JP2022153026A - Heat exchanger and outdoor unit with the same - Google Patents

Heat exchanger and outdoor unit with the same Download PDF

Info

Publication number
JP2022153026A
JP2022153026A JP2021056043A JP2021056043A JP2022153026A JP 2022153026 A JP2022153026 A JP 2022153026A JP 2021056043 A JP2021056043 A JP 2021056043A JP 2021056043 A JP2021056043 A JP 2021056043A JP 2022153026 A JP2022153026 A JP 2022153026A
Authority
JP
Japan
Prior art keywords
heat exchanger
header
refrigerant
branch
distributor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021056043A
Other languages
Japanese (ja)
Other versions
JP7279730B2 (en
Inventor
慶成 前間
Yoshinari Maema
太貴 島野
Taiki Shimano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2021056043A priority Critical patent/JP7279730B2/en
Priority to EP22780139.6A priority patent/EP4317812A1/en
Priority to US18/284,099 priority patent/US20240175643A1/en
Priority to AU2022249485A priority patent/AU2022249485A1/en
Priority to PCT/JP2022/012064 priority patent/WO2022209919A1/en
Priority to CN202280024997.7A priority patent/CN117063021A/en
Publication of JP2022153026A publication Critical patent/JP2022153026A/en
Application granted granted Critical
Publication of JP7279730B2 publication Critical patent/JP7279730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • F24F1/48Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow
    • F24F1/50Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow with outlet air in upward direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

To provide a heat exchanger which can suppress deterioration of heat exchange amount due to ununiformity of wind speed distribution.SOLUTION: A heat exchanger includes: an inlet header 20; an outlet header 21; a plurality of chambers 31 which are partitioned by partition plates 30 in the inlet header 20; a plurality of flat tubes 22 which are arranged in parallel with each chamber 31 and the outlet header 21 and are connected to each chamber and the outlet header; a distributor 25 which is provided in a refrigerant pipe 10; and a plurality of branch pipes 24 which are connected to each chamber 31 and the distributor 25. The branch pipes 24 have branch sections 27 between the chambers 31 and the distributor 25 according to wind speed distribution in the heat exchanger. The number of branch sections 27 of the branch pipes 24 connected to the chamber 31 to which the flat tube 22 positioned in a portion having large wind speed is connected is smaller than that of the branch sections 27 of the branch pipes 24 connected to the chamber 31 to which the flat tube 22 passing a portion having small wind speed is connected.SELECTED DRAWING: Figure 3

Description

本発明は、例えば、空気調和機における上吹き型の室外機に用いられる熱交換器、および、この熱交換器を備えた室外機に関する。 TECHNICAL FIELD The present invention relates to a heat exchanger used, for example, in a top-blown outdoor unit in an air conditioner, and to an outdoor unit provided with this heat exchanger.

空気調和機における上吹き型の室外機は、上部に送風ファンが設けられ、送風ファンの下方に縦長の熱交換器が設けられており、送風ファンによる外気の吸い込みよって、外気が熱交換器を通過して熱交換器を流れる冷媒と熱交換する。この場合、送風ファンが上部に設けられているため、送風ファンによる外気の吸い込みによって熱交換器を通過する風の風速は、送風ファンに近い上部側が速く、送風ファンから遠い下部側が遅くなり、熱交換器を通過する風の風速分布が不均一となる。この結果、熱交換器の能力を有効に利用することができず、熱交換量の低下や、送風性能の低下を招くという課題を有していた。 A top-blown outdoor unit in an air conditioner has a blower fan at the top and a vertically long heat exchanger below the blower fan. It exchanges heat with the refrigerant that flows through the heat exchanger. In this case, since the blower fan is installed at the top, the speed of the air passing through the heat exchanger due to the suction of outside air by the blower fan is faster on the upper side closer to the blower fan and slower on the lower side farther from the fan, resulting in heat. The wind speed distribution of the wind passing through the exchanger becomes uneven. As a result, the capacity of the heat exchanger cannot be effectively used, and there is a problem that the amount of heat exchanged is lowered and the air blowing performance is lowered.

この課題を解決するために、特許文献1では、並列に配置された複数の伝熱管に冷媒を流す熱交換器と、この複数の伝熱管の一端に接続され、内部が仕切板により仕切られて上下方向に立てて設置されるヘッダと、仕切板により仕切られたヘッダ内の各部屋のそれぞれに冷媒を分配して流入させるディストリビュータと、ディストリビュータから各部屋のそれぞれに接続されるキャピラリチューブとを有する冷媒分配器を備え、熱交換器における風速分布に応じてキャピラリチューブの長さや内径を設定する発明が開示されている。 In order to solve this problem, in Patent Document 1, a heat exchanger that flows a refrigerant through a plurality of heat transfer tubes arranged in parallel, is connected to one end of the plurality of heat transfer tubes, and the inside is partitioned by a partition plate. The header has a vertically installed header, a distributor for distributing and inflowing the refrigerant to each room in the header partitioned by partition plates, and a capillary tube connected to each room from the distributor. An invention is disclosed in which a refrigerant distributor is provided and the length and inner diameter of a capillary tube are set according to the wind speed distribution in a heat exchanger.

特許文献1に開示された熱交換器と冷媒分配器では、熱交換器における風速分布に応じてキャピラリチューブの長さや内径を設定するため、上吹き型の室外機において、熱交換器を通過する風の風速分布の不均一による熱交換量の低下を抑制することができるという点で有効である。 In the heat exchanger and refrigerant distributor disclosed in Patent Document 1, the length and inner diameter of the capillary tube are set according to the wind speed distribution in the heat exchanger. This is effective in that it is possible to suppress a decrease in the amount of heat exchange due to non-uniform wind speed distribution.

WO2013/160952号公報WO2013/160952

しかし、特許文献1に開示された熱交換器と冷媒分配器は、熱交換器における風速分布に応じてキャピラリチューブの長さや内径を設定するが、キャピラリチューブにより流路抵抗を増加させて流量を調整しているため、圧力損失が増加して空調能力が低下してしまうという課題を有している。 However, in the heat exchanger and refrigerant distributor disclosed in Patent Document 1, the length and inner diameter of the capillary tube are set according to the wind speed distribution in the heat exchanger, but the flow resistance is increased by the capillary tube to increase the flow rate. Since it is adjusted, there is a problem that the pressure loss increases and the air conditioning capacity decreases.

また、熱交換器における風速分布に応じてキャピラリチューブの長さや内径を設定するが、キャピラリチューブを長くしたり、キャピラリチューブの内径を小さくしたりするため、熱交換器の仕様に合わせて、長さや内径の異なる複数種類のキャピラリチューブを準備しておかなければならず、コストアップの要因となってしまう問題がある。 In addition, the length and inner diameter of the capillary tube are set according to the air velocity distribution in the heat exchanger. A plurality of types of capillary tubes with different sheath inner diameters must be prepared, which causes a problem of increased cost.

本発明は、上記課題に鑑み、風速分布の不均一による熱交換量の低下を抑制できる熱交換器を提供するものである。 SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a heat exchanger capable of suppressing a decrease in the amount of heat exchanged due to non-uniform wind speed distribution.

本発明の第一態様は、冷媒入口側に位置するヘッダである入口ヘッダと、冷媒出口側に位置するヘッダである出口ヘッダと、入口ヘッダと出口ヘッダのどちらか一方のヘッダの内部に仕切板によって仕切られた複数の部屋が設けられ、入口ヘッダと出口ヘッダのどちらか一方に設けられた複数の部屋の各々と、入口ヘッダと出口ヘッダのどちらか他方のヘッダとの間に、並列に接続される複数の扁平管と、冷媒配管に設けられる分配器と、各部屋と分配器とに接続する複数の分岐管と、を備えた熱交換器において、熱交換器における風速分布に応じて、分岐管は部屋と分配器の間に分岐部が設けられ、風速が大きい部分に位置する扁平管が接続される部屋に接続する分岐管の分岐部の数は、風速が小さい部分を通過する扁平管が接続される部屋に接続する分岐管の前記分岐部の数よりも少ない熱交換器である。 A first aspect of the present invention includes an inlet header that is positioned on the refrigerant inlet side, an outlet header that is positioned on the refrigerant outlet side, and a partition plate inside either the inlet header or the outlet header. and connected in parallel between each of the plurality of rooms provided in either one of the inlet header and the outlet header and the other of the inlet header and the outlet header. In a heat exchanger comprising a plurality of flat tubes, a distributor provided in the refrigerant piping, and a plurality of branch pipes connected to each room and the distributor, depending on the wind speed distribution in the heat exchanger, A branch pipe is provided between the room and the distributor, and the number of branches of the branch pipe connected to the room where the flat pipe located in the part where the wind speed is high is connected is the flat pipe that passes through the part where the wind speed is low. There are fewer heat exchangers than said branches of the branch pipe connecting to the room to which the pipe is connected.

また、本発明の第二態様は、上部に送風ファンが設けられ、送風ファンの下方に本発明の第一態様である熱交換器が設けられた空気調和機の上吹き型の室外機である。 A second aspect of the present invention is a top-blown outdoor unit of an air conditioner having a blower fan at the top and a heat exchanger according to the first aspect of the present invention below the blower fan. .

本発明は、上記課題に鑑み、風速分布の不均一による熱交換量の低下を抑制できる熱交換器を提供するものである。 SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a heat exchanger capable of suppressing a decrease in the amount of heat exchanged due to non-uniform wind speed distribution.

本発明の実施形態における空気調和機の冷媒回路図である。1 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention; FIG. 本発明の実施形態における空気調和機の室外機の縦断面図である。1 is a longitudinal sectional view of an outdoor unit of an air conditioner according to an embodiment of the present invention; FIG. 本発明の実施形態における空気調和機の熱交換器の概略図である。1 is a schematic diagram of a heat exchanger of an air conditioner according to an embodiment of the present invention; FIG.

以下、本発明の実施形態を、添付図面に基づいて詳細に説明する。実施形態としては、の室内機が室外機に接続され、室内機で冷房運転あるいは暖房運転が行える空気調和機を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail based on the accompanying drawings. As an embodiment, an air conditioner in which an indoor unit is connected to an outdoor unit and the indoor unit can perform cooling operation or heating operation will be described as an example. The present invention is not limited to the following embodiments, and various modifications can be made without departing from the gist of the present invention.

図1を参照して、空気調和機1について説明する。図1は本発明の実施形態における空気調和機1の冷媒回路図を示す。空気調和機1は冷房運転と暖房運転が可能であり、室外に配置される室外機2と室内に配置される室内機3を備えている。室外機2は、冷媒配管10で接続された圧縮機4、四方弁5、室外熱交換器9、室外機側膨張弁7を備え、室内機3は、冷媒配管10で接続された室内機側膨張弁6、室内熱交換器8を備えて、圧縮機4、四方弁5、室外熱交換器9、室外機側膨張弁7、室内機側膨張弁6、室内熱交換器8とで冷媒回路11を構成している。室外熱交換器9が本発明における熱交換器である。また、室外機2は、室外熱交換器12に外気を送るための送風ファン16を備え、室内機3は、室内熱交換器8に室内の空気を送るための図示しない室内ファンを備えている。四方弁5は圧縮機4の吐出側に接続され、冷房運転時と暖房運転時とで冷媒回路11を循環する冷媒の流れる向きを変える切換弁である。冷房運転時には、圧縮機4から吐出した冷媒が四方弁5を介して、室外熱交換器9、室外機側膨張弁7、室内機側膨張弁6、室内熱交換器8、四方弁5、圧縮機4の吸入側へと流れ、暖房運転時には、圧縮機4から吐出した冷媒が四方弁5を介して、室内熱交換器8、室内機側膨張弁6、室外機側膨張弁7、室外熱交換器9、四方弁5、圧縮機4の吸入側へと流れる。尚、図1において実線で示す矢印は暖房運転時の冷媒の流れを示し、破線で示す矢印は冷房運転時の冷媒の流れを示す。 An air conditioner 1 will be described with reference to FIG. FIG. 1 shows a refrigerant circuit diagram of an air conditioner 1 according to an embodiment of the present invention. An air conditioner 1 is capable of cooling operation and heating operation, and includes an outdoor unit 2 arranged outdoors and an indoor unit 3 arranged indoors. The outdoor unit 2 includes a compressor 4, a four-way valve 5, an outdoor heat exchanger 9, and an outdoor unit side expansion valve 7 connected by refrigerant piping 10. The indoor unit 3 is connected by the refrigerant piping 10 to the indoor unit side. An expansion valve 6 and an indoor heat exchanger 8 are provided. 11. The outdoor heat exchanger 9 is the heat exchanger in the present invention. In addition, the outdoor unit 2 includes a blower fan 16 for sending outside air to the outdoor heat exchanger 12, and the indoor unit 3 includes an indoor fan (not shown) for sending indoor air to the indoor heat exchanger 8. . The four-way valve 5 is connected to the discharge side of the compressor 4 and is a switching valve that changes the direction of flow of the refrigerant circulating in the refrigerant circuit 11 between cooling operation and heating operation. During cooling operation, the refrigerant discharged from the compressor 4 passes through the four-way valve 5 to the outdoor heat exchanger 9, the outdoor unit side expansion valve 7, the indoor unit side expansion valve 6, the indoor heat exchanger 8, the four-way valve 5, the compression During heating operation, the refrigerant discharged from the compressor 4 passes through the four-way valve 5 to the indoor heat exchanger 8, the indoor unit expansion valve 6, the outdoor unit expansion valve 7, and the outdoor heat exchanger. It flows to the exchanger 9 , the four-way valve 5 and the suction side of the compressor 4 . In FIG. 1, the arrows indicated by solid lines indicate the flow of refrigerant during heating operation, and the arrows indicated by broken lines indicate the flow of refrigerant during cooling operation.

暖房運転時の冷媒回路11における冷媒の流れを説明する。暖房運転時において、圧縮機4で圧縮されて高温高圧になった冷媒は四方弁5を介して室内熱交換器8を流れる。室内熱交換器8を流れる高温高圧の冷媒は、室内ファンによって送風された室内の空気と熱交換することによって放熱し、高温高圧の冷媒と熱交換をした室内の空気は暖められる。室内熱交換器8を通過して放熱した冷媒は室内機側膨張弁6を通過した後、室外機側膨張弁7によって減圧され、ガス冷媒と液冷媒が混ざった2相冷媒の状態となる。2相冷媒の状態となった冷媒は室外熱交換器9を流れ、室外熱交換器9を通過する際に送風ファン16によって送風された外気との熱交換によって吸熱しガス冷媒となる。吸熱してガス冷媒となった冷媒は四方弁5を介して圧縮機4に戻り、再び、高温高圧に圧縮される。 The flow of refrigerant in the refrigerant circuit 11 during heating operation will be described. During heating operation, the high-temperature, high-pressure refrigerant compressed by the compressor 4 flows through the indoor heat exchanger 8 via the four-way valve 5 . The high-temperature, high-pressure refrigerant flowing through the indoor heat exchanger 8 exchanges heat with the indoor air blown by the indoor fan to radiate heat, and the indoor air that has exchanged heat with the high-temperature, high-pressure refrigerant is warmed. After passing through the indoor heat exchanger 8 and radiating heat, the refrigerant passes through the indoor unit side expansion valve 6 and is then decompressed by the outdoor unit side expansion valve 7 to become a two-phase refrigerant in which gas refrigerant and liquid refrigerant are mixed. The refrigerant in the state of two-phase refrigerant flows through the outdoor heat exchanger 9 and absorbs heat through heat exchange with the outside air blown by the blower fan 16 when passing through the outdoor heat exchanger 9 to become a gas refrigerant. The refrigerant that absorbs heat and becomes a gaseous refrigerant returns to the compressor 4 via the four-way valve 5 and is again compressed to a high temperature and high pressure.

次に冷房運転時の冷媒回路11における冷媒の流れを説明する。暖房運転から冷房運転への切り換えは、四方弁5により冷媒回路11を循環する冷媒の流れの向きを換えることによって行われる。冷房運転時において、圧縮機4で圧縮されて高温高圧になった冷媒は四方弁5を介して室外熱交換器9を流れる。室外熱交換器9を流れる高温高圧の冷媒は、送風ファン16によって送風された外気と熱交換することによって放熱し、外気と熱交換した冷媒は高温高圧の液冷媒となる。高温高圧の液冷媒は室外機側膨張弁7を通過した後、室内機側膨張弁6によって減圧され、ガス冷媒と液冷媒が混ざった2相冷媒の状態となる。2相冷媒の状態となった冷媒は室内熱交換器8を流れ、室内熱交換器8を通過する際に室内ファンによって送風された室内の空気との熱交換によって吸熱しガス冷媒となる。吸熱してガス冷媒となった冷媒は四方弁5を介して圧縮機4に戻り、再び、高温高圧に圧縮される。 Next, the flow of refrigerant in the refrigerant circuit 11 during cooling operation will be described. Switching from the heating operation to the cooling operation is performed by changing the direction of the flow of the refrigerant circulating in the refrigerant circuit 11 using the four-way valve 5 . During cooling operation, the high-temperature, high-pressure refrigerant compressed by the compressor 4 flows through the outdoor heat exchanger 9 via the four-way valve 5 . The high-temperature, high-pressure refrigerant flowing through the outdoor heat exchanger 9 exchanges heat with the outside air blown by the blower fan 16 to radiate heat, and the refrigerant that has exchanged heat with the outside air becomes a high-temperature, high-pressure liquid refrigerant. After the high-temperature and high-pressure liquid refrigerant passes through the outdoor unit side expansion valve 7, it is decompressed by the indoor unit side expansion valve 6, and becomes a two-phase refrigerant state in which gas refrigerant and liquid refrigerant are mixed. The two-phase refrigerant flows through the indoor heat exchanger 8 and absorbs heat through heat exchange with the indoor air blown by the indoor fan when passing through the indoor heat exchanger 8 to become a gaseous refrigerant. The refrigerant that absorbs heat and becomes a gaseous refrigerant returns to the compressor 4 via the four-way valve 5 and is again compressed to a high temperature and high pressure.

次に図2を用いて室外機2について説明する。図2は室外機2の縦断面図であり、上部側が、室外機2が設置された状態における上方向、下部側が下方向を示す。室外機2は、いわゆる上吹き型の室外機であり、上部に通風口18としての開口が設けられ、側面に吸入口17としての開口が設けられた筐体15を有する。筐体の内部には通風口18に近接して送風ファン16が設けられ、送風ファン16の下方には吸入口17に対向して縦長の室外熱交換器9が配置されている。送風ファン16の駆動により、吸入口17から外気が吸い込まれ、吸い込まれた外気は室外熱交換器9を通過して室外熱交換器9を通過する冷媒と熱交換し、室外熱交換器9を通過した外気は通風口18から室外機2の外部へと吹き出される。尚、図2の矢印は風速の大きさを示しており、矢印が長い方が短い方より風速が大きい(速い)ことを示している。上吹き型である室外機2は、送風ファン16が上部に設けられているため、送風ファン16による外気の吸い込みによって室外熱交換器9を通過する風の風速は、図2おいて矢印が示すように、送風ファン16に近い上部側が大きく(速く)、送風ファン16から遠い下部側が小さく(遅く)なり、室外熱交換器9を通過する風の風速分布は不均一となる。 Next, the outdoor unit 2 will be described with reference to FIG. FIG. 2 is a vertical cross-sectional view of the outdoor unit 2, the upper side shows the upward direction when the outdoor unit 2 is installed, and the lower side shows the downward direction. The outdoor unit 2 is a so-called top-blown type outdoor unit, and has a housing 15 with an opening as a ventilation port 18 at the top and an opening as an intake port 17 at the side. A blower fan 16 is provided inside the housing in the vicinity of a ventilation port 18 , and an elongated outdoor heat exchanger 9 is arranged below the blower fan 16 so as to face the suction port 17 . By driving the blower fan 16, outside air is sucked from the suction port 17, and the sucked outside air passes through the outdoor heat exchanger 9 and exchanges heat with the refrigerant passing through the outdoor heat exchanger 9. The outside air that has passed through is blown out of the outdoor unit 2 through the ventilation port 18 . The arrows in FIG. 2 indicate the magnitude of the wind speed, and the longer the arrow, the higher (faster) the wind speed than the shorter the arrow. Since the outdoor unit 2, which is a top-blown type, is provided with the blower fan 16 at the top, the wind speed of the air passing through the outdoor heat exchanger 9 by the suction of the outside air by the blower fan 16 is indicated by the arrow in FIG. , the upper portion closer to the blower fan 16 is larger (faster) and the lower portion farther from the fan 16 is smaller (slower), so that the wind speed distribution of the wind passing through the outdoor heat exchanger 9 is uneven.

次に、図3を用いて室外熱交換器9について説明する。図3において、上部側が、室外熱交換器9が設置された状態における上方向、下部側が下方向を示す。室外熱交換器9は、入口ヘッダ20と、出口ヘッダ21と、複数の扁平管22と、複数の伝熱フィン23と、複数の同一径からなる分岐管24a~24cと、分配器25とを備えている。尚、入口ヘッダ20および出口ヘッダ21は、暖房運転時の冷媒回路11における冷媒の流れを基準にしており、暖房運転時は入口ヘッダ20に冷媒が流入し、出口ヘッダ21から冷媒が流出し、冷房運転時は出口ヘッダ21に冷媒が流入し、入口ヘッダ20から冷媒が流出する。本実施形態では、扁平管22の数は便宜的に14本としている。 Next, the outdoor heat exchanger 9 will be described with reference to FIG. In FIG. 3, the upper side indicates the upward direction when the outdoor heat exchanger 9 is installed, and the lower side indicates the downward direction. The outdoor heat exchanger 9 includes an inlet header 20, an outlet header 21, a plurality of flat tubes 22, a plurality of heat transfer fins 23, a plurality of branch tubes 24a to 24c having the same diameter, and a distributor 25. I have it. The inlet header 20 and outlet header 21 are based on the flow of refrigerant in the refrigerant circuit 11 during heating operation. During heating operation, refrigerant flows into the inlet header 20 and flows out from the outlet header 21, During cooling operation, refrigerant flows into the outlet header 21 and flows out from the inlet header 20 . In this embodiment, the number of flat tubes 22 is 14 for convenience.

複数の扁平管22は、それぞれ、直線状の帯状に形成されている。複数の扁平管22は、入口ヘッダ20と出口ヘッダ21との間に配置され、上下方向に所定の間隔をあけて積層されている。複数の扁平管22の一方の端は、入口ヘッダ20に接続され、複数の扁平管22の他方の端は、出口ヘッダ21に接続されている。尚、扁平管22には一方の端から他方の端にわたって図示されない貫通孔が複数形成されており、この貫通孔を冷媒が流れる。図3においては、上方向にある扁平管22ほどうける風速が大きく、下方に行くほど受ける風速が小さくなる。従って、扁平管22を流れる冷媒と外気との熱交換量は、上方向にある扁平管22ほど大きく、下方に行くほど小さくなる。 Each of the plurality of flat tubes 22 is formed in a linear belt shape. The plurality of flat tubes 22 are arranged between the inlet header 20 and the outlet header 21 and are stacked vertically with a predetermined spacing therebetween. One end of the plurality of flat tubes 22 is connected to the inlet header 20 and the other end of the plurality of flat tubes 22 is connected to the outlet header 21 . A plurality of through holes (not shown) are formed in the flat tube 22 from one end to the other end, and the coolant flows through the through holes. In FIG. 3, the higher the flat tubes 22 are located, the higher the wind speed received, and the lower the flat tubes 22, the lower the wind speed received. Therefore, the amount of heat exchange between the refrigerant flowing through the flat tubes 22 and the outside air is greater in the upper flat tubes 22 and smaller in the lower areas.

複数の伝熱フィン23は、入口ヘッダ20と出口ヘッダ21との間に互いに間隔を空けて積層され、その間を空気が通過する板状フィンであり、伝熱フィン23には複数の扁平管22が貫通して熱的に接続している。 The plurality of heat transfer fins 23 are plate-like fins stacked with a space between the inlet header 20 and the outlet header 21 and air passes therebetween. passes through and is thermally connected.

入口ヘッダ20および出口ヘッダ21は筒状に成形されて、出口ヘッダ21には冷媒配管10が接続され、入口ヘッダ20には複数の分岐管24a~24cが接続されている。入口ヘッダ20の内部は仕切板30によって仕切られ、複数の部屋31a~31gが形成されている。仕切板30の配置は、各部屋31a~31gの高さが同一高さになるように配置されおり、各部屋31a~31gの大きさは同一となっている。本実施形態では、入口ヘッダ20の内部は6枚の仕切板30によって仕切られ、上下に7個の部屋31a~31gが形成されている。入口ヘッダ20に接続された複数の扁平管22は、それぞれの部屋31a~31gに対して2本ずつ接続されている。 The inlet header 20 and the outlet header 21 are cylindrically formed, the outlet header 21 is connected to the refrigerant pipe 10, and the inlet header 20 is connected to a plurality of branch pipes 24a to 24c. The interior of the inlet header 20 is partitioned by a partition plate 30 to form a plurality of chambers 31a to 31g. The partition plate 30 is arranged so that the heights of the rooms 31a to 31g are the same, and the sizes of the rooms 31a to 31g are the same. In this embodiment, the interior of the inlet header 20 is partitioned by six partition plates 30 to form seven upper and lower chambers 31a to 31g. Two flat tubes 22 connected to the inlet header 20 are connected to each of the rooms 31a to 31g.

分配器25は、室外機側膨張弁7から延びてくる冷媒配管10と接続され、また、入口ヘッダ20から延びてくる3本の分岐管24a~24cと接続される。分配器25に接続される3本の分岐管24a~24cのうちの1本である分岐管24aは、室外熱交換器9の高さ方向において一番上の高さにある部屋31aに接続されている。3本の分岐管24a~24cのうちの1本である分岐管24bは分岐部27によって2本の分岐管24bに分かれ、2本の分岐管24bの一方は二番目の高さにある部屋31bに接続され、他方は三番目の高さにある部屋31cに接続される。従って、分配器25に接続される1本の分岐管24bは、1つの分岐部27によって2本に分かれて2個の部屋31b、31cそれぞれに接続される。3本の分岐管24a~24cのうちの1本である分岐管24cは分岐部27によって2本の分岐管24cに分かれ、2本の分岐管24cの一方は、さらに、分岐部27によって2本の分岐管24cに分かれ、2本の分岐管24cの一方は四番目の高さにある部屋31dに接続し、他方は五番目の高さにある部屋31eに接続される。同様に、2本の分岐管24cの他方も、さらに、分岐部27によって2本の分岐管24cに分かれ、2本の分岐管24cの一方は六番目の高さにある部屋31fに接続され、他方は七番目の高さにある部屋31gに接続される。従って、分配器25に接続される1本の分岐管24cは、まず、最初の分岐部27によって2本に分かれて、さらに2番目の分岐部27によって2本に分かれて、部屋31dから31gのそれぞれに接続される。 The distributor 25 is connected to the refrigerant pipe 10 extending from the outdoor unit side expansion valve 7 and also connected to three branch pipes 24 a to 24 c extending from the inlet header 20 . The branch pipe 24a, which is one of the three branch pipes 24a to 24c connected to the distributor 25, is connected to the highest room 31a in the height direction of the outdoor heat exchanger 9. ing. A branch pipe 24b, which is one of the three branch pipes 24a to 24c, is divided into two branch pipes 24b by a branching portion 27, and one of the two branch pipes 24b is located in the second-highest room 31b. and the other is connected to room 31c at the third level. Therefore, one branch pipe 24b connected to the distributor 25 is divided into two by one branch portion 27 and connected to the two chambers 31b and 31c, respectively. A branch pipe 24c, which is one of the three branch pipes 24a to 24c, is divided into two branch pipes 24c by a branch portion 27, and one of the two branch pipes 24c is further divided into two by the branch portion 27. One of the two branch pipes 24c is connected to the fourth level room 31d and the other is connected to the fifth level room 31e. Similarly, the other of the two branch pipes 24c is further divided into two branch pipes 24c by a branching portion 27, one of the two branch pipes 24c is connected to the sixth room 31f, The other is connected to room 31g at the seventh level. Therefore, one branch pipe 24c connected to the distributor 25 is first divided into two by the first branch portion 27, and further divided into two by the second branch portion 27 to divide the rooms 31d to 31g. connected to each other.

室外熱交換器9の各部屋31a~31gに流入する冷媒量は、暖房運転時に室外機側膨張弁7から分配器25に流れ込む冷媒量を1とした場合、同一径から成る3本の分岐管24a~24cが分配器25に接続され、分岐管24aには分岐部27が無いため、一番上の高さに位置する部屋31aには1/3の量の冷媒が流れ込む。分岐管24bの途中には1個の分岐部27があるため、二番目の高さと三番目の高さに位置する部屋31b、31cには1/6の量の冷媒が流れ込む。同様に、分岐管24cの途中には2個の分岐部27があるため、部屋31d~31gには1/12の量の冷媒が流れ込む。従って、風速が大きい範囲に位置する扁平管22が接続される部屋31aに流入する冷媒の配分量が多く、風速が中程度の範囲に位置する扁平管22が接続する部屋31b、31cに流入する冷媒の配分量は中程度で、風速が小さい範囲に位置する扁平管22が接続される部屋31d~31g流入する冷媒の配分量は少なくなるように設けられるため、風量に合わせた冷媒流量とできるので、扁平管の出口側で冷媒の状態を均一にできる、熱交換器の能力を十分に発揮させることができる。すなわち、多くの熱交換量が期待できる上部に流れる冷媒量を多くし、熱交換量の少ない下部に流れる冷媒量を少なくしているため、熱交換器全体を無駄なく機能させることができる。 The amount of refrigerant flowing into each of the rooms 31a to 31g of the outdoor heat exchanger 9 is determined by three branch pipes having the same diameter, assuming that the amount of refrigerant flowing into the distributor 25 from the outdoor unit side expansion valve 7 during heating operation is 1. 24a to 24c are connected to the distributor 25, and since the branch pipe 24a does not have a branch portion 27, 1/3 of the refrigerant flows into the chamber 31a located at the highest height. Since there is one branch 27 in the middle of the branch pipe 24b, ⅙ of the refrigerant flows into the chambers 31b and 31c located at the second and third heights. Similarly, since there are two branch portions 27 in the middle of the branch pipe 24c, 1/12 of the refrigerant flows into the chambers 31d to 31g. Therefore, a large amount of refrigerant flows into the room 31a connected to the flat tubes 22 located in the high wind velocity range, and flows into the rooms 31b and 31c connected to the flat tubes 22 located in the medium wind velocity range. The distribution amount of the refrigerant is moderate, and since the distribution amount of the refrigerant flowing into the rooms 31d to 31g to which the flat tubes 22 located in the range of low wind speed are connected is set to be small, the flow rate of the refrigerant can be adjusted according to the air flow rate. Therefore, the ability of the heat exchanger to make the state of the refrigerant uniform on the outlet side of the flat tube can be sufficiently exhibited. That is, the amount of refrigerant flowing to the upper portion where a large amount of heat exchange can be expected is increased, and the amount of refrigerant flowing to the lower portion where the amount of heat exchange is small is reduced, so that the heat exchanger as a whole can function without waste.

本発明の実施形態では、入口ヘッダ20の上下方向に配置された各部屋31a~31gと25分配器との間に接続する3本の分岐管24a~24cに、室外熱交換器9における風速分布に応じて分岐部27が設けられている。つまり、風速が大きい範囲に位置する部屋31aと分配器25とに接続する分岐管24aにおいて、分配器25から部屋31aまでの間には分岐部27は設けない。風速が中程度の範囲に位置する部屋31b~31eと分配器25とに接続する分岐管24bにおいては、分配器25から部屋31b~31eまでの間には分岐部27を1個設ける。風速が小さい範囲に位置する部屋31d~31gと分配器25とに接続する分岐管24cにおいては、分配器25から部屋31b~31eまでの間に分岐部27を2個設ける。これにより、分配器25から各部屋31へ至るまでの分岐部27の数が多いほど部屋31に流入する冷媒量は少なくなる。 In the embodiment of the present invention, the three branch pipes 24a to 24c connected between the chambers 31a to 31g arranged in the vertical direction of the inlet header 20 and the 25 distributor are provided with the wind speed distribution in the outdoor heat exchanger 9. A branch portion 27 is provided in accordance with. That is, in the branch pipe 24a that connects the room 31a located in the range where the wind speed is high and the distributor 25, the branch portion 27 is not provided between the distributor 25 and the room 31a. In the branch pipe 24b connecting the rooms 31b to 31e located in the medium wind speed range and the distributor 25, one branch portion 27 is provided between the distributor 25 and the rooms 31b to 31e. In the branch pipe 24c that connects the rooms 31d to 31g located in the low wind speed range and the distributor 25, two branch portions 27 are provided between the distributor 25 and the rooms 31b to 31e. As a result, the amount of refrigerant flowing into the rooms 31 decreases as the number of branching portions 27 from the distributor 25 to each room 31 increases.

本発明の実施形態では、入口ヘッダ20の上下方向に配置された各部屋31a~31gと分配器25との間に接続する3本の分岐管24a~24cに、室外熱交換器9における風速分布に応じて分岐部27が設けられているため、実質的な熱交換量が室外熱交換器9の上下方向で略同じとなり、出口ヘッダ21の冷媒状態を揃えることができる。従来のキャピラリチューブにより流路抵抗を増加させて流量を調整する場合と比較して、熱交換器を通過する冷媒の圧力損失を大きくすることなく出口ヘッダ21の冷媒状態を揃えることができるため、圧力損失が増大することによる空気調和機の冷房・暖房能力の低下を抑制できる。また、本発明の実施形態では本効果と共に次の効果を有する。 In the embodiment of the present invention, the three branch pipes 24a to 24c connected between the chambers 31a to 31g arranged in the vertical direction of the inlet header 20 and the distributor 25 are provided with the wind speed distribution in the outdoor heat exchanger 9. Since the branching portion 27 is provided according to , the substantial amount of heat exchange is substantially the same in the vertical direction of the outdoor heat exchanger 9, and the refrigerant condition of the outlet header 21 can be uniformed. Compared to the case where the flow rate is adjusted by increasing the flow resistance using a conventional capillary tube, the refrigerant state in the outlet header 21 can be uniformed without increasing the pressure loss of the refrigerant passing through the heat exchanger. A decrease in the cooling/heating capacity of the air conditioner due to an increase in pressure loss can be suppressed. In addition to this effect, the embodiment of the present invention has the following effect.

入口ヘッダ20の内部は仕切板30によって仕切られ、仕切板30の配置は、各部屋31a~31gの高さが同一高さになるように配置されおり、各部屋31a~31gの大きさ(容積)は同一となっている。従って、室外熱交換器9における風速分布や室外熱交換器の仕様に応じて、各部屋31a~31gの高さの調整する必要がないため、製造コストを抑えることができる。 The interior of the inlet header 20 is partitioned by a partition plate 30. The partition plate 30 is arranged so that the heights of the rooms 31a to 31g are the same. ) are the same. Therefore, it is not necessary to adjust the height of each of the chambers 31a to 31g according to the wind velocity distribution in the outdoor heat exchanger 9 and the specifications of the outdoor heat exchanger, so the manufacturing cost can be reduced.

入口ヘッダ20の上下方向に配置された各部屋31a~31gと分配器25との間に接続する3本の分岐管24a~24cは同一径からなる分岐管である。従って、室外熱交換器9における風速分布や室外熱交換器の仕様に応じて、各分岐管24a~24cの径を調整する必要がないため、製造コストを抑えることができる。また、室外熱交換器9における風速分布や室外熱交換器の仕様に応じて、分配器25から各部屋31へ至るまでの分岐部27の数を設定するだけで、各部屋31a~31gに流入する冷媒量を調整することが出来るため、製造コストを抑えることができる。 The three branch pipes 24a to 24c connected between the chambers 31a to 31g arranged in the vertical direction of the inlet header 20 and the distributor 25 are branch pipes having the same diameter. Therefore, since it is not necessary to adjust the diameter of each branch pipe 24a to 24c according to the wind velocity distribution in the outdoor heat exchanger 9 and the specifications of the outdoor heat exchanger, the manufacturing cost can be suppressed. In addition, by simply setting the number of branches 27 from the distributor 25 to each room 31 according to the wind speed distribution in the outdoor heat exchanger 9 and the specifications of the outdoor heat exchanger, the air can flow into each room 31a to 31g. Since the amount of refrigerant to be used can be adjusted, the manufacturing cost can be suppressed.

尚、本実施形態では、暖房運転時の冷媒回路11における冷媒の流れを基準にして、暖房運転時は入口ヘッダ20に冷媒が流入し、出口ヘッダ21から冷媒が流出する場合において、流入する側に分配器25を配置し、流入する側の入口ヘッダ20の内部を仕切板30によって仕切って同一高さの部屋31a~31gを形成し、各部屋31a~31gと分配器25との間に3本の分岐管24a~24cを接続し、室外熱交換器9における風速分布に応じて3本の分岐管24a~24cに分岐部27が設けられたが、逆であっても構わない。すなわち、暖房運転時の冷媒回路11における冷媒の流れを基準にして、暖房運転時は入口ヘッダ20に冷媒が流入し、出口ヘッダ21から冷媒が流出する場合において、流入する側の入口ヘッダ20には室外機側膨張弁7を介して冷媒が流入し、流出する側に分配器25を配置し、流出する側の出口ヘッダ21の内部を仕切板30によって仕切って同一高さの部屋31a~31gを形成し、各部屋31a~31gと分配器25との間に3本の分岐管24a~24cを接続し、室外熱交換器9における風速分布に応じて3本の分岐管24a~24cに分岐部27が設けられても構わない。この場合でも同一の効果を有することができる。また、本実施形態の空気調和機1は冷房運転と暖房運転が可能な空気調和機であるが、冷房運転と暖房運転のどちらか一方が可能な空気調和機であっても構わない。 In this embodiment, the flow of the refrigerant in the refrigerant circuit 11 during heating operation is used as a reference, and when the refrigerant flows into the inlet header 20 and flows out from the outlet header 21 during heating operation, the inflow side The inside of the inlet header 20 on the inflow side is partitioned by a partition plate 30 to form chambers 31a to 31g of the same height, and three chambers 31a to 31g are provided between the chambers 31a to 31g and the distributor 25. Although the three branch pipes 24a to 24c are connected and the branching portion 27 is provided in the three branch pipes 24a to 24c according to the wind speed distribution in the outdoor heat exchanger 9, the reverse is also possible. That is, based on the flow of the refrigerant in the refrigerant circuit 11 during heating operation, when the refrigerant flows into the inlet header 20 and flows out from the outlet header 21 during the heating operation, the refrigerant flows into the inlet header 20 on the inflow side. The refrigerant flows in via the outdoor unit side expansion valve 7, the distributor 25 is arranged on the outflow side, and the inside of the outlet header 21 on the outflow side is partitioned by the partition plate 30 to create chambers 31a to 31g of the same height. are formed, and three branch pipes 24a to 24c are connected between each room 31a to 31g and the distributor 25, and the three branch pipes 24a to 24c are branched according to the wind speed distribution in the outdoor heat exchanger 9. A portion 27 may be provided. Even in this case, the same effect can be obtained. Further, although the air conditioner 1 of the present embodiment is an air conditioner capable of cooling operation and heating operation, it may be an air conditioner capable of either cooling operation or heating operation.

以上、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく実施形態の改変は、当業者にとって自明のことである。 Although the foregoing has been described with reference to a limited number of embodiments, the scope of rights is not limited thereto, and modifications of the embodiments based on the above disclosure will be obvious to those skilled in the art.

1…空気調和機、2…室外機、3…室内機、4…圧縮機、5…四方弁、6…室内機側膨張弁、7…室外機側膨張弁、8…室内熱交換器、9…室外熱交換器、10…冷媒配管、11…冷媒回路、15…筐体、16…送風ファン、17…吸入口、18…通風口、20…入口ヘッダ、21…出口ヘッダ、22…扁平管、23…伝熱フィン、24a~24c…分岐管、25…分配器、27…分岐部、30…仕切板、31a~31g…部屋 DESCRIPTION OF SYMBOLS 1... Air conditioner, 2... Outdoor unit, 3... Indoor unit, 4... Compressor, 5... Four-way valve, 6... Indoor unit side expansion valve, 7... Outdoor unit side expansion valve, 8... Indoor heat exchanger, 9 Outdoor heat exchanger 10 Refrigerant pipe 11 Refrigerant circuit 15 Housing 16 Blower fan 17 Suction port 18 Ventilation port 20 Inlet header 21 Outlet header 22 Flat tube , 23 Heat transfer fins 24a to 24c Branch pipe 25 Distributor 27 Branch portion 30 Partition plate 31a to 31g Room

Claims (4)

冷媒入口側に位置するヘッダである入口ヘッダと、
冷媒出口側に位置するヘッダである出口ヘッダと、
前記入口ヘッダと前記出口ヘッダのどちらか一方のヘッダの内部に仕切板によって仕切られた複数の部屋が設けられ、
前記入口ヘッダと前記出口ヘッダのどちらか一方に設けられた複数の前記部屋の各々と、前記入口ヘッダと前記出口ヘッダのどちらか他方のヘッダとの間に、並列に接続される複数の扁平管と、
冷媒配管に設けられる分配器と、
前記各部屋と前記分配器とに接続する複数の分岐管と、を備えた熱交換器において、
前記熱交換器における風速分布に応じて、前記分岐管は前記部屋と前記分配器の間に分岐部が設けられ、
風速が大きい部分に位置する前記扁平管が接続される前記部屋に接続する前記分岐管の前記分岐部の数は、
風速が小さい部分を通過する前記扁平管が接続される前記部屋に接続する前記分岐管の前記分岐部の数よりも少ないことを特徴とする熱交換器。
an inlet header, which is a header located on the coolant inlet side;
an outlet header, which is a header located on the refrigerant outlet side;
a plurality of rooms partitioned by partition plates are provided inside one of the inlet header and the outlet header;
A plurality of flat tubes connected in parallel between each of the plurality of chambers provided in either one of the inlet header and the outlet header and the other of the inlet header and the outlet header. When,
a distributor provided in the refrigerant pipe;
A heat exchanger comprising a plurality of branch pipes connected to each of the chambers and the distributor,
The branch pipe is provided with a branch portion between the room and the distributor according to the wind speed distribution in the heat exchanger,
The number of branch portions of the branch pipe connected to the room to which the flat pipe located in the portion where the wind speed is high is
A heat exchanger, wherein the number of branches of the branch pipes connected to the room to which the flat pipes passing through a portion where the wind velocity is low is connected is smaller than the number of the branch portions.
並列に接続される前記扁平管が並ぶ方向における前記各部屋の長さは同一であることを特徴とする請求項1に記載の熱交換器。 2. The heat exchanger according to claim 1, wherein each chamber has the same length in the direction in which the flat tubes connected in parallel are arranged. 一方の前記ヘッダは前記入口ヘッダであり、他方の前記ヘッダは出口ヘッダであることを特徴とする請求項1または2に記載の熱交換器。 3. A heat exchanger according to claim 1 or 2, wherein one said header is said inlet header and the other said header is said outlet header. 上部に送風ファンが設けられ、前記送風ファンの下方に請求項1から3のいずれか1項に記載の熱交換器が設けられ、前記熱交換器は、複数の前記扁平管の並列方向は上下方向であり、前記入口ヘッダと前記出口ヘッダが上下方向に立てて設置されたことを特徴とする空気調和機の上吹き型の室外機。
A blower fan is provided in the upper part, and the heat exchanger according to any one of claims 1 to 3 is provided below the blower fan, and the heat exchanger is arranged such that the plurality of flat tubes are arranged in a vertical direction. A top-blown outdoor unit for an air conditioner, wherein the inlet header and the outlet header are vertically installed.
JP2021056043A 2021-03-29 2021-03-29 Heat exchanger, outdoor unit with this heat exchanger Active JP7279730B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021056043A JP7279730B2 (en) 2021-03-29 2021-03-29 Heat exchanger, outdoor unit with this heat exchanger
EP22780139.6A EP4317812A1 (en) 2021-03-29 2022-03-16 Heat exchanger, and outdoor unit comprising said heat exchanger
US18/284,099 US20240175643A1 (en) 2021-03-29 2022-03-16 Heat exchanger and outdoor unit comprising said heat exchanger
AU2022249485A AU2022249485A1 (en) 2021-03-29 2022-03-16 Heat exchanger, and outdoor unit comprising said heat exchanger
PCT/JP2022/012064 WO2022209919A1 (en) 2021-03-29 2022-03-16 Heat exchanger, and outdoor unit comprising said heat exchanger
CN202280024997.7A CN117063021A (en) 2021-03-29 2022-03-16 Heat exchanger and outdoor unit provided with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021056043A JP7279730B2 (en) 2021-03-29 2021-03-29 Heat exchanger, outdoor unit with this heat exchanger

Publications (2)

Publication Number Publication Date
JP2022153026A true JP2022153026A (en) 2022-10-12
JP7279730B2 JP7279730B2 (en) 2023-05-23

Family

ID=83459010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021056043A Active JP7279730B2 (en) 2021-03-29 2021-03-29 Heat exchanger, outdoor unit with this heat exchanger

Country Status (6)

Country Link
US (1) US20240175643A1 (en)
EP (1) EP4317812A1 (en)
JP (1) JP7279730B2 (en)
CN (1) CN117063021A (en)
AU (1) AU2022249485A1 (en)
WO (1) WO2022209919A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107262U (en) * 1985-12-24 1987-07-09
JP2010127601A (en) * 2008-12-01 2010-06-10 Fujitsu General Ltd Air conditioner
WO2013160952A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Coolant distributor, and heat exchanger equipped with coolant distributor
CN209459264U (en) * 2018-12-05 2019-10-01 锦江百浪新能源有限公司 Evaporator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107262U (en) * 1985-12-24 1987-07-09
JP2010127601A (en) * 2008-12-01 2010-06-10 Fujitsu General Ltd Air conditioner
WO2013160952A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Coolant distributor, and heat exchanger equipped with coolant distributor
CN209459264U (en) * 2018-12-05 2019-10-01 锦江百浪新能源有限公司 Evaporator

Also Published As

Publication number Publication date
CN117063021A (en) 2023-11-14
AU2022249485A1 (en) 2023-10-12
WO2022209919A1 (en) 2022-10-06
EP4317812A1 (en) 2024-02-07
JP7279730B2 (en) 2023-05-23
US20240175643A1 (en) 2024-05-30

Similar Documents

Publication Publication Date Title
US10670344B2 (en) Heat exchanger, air-conditioning apparatus, refrigeration cycle apparatus and method for manufacturing heat exchanger
AU2010316364B2 (en) Heat exchanger and indoor unit including the same
US10168083B2 (en) Refrigeration system and heat exchanger thereof
CN104807087A (en) Air conditioner
JP5195733B2 (en) Heat exchanger and refrigeration cycle apparatus equipped with the same
JPWO2013160957A1 (en) Heat exchanger, indoor unit and refrigeration cycle apparatus
JP2015049008A (en) Air conditioner, and heat exchanger for air conditioner
JP6576577B1 (en) Refrigerant distributor, heat exchanger, and air conditioner
JP5951475B2 (en) Air conditioner and outdoor heat exchanger used therefor
JP2012026615A (en) Outdoor unit, and refrigeration cycle apparatus with the same
JP7279730B2 (en) Heat exchanger, outdoor unit with this heat exchanger
JP2019027614A (en) Heat exchanging device and air conditioner
JP2014228223A (en) Air conditioner
CN111902683B (en) Heat exchanger and refrigeration cycle device
JP2008008541A (en) Heat exchanger, and indoor unit of air conditioner comprising heat exchanger
JP6601886B1 (en) Air source heat pump unit
WO2021161439A1 (en) Air conditioning device
JP3065290B2 (en) Air conditioner heat exchanger
JPH1151412A (en) Indoor unit for air-conditioner, and its indoor heat exchanger
CN113007923B (en) Heat exchanger and air conditioner with same
JPH10238800A (en) Heat-exchanger and air-conditioner
JPWO2019116820A1 (en) Air conditioner
CN216159168U (en) Indoor unit of air conditioner
CN218634655U (en) Radiator and variable frequency air conditioning system
CN219937153U (en) Energy storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230424

R151 Written notification of patent or utility model registration

Ref document number: 7279730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151