1-octadecene, and 1-eicosene. is mentioned. The olefin can be appropriately selected depending on the physical properties required for the base material. For example, the olefins are preferably α-olefins having 8 to 18 carbon atoms from the viewpoint of appropriate oxygen permeability and excellent rigidity, such as 1-octene, 1-decene, 1-dodecene, 1-tetradecene, At least one selected from 1-hexadecene, 1-heptadecene and 1-octadecene is more preferred. When the number of carbon atoms in the olefin is within the above range, the processability of the polymer is improved, and the appearance of the base material tends to be less likely to occur due to cracks or cracks at the edges. In addition, the defective product rate of the base material is reduced.

前記オレフィンは、1種又は2種以上を用いることができる。材料の強度の観点から、炭素数は2以上が好ましく、炭素数10以上が更に好ましい。異なる2種以上のα-オレフィンを組み合わせる場合には、1-テトラデセン及び1-ヘキサデセンから選ばれる少なくとも1種と、1-ヘプタデセン及び1-オクタデセンから選ばれる少なくとも1種とを組み合わせることが特に好ましい。 The olefin can be used alone or in combination of two or more. From the viewpoint of the strength of the material, the number of carbon atoms is preferably 2 or more, more preferably 10 or more. When combining two or more different α-olefins, it is particularly preferable to combine at least one selected from 1-tetradecene and 1-hexadecene with at least one selected from 1-heptadecene and 1-octadecene.

前記4-メチル-1-ペンテン重合体における4-メチル-1-ペンテンから導かれる構成単位の含有量は、好ましくは60~100モル%、より好ましくは80~99.5モル%、さらに好ましくは85~98モル%である。
また、4-メチル-1-ペンテン重合体が、4-メチル-1-ペンテンと、エチレン及び炭素数3~20のα-オレフィン(4-メチル-1-ペンテンを除く)から選ばれる少なくとも1種のオレフィンとの共重合体である場合は、その共重合体におけるエチレン及び炭素数3~20のα-オレフィン(4-メチル-1-ペンテンを除く)から選ばれる少なくとも1種のオレフィンから導かれる構成単位の含有量は、好ましくは0~40モル%、より好ましくは0.5~20モル%、さらに好ましくは2~15モル%である。なお、これら構成単位の含有量は、4-メチル-1-ペンテン重合体中の全繰返し構成単位量を100モル%とする。構成単位の含有量が上記範囲内にあると、加工性に優れ均質な培養面が得られ、またフィルムの靭性と強度のバランスが良いため、撓みも少なくなる。
The content of structural units derived from 4-methyl-1-pentene in the 4-methyl-1-pentene polymer is preferably 60 to 100 mol%, more preferably 80 to 99.5 mol%, still more preferably 85 to 98 mol %.
Further, the 4-methyl-1-pentene polymer is at least one selected from 4-methyl-1-pentene, ethylene and α-olefins having 3 to 20 carbon atoms (excluding 4-methyl-1-pentene) If it is a copolymer with an olefin, it is derived from at least one olefin selected from ethylene and α-olefins having 3 to 20 carbon atoms (excluding 4-methyl-1-pentene) in the copolymer The content of the structural unit is preferably 0 to 40 mol%, more preferably 0.5 to 20 mol%, still more preferably 2 to 15 mol%. The content of these structural units is based on 100 mol % of all repeating structural units in the 4-methyl-1-pentene polymer. When the content of the structural unit is within the above range, a uniform culture surface with excellent workability can be obtained, and the toughness and strength of the film are well-balanced, so that deflection is reduced.

前記4-メチル-1-ペンテン重合体は、本発明の効果を損なわない範囲で、4-メチル-1-ペンテンから導かれる構成単位及び前記エチレン及び炭素数3~20のα-オレフィンから導かれる構成単位以外の構成単位(以下「その他の構成単位」ともいう)を有してもよい。その他の構成単位の含有量は、例えば0~10.0モル%である。前記4-メチル-1-ペンテン重合体がその他の構成単位を有する場合、その他の構成単位は、1種でも2種以上であってもよい。 The 4-methyl-1-pentene polymer is derived from structural units derived from 4-methyl-1-pentene and the ethylene and an α-olefin having 3 to 20 carbon atoms within a range that does not impair the effects of the present invention. It may have structural units other than structural units (hereinafter also referred to as "other structural units"). The content of other structural units is, for example, 0 to 10.0 mol %. When the 4-methyl-1-pentene polymer has other structural units, the other structural units may be one or two or more.

その他の構成単位を導くモノマーとしては、例えば、環状オレフィン、芳香族ビニル化合物、共役ジエン、非共役ポリエン、官能ビニル化合物、水酸基含有オレフィン、ハロゲン化オレフィンが挙げられる。環状オレフィン、芳香族ビニル化合物、共役ジエン、非共役ポリエン、官能ビニル化合物、水酸基含有オレフィン及びハロゲン化オレフィンとしては、例えば、特開2013-169685号公報の段落[0035]~[0041]に記載の化合物を用いることができる。 Examples of monomers leading to other structural units include cyclic olefins, aromatic vinyl compounds, conjugated dienes, non-conjugated polyenes, functional vinyl compounds, hydroxyl group-containing olefins, and halogenated olefins. Cyclic olefins, aromatic vinyl compounds, conjugated dienes, non-conjugated polyenes, functional vinyl compounds, hydroxyl group-containing olefins and halogenated olefins include, for example, paragraphs [0035] to [0041] of JP-A-2013-169685. compounds can be used.

前記4-メチル-1-ペンテン重合体は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The 4-methyl-1-pentene polymer may be used singly or in combination of two or more.

4-メチル-1-ペンテン重合体としては市販品を使用することもできる。具体的には、三井化学(株)製のTPX MX001、MX002、MX004、MX0020、MX021、MX321、RT18、RT31又はDX845いずれも商標)などが挙げられる。また、その他のメーカー製でも上記の要件を満たす4-メチル-1-ペンテン重合体であれば、好ましく使用できる。これらの市販品は1種単独で使用してもよく、2種以上を組み合せて使用することもできる。 A commercial product can also be used as the 4-methyl-1-pentene polymer. Specific examples include TPX MX001, MX002, MX004, MX0020, MX021, MX321, RT18, RT31 and DX845 manufactured by Mitsui Chemicals, Inc.). Also, 4-methyl-1-pentene polymers manufactured by other manufacturers can be preferably used as long as they satisfy the above requirements. These commercial products may be used singly or in combination of two or more.

4-メチル-1-ペンテン重合体は、通常、融点200℃~240℃であり耐熱性が高い。また加水分解を起こさず、耐水性、耐沸水性、耐スチーム性が優れているため、4-メチル-1-ペンテン重合体を含む基材は高圧蒸気滅菌処理が可能である。4-メチル-1-ペンテン重合体は、また可視光線透過率が高く(通常90%以上)、自家蛍光を発しない特徴を有するので、4-メチル-1-ペンテン重合体を含む基材から形成される培養容器は培養細胞の観察がしやすい。さらに、ほとんどの薬品に優れた耐薬品性を示し、薬剤を収着しにくいため、心筋細胞を維持するための薬剤の効果を妨げず、また、創薬スクリーニング用途や診断用途にも好適に用いられる。4-メチル-1-ペンテン重合体は、ヒートシールが可能であり、自材同士の熱融着のみならず他の材料との熱接着も容易である。また、熱成形が可能であるため、任意の形状の培養容器に成形することが容易であり、例えばインプリント法やインサート法を用いた成形も容易である。 A 4-methyl-1-pentene polymer usually has a melting point of 200° C. to 240° C. and high heat resistance. Further, since it does not undergo hydrolysis and has excellent water resistance, boiling water resistance and steam resistance, a substrate containing a 4-methyl-1-pentene polymer can be subjected to autoclave sterilization. The 4-methyl-1-pentene polymer also has a high visible light transmittance (usually 90% or more) and does not emit autofluorescence, so it is formed from a base material containing a 4-methyl-1-pentene polymer. The culture vessel is designed to facilitate observation of cultured cells. Furthermore, since it exhibits excellent chemical resistance to most chemicals and does not easily sorb drugs, it does not interfere with the effects of drugs for maintaining cardiomyocytes, and is also suitable for drug discovery screening and diagnostic applications. be done. The 4-methyl-1-pentene polymer can be heat-sealed, and can be easily heat-sealed not only with itself but also with other materials. In addition, since it can be thermoformed, it can be easily formed into a culture vessel of any shape, for example, it can be easily formed using an imprint method or an insert method.

4-メチル-1-ペンテン重合体の、標準ポリスチレンを基準物質としたゲルパーミュエーションクロマトグラフィー(GPC)により測定される、重量平均分子量(Mw)は、好ましくは10000~2000000、より好ましくは20000~1000000、さらに好ましくは30000~500000である。ここで、GPC測定の際の試料濃度は、例えば1.0~5.0mg/mlとすることができる。また、4-メチル-1-ペンテン重合体の分子量分布(Mw/Mn)は、好ましくは1.0~30、より好ましくは1.1~25、さらに好ましくは1.1~20である。GPCで用いられる溶剤は、オルトジクロロベンゼンが好ましい。また、測定条件の一例としては、後述する実施例に示した条件が挙げられるが、該測定条件に限定されるものではない。 The weight average molecular weight (Mw) of the 4-methyl-1-pentene polymer, measured by gel permeation chromatography (GPC) using standard polystyrene as a reference material, is preferably 10,000 to 2,000,000, more preferably 20,000. ~1,000,000, more preferably 30,000 to 500,000. Here, the sample concentration for GPC measurement can be, for example, 1.0 to 5.0 mg/ml. Further, the molecular weight distribution (Mw/Mn) of the 4-methyl-1-pentene polymer is preferably 1.0-30, more preferably 1.1-25, still more preferably 1.1-20. The solvent used in GPC is preferably ortho-dichlorobenzene. In addition, as an example of the measurement conditions, the conditions shown in Examples to be described later can be cited, but the measurement conditions are not limited to these.

重量平均分子量(Mw)を上記上限以下とすることにより、後述する4-メチル-1-ペンテン重合体の成形法において、溶融成形で作製したフィルムは、ゲル等の不具合の発生を抑制しやすく、表面が均一な製膜をしやすくなる。また、溶液キャスト法で作製する際は溶剤への溶解性をより良好にし、フィルムのゲル等の不具合を抑制しやすく、表面均一な製膜がしやすくなる。 By setting the weight average molecular weight (Mw) to the above upper limit or less, the film produced by melt molding in the molding method of the 4-methyl-1-pentene polymer described later can easily suppress the occurrence of defects such as gel. It becomes easier to form a film with a uniform surface. In addition, when the film is produced by the solution casting method, the solubility in the solvent is improved, so that problems such as film gel can be easily suppressed, making it easier to form a film with a uniform surface.

また、重量平均分子量(Mw)を上記下限以上とすることにより、培養容器は強度が十分となる傾向にある。さらに、分子量分布を上記の範囲内とすることで、作製した培養容器表面のベタツキを抑えやすく、培養容器の靭性も充分となる傾向にあり、成形時の曲げや裁断時のクラックの発生などを抑制しやすくなる。 Further, by setting the weight-average molecular weight (Mw) to the lower limit or more, the strength of the culture vessel tends to be sufficient. Furthermore, by setting the molecular weight distribution within the above range, it is easy to suppress the stickiness of the surface of the culture vessel produced, and the toughness of the culture vessel tends to be sufficient, so bending during molding and cracking during cutting are prevented. easier to suppress.

前記4-メチル-1-ペンテン重合体の重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、4-メチル-1-ペンテン重合体として、2種以上を用いた場合には、それぞれの、Mw及びMw/Mnが、上記範囲にあればよい。 The weight-average molecular weight (Mw) and molecular weight distribution (Mw/Mn) of the 4-methyl-1-pentene polymer are different from each other when two or more types are used as the 4-methyl-1-pentene polymer. , Mw and Mw/Mn should be within the above ranges.

4-メチル-1-ペンテン重合体は、酸素透過係数が100~2500cm3×mm/(m2×24h×atm)であることが好ましく、1000~2500cm3×mm/(m2×24h×atm)であるとより好ましい。酸素透過係数が前記範囲にあると、酸素透過性に優れるので、心筋細胞は良好な形態を保ち、培養期間に応じて効率良く増殖しやすい。 The 4-methyl-1-pentene polymer preferably has an oxygen permeability coefficient of 100 to 2500 cm 3 ×mm/(m 2 ×24h×atm), more preferably 1000 to 2500 cm 3 ×mm/(m 2 ×24h×atm). ) is more preferable. When the oxygen permeability coefficient is within the above range, the oxygen permeability is excellent, so that the cardiomyocytes maintain good morphology and are likely to proliferate efficiently according to the culture period.

酸素透過係数は、具体的には以下の方法で測定できる。4-メチル-1-ペンテン重合体で構成されるフィルムから測定サンプルを作成し、差圧式ガス透過率測定法により、温度23℃、湿度0%での酸素透過係数[cm3×mm/(m2×24h×atm)]を測定する。測定に用いる機器は差圧式ガス透過率測定法を用いたものであれば特に制限されないが、例えば東洋精機製作所製の差圧式ガス透過率測定装置MT-C3が挙げられる。測定サンプルは、4-メチル-1-ペンテン重合体で構成される厚さ50μmのフィルムから90×90mmの試験片を切り出して作成し、測定部径は70mm(透過面積は38.46cm2)とすると好ましい。酸素透過度が大きいため、予めサンプルにアルミニウムマスクを施し、実透過面積を5.0cm2とすることがより好ましい。測定サンプルは、微細加工、表面改質処理を行ったものでもよいし、行っていないものでもよいが、何も処理を行っていないものが好ましい。酸素透過係数を基材の厚さ(μm)で除した値を酸素透過度[cm3/(m2×24h×atm)]とする。 Specifically, the oxygen permeability coefficient can be measured by the following method. A measurement sample was prepared from a film composed of a 4-methyl-1-pentene polymer, and the oxygen permeability coefficient [cm 3 × mm/(m 2 x 24 h x atm)]. The instrument used for the measurement is not particularly limited as long as it uses a differential pressure type gas permeability measurement method. A measurement sample was prepared by cutting a 90×90 mm test piece from a 50 μm-thick film composed of a 4-methyl-1-pentene polymer, and the diameter of the measurement part was 70 mm (the transmission area was 38.46 cm 2 ). It is preferable to do so. Since the oxygen permeability is high, it is more preferable to apply an aluminum mask to the sample in advance so that the actual permeation area is 5.0 cm 2 . The sample to be measured may or may not have been subjected to microfabrication or surface modification treatment, but it is preferable that the sample has not been subjected to any treatment. A value obtained by dividing the oxygen permeability coefficient by the thickness (μm) of the base material is defined as the oxygen permeability [cm 3 /(m 2 ×24h×atm)].

4-メチル-1-ペンテン重合体は以上のような優れた特性を有しているので、少なくとも培養面が4-メチル-1-ペンテン重合体を含む基材で形成された培養容器は、培養に悪い影響を与えることも無く、また形状安定性、光透過性、成形加工性、酸素透過性が良好で、滅菌処理を行うことができ、心筋細胞を培養するために用いる培養容器として非常に優れている。 Since the 4-methyl-1-pentene polymer has such excellent properties as described above, a culture vessel having at least a culture surface formed of a base material containing the 4-methyl-1-pentene polymer is suitable for culture. It has good shape stability, light transmittance, molding processability, and oxygen permeability, and can be sterilized. Are better.

〈4-メチル-1-ペンテン重合体の製造方法〉
前記4-メチル-1-ペンテン重合体を製造する方法は、4-メチル-1-ペンテン、オレフィン、その他のモノマーを重合させられれば、いずれの方法であってもよい。また、分子量や分子量分布を制御するために連鎖移動剤、例えば水素を共存させてもよい。製造に用いる機器も制限されない。重合法は公知の方法でもよく、気相法、スラリー法、溶液法、バルク法であってもよい。好ましくはスラリー法、溶液法である。また、重合法は単段重合法、又は二段等の多段重合法で、分子量の異なる複数の重合体を重合系中にブレンドする方法であってもよい。単段、多段重合法の何れであっても、連鎖移動剤として水素を用いる場合には、一括投入しても、分割投入、例えば重合初期、中期、終期に投入してもよい。重合は常温で行ってもよく、必要に応じて加温してもよいが、重合の効率の観点から、20℃~80℃で行うことが好ましく、40℃~60℃で行うことが特に好ましい。製造に用いる触媒も制限されないが、重合の効率の観点から、例えば国際公開公報2006/054613に記載される固体状チタン触媒成分(I)を用いることが好ましい。
<Method for producing 4-methyl-1-pentene polymer>
The method for producing the 4-methyl-1-pentene polymer may be any method as long as it can polymerize 4-methyl-1-pentene, olefins and other monomers. Also, a chain transfer agent such as hydrogen may coexist in order to control the molecular weight and molecular weight distribution. The equipment used for manufacturing is also not limited. The polymerization method may be a known method such as a gas phase method, a slurry method, a solution method, or a bulk method. A slurry method and a solution method are preferred. Further, the polymerization method may be a single-stage polymerization method or a multi-stage polymerization method such as a two-stage polymerization method, in which a plurality of polymers having different molecular weights are blended in a polymerization system. When hydrogen is used as a chain transfer agent in either single-stage or multi-stage polymerization, it may be charged all at once or dividedly, for example, at the beginning, middle and end of the polymerization. The polymerization may be carried out at normal temperature, or may be heated if necessary, but from the viewpoint of polymerization efficiency, it is preferably carried out at 20°C to 80°C, and particularly preferably at 40°C to 60°C. . The catalyst used for production is also not limited, but from the viewpoint of polymerization efficiency, it is preferable to use, for example, the solid titanium catalyst component (I) described in WO 2006/054613.

なお、4-メチル-1-ペンテン重合体を含む基材が、4-メチル-1-ペンテン重合体を含む組成物である場合には、組成物100質量%中に、4-メチル-1-ペンテン重合体が、好ましくは90質量%以上100質量%未満であり、より好ましくは95質量%以上100質量%未満であり、特に好ましくは99質量%以上100質量%未満である。4-メチル-1-ペンテン重合体以外の成分を多量に含むと、酸素透過度の低下のみならず、透明性の低下や強度の低下を招く。
4-メチル-1-ペンテン重合体以外の成分としては、耐熱安定化剤、耐光安定化剤、加工助剤、可塑剤、酸化防止剤、滑剤、消泡剤、アンチブロック剤、着色剤、改質剤、抗菌剤、抗黴剤、防曇剤などの添加剤が挙げられる。
Incidentally, when the substrate containing the 4-methyl-1-pentene polymer is a composition containing the 4-methyl-1-pentene polymer, 4-methyl-1- The pentene polymer is preferably 90% by mass or more and less than 100% by mass, more preferably 95% by mass or more and less than 100% by mass, and particularly preferably 99% by mass or more and less than 100% by mass. When a large amount of components other than the 4-methyl-1-pentene polymer is contained, not only the oxygen permeability is lowered, but also the transparency and strength are lowered.
Components other than the 4-methyl-1-pentene polymer include heat stabilizers, light stabilizers, processing aids, plasticizers, antioxidants, lubricants, antifoaming agents, antiblocking agents, colorants, modifiers, Additives such as pesticides, antibacterial agents, antifungal agents, and antifogging agents are included.

[心筋細胞]
心筋細胞は、多能性幹細胞から分化させた心筋細胞であってもよいし、生物の心臓から単離された初代培養心筋細胞であってもよい。また、市販されている多能性幹細胞由来の心筋細胞、例えば、FUJIFILM Cellular Dynamics社のiCell Cardiomyocytes、タカラバイオ社のMiraCell Cardiomyocytes v2、Axogenesis社のCor.4U、マイオリッジ社のCarmyA、REPROCELL社のReproCardio2などであってもよい。
[Cardiomyocytes]
Cardiomyocytes may be cardiomyocytes differentiated from pluripotent stem cells, or primary cultured cardiomyocytes isolated from the heart of an organism. In addition, commercially available cardiomyocytes derived from pluripotent stem cells, for example, iCell Cardiomyocytes from FUJIFILM Cellular Dynamics, MiraCell Cardiomyocytes v2 from Takara Bio, Cor. 4U, Myoridge's CarmyA, REPROCELL's ReproCardio2, and the like may be used.

多能性幹細胞とは、あらゆる組織の細胞へと分化する能力(分化多能性)を有する幹細胞の総称である。多能性幹細胞としては、例えば、胚性幹細胞(embryonic stem cell:ES細胞)、胚性癌腫細胞(embryonic carcinoma cell:EC細胞)、栄養芽幹細胞(trophoblast stem cell:TS細胞)、エピブラスト幹細胞(epiblast stem cell:EpiS細胞)、胚性生殖細胞(embryonic germ cell:EG細胞)、多能性生殖細胞(multipotent germline stem cell:mGS細胞)、人工多能性幹細胞(induced pluripotent stem cell:iPS細胞)、Muse細胞(Multi-lineage differentiating Stress Enduring cell)等が挙げられる。多能性幹細胞は、好ましくは、ES細胞又はiPS細胞である。 Pluripotent stem cells are a general term for stem cells that have the ability to differentiate into cells of any tissue (pluripotency). Pluripotent stem cells include, for example, embryonic stem cells (ES cells), embryonic carcinoma cells (EC cells), trophoblast stem cells (TS cells), epiblast stem cells ( epiblast stem cells (EpiS cells), embryonic germ cells (EG cells), multipotent germline stem cells (mGS cells), induced pluripotent stem cells (iPS cells) , Muse cells (Multi-lineage differentiating Stress Enduring cells) and the like. Pluripotent stem cells are preferably ES cells or iPS cells.

心筋細胞は、好ましくは、多能性幹細胞から分化させた心筋細胞であり、より好ましくは、人工多能性幹細胞から分化させた心筋細胞である。人工多能性幹細胞から分化させた心筋細胞は、公知の心筋細胞分化誘導法で作製することができ、例えばプロテインフリー心筋分化誘導(PFCD)法を用いることができる(国際公開第2015/182765号を参照)。
心筋細胞は、好ましくは、人工多能性幹細胞からプロテインフリー心筋分化誘導(PFCD)法により分化させた心筋細胞である。
Cardiomyocytes are preferably cardiomyocytes differentiated from pluripotent stem cells, more preferably cardiomyocytes differentiated from induced pluripotent stem cells. Cardiomyocytes differentiated from induced pluripotent stem cells can be prepared by a known cardiomyocyte differentiation induction method, for example, a protein-free cardiomyocyte differentiation induction (PFCD) method can be used (WO 2015/182765). ).
Cardiomyocytes are preferably cardiomyocytes differentiated from induced pluripotent stem cells by a protein-free cardiomyocyte differentiation induction (PFCD) method.

心筋細胞の由来は特に制限されず、哺乳類、鳥類、両生類、爬虫類、魚類等の由来であってもよいが、好ましくは、哺乳類由来であり、より好ましくはヒト、サル、マウス、ラット、ブタ、イヌ、ヒツジ、ネコ、ヤギ由来であり、さらに好ましくはヒト由来である。
心筋細胞は、好ましくは、ヒト由来胚性幹細胞から分化させた心筋細胞又はヒト由来人工多能性幹細胞から分化させた心筋細胞である。
Cardiomyocytes are not particularly limited in origin, and may be derived from mammals, birds, amphibians, reptiles, fish, etc., preferably mammals, more preferably humans, monkeys, mice, rats, pigs, It is derived from dogs, sheep, cats, and goats, more preferably from humans.
Cardiomyocytes are preferably cardiomyocytes differentiated from human-derived embryonic stem cells or cardiomyocytes differentiated from human-derived induced pluripotent stem cells.

心筋細胞は、正常な心筋細胞であってもよいし、遺伝子変異を含む心筋細胞や疾患モデル心筋細胞であってもよい。
培養容器(α)では、4-メチル-1-ペンテン重合体を含む基材を介して培地中に酸素を効率的に供給できるので、接着性の心筋細胞、浮遊性の細胞のいずれであっても、好適に培養することができるが、心筋細胞は、好ましくは接着性である。
Cardiomyocytes may be normal cardiomyocytes, cardiomyocytes containing genetic mutations, or disease model cardiomyocytes.
In the culture vessel (α), since oxygen can be efficiently supplied to the medium through the substrate containing the 4-methyl-1-pentene polymer, both adherent cardiomyocytes and floating cells can be cultured. can also be suitably cultured, but cardiomyocytes are preferably adherent.

[工程(A)]
工程(A)は、培養容器(α)の培養面に心筋細胞を播種する工程である。培養容器(α)の培養面に心筋細胞を播種する方法は特に制限されず、例えば、培地に懸濁した心筋細胞をピペット等で培養容器内に添加し、必要に応じて該培養容器を揺動させて培養容器内に心筋細胞を均等に散らした後、インキュベーター内で静置する。
[Step (A)]
Step (A) is a step of seeding cardiomyocytes on the culture surface of the culture vessel (α). The method of seeding the cardiomyocytes on the culture surface of the culture vessel (α) is not particularly limited. After the cardiomyocytes are evenly dispersed in the culture container by moving the culture container, the culture container is allowed to stand still in the incubator.

心筋細胞を播種する密度は、前記心筋細胞を維持または増殖させることができれば特に制限されないが、好ましくは0.1×105cells/cm2~10.0×105cells/cm2であり、より好ましくは0.3×105cells/cm2~5.0×105cells/cm2であり、さらに好ましくは0.5×105cells/cm2~3.0×105cells/cm2である。
心筋細胞播種密度が上記の範囲であると、上記範囲外の場合と比べて、心筋細胞がより効率よく増殖するため好ましい。
The cardiomyocyte seeding density is not particularly limited as long as the cardiomyocytes can be maintained or proliferated, but is preferably 0.1×10 5 cells/cm 2 to 10.0×10 5 cells/cm 2 , More preferably 0.3×10 5 cells/cm 2 to 5.0×10 5 cells/cm 2 , still more preferably 0.5×10 5 cells/cm 2 to 3.0×10 5 cells/cm 2 .
When the cardiomyocyte seeding density is within the above range, the cardiomyocytes proliferate more efficiently than when the cardiomyocyte seeding density is outside the above range, which is preferable.

播種に用いる培地は、心筋細胞が生存できる培地であれば特に制限されず、使用細胞種に合わせて適宜選択すればよい。播種に用いる培地は、後述する工程(B)で用いる培地であってもよい。播種に用いる培地は、例えば、任意の細胞培養基本培地や分化培地、初代培養専用培地等、具体的には、イーグル細小必須培地(EMEM)、ダルベッコ改イーグル培地(DMEM)、α-MEM、グラスゴーMEM(GMEM)、IMDM、RPMI1640、ハムF-12、MCDB培地、ウィリアムス培地E、CarmyA用播種用培地(マイオリッジ社製)、Cardiac Myocyte Medium(ScienCell Research Laboratories社製)、iCell Cardiomyocytes Plating Medium(FUJIFILM Cellular Dynamics社製)、及びこれらの混合培地等が挙げられる。さらに、血清、各種成長因子、分化誘導因子、抗生物質、ホルモン、アミノ酸、糖、塩類、ミネラル、金属、ビタミン等を添加した培地を使用してもよい。 The medium used for seeding is not particularly limited as long as it allows myocardial cells to survive, and may be appropriately selected according to the cell type used. The medium used for seeding may be the medium used in step (B) described below. The medium used for seeding is, for example, any cell culture basal medium, differentiation medium, primary culture medium, etc. Specifically, Eagle's small essential medium (EMEM), Dulbecco's modified Eagle's medium (DMEM), α-MEM, Glasgow MEM (GMEM), IMDM, RPMI1640, Ham F-12, MCDB medium, Williams medium E, Seeding medium for CarmyA (manufactured by Myoridge), Cardiac Myocyte Medium (manufactured by ScienceCell Research Laboratories), iCell Cardiomyocytes Plating Medium (manufactured by ScienceCell Research Laboratories) Dynamics), mixed media thereof, and the like. Furthermore, a medium supplemented with serum, various growth factors, differentiation-inducing factors, antibiotics, hormones, amino acids, sugars, salts, minerals, metals, vitamins, etc. may be used.

播種に用いる培地の量は特に制限されないが、培養容器に添加した状態で、培養容器の培養面から、培地上面までの垂直方向での最長距離が、7mmより大きいことが好ましく、7mmより大きく20mm以下であることがより好ましく、7mmより大きく15mm以下であることがさらに好ましい。
培養温度も特に制限されないが、通常は25~40℃程度で行う。
The amount of medium used for seeding is not particularly limited, but when added to the culture vessel, the longest distance in the vertical direction from the culture surface of the culture vessel to the top surface of the medium is preferably greater than 7 mm, and greater than 7 mm and 20 mm. It is more preferably less than or equal to, and more preferably greater than 7 mm and 15 mm or less.
Cultivation temperature is also not particularly limited, but is usually carried out at about 25 to 40°C.

[工程(B)]
工程(B)は、工程(A)で播種した心筋細胞を培地中で培養する工程である。心筋細胞を培地中で培養する方法は特に制限されず、公知のプロトコルに従って行えばよく、市販の培地や培養キットを用いてもよい。
[Step (B)]
Step (B) is a step of culturing the cardiomyocytes seeded in step (A) in a medium. A method for culturing cardiomyocytes in a medium is not particularly limited, and may be carried out according to a known protocol, and commercially available medium and culture kits may be used.

培養に用いる培地は、心筋細胞が増殖できる培地であれば特に制限されず、使用細胞種に合わせて適宜選択すればよい。培養に用いる培地は、例えば、任意の細胞培養基本培地や分化培地、初代培養専用培地等、具体的には、イーグル細小必須培地(EMEM)、ダルベッコ改イーグル培地(DMEM)、α-MEM、グラスゴーMEM(GMEM)、IMDM、RPMI1640、ハムF-12、MCDB培地、ウィリアムス培地E、CarmyA用維持培地(マイオリッジ社製)、CardioGro(フナコシ社製)、Cardiac Myocyte Medium(ScienCell Research Laboratories社製)、iCell Cardiomyocytes Maintenance Medium(FUJIFILM Cellular Dynamics社製)及びこれらの混合培地等が挙げられる。さらに、血清、各種成長因子、分化誘導因子、抗生物質、ホルモン、アミノ酸、糖、塩類、ミネラル、金属、ビタミン等を添加した培地を使用してもよい。 The medium used for culture is not particularly limited as long as it is a medium in which cardiomyocytes can proliferate, and may be appropriately selected according to the cell type used. The medium used for culture is, for example, any cell culture basal medium, differentiation medium, primary culture medium, etc. Specifically, Eagle's small essential medium (EMEM), Dulbecco's modified Eagle's medium (DMEM), α-MEM, Glasgow MEM (GMEM), IMDM, RPMI1640, Ham F-12, MCDB medium, Williams medium E, CarmyA maintenance medium (manufactured by Myoridge), CardioGro (manufactured by Funakoshi), Cardiac Myocyte Medium (manufactured by ScienceCell Research Laboratories), iCell Cardiomyocytes Maintenance Medium (manufactured by FUJIFILM Cellular Dynamics), mixed media thereof, and the like. Furthermore, a medium supplemented with serum, various growth factors, differentiation-inducing factors, antibiotics, hormones, amino acids, sugars, salts, minerals, metals, vitamins, etc. may be used.

培養に用いる培地の量は特に制限されないが、培養容器に添加した状態で、培養容器の培養面から、培地上面までの垂直方向での最長距離が、7mmより大きいことが好ましく、7mmより大きく20mm以下であることがより好ましく、7mmより大きく15mm以下であることがさらに好ましい。
培地交換の頻度は、特に制限されないが、毎日行うことが好ましい。
培養温度は特に制限されないが、通常は25~40℃程度で行う。
The amount of medium used for culture is not particularly limited, but when added to the culture vessel, the longest distance in the vertical direction from the culture surface of the culture vessel to the top surface of the medium is preferably greater than 7 mm, and greater than 7 mm and 20 mm. It is more preferably less than or equal to, and more preferably greater than 7 mm and 15 mm or less.
The frequency of medium replacement is not particularly limited, but it is preferably performed every day.
Although the culture temperature is not particularly limited, it is usually carried out at about 25 to 40°C.

培養期間は特に制限されず、心筋細胞が培養容器内で充分に増殖し、その機能を発揮できるまで培養すればよい。培養期間は、好ましくは1~21日間であり、より好ましくは3~14日間であり、さらに好ましくは5~10日間である。 The culture period is not particularly limited, and the culture may be continued until the myocardial cells proliferate sufficiently in the culture vessel and exhibit their functions. The culture period is preferably 1 to 21 days, more preferably 3 to 14 days, still more preferably 5 to 10 days.

培養容器(α)では、4-メチル-1-ペンテン重合体を含む基材を介して培地中に酸素を効率的に供給できるので、接着培養、浮遊培養のいずれであっても好適に行うことができるが、好ましくは接着培養である。 In the culture vessel (α), since oxygen can be efficiently supplied to the medium through the base material containing the 4-methyl-1-pentene polymer, both adherent culture and suspension culture can be suitably performed. Adherent culture is preferred.

工程(B)は、工程(A)の後、又は工程(A)と同時に行う。 Step (B) is performed after step (A) or simultaneously with step (A).

本発明の心筋細胞の培養方法は、工程(A)の前に、心筋細胞を前培養する工程(I)を含んでもよい。
心筋細胞を前培養する方法は特に制限されず、公知のプロトコルに従って行えばよく、市販の培地や培養キットを用いてもよい。
The method for culturing cardiomyocytes of the present invention may include step (I) of pre-culturing cardiomyocytes prior to step (A).
The method for precultivating cardiomyocytes is not particularly limited, and may be performed according to known protocols, and commercially available media and culture kits may be used.

前培養に用いる培地は、心筋細胞が増殖できる培地であれば特に制限されず、使用細胞種に合わせて適宜選択すればよい。前培養に用いる培地は、例えば、任意の細胞培養基本培地や分化培地、初代培養専用培地等、具体的には、イーグル細小必須培地(EMEM)、ダルベッコ改イーグル培地(DMEM)、α-MEM、グラスゴーMEM(GMEM)、IMDM、RPMI1640、ハムF-12、MCDB培地、ウィリアムス培地E、CarmyA用維持培地(マイオリッジ社製)、CardioGro(フナコシ社製)、Cardiac Myocyte Medium(ScienCell Research Laboratories社製)、iCell Cardiomyocytes Maintenance Medium(FUJIFILM Cellular Dynamics社製)及びこれらの混合培地等が挙げられる。さらに、血清、各種成長因子、分化誘導因子、抗生物質、ホルモン、アミノ酸、糖、塩類、ミネラル、金属、ビタミン等を添加した培地を使用してもよい。 The medium used for pre-culture is not particularly limited as long as it is a medium in which cardiomyocytes can proliferate, and may be appropriately selected according to the cell type used. The medium used for pre-culture is, for example, any cell culture basal medium, differentiation medium, primary culture medium, etc. Specifically, Eagle's small essential medium (EMEM), Dulbecco's modified Eagle medium (DMEM), Glasgow MEM (GMEM), IMDM, RPMI1640, Ham F-12, MCDB medium, Williams medium E, CarmyA maintenance medium (manufactured by Myoridge), CardioGro (manufactured by Funakoshi), Cardiac Myocyte Medium (manufactured by ScienceCell Research Laboratories), Examples thereof include iCell Cardiomyocytes Maintenance Medium (manufactured by FUJIFILM Cellular Dynamics) and mixed media thereof. Furthermore, a medium supplemented with serum, various growth factors, differentiation-inducing factors, antibiotics, hormones, amino acids, sugars, salts, minerals, metals, vitamins, etc. may be used.

前培養に用いる培地の量は特に制限されない。
前培養での培地交換の頻度も特に制限されないが、毎日行うことが好ましい。
前培養での培養温度は特に制限されないが、通常は25~40℃程度で行う。
The amount of medium used for preculture is not particularly limited.
The frequency of medium exchange in pre-culture is not particularly limited, but it is preferably carried out every day.
Although the culture temperature in the pre-culture is not particularly limited, it is usually carried out at about 25 to 40°C.

前培養期間は特に制限されず、心筋細胞が充分に増殖し、所望の細胞数が得られるまで培養すればよい。培養期間は、好ましくは1~10日間であり、より好ましくは2~7日間であり、さらに好ましくは3~6日間である。 The pre-culture period is not particularly limited, and the culture may be performed until cardiomyocytes proliferate sufficiently to obtain the desired number of cells. The culture period is preferably 1 to 10 days, more preferably 2 to 7 days, still more preferably 3 to 6 days.

[心筋細胞の機能]
本発明の心筋細胞の培養方法では、培養容器(α)で心筋細胞を培養すると、心筋細胞の機能を向上させることができる。心筋細胞の機能は、心筋細胞のマーカー、筋小胞体マーカー、エネルギー代謝制御に関与する因子、及び心筋細胞の虚血マーカーの遺伝子の発現量等により評価することができる。
[Cardiomyocyte function]
In the method for culturing cardiomyocytes of the present invention, the function of cardiomyocytes can be improved by culturing the cardiomyocytes in the culture vessel (α). Cardiomyocyte function can be evaluated by expression levels of genes for cardiomyocyte markers, sarcoplasmic reticulum markers, factors involved in energy metabolism control, cardiomyocyte ischemia markers, and the like.

本発明の心筋細胞の培養方法は、心筋細胞のマーカー及び筋小胞体マーカーから選ばれる少なくとも1種の遺伝子の発現量が増加するものであることが好ましい。 The cardiomyocyte culture method of the present invention preferably increases the expression level of at least one gene selected from cardiomyocyte markers and sarcoplasmic reticulum markers.

前記増加とは、培養容器(α)の代わりに、ポリスチレン製細胞培養容器を用い、それ以外の条件は本発明の心筋細胞の培養方法と同じである実験条件下において心筋細胞を培養した際の、心筋細胞のマーカー及び筋小胞体マーカーから選ばれる少なくとも1種の遺伝子の発現量を比較対照として、該比較対象よりも発現量が高いことを言う。前記比較対象よりも2倍以上発現量が高いことが好ましく、3倍以上発現量が高いことがより好ましい。
遺伝子の発現量は、公知の方法で測定することができ、例えば定量RT-PCR法が挙げられる。
The above-mentioned increase refers to the increase in cardiomyocyte culture under the same experimental conditions as the cardiomyocyte culture method of the present invention, using a polystyrene cell culture vessel instead of the culture vessel (α). , means that the expression level of at least one gene selected from cardiomyocyte markers and sarcoplasmic reticulum markers is used as a control, and the expression level is higher than that of the control. The expression level is preferably 2 times or more higher than that of the comparative object, and more preferably 3 times or more.
Gene expression levels can be measured by known methods, such as quantitative RT-PCR.

前記心筋細胞マーカーは特に制限されず、例えば心筋トロポニンC(Troponin C,slow skeletal and cardiac muscles)、心筋トロポニンI(Troponin I,cardiac muscle)、心筋トロポニンT(Troponin T,cardiac muscle)、Myosin regulatory light chain 2,ventricular/cardiac muscle isoform(MLC-2、Myosin Light Chain 2)、Myosin regulatory light chain 7(MLC-2a、Myosin regulatory light chain 2,atrial isoform)、Homeobox protein Nkx-2.5、Potassium voltage-gated channel subfamily KQT member 1、Voltage-dependent L-type calcium channel subunit alpha-1C、Sodium channel protein type 5 subunit alpha、Potassium voltage-gated channel subfamily H member 2(hERG1)等が挙げられる。前記心筋細胞のマーカーは、好ましくは心筋トロポニンT(Troponin T,cardiac muscle)及びMyosin regulatory light chain 2,ventricular/cardiac muscle isoform(MLC-2)から選ばれる少なくとも1種である。 The cardiomyocyte marker is not particularly limited and includes, for example, Troponin C (slow skeleton and cardiac muscles), Troponin I (cardiac muscle), Troponin T (cardiac muscle), Myosin regulatory light chain 2,ventricular/cardiac muscle isoform(MLC-2、Myosin Light Chain 2)、Myosin regulatory light chain 7(MLC-2a、Myosin regulatory light chain 2,atrial isoform)、Homeobox protein Nkx-2.5、Potassium voltage- gated channel subfamily KQT member 1、Voltage-dependent L-type calcium channel subunit alpha-1C、Sodium channel protein type 5 subunit alpha、Potassium voltage-gated channel subfamily H member 2(hERG1)等が挙げられる。 The cardiomyocyte marker is preferably at least one selected from troponin T (cardiac muscle), myosin regulatory light chain 2, and ventricular/cardiac muscle isoform (MLC-2).

前記心筋細胞マーカー(タンパク質)をコードする、ヒト遺伝子は表1の通りである。したがって、本発明の心筋細胞の培養方法は、心筋細胞がヒト由来である場合、表1に記載されたヒト遺伝子から選ばれる少なくとも1種の発現量が増加するものであることが好ましく、cTnT(TNNT2)及びMYL2から選ばれる少なくとも1種の発現量が増加するものであることよりが好ましい。 Human genes encoding the cardiomyocyte markers (proteins) are shown in Table 1. Therefore, in the cardiomyocyte culture method of the present invention, when the cardiomyocytes are human-derived, it is preferable that the expression level of at least one human gene selected from the human genes listed in Table 1 is increased. It is preferable that the expression level of at least one selected from TNNT2) and MYL2 is increased.

Figure 2022154850000001
Figure 2022154850000001

前記筋小胞体マーカーは特に制限されず、好ましくはSarcoplasmic/endoplasmic reticulum calcium ATPase 2(SERCA2)である。 The sarcoplasmic reticulum marker is not particularly limited, and is preferably sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2).

前記筋小胞体マーカー(タンパク質)をコードする、ヒト遺伝子は表2の通りである。したがって、本発明の心筋細胞の培養方法は、心筋細胞がヒト由来である場合、表2に記載されたヒト遺伝子から選ばれる少なくとも1種の発現量が増加するものであることが好ましく、ATP2A2の発現量が増加するものであることがより好ましい。 Human genes encoding the sarcoplasmic reticulum markers (proteins) are shown in Table 2. Therefore, in the cardiomyocyte culture method of the present invention, when the cardiomyocytes are human-derived, it is preferable that the expression level of at least one human gene selected from the human genes listed in Table 2 is increased. It is more preferable that the expression level is increased.

Figure 2022154850000002
Figure 2022154850000002

本発明の心筋細胞の培養方法は、エネルギー代謝制御に関与する因子の遺伝子の発現量が増加するものであることが好ましい。 The method for culturing cardiomyocytes of the present invention preferably increases the expression level of genes of factors involved in energy metabolism control.

前記増加とは、培養容器(α)の代わりに、ポリスチレン製細胞培養容器を用い、それ以外の条件は本発明の心筋細胞の培養方法と同じである実験条件下において心筋細胞を培養した際の、エネルギー代謝制御に関与する因子の遺伝子の発現量を比較対照として、該比較対象よりも発現量が高いことを言う。前記比較対象よりも2倍以上発現量が高いことが好ましく、3倍以上発現量が高いことがより好ましい。
遺伝子の発現量は、公知の方法で測定することができ、例えば定量RT-PCR法が挙げられる。
The above-mentioned increase refers to the increase in cardiomyocyte culture under the same experimental conditions as the cardiomyocyte culture method of the present invention, using a polystyrene cell culture vessel instead of the culture vessel (α). , means that the expression level of the gene of the factor involved in the control of energy metabolism is higher than that of the comparison control. The expression level is preferably 2 times or more higher than that of the comparative object, and more preferably 3 times or more.
Gene expression levels can be measured by known methods, such as quantitative RT-PCR.

本明細書において、エネルギー代謝とは、細胞にエネルギーを供給するための化学反応を総称する意味で用い、糖代謝及び脂質代謝などを包含する。
前記エネルギー代謝制御に関与する因子は、エネルギー代謝の亢進又は抑制に関与する因子であれば特に制限されないが、好ましくはエネルギー代謝の亢進に関与する因子である。
As used herein, the term "energy metabolism" is used as a generic term for chemical reactions for supplying energy to cells, and includes sugar metabolism, lipid metabolism, and the like.
The factor involved in energy metabolism control is not particularly limited as long as it is a factor involved in enhancement or suppression of energy metabolism, but preferably a factor involved in enhancement of energy metabolism.

心臓は絶え間なく全身に血液を送り出すために多くのエネルギーを必要としているため、正常な心筋細胞では、膜電位の維持、Caイオンの再取り込み、及びミオシンによる収縮のために大量のエネルギーが消費される。その高いエネルギー需要に応えるために、大量のATPを産生し、消費している。産生されるATPの70~90%は脂肪酸の酸化、10%~30%は糖や乳酸の酸化、ケトン体やアミノ酸の酸化に由来する。
脂肪酸は、心筋細胞の細胞膜に存在するCD36やFatty-Acid Binding Protein(FABP)を介して取り込まれ、細胞内ではFABPと結合もしくはAcyl-CoAに変換される。細胞内に取り込まれた脂肪酸は、ミトコンドリアに取り込まれて脂肪酸Acyl-CoAとなり、β酸化されてATP産生に利用される。
グルコースは、GLUTと呼ばれる糖輸送体により細胞内に取り込まれる。細胞内に取り込まれたグルコースは解糖系を経てピルビン酸に代謝され、嫌気的条件では乳酸に分解される嫌気的解糖により、好気的条件ではミトコンドリアにおいてTCA回路及び酸化的リン酸化によりATP産生に利用される。
Since the heart requires a lot of energy to continuously pump blood throughout the body, normal myocardial cells expend a large amount of energy to maintain membrane potential, reuptake Ca ions, and contract with myosin. be. To meet its high energy demand, it produces and consumes large amounts of ATP. 70 to 90% of the ATP produced is derived from fatty acid oxidation, and 10% to 30% is derived from sugar and lactic acid oxidation, ketone bodies and amino acid oxidation.
Fatty acids are taken up via CD36 and Fatty-Acid Binding Protein (FABP) present in the cell membrane of myocardial cells, and are bound to FABP or converted into Acyl-CoA in cells. Fatty acids taken into cells are taken into mitochondria to become fatty acid Acyl-CoA, which is β-oxidized and used for ATP production.
Glucose is taken up into cells by sugar transporters called GLUTs. Glucose taken up into cells is metabolized into pyruvate through glycolysis, and under anaerobic conditions, anaerobic glycolysis is decomposed into lactate. used for production.

前記エネルギー代謝制御に関与する因子は、ATP産生亢進に関与する因子であることが好ましく、脂肪酸又はグルコースからのATP産生亢進に関与する因子であることがより好ましく、脂肪酸又はグルコースの取り込み若しくはβ酸化を促進する因子であることがさらに好ましい。 The factor involved in the control of energy metabolism is preferably a factor involved in the enhancement of ATP production, more preferably a factor involved in the enhancement of ATP production from fatty acids or glucose, uptake or β-oxidation of fatty acids or glucose. is more preferably a factor that promotes

前記エネルギー代謝制御に関与する因子は、好ましくはエネルギー代謝基質の輸送体、ATP産生系(β酸化、解糖系、嫌気的解糖、TCA回路又は酸化的リン酸化)に関与する酵素、又はこれらの発現を調節する転写因子又は転写共役因子である。 Factors involved in energy metabolism control are preferably transporters of energy metabolism substrates, enzymes involved in the ATP production system (β-oxidation, glycolysis, anaerobic glycolysis, TCA cycle or oxidative phosphorylation), or these is a transcription factor or transcription cofactor that regulates the expression of

前記エネルギー代謝制御に関与する因子は、好ましくはPGC-1(Peroxisome proliferator-activated receptor gamma coactivator 1)、PPAR(Peroxisome proliferator-activated receptor)、及びGLUT(Solute carrier family 2,facilitated glucose transporter)から選ばれる少なくとも1種であり、より好ましくはPGC-1α(Peroxisome proliferator-activated receptor gamma coactivator 1-alpha)、PPARα(Peroxisome proliferator-activated receptor alpha)、及びGLUT-4(Solute carrier family 2,facilitated glucose transporter member 4)から選ばれる少なくとも1種である。 The factor involved in the regulation of energy metabolism is preferably selected from PGC-1 (Peroxisome proliferator-activated receptor gamma coactivator 1), PPAR (Peroxisome proliferator-activated receptor), and GLUT (Solute carrier family 2, facilitator)少なくとも1種であり、より好ましくはPGC-1α(Peroxisome proliferator-activated receptor gamma coactivator 1-alpha)、PPARα(Peroxisome proliferator-activated receptor alpha)、及びGLUT-4(Solute carrier family 2,facilitated glucose transporter member 4 ) is at least one selected from

Peroxisome proliferator-activated receptor(PPAR)は、核内受容体のNR1Cファミリーに属する転写因子であり、PPARα、PPARβ/δ、PPARγの3つのアイソフォームが報告されている。PPARは、脂肪酸代謝等に関わる遺伝子の転写を調節し、特に心筋細胞においては主にβ酸化及び脂肪酸の取り込みを促進する。
心筋細胞での発現量が多く、ATP産生亢進への関与が大きいことから、PPARは好ましくはPPARα又はPPARβ/δであり、より好ましくはPPARαである。
Peroxisome proliferator-activated receptor (PPAR) is a transcription factor belonging to the NR1C family of nuclear receptors, and three isoforms of PPARα, PPARβ/δ and PPARγ have been reported. PPARs regulate the transcription of genes involved in fatty acid metabolism and the like, and particularly in cardiomyocytes, mainly promote β-oxidation and fatty acid uptake.
PPAR is preferably PPARα or PPARβ/δ, more preferably PPARα, because it is highly expressed in myocardial cells and greatly involved in ATP production enhancement.

前記PPAR(タンパク質)をコードする、ヒト遺伝子は表3の通りである。したがって、本発明の心筋細胞の培養方法は、心筋細胞がヒト由来である場合、表3に記載されたヒト遺伝子から選ばれる少なくとも1種の発現量が増加するものであることが好ましく、PPARA及びPPARDから選ばれる少なくとも1種の発現量が増加するものであることがより好ましく、PPARAの発現量が増加するものであることがさらに好ましい。 Human genes encoding the PPARs (proteins) are shown in Table 3. Therefore, in the cardiomyocyte culture method of the present invention, when the cardiomyocytes are human-derived, it is preferable that the expression level of at least one human gene selected from the human genes listed in Table 3 is increased. It is more preferable that the expression level of at least one selected from PPARD is increased, and it is further preferable that the expression level of PPARA is increased.

Figure 2022154850000003
Figure 2022154850000003

糖輸送体(Solute carrier family 2,facilitated glucose transporter)は、糖(主にグルコース)の促進拡散型輸送を行うトランスポーターであり、代謝基質である糖の細胞内濃度を高める。
前記糖輸送体は、例えばGLUT-1(Solute carrier family 2,facilitated glucose transporter member 1)、GLUT-2、GLUT-3、GLUT-4、GLUT-5、GLUT-6、GLUT-7、GLUT-8、GLUT-9、GLUT-10、GLUT-11、GLUT-12、Hmit(Proton myo-inositol cotransporter)、GLUT-14等が挙げられる。
心筋細胞での発現量が多く、ATP産生亢進への関与が大きいことから、前記糖輸送体は好ましくはGLUT-1又はGLUT-4であり、より好ましくはGLUT-4である。
A sugar transporter (Solute carrier family 2, facilitated glucose transporter) is a transporter that performs facilitated diffusion-type transport of sugar (mainly glucose), and increases the intracellular concentration of sugar, which is a metabolic substrate.
The sugar transporter is, for example, GLUT-1 (Solute carrier family 2, facilitated glucose transporter member 1), GLUT-2, GLUT-3, GLUT-4, GLUT-5, GLUT-6, GLUT-7, GLUT-8 , GLUT-9, GLUT-10, GLUT-11, GLUT-12, Hmit (Proton myo-inositol cotransporter), GLUT-14 and the like.
The sugar transporter is preferably GLUT-1 or GLUT-4, more preferably GLUT-4, since it is highly expressed in myocardial cells and greatly involved in the enhancement of ATP production.

前記糖輸送体(タンパク質)をコードする、ヒト遺伝子は表4の通りである。したがって、本発明の心筋細胞の培養方法は、心筋細胞がヒト由来である場合、表4に記載されたヒト遺伝子から選ばれる少なくとも1種の発現量が増加するものであることが好ましく、SLC2A1(GLUT1)及びSLC2A4(GLUT4)から選ばれる少なくとも1種の発現量が増加するものであることがより好ましく、SLC2A4(GLUT4)の発現量が増加するものであることがさらに好ましい。 Human genes encoding the sugar transporters (proteins) are shown in Table 4. Therefore, in the cardiomyocyte culture method of the present invention, when the cardiomyocytes are human-derived, it is preferable that the expression level of at least one selected from the human genes listed in Table 4 is increased, and SLC2A1 ( It is more preferable that the expression level of at least one selected from GLUT1) and SLC2A4 (GLUT4) is increased, and it is further preferable that the expression level of SLC2A4 (GLUT4) is increased.

Figure 2022154850000004
Figure 2022154850000004

PGC-1(PPARγ coactivator 1)は、PPARγに結合し、その転写活性を増強させる転写共役因子として同定された蛋白であり、PGC-1α、PGC-1βのアイソフォームが報告されている。PGC-1は、ミトコンドリアの生合成及びATP産生に関与する多数の遺伝子の発現を調節する。PGC-1αは、ミトコンドリアの合成を促進する働きを有し、また、GLUT4を増加させる。PGC-1αは、PPARγ以外にもPPARαやPPARδ、TRα(ThyroidReceptor α)やERα(Estrogen Receptor α)など種々の核内受容体のコアクチベーターとしても働く一方で、PGC-1βは、比較的選択的にERR(Estrogen Receptor-related Receptor)のコアクチベーターとして働く。
ATP産生亢進への関与が大きいことから、PGC-1は好ましくはPGC-1αである。
PGC-1 (PPARγ coactivator 1) is a protein identified as a transcriptional coactivator that binds to PPARγ and enhances its transcriptional activity, and isoforms of PGC-1α and PGC-1β have been reported. PGC-1 regulates the expression of multiple genes involved in mitochondrial biogenesis and ATP production. PGC-1α has a function of promoting mitochondrial synthesis, and also increases GLUT4. In addition to PPARγ, PGC-1α also acts as a coactivator of various nuclear receptors such as PPARα, PPARδ, TRα (Thyroid Receptor α), and ERα (Estrogen Receptor α). Acts as a coactivator of ERR (Estrogen Receptor-related Receptor).
PGC-1 is preferably PGC-1α because it is greatly involved in the enhancement of ATP production.

前記PGC-1(タンパク質)をコードする、ヒト遺伝子は表5の通りである。したがって、本発明の心筋細胞の培養方法は、心筋細胞がヒト由来である場合、表5に記載されたヒト遺伝子から選ばれる少なくとも1種の発現量が増加するものであることが好ましく、PPARGC1Aの発現量が増加するものであることがより好ましい。 Human genes encoding the PGC-1 (protein) are shown in Table 5. Therefore, in the cardiomyocyte culture method of the present invention, when the cardiomyocytes are human-derived, it is preferable that the expression level of at least one human gene selected from the human genes listed in Table 5 is increased. It is more preferable that the expression level is increased.

Figure 2022154850000005
Figure 2022154850000005

本発明の心筋細胞の培養方法は、心筋細胞の虚血マーカーの遺伝子の発現量が減少するものであることが好ましい。 The cardiomyocyte culture method of the present invention preferably reduces the expression level of the cardiomyocyte ischemia marker gene.

前記減少とは、培養容器(α)の代わりに、ポリスチレン製細胞培養容器を用い、それ以外の条件は本発明の心筋細胞の培養方法と同じである実験条件下において心筋細胞を培養した際の、心筋細胞の虚血マーカーの遺伝子の発現量を比較対照として、該比較対象よりも発現量が低いことを言う。前記比較対象よりも2倍以上発現量が低いことが好ましく、3倍以上発現量が低いことがより好ましい。
遺伝子の発現量は、公知の方法で測定することができ、例えば定量RT-PCR法が挙げられる。
The aforementioned decrease refers to the number of cardiomyocytes cultured under the same experimental conditions as the cardiomyocyte culture method of the present invention, except that polystyrene cell culture vessels were used instead of the culture vessel (α). , means that the expression level of an ischemic marker gene for myocardial cells is lower than that of a control, which is used as a control. The expression level is preferably 2 times or more lower than that of the comparative object, and more preferably 3 times or more.
Gene expression levels can be measured by known methods, such as quantitative RT-PCR.

前記心筋細胞の虚血マーカーは特に制限されず、例えばBNP(脳性ナトリウム利尿ペプチド)、及びその前駆体であるproBNPが切断されて生じるNT-proBNP(N末端proBNP)が挙げられる。前記心筋細胞の虚血マーカーは、好ましくはBNPである。 The cardiomyocyte ischemia marker is not particularly limited, and examples thereof include BNP (brain natriuretic peptide) and NT-proBNP (N-terminal proBNP) produced by cleavage of its precursor, proBNP. The cardiomyocyte ischemia marker is preferably BNP.

前記心筋細胞の虚血マーカー(タンパク質)をコードする、ヒト遺伝子は表6の通りである。したがって、本発明の心筋細胞の培養方法は、心筋細胞がヒト由来である場合、表6に記載されたヒト遺伝子から選ばれる少なくとも1種の発現量が減少するものであることが好ましく、好ましくはBNPの発現量が減少するものである。 Table 6 shows the human genes encoding the cardiomyocyte ischemia markers (proteins). Therefore, in the cardiomyocyte culture method of the present invention, when the cardiomyocytes are human-derived, it is preferable that the expression level of at least one human gene selected from the human genes listed in Table 6 is reduced, preferably The expression level of BNP is decreased.

Figure 2022154850000006
Figure 2022154850000006

本発明の心筋細胞の培養方法は、好ましくは心筋細胞の成熟を促進するために用い、より好ましくは心筋細胞のマーカー及び筋小胞体マーカーから選ばれる少なくとも1種の遺伝子の発現量を増加させるために用いる。
本発明の心筋細胞の培養方法は、好ましくは心筋細胞のエネルギー代謝を亢進させるために用い、より好ましくはエネルギー代謝制御に関与する因子の遺伝子の発現量を増加させるために用いる。
本発明の心筋細胞の培養方法は、好ましくは心筋細胞の酸素状態を向上させるために用い、より好ましくは心筋細胞の虚血マーカーの遺伝子の発現量を減少させるために用いる。
The cardiomyocyte culture method of the present invention is preferably used to promote cardiomyocyte maturation, and more preferably to increase the expression level of at least one gene selected from cardiomyocyte markers and sarcoplasmic reticulum markers. used for
The method for culturing cardiomyocytes of the present invention is preferably used to enhance the energy metabolism of cardiomyocytes, and more preferably to increase expression levels of genes of factors involved in regulation of energy metabolism.
The cardiomyocyte culture method of the present invention is preferably used to improve the oxygen condition of cardiomyocytes, and more preferably to decrease the expression level of ischemic marker genes in cardiomyocytes.

本発明の心筋細胞の培養方法は、心臓疾患に対する薬剤をスクリーニングし、薬剤の効果、心毒性、及び応答性等を評価する創薬用途、さらには心疾患を引き起こすメカニズムを解明するための研究用途で用いることができる。また、本発明の心筋細胞の培養方法は、患部に移植するための心筋細胞を作製するために用いることができる。 The method for culturing cardiomyocytes of the present invention can be used for drug discovery, such as screening drugs for heart disease and evaluating drug effects, cardiotoxicity, responsiveness, etc., and for research purposes for elucidating the mechanisms that cause heart disease. can be used in In addition, the method for culturing cardiomyocytes of the present invention can be used to produce cardiomyocytes for transplantation into diseased areas.

次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。 EXAMPLES Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these.

[重量平均分子量(Mw)及び分子量分布(Mw/Mn)の測定]
実施例に用いた4-メチル-1-ペンテン重合体の重量平均分子量(Mw)、及び、分子量分布(Mw/Mn)をゲルパーミュエーションクロマトグラフィー(GPC)により測定した。
具体的には、下記の条件で、オルトジクロロベンゼンに溶解したポリマーの重量平均分子量(Mw)及び数平均分子量(Mn)を、標準ポリスチレンによって分子量を較正して測定した。
・装置:ゲル浸透クロマトグラフ HLC-8321 GPC/HT型 (東ソー社製)
・データ解析ソフト:Empower3(Waters社製)
・検出器:示差屈折計
・直列連結カラム:TSKgel GMH6-HT(2本)、及び、TSKgel GMH6-HTL(2本)
・カラム温度:140℃
・流量:1.0ml/分
・試料濃度:1.5mg/ml
[Measurement of weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn)]
The weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) of the 4-methyl-1-pentene polymer used in Examples were measured by gel permeation chromatography (GPC).
Specifically, under the following conditions, the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer dissolved in ortho-dichlorobenzene were measured by calibrating the molecular weight with standard polystyrene.
・Apparatus: Gel permeation chromatograph HLC-8321 GPC/HT type (manufactured by Tosoh Corporation)
・ Data analysis software: Empower3 (manufactured by Waters)
・Detector: Differential refractometer ・Series connection column: TSKgel GMH6-HT (2) and TSKgel GMH6-HTL (2)
・Column temperature: 140°C
・Flow rate: 1.0 ml/min ・Sample concentration: 1.5 mg/ml

[製造例1]基材の製造
4-メチル-1-ペンテン重合体であるTPX(登録商標)(三井化学株式会社製:分子量(Mw)=428000、分子量分布(Mw/Mn)=4.1)を使用し、基材層を押し出すフルフライト型のスクリューを備えたTダイ付き押出機へ投入し、押出し温度を270℃、ロール温度を60℃に設定し、ロール回転速度の条件を変えて押出し成形することで、厚さ50μmのフィルム1を得た。
[Production Example 1] Production of base material TPX (registered trademark) which is a 4-methyl-1-pentene polymer (manufactured by Mitsui Chemicals, Inc.: molecular weight (Mw) = 428000, molecular weight distribution (Mw/Mn) = 4.1 ), put it into an extruder with a T-die equipped with a full-flight screw for extruding the base layer, set the extrusion temperature to 270 ° C., the roll temperature to 60 ° C., and change the roll rotation speed conditions. A film 1 having a thickness of 50 μm was obtained by extrusion.

前記フィルム1を測定サンプルとして、東洋精機製作所製差圧式ガス透過率測定装置MT-C3を用いて温度23℃、湿度0%の環境下にて酸素透過係数[cm3×mm/(m2×24h×atm)]を測定した。測定部径は70mm(透過面積は38.46cm2)とした。酸素透過係数が大きいことが予想されたため、予めサンプルにアルミニウムマスクを施し、実透過面積を5.0cm2とした。酸素透過係数は、1912cm3×mm/(m2×24h×atm)であった。 Using the film 1 as a measurement sample, the oxygen permeability coefficient [cm 3 × mm/(m 2 × 24 h x atm)] was measured. The diameter of the measuring portion was 70 mm (transmission area was 38.46 cm 2 ). Since the oxygen permeability coefficient was expected to be large, the sample was masked with aluminum in advance to set the actual permeation area to 5.0 cm 2 . The oxygen permeability coefficient was 1912 cm 3 ×mm/(m 2 ×24h×atm).

前記フィルム1は常圧プラズマ表面処理装置(積水化学工業製)を用いて、チャンバー内を窒素の気流で満たしプラズマ処理した(処理速度2m/min、出力4.5kW、2往復)。 The film 1 was plasma-treated using an atmospheric pressure plasma surface treatment apparatus (manufactured by Sekisui Chemical Co., Ltd.) in which the chamber was filled with a stream of nitrogen (treatment speed: 2 m/min, output: 4.5 kW, 2 reciprocations).

プラズマ処理済のフィルム1を測定サンプルとして、水接触角の測定を行った。水接触角の測定は、日本工業規格JIS-R3257(基板ガラス表面のぬれ性試験方法)に準じて行った。25±5℃、50±10%の恒温恒湿条件下で水滴の形状を球形とみなせる4μL以下の容量の水滴を、測定サンプルの表面に滴下し、静滴法により、測定サンプル表面に水滴が接触した直後から1分以内の測定サンプルと水滴の接触界面の角度を測定した。プラズマ処理済のフィルム1の水接触角は、60.3°であった。 Using the plasma-treated film 1 as a measurement sample, the water contact angle was measured. The water contact angle was measured according to Japanese Industrial Standards JIS-R3257 (testing method for wettability of substrate glass surface). Under constant temperature and humidity conditions of 25 ± 5 ° C and 50 ± 10%, a water droplet of a volume of 4 μL or less that can be regarded as a spherical water droplet is dropped on the surface of the measurement sample. The angle of the contact interface between the measurement sample and the water droplet was measured within 1 minute from immediately after the contact. The water contact angle of plasma-treated Film 1 was 60.3°.

[製造例2]培養容器の作製
前記プラズマ処理済のフィルム1を8cm×12cmサイズにカットし、ポリスチレン(PSとも称す)製24ウェル容器枠の底面に、医療用粘着剤(スリーエム製)を介して密着させて24ウェルの培養プレートを作製した。その後、耐ガンマ線袋に梱包して10kGyのガンマ線を照射し滅菌した。これをTプレートとした。1ウェルの培養面積は約2cm2であった。
[Production Example 2] Preparation of culture vessel The plasma-treated film 1 was cut into a size of 8 cm × 12 cm, and attached to the bottom of a 24-well container frame made of polystyrene (also referred to as PS) via a medical adhesive (manufactured by 3M). A 24-well culture plate was prepared. Then, it was packed in a gamma-ray resistant bag and irradiated with 10 kGy of gamma rays for sterilization. This was designated as a T plate. The culture area of one well was approximately 2 cm 2 .

[実施例1]心筋細胞の培養
製造例2で作製したTプレートを用い、後述する方法により心筋細胞を培養した。培地は培地深さが2mmとなるように用いた(培地量:0.35mL)。
[Example 1] Cultivation of cardiomyocytes Using the T plate prepared in Production Example 2, cardiomyocytes were cultured by the method described later. The medium was used so that the medium depth was 2 mm (medium volume: 0.35 mL).

[実施例2]
実施例1よりも培地の量を増やして、培地深さを10mmとした以外は、実施例1と同様にして培養を行った(培地量:1.8mL)。
[Example 2]
Cultivation was carried out in the same manner as in Example 1, except that the amount of medium was increased and the depth of the medium was 10 mm (medium amount: 1.8 mL).

[比較例1]
PS製培養容器(コーニング社製、CellBINDTM、1ウェルの培養面積は約2cm2、24ウェルプレート、以下、PSプレート、またはCorningともいう)を使用した以外は、実施例1と同様な方法で培養した。
[Comparative Example 1]
In the same manner as in Example 1, except that a PS culture vessel (CellBIND , manufactured by Corning, culture area per well is about 2 cm 2 , 24-well plate, hereinafter also referred to as PS plate or Corning) was used. cultured.

[比較例2]
比較例1よりも培地の量を増やして、培地深さを10mmとした以外は、比較例1と同様にして培養を行った。
[Comparative Example 2]
Cultivation was carried out in the same manner as in Comparative Example 1, except that the amount of medium was increased and the depth of the medium was 10 mm.

[心筋細胞培養]
<培地・試薬の調製>
液体窒素中で凍結保存したヒトiPS細胞由来心筋細胞(株式会社マイオリッジ製)を用いた。
使用試薬は以下の通りである。すべて冷蔵保存した。
・CarmyA用維持培地(製品コードME-01、マイオリッジ社製、ロット番号P-K05V4-3、P-A15V4-3)
・CarmyA用播種用培地(製品コードME-02、マイオリッジ社製、ロット番号A20、C04、C23)
・iMatrix-511 silk(製品番号387-10131、Nippi社製、ロット番号S19F008)
・CultureSureTM Y-27632(製品番号 034-24024、富士フィルム和光純薬社製、ロット番号KCG7025)
・細胞剥離液(0.25%Trypsin EDTA、製品番号25200-072、gibco社製)
[Cardiomyocyte culture]
<Preparation of media and reagents>
Human iPS cell-derived cardiomyocytes (manufactured by Myoridge Inc.) cryopreserved in liquid nitrogen were used.
The reagents used are as follows. All were refrigerated.
・ Maintenance medium for CarmyA (product code ME-01, manufactured by Myoridge, lot number P-K05V4-3, P-A15V4-3)
・ Seeding medium for CarmyA (product code ME-02, manufactured by Myoridge, lot numbers A20, C04, C23)
・ iMatrix-511 silk (product number 387-10131, manufactured by Nippi, lot number S19F008)
・CultureSure Y-27632 (product number 034-24024, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., lot number KCG7025)
・ Cell detachment solution (0.25% Trypsin EDTA, product number 25200-072, manufactured by gibco)

<培養スケジュール>
細胞培養は下記のスケジュールで行った。細胞起眠日をDay0として以降の日を表す。
Day-1:試薬調製及び準備
Day0:凍結心筋細胞起眠
Day1~4:プレカルチャー
Day5:試験用24ウェルプレートへの播種
Day12:心筋細胞サンプリング
<Culture schedule>
Cell culture was performed according to the following schedule. The day after cell wakeup is defined as Day 0, and subsequent days are represented.
Day-1: Reagent preparation and preparation Day0: Frozen cardiomyocytes Day1-4: Pre-culture Day5: Seeding in 24-well plate for test Day12: Cardiomyocyte sampling

<試験用24ウェルプレートのiMatrix-511 silkコーティング方法>
PBS(-)9.5mLに74μLのiMatrix-511 silkを添加して希釈した。これを500μL/well(使用濃度1.03μg/cm2)で試験用24ウェルプレートに添加し、37℃インキュベーター中で1時間静置した。
<iMatrix-511 silk coating method for 24-well plate for test>
74 μL of iMatrix-511 silk was added to 9.5 mL of PBS(−) for dilution. This was added to a test 24-well plate at 500 μL/well (concentration used: 1.03 μg/cm 2 ) and allowed to stand in a 37° C. incubator for 1 hour.

<凍結心筋細胞の起眠>
CarmyA用播種用培地にY-27632を終濃度10μMになるように添加し、解凍用培地として用いた。使用時に37℃に加温してから使用した。
凍結心筋細胞を37℃のウォーターバスで解凍し、解凍用培地に懸濁した。300×gで5分間遠心し、上清を除去した。解凍用培地で細胞を懸濁し、2×106~5×106cells/mlに調整後、細胞数をカウントし、3×105~8×105cells/cm2でT25フラスコ(製品番号353014、FALCON社製、培養面積25cm2)に播種した。フラスコは37℃、5%CO2インキュベーター内に静置した。播種した翌日に、培地の全量を37℃のCarmyA用維持培地に交換した。
<Sleeping of frozen cardiomyocytes>
Y-27632 was added to a seeding medium for CarmyA to a final concentration of 10 μM and used as a thawing medium. It was used after warming to 37 degreeC at the time of use.
Frozen myocardial cells were thawed in a 37° C. water bath and suspended in a thawing medium. Centrifuge at 300×g for 5 minutes and remove the supernatant. Cells were suspended in a thawing medium, adjusted to 2×10 6 to 5×10 6 cells/ml, then counted, and 3×10 5 to 8×10 5 cells/cm 2 in a T25 flask (Product No. 353014, manufactured by FALCON, culture area 25 cm 2 ). Flasks were placed in a 37° C., 5% CO 2 incubator. The day after seeding, the entire medium was replaced with CarmyA maintenance medium at 37°C.

<プレカルチャー>
培地交換は毎日行い、37℃のCarmyA用維持培地で全量交換した。
<Pre-culture>
The medium was exchanged every day, and the whole amount was exchanged with CarmyA maintenance medium at 37°C.

<心筋細胞の試験用24ウェルプレートへの播種>
プレカルチャーした細胞をPBS(-)でwashした後、細胞剥離液を添加して37℃で5~10分間インキュベートして、細胞を剥離した。Y-27632を終濃度3μMになるように添加したCarmyA用播種用培地を用いて剥離した細胞を懸濁し、細胞数をプレカウントした。300×gで5分間遠心し、上清を除去した。Y-27632を終濃度10μMになるように添加したCarmyA用播種用培地で細胞を懸濁し、プレカウントした細胞数をもとに2×105~5×105cells/mlに調整後、もう一度細胞数をカウントした。この細胞数を用いて、試験用24ウェルプレートに1.63×105cells/wellで細胞を播種し、37℃、5%CO2インキュベーター内に静置した。播種した翌日に培地交換を行い、37℃のCarmyA用維持培地で全量交換した。以降は、1~2日毎に培地の全量を37℃のCarmyA用維持培地で交換した。実験はtriplicateで行った。
<Seeding cardiomyocytes into 24-well plate for testing>
After the precultured cells were washed with PBS(-), a cell detachment solution was added and incubated at 37°C for 5 to 10 minutes to detach the cells. The detached cells were suspended in a seeding medium for CarmyA to which Y-27632 was added to a final concentration of 3 μM, and the number of cells was pre-counted. Centrifuge at 300×g for 5 minutes and remove the supernatant. The cells were suspended in a seeding medium for CarmyA to which Y-27632 was added to a final concentration of 10 μM, adjusted to 2×10 5 to 5×10 5 cells/ml based on the pre-counted cell number, and then resuspended. Cell number was counted. Using this number of cells, cells were seeded in a 24-well plate for testing at 1.63×10 5 cells/well and allowed to stand in a 37° C., 5% CO 2 incubator. On the next day after seeding, the medium was exchanged, and the whole amount was exchanged with a maintenance medium for CarmyA at 37°C. Thereafter, the entire medium was replaced with CarmyA maintenance medium at 37°C every 1 to 2 days. Experiments were performed in triplicate.

<RNA抽出とRT-qPCR>
cTnT、MYL2、ATP2A2、PPARGC1A、PPARA、SLC2A4、BNP及びGAPDHを解析対象とした。
<RNA extraction and RT-qPCR>
cTnT, MYL2, ATP2A2, PPARGC1A, PPARA, SLC2A4, BNP and GAPDH were analyzed.

(1)試薬及び機器
RNA抽出:miRNeasy Mini Kit(品番号217004、キアゲン社製)
cDNA合成:ReverTra Ace(R) qPCR RT Master Mix with gDNA Remover(製品番号FSQ-301、TOYOBO社製)
qPCR反応:PowerUp SYBR Green Master Mix(製品番号A25776、Thermo Fisher社製)
QuantStudio 6 Flex Real-time PCR system(Thermo Fisher社製)
Nanophotometer 分光光度計 C40(ワケンビーテック株式会社製)
(1) Reagents and instruments RNA extraction: miRNeasy Mini Kit (product number 217004, manufactured by Qiagen)
cDNA synthesis: ReverTra Ace (R) qPCR RT Master Mix with gDNA Remover (product number FSQ-301, manufactured by TOYOBO)
qPCR reaction: PowerUp SYBR Green Master Mix (product number A25776, Thermo Fisher)
QuantStudio 6 Flex Real-time PCR system (manufactured by Thermo Fisher)
Nanophotometer spectrophotometer C40 (manufactured by Wakenby Tech Co., Ltd.)

(2)RNA抽出
心筋細胞の培養上清を除去した後、QIAZOL(キアゲン社製)0.5mLを添加し、懸濁して細胞を溶解し、溶解物を1.5mlチューブに回収した。以降はmiRNeasy Mini Kitに添付のプロトコルに従ってRNAを抽出し、NanophotometerC40でRNA濃度を測定した。
(2) RNA Extraction After removing the culture supernatant of cardiomyocytes, 0.5 mL of QIAZOL (manufactured by Qiagen) was added and suspended to lyse the cells, and the lysate was collected in a 1.5 ml tube. After that, RNA was extracted according to the protocol attached to the miRNeasy Mini Kit, and the RNA concentration was measured with a Nanophotometer C40.

(3)RT-qPCR
上記で抽出したRNA 1μgを用いて、PowerUp SYBR Green Master Mixに添付のプロトコルに従って逆転写反応を行いcDNAの合成を行った。その後、6ngのcDNAを用いてスタンダード法にてqPCR反応を行った。検量線は10ng/μLの各cDNAサンプルを10μLずつ集め、そこから1/10希釈して5点作製した。
(3) RT-qPCR
Using 1 µg of the RNA extracted above, reverse transcription reaction was carried out according to the protocol attached to PowerUp SYBR Green Master Mix to synthesize cDNA. After that, qPCR reaction was performed by a standard method using 6 ng of cDNA. A calibration curve was prepared by collecting 10 μL of each 10 ng/μL cDNA sample and diluting it to 1/10 to prepare 5 points.

<遺伝子発現の評価>
細胞から抽出したRNAを用い、QuantStudio 6 Flex Real-time PCR systemにて遺伝子発現量の解析を行った。使用したプライマーの配列を表7に、PCRの条件を表8に示す。遺伝子発現量は、グリセルアルデヒド-3-リン酸デヒドロゲナーゼ(GAPDH)の遺伝子発現量を1とした場合の相対値で示す。結果を図1~図7に示す。
<Evaluation of gene expression>
Using the RNA extracted from the cells, gene expression levels were analyzed using a QuantStudio 6 Flex Real-time PCR system. Table 7 shows the sequences of the primers used, and Table 8 shows the PCR conditions. The gene expression level is shown as a relative value when the gene expression level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is set to 1. The results are shown in FIGS. 1-7.

Figure 2022154850000007
Figure 2022154850000007

Figure 2022154850000008
Figure 2022154850000008

図1より、Tプレート(実施例1、2)におけるcTnTの発現量は、Corning(比較例1、2)よりも増加した。
図2より、Tプレート(実施例1、2)におけるMyl2の発現量は、Corning(比較例1、2)よりも増加した。
図3より、Tプレート(実施例1、2)におけるATP2A2の発現量は、Corning(比較例1、2)よりも増加した。
図4より、Tプレート(実施例1、2)におけるPPARGC1Aの発現量は、Corning(比較例1、2)よりも増加した。
図5より、Tプレート(実施例1、2)におけるPPARAの発現量は、Corning(比較例1、2)よりも増加した。
図6より、Tプレート(実施例1、2)におけるSLC2A4の発現量は、Corning(比較例1、2)よりも増加した。
図7より、Tプレート(実施例1、2)におけるBNPの発現量は、Corning(比較例1、2)よりも減少した。
From FIG. 1, the expression level of cTnT on the T plate (Examples 1 and 2) was higher than that on Corning (Comparative Examples 1 and 2).
From FIG. 2, the expression level of Myl2 on the T plate (Examples 1 and 2) was higher than that on Corning (Comparative Examples 1 and 2).
From FIG. 3, the expression level of ATP2A2 on the T plate (Examples 1 and 2) was higher than that on Corning (Comparative Examples 1 and 2).
From FIG. 4, the expression level of PPARGC1A on the T plate (Examples 1 and 2) was higher than that on Corning (Comparative Examples 1 and 2).
From FIG. 5, the expression level of PPARA on the T plate (Examples 1 and 2) was higher than that on Corning (Comparative Examples 1 and 2).
From FIG. 6, the expression level of SLC2A4 on the T plate (Examples 1 and 2) was higher than that on Corning (Comparative Examples 1 and 2).
From FIG. 7, the expression level of BNP on the T plate (Examples 1 and 2) was lower than that on Corning (Comparative Examples 1 and 2).

以上の結果から、本発明の心筋細胞の培養方法を用いると、心筋細胞の機能を向上させることができる。 From the above results, the cardiomyocyte function can be improved by using the cardiomyocyte culture method of the present invention.

Claims (13)

培養容器の培養面に心筋細胞を播種する工程(A)、及び前記心筋細胞を培地中で培養する工程(B)を含む、心筋細胞の培養方法であって、前記培養容器の培養面の少なくとも一部が4-メチル-1-ペンテン重合体を含む基材から形成されている、心筋細胞の培養方法。 A method for culturing cardiomyocytes, comprising a step (A) of seeding cardiomyocytes on a culture surface of a culture vessel and a step (B) of culturing the cardiomyocytes in a medium, wherein at least the culture surface of the culture vessel A method for culturing cardiomyocytes, a part of which is formed from a substrate containing a 4-methyl-1-pentene polymer. 前記4-メチル-1-ペンテン重合体が、4-メチル-1-ペンテンとエチレン及び炭素数3~20のα―オレフィン(4-メチル-1-ペンテンを除く)から選ばれる少なくとも1種の共重合体である、請求項1に記載の心筋細胞の培養方法。 The 4-methyl-1-pentene polymer is at least one copolymer selected from 4-methyl-1-pentene, ethylene and α-olefins having 3 to 20 carbon atoms (excluding 4-methyl-1-pentene). The method for culturing cardiomyocytes according to claim 1, wherein the cardiomyocytes are polymers. 前記培養容器の培養面全体が、4-メチル-1-ペンテン重合体を含む基材から形成されている、請求項1または2に記載の心筋細胞の培養方法。 3. The method for culturing cardiomyocytes according to claim 1, wherein the entire culture surface of the culture vessel is formed from a substrate containing a 4-methyl-1-pentene polymer. 前記心筋細胞が、人工多能性幹細胞から分化させた心筋細胞である、請求項1~3のいずれか1項に記載の心筋細胞の培養方法。 The method for culturing cardiomyocytes according to any one of claims 1 to 3, wherein the cardiomyocytes are cardiomyocytes differentiated from induced pluripotent stem cells. 前記心筋細胞が、人工多能性幹細胞からプロテインフリー心筋分化誘導(PFCD)法により分化させた心筋細胞である、請求項4に記載の心筋細胞の培養方法。 5. The method for culturing cardiomyocytes according to claim 4, wherein the cardiomyocytes are cardiomyocytes differentiated from induced pluripotent stem cells by a protein-free cardiomyocyte differentiation induction (PFCD) method. 心筋細胞のマーカー及び筋小胞体マーカーから選ばれる少なくとも1種の遺伝子の発現量が増加する、請求項4または5に記載の心筋細胞の培養方法。 6. The method for culturing cardiomyocytes according to claim 4 or 5, wherein the expression level of at least one gene selected from a cardiomyocyte marker and a sarcoplasmic reticulum marker is increased. 前記心筋細胞のマーカーが、心筋トロポニンT(Troponin T,cardiac muscle)及びMLC-2(Myosin regulatory light chain 2,ventricular/cardiac muscle isoform)から選ばれる少なくとも1種である、請求項6に記載の心筋細胞の培養方法。 The myocardium according to claim 6, wherein the cardiomyocyte marker is at least one selected from cardiac troponin T (cardiac muscle) and MLC-2 (Myosin regulatory light chain 2, ventricular/cardiac muscle isoform). Cell culture method. 前記筋小胞体マーカーが、SERCA2(sarcoplasmic/endoplasmic reticulum calsium ATPase 2)である、請求項6に記載の心筋細胞の培養方法。 The method for culturing cardiomyocytes according to claim 6, wherein the sarcoplasmic reticulum marker is SERCA2 (sarcoplasmic/endoplasmic reticulum calcium ATPase 2). エネルギー代謝制御に関与する因子の遺伝子の発現量が増加する、請求項1~5のいずれか1項に記載の心筋細胞の培養方法。 6. The method for culturing cardiomyocytes according to any one of claims 1 to 5, wherein expression levels of genes of factors involved in energy metabolism control are increased. 前記エネルギー代謝制御に関与する因子が、PGC-1α(Peroxisome proliferator-activated receptor gamma coactivator 1-alpha)、PPARα(Peroxisome proliferator-activated receptor alpha)、及びGLUT‐4(Solute carrier family 2,facilitated glucose transporter member 4)から選ばれる少なくとも1種である、請求項9に記載の心筋細胞の培養方法。 前記エネルギー代謝制御に関与する因子が、PGC-1α(Peroxisome proliferator-activated receptor gamma coactivator 1-alpha)、PPARα(Peroxisome proliferator-activated receptor alpha)、及びGLUT‐4(Solute carrier family 2,facilitated glucose transporter member 10. The method for culturing cardiomyocytes according to claim 9, wherein the cardiomyocyte is at least one selected from 4). 心筋細胞の虚血マーカーの遺伝子の発現量が減少する、請求項1~5のいずれか1項に記載の心筋細胞の培養方法。 6. The method for culturing cardiomyocytes according to any one of claims 1 to 5, wherein the expression level of a cardiomyocyte ischemia marker gene is decreased. 前記心筋細胞の虚血マーカーが、BNP(brain natriuretic peptide)である、請求項11に記載の心筋細胞の培養方法。 The method for culturing cardiomyocytes according to claim 11, wherein the cardiomyocyte ischemia marker is BNP (brain natural peptide). 前記培養容器の培養面から、培地上面までの垂直方向での最長距離が、7mmより大きい、請求項1~12のいずれか1項に記載の心筋細胞の培養方法。 The method for culturing cardiomyocytes according to any one of claims 1 to 12, wherein the maximum vertical distance from the culture surface of the culture vessel to the upper surface of the medium is greater than 7 mm.
JP2021058101A 2021-03-30 2021-03-30 Method for culturing cardiomyocytes Pending JP2022154850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021058101A JP2022154850A (en) 2021-03-30 2021-03-30 Method for culturing cardiomyocytes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021058101A JP2022154850A (en) 2021-03-30 2021-03-30 Method for culturing cardiomyocytes

Publications (1)

Publication Number Publication Date
JP2022154850A true JP2022154850A (en) 2022-10-13

Family

ID=83557124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021058101A Pending JP2022154850A (en) 2021-03-30 2021-03-30 Method for culturing cardiomyocytes

Country Status (1)

Country Link
JP (1) JP2022154850A (en)

Similar Documents

Publication Publication Date Title
Griffin et al. Chemical group-dependent plasma polymerisation preferentially directs adipose stem cell differentiation towards osteogenic or chondrogenic lineages
EP2247747B1 (en) Method for producing a cell culture article
Levorson et al. Cell-derived polymer/extracellular matrix composite scaffolds for cartilage regeneration, Part 2: construct devitalization and determination of chondroinductive capacity
Danišovič et al. Comparative analysis of mesenchymal stromal cells from different tissue sources in respect to articular cartilage tissue engineering
KR102646444B1 (en) Culture material and its uses
Li et al. Impact of vitronectin concentration and surface properties on the stable propagation of human embryonic stem cells
Chou et al. Relationships between surface roughness/stiffness of chitosan coatings and fabrication of corneal keratocyte spheroids: Effect of degree of deacetylation
Kaitainen et al. TiO2 coating promotes human mesenchymal stem cell proliferation without the loss of their capacity for chondrogenic differentiation
US11499136B2 (en) Cell culture substrate
Halabian et al. Composite nanoscaffolds modified with bio-ceramic nanoparticles (Zn2SiO4) prompted osteogenic differentiation of human induced pluripotent stem cells
Jiang et al. Laminin-521 promotes rat bone marrow mesenchymal stem cell sheet formation on light-induced cell sheet technology
JP2022154850A (en) Method for culturing cardiomyocytes
CN113144290B (en) Orthopedic material surface coating for promoting bone and immune regulation and preparation method thereof
WO2022138101A1 (en) Culture member and use thereof
WO2023282253A1 (en) Cell culture base material for serum-free medium
WO2013051479A1 (en) Adhesion inhibitor for biomaterial and cells
JP2022157708A (en) Differentiation method of pluripotent stem cell
WO2023027079A1 (en) Cell structure production device
US11926845B2 (en) Cell culture method and automatic cell culture apparatus
WO2023136229A1 (en) Method for evaluating action of drug on cardiomyocytes
WO2022259998A1 (en) Composition for forming coating film, coating film and cell culture container
WO2023085019A1 (en) Culture vessel and culture method
Liu et al. Various fates of neuronal progenitor cells observed on several different chemical functional groups
JPH05227944A (en) Polylysine-coated tool for culturing cell and its production
JP2023000358A (en) Methods of assessing hepatotoxicity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240207