JP2022152599A - Swing chute inner surface abrasion inspection device and swing chute inner surface abrasion inspection method - Google Patents

Swing chute inner surface abrasion inspection device and swing chute inner surface abrasion inspection method Download PDF

Info

Publication number
JP2022152599A
JP2022152599A JP2021055427A JP2021055427A JP2022152599A JP 2022152599 A JP2022152599 A JP 2022152599A JP 2021055427 A JP2021055427 A JP 2021055427A JP 2021055427 A JP2021055427 A JP 2021055427A JP 2022152599 A JP2022152599 A JP 2022152599A
Authority
JP
Japan
Prior art keywords
chute
wear
distance
measured
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021055427A
Other languages
Japanese (ja)
Other versions
JP6951601B1 (en
Inventor
健大 山本
Takehiro Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2021055427A priority Critical patent/JP6951601B1/en
Application granted granted Critical
Publication of JP6951601B1 publication Critical patent/JP6951601B1/en
Priority to PCT/JP2021/045136 priority patent/WO2022209022A1/en
Priority to BR112023019503A priority patent/BR112023019503A2/en
Priority to KR1020237033277A priority patent/KR20230151014A/en
Publication of JP2022152599A publication Critical patent/JP2022152599A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/18Bell-and-hopper arrangements
    • C21B7/20Bell-and-hopper arrangements with appliances for distributing the burden
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/02Observation or illuminating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/04Arrangements of indicators or alarms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/04Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

To provide a swing chute inner surface abrasion inspection device and a swing chute inner surface abrasion inspection method capable of quantitatively and efficiently performing a swing chute inner surface abrasion inspection at an optional time.SOLUTION: A swing chute inner surface abrasion inspection device 9 is a device for inspecting the abrasion of a surface of a liner 32 stretched on the inner surface of the chute 21 installed in a charging device 20 of a blast furnace 10 includes: a non-contact distance measuring device 42 introduced inside of the blast furnace 10 and capable of measuring a measured distance to a surface of the liner 32; and an abrasion determination unit 52 determining the abrasion of the surface of the liner 32 based on a measured distance measured by the distance measurement device 42, and as a distance measuring device 42, a charge surface shape measuring device 40 that measures the three-dimensional shape of the charge surface 24 charged into the blast furnace 10 by irradiating a microwave or millimeter wave measurement beam is also used.SELECTED DRAWING: Figure 1

Description

本発明は、旋回シュート内面摩耗検査装置および旋回シュート内面摩耗検査方法に関する。 TECHNICAL FIELD The present invention relates to a rotating chute inner surface wear inspection device and a rotating chute inner surface wear inspection method.

高炉の内部に原材料を装入するために、炉頂には装入装置が設置される。装入装置としてベル式や旋回シュート式が用いられ、装入物を同心円状に散布することで、炉内に堆積した装入物の表面に円錐面状のプロフィールを形成している。
さらに、装入物の表面が所期の表面プロフィールとなっているかを検査するために、炉頂近くの開口部から検査装置を炉内へ導入し、マイクロ波やミリ波の測定ビームを照射して装入物表面の三次元形状を検出することが行われている(特許文献1参照)。
A charging device is installed at the top of the furnace to charge raw materials into the blast furnace. A bell type or a swirling chute type is used as a charging device, and by concentrically dispersing the charged material, a conical profile is formed on the surface of the charged material accumulated in the furnace.
Furthermore, in order to inspect whether the surface of the charge has the desired surface profile, an inspection device is introduced into the furnace from an opening near the top of the furnace and irradiated with microwave and millimeter wave measurement beams. Detecting the three-dimensional shape of the surface of the charged material by using a method (see Patent Document 1).

装入装置により装入物を散布する際には、上方から投入される装入物が散布部材である炉内シュートに衝突したり、炉内シュート内を流れた際に摩擦が発生したりすることによる、炉体の摩耗が避けられない。このような散布部材の摩耗に対して、超硬粒子を鋳込んだ鋳物ライナブロックなどのライナでシュートの内面を覆うことが行われている(特許文献2参照)。
シュート内面をライナで覆うことで、装入物の衝突による摩耗を回避できる。ただし、耐摩耗性のライナであっても、時間の経過にともなって摩耗の進行が避けられない。そこで、高炉の休風時に、炉頂近くに設けた検査窓から作業員がライナ表面を目視し、摩耗の進行を検査している。
When the charge is spread by the charging device, the charge charged from above collides with the in-furnace chute, which is the spreading member, or friction occurs when it flows through the in-furnace chute. As a result, wear of the furnace body cannot be avoided. In order to prevent such wear of the distributing member, the inner surface of the chute is covered with a liner such as a cast liner block in which cemented carbide particles are cast (see Patent Document 2).
By covering the inner surface of the chute with a liner, it is possible to avoid wear due to the impact of the charged material. However, even wear-resistant liners inevitably wear out over time. Therefore, when the blast furnace is closed, workers visually inspect the surface of the liner through an inspection window provided near the top of the furnace to inspect the progress of wear.

特開2019-151886号公報JP 2019-151886 A 特開平10-46220号公報JP-A-10-46220

前述した摩耗の検査は、2~3か月に一度の休風中しか実施できないため、操業中に摩耗が急激に進行した場合、高炉操業に影響が出る可能性が有る。
また、検査が目視確認となるため、定量的な判断が難しく、更新判断が難しい。
さらに、炉体開口部からの目視確認となるため、炉内への落下防止など、安全面の対策が十二分に必要である。
とくに、シュートの内面のライナを目視確認する際には、シュートが炉体開口部に向く状態で停止させる必要がある。
また、目視確認のための炉頂部マンホール等は重量物のため、複数人の作業員と工具を必要とし、大掛かりで作業コストが掛かる。
以上のような課題を解決するため、高炉内面の摩耗検査を、任意の時期に、定量的に、かつ効率よく実施できるようにすることが求められていた。
Since the above-mentioned wear inspection can only be performed during a wind break once every two to three months, there is a possibility that the blast furnace operation will be affected if the wear progresses rapidly during operation.
In addition, since the inspection is a visual confirmation, it is difficult to make a quantitative judgment, and it is difficult to make a renewal judgment.
In addition, since it is visually confirmed from the opening of the furnace body, safety measures such as prevention of dropping into the furnace are more than necessary.
In particular, when visually checking the liner on the inner surface of the chute, it is necessary to stop the chute facing the opening of the furnace body.
In addition, since the furnace top manhole and the like for visual confirmation are heavy, they require multiple workers and tools, and are large-scale and costly.
In order to solve the above-described problems, it has been desired to be able to inspect the wear of the inner surface of the blast furnace at any time, quantitatively, and efficiently.

本発明の目的は、旋回シュート内面摩耗検査を、任意の時期に定量的にかつ効率よく実施できる旋回シュート内面摩耗検査装置および旋回シュート内面摩耗検査方法を提供することにある。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a swivel chute inner surface wear inspection device and a swivel chute inner surface wear inspection method that can quantitatively and efficiently inspect the inner surface of a swivel chute at any time.

本発明の旋回シュート内面摩耗検査装置は、高炉の装入装置に設置されたシュートの内面の摩耗を検査する装置であって、前記高炉の内部に導入可能かつ前記内面までの測定距離を測定可能な非接触式の距離測定器と、前記距離測定器で測定された前記測定距離に基づいて前記内面の摩耗を判定する摩耗判定部と、を有する。
このような本発明では、摩耗判定部の制御により距離測定器を高炉の内部に導入し、シュートの内面までの測定距離を測定することで、測定距離に基づいてシュート内面の摩耗を判定することができる。従って、高炉の休風時以外の任意の時期にあっても、機械測定による定量的な検査を効率よく実施できる。
A rotating chute inner surface wear inspection device of the present invention is a device for inspecting the wear of the inner surface of a chute installed in a charging device of a blast furnace, which can be introduced into the inside of the blast furnace and can measure the measurement distance to the inner surface. a non-contact distance measuring device, and a wear determination unit that determines wear of the inner surface based on the measured distance measured by the distance measuring device.
In the present invention, the distance measuring device is introduced into the interior of the blast furnace under the control of the wear determining section, and the measured distance to the inner surface of the chute is measured, thereby determining the wear of the inner surface of the chute based on the measured distance. can be done. Therefore, even at any time other than when the blast furnace is out of wind, quantitative inspection by mechanical measurement can be efficiently carried out.

本発明の旋回シュート内面摩耗検査装置において、前記距離測定器として、マイクロ波ないしミリ波の測定ビームを照射して前記高炉に装入された装入物表面の三次元形状を測定する装入物表面形状測定器を兼用することが好ましい。
このような本発明では、既存の装入物表面形状測定器を転用することで、新規に距離測定器を設置する必要がなく、実施が容易である。
In the revolving chute inner surface wear inspection apparatus of the present invention, a charge that measures the three-dimensional shape of the surface of the charge charged into the blast furnace by irradiating a measurement beam of microwave or millimeter wave as the distance measuring device. It is preferable to use a surface shape measuring instrument as well.
In the present invention as described above, by diverting an existing charge surface profile measuring instrument, there is no need to install a new distance measuring instrument, and implementation is easy.

本発明の旋回シュート内面摩耗検査装置において、前記摩耗判定部は、前記シュートを前記距離測定器に対抗する所定の測定姿勢に配置する制御を行うことが好ましい。
このような本発明では、摩耗判定部の制御によりシュートを所定の測定姿勢に配置することで、高炉の内部に導入された距離測定器に対するシュートの相対位置を一定にでき、常に同じ条件で測定距離を測定することで、摩耗判定の精度を高めることができる。
シュートを所定の測定姿勢に配置する構成としては、既存の装入装置に設置されている機構、すなわちシュートを旋回させる旋回機構(垂直な軸まわり)およびシュートの傾斜角度をきめる傾動機構(水平な軸まわり)が利用できる。
所定の測定姿勢としては、シュートが距離測定器に向かう旋回角度位置(垂直な軸まわり)にあり、かつシュートの傾斜角度位置が、シュートの延伸方向軸線と距離測定器からの測定ビームとが直交または直角に近い角度で交差する傾斜角度位置(水平な軸まわり)にある状態とすることができる。
In the revolving chute inner surface wear inspection device of the present invention, it is preferable that the wear determination unit performs control to place the chute in a predetermined measurement posture facing the distance measuring device.
In this aspect of the invention, the chute is placed in a predetermined measurement posture under the control of the wear determination unit, so that the relative position of the chute with respect to the distance measuring device introduced into the blast furnace can be kept constant, and measurement is always performed under the same conditions. By measuring the distance, it is possible to improve the accuracy of wear determination.
As a configuration for placing the chute in a predetermined measurement posture, the mechanisms installed in the existing charging equipment, namely, a turning mechanism for turning the chute (around the vertical axis) and a tilting mechanism for determining the inclination angle of the chute (horizontal) are used. axis) can be used.
As a predetermined measurement posture, the chute is at a turning angle position (around the vertical axis) toward the rangefinder, and the chute is tilted so that the longitudinal axis of the chute is perpendicular to the measurement beam from the rangefinder. Alternatively, it can be in a state of being in an inclined angle position (around a horizontal axis) where they intersect at an angle close to a right angle.

本発明の旋回シュート内面摩耗検査装置において、前記シュートは前記シュートの延長方向の軸線まわりに回動可能であり、前記摩耗判定部は前記測定距離を測定する際に前記シュートを回動させる制御を行うことが好ましい。
このような本発明では、測定距離を測定する際にシュートを回動させることで、距離測定器による測定対象部位をシュートの内面を横断するように転移させることができる。例えば、距離測定器からの測定ビームをシュートの横断方向へ振ってシュートの内面を走査した場合、シュートの両端近傍では測定ビームが内面に対して浅い角度となり、摩耗判定には好ましくないことがある。これに対し、シュートを回動させることで、測定ビームの交差角度が直角に近くなる領域を拡大でき、摩耗判定の精度を高めることができる。
シュートを延長方向の軸線まわりに回動させる構成としては、既存の装入装置に設置されている回動機構を適宜利用することができる。
In the revolving chute inner surface wear inspection device of the present invention, the chute is rotatable around an axis in the extension direction of the chute, and the wear determination section controls the rotation of the chute when measuring the measurement distance. preferably.
In this aspect of the invention, by rotating the chute when measuring the measurement distance, the part to be measured by the distance measuring device can be moved across the inner surface of the chute. For example, when the measurement beam from the rangefinder is swung across the chute to scan the inner surface of the chute, the angle between the measurement beam and the inner surface is shallow near both ends of the chute, which may not be suitable for wear determination. . On the other hand, by rotating the chute, it is possible to expand the area where the crossing angle of the measurement beams is close to a right angle, and to improve the accuracy of wear determination.
As a structure for rotating the chute about the axis in the extension direction, a rotating mechanism installed in an existing charging apparatus can be appropriately used.

本発明の旋回シュート内面摩耗検査装置において、前記摩耗判定部は、予め前記距離測定器で測定された前記内面までの基準距離を記憶しており、前記測定距離を前記基準距離と比較して前記内面の摩耗を判定することが好ましい。
このような本発明では、高炉の稼働開始時などシュートの内面が更新された状態、つまり摩耗を生じていないシュート内面までの距離を測定して基準距離として記憶しておき、稼働経過後に測定距離を測定して基準距離と比較することで、稼働により生じたシュート内面の摩耗を適切に測定できる。
基準距離の測定は、保護ライナの交換などシュート内面が更新された状態で行うことができ、例えば高炉の新規設置時、改修後の稼働開始時、あるいは休風後の稼働再開時などである。
In the revolving chute inner surface wear inspection device of the present invention, the wear determination unit stores a reference distance to the inner surface measured in advance by the distance measuring device, and compares the measured distance with the reference distance to determine the It is preferred to determine wear on the inner surface.
In the present invention, when the inner surface of the chute is renewed, such as when the blast furnace starts operating, the distance to the inner surface of the chute without wear is measured and stored as a reference distance. By measuring and comparing with the reference distance, it is possible to properly measure the wear of the inner surface of the chute caused by operation.
The reference distance can be measured when the inner surface of the chute is updated, such as when the protective liner is replaced.

本発明の旋回シュート内面摩耗検査装置において、前記摩耗判定部は、複数の前記測定距離を測定し、測定された前記測定距離のうち最小のものを基準距離として選択し、前記基準距離と他の前記測定距離との差分に基づいて前記内面の摩耗を判定してもよい。
このような本発明では、例えばシュートの横断方向の両端近傍では摩耗が少ないか殆どなく、横断方向の中央部では摩耗が大きくなることから、摩耗が少ない両端近傍の最小距離を基準として、摩耗が大きな中央部の測定距離との差分をとって摩耗判定を行うことができ、予め基準距離を別途準備しておく処理などを省略できる。
In the revolving chute inner surface wear inspection device of the present invention, the wear determining unit measures a plurality of the measured distances, selects the smallest of the measured distances as a reference distance, and selects the reference distance from the other The wear of the inner surface may be determined based on the difference from the measured distance.
In the present invention, for example, near both ends of the chute in the transverse direction, there is little or no wear, and wear increases in the central part in the transverse direction. It is possible to determine the wear by taking the difference from the measured distance of the large central portion, and to omit the process of separately preparing the reference distance in advance.

本発明の旋回シュート内面摩耗検査方法は、高炉の装入装置に設置されたシュートの内面の摩耗を検査する方法であって、前記高炉の内部に非接触式の距離測定器を導入し、前記距離測定器で前記内面までの測定距離を測定し、前記測定距離に基づいて前記内面の摩耗を判定する。
このような本発明によれば、本発明の旋回シュート内面摩耗検査装置について説明した通りの作用効果が得られる。
A rotating chute inner surface wear inspection method of the present invention is a method for inspecting wear of the inner surface of a chute installed in a blast furnace charging apparatus, wherein a non-contact distance measuring device is introduced into the blast furnace, and the A measured distance to the inner surface is measured by a distance measuring device, and wear of the inner surface is determined based on the measured distance.
According to this aspect of the invention, it is possible to obtain the effects as described for the swivel chute inner surface wear inspection device of the invention.

本発明によれば、旋回シュート内面摩耗検査を、任意の時期に定量的にかつ効率よく実施できる旋回シュート内面摩耗検査装置および旋回シュート内面摩耗検査方法を提供できる。 According to the present invention, it is possible to provide a swivel chute inner surface wear inspection device and a swivel chute inner surface wear inspection method capable of quantitatively and efficiently performing a swivel chute inner surface wear inspection at any time.

本発明の第1実施形態の全体構成を示す模式図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic diagram which shows the whole structure of 1st Embodiment of this invention. 前記第1実施形態のシュートを示す平面図。The top view which shows the chute of the said 1st Embodiment. 前記第1実施形態のシュートを示す正面図。The front view which shows the chute of the said 1st Embodiment. 前記第1実施形態の距離測定器を示す模式図。The schematic diagram which shows the distance measuring device of the said 1st Embodiment. 前記第1実施形態の測定距離の測定動作を示す模式図。4A and 4B are schematic diagrams showing the measurement operation of the measurement distance of the first embodiment; FIG. 前記第1実施形態の測定距離を示す模式図。The schematic diagram which shows the measurement distance of the said 1st Embodiment. 前記第1実施形態の測定手順を示すフローチャート。4 is a flow chart showing a measurement procedure of the first embodiment; 本発明の第2実施形態のシュートを示す正面図。The front view which shows the chute of 2nd Embodiment of this invention. 前記第2実施形態の基準距離および測定距離を示す模式図。The schematic diagram which shows the reference distance and measurement distance of the said 2nd Embodiment. 前記第2実施形態の測定手順を示すフローチャート。6 is a flow chart showing a measurement procedure of the second embodiment; 本発明の第3実施形態の測定距離および最小距離を示す断面図。Sectional drawing which shows the measurement distance and the minimum distance of 3rd Embodiment of this invention. 前記第3実施形態の測定手順を示すフローチャート。10 is a flow chart showing the measurement procedure of the third embodiment;

〔第1実施形態〕
図1において、高炉10は炉体11を有し、炉頂12には装入装置20が設置されている。
高炉10には、制御装置50が接続されている。制御装置50は、コンピュータシステムで構成され、設定されたプログラムに基づいて装入装置20ほかの高炉10の各部機器を制御可能である。
装入装置20は、炉体11の内部に旋回式のシュート21を有するとともに、炉頂12の外部に装入物供給装置22を有する。
[First embodiment]
In FIG. 1, a blast furnace 10 has a furnace body 11 and a charging device 20 is installed at the furnace top 12 .
A controller 50 is connected to the blast furnace 10 . The control device 50 is composed of a computer system, and can control each part and equipment of the blast furnace 10 other than the charging device 20 based on a set program.
The charging device 20 has a revolving chute 21 inside the furnace body 11 and a charging material supply device 22 outside the furnace top 12 .

装入物供給装置22から投入された装入物23は、落下してシュート21で受けられたのち、シュート21の傾斜に沿って流下し、シュート21の先端から炉体11の内部に散布される。シュート21から散布される装入物23は、シュート21の傾斜角度に応じて装入物表面24に着地する半径方向位置が変化する。
図2にも示すように、シュート21から散布された装入物23は、シュート21の旋回により同心円状に散布され、炉体11の内部に堆積して装入物表面24を形成する。
The charge 23 fed from the charge supply device 22 falls and is received by the chute 21, then flows down along the slope of the chute 21, and is dispersed inside the furnace body 11 from the tip of the chute 21. be. The charge 23 scattered from the chute 21 changes its radial position where it lands on the charge surface 24 according to the inclination angle of the chute 21 .
As shown in FIG. 2, the charge 23 spread from the chute 21 is concentrically spread by the revolving of the chute 21 and deposited inside the furnace body 11 to form a charge surface 24 .

図3に示すように、シュート21は、基端部の両側に一対の支持部材25が接続され、この支持部材25を介して装入物供給装置22に吊り下げ支持されている。
シュート21は、図示しない旋回駆動機構により垂直な軸線A1まわりに回転可能であり、これによりシュート21の旋回動作が行われる。
また、シュート21は、図示しない傾動駆動機構により支持部材25を水平な軸線A2まわりに回動することも可能であり、これによりシュート21の傾斜角度を調整する傾動動作が行われる。
As shown in FIG. 3, the chute 21 is connected to a pair of support members 25 on both sides of its base end, and is suspended and supported by the charge supply device 22 via the support members 25 .
The chute 21 is rotatable about the vertical axis A1 by a turning drive mechanism (not shown), and the chute 21 is turned by this.
In addition, the chute 21 can also rotate the support member 25 around the horizontal axis A2 by a tilting drive mechanism (not shown), thereby performing a tilting operation for adjusting the tilt angle of the chute 21 .

シュート21の延長方向の軸線A3は、シュート21の傾動動作により略水平から略垂直下向きまで変化する。
これらのシュート21の旋回動作、傾動動作、回動動作は、それぞれ制御装置50により制御される。
The axis A3 in the extending direction of the chute 21 changes from substantially horizontal to substantially vertically downward due to the tilting motion of the chute 21 .
The turning motion, tilting motion, and rotating motion of these chutes 21 are controlled by the control device 50 respectively.

シュート21の内側表面には、超硬粒子を鋳込んだ鋳物ライナブロックなどのライナ32が張られている。
ライナ32によりシュート21の内面が形成されることで、装入物23の衝突あるいは流下によるシュート21の摩耗が抑制される。ただし、装入物23によるライナ32の摩耗を無くすことはできず、定期的な検査により摩耗判定された際にはライナ32が張り替えられる。
The inner surface of the chute 21 is lined with a liner 32, such as a cast liner block with cemented carbide particles.
Forming the inner surface of the chute 21 with the liner 32 suppresses abrasion of the chute 21 due to collision or flowing down of the charge 23 . However, the wear of the liner 32 due to the charging material 23 cannot be eliminated, and the liner 32 is replaced when wear is determined by periodic inspection.

図1および図4にも示すように、炉体11には、装入物表面形状測定器40が設置されている。
装入物表面形状測定器40は、炉体11の開口部14から炉内へ導入可能な測定器本体41を有し、その先端には距離測定器42が設置されている。
距離測定器42は、測定対象にマイクロ波ないしミリ波の測定ビーム43,44を照射し、測定対象で反射されたビームを検出する既存の非接触距離測定装置とされ、測定対象までの距離を測定可能である。
距離測定器42は、通常は高炉10の操業中あるいは休風時でも炉内に配置され、炉内の状況が通常と異なる際など必要に応じて炉外へ退避する。
As also shown in FIGS. 1 and 4, the furnace body 11 is provided with a charge surface shape measuring device 40 .
The charge surface shape measuring instrument 40 has a measuring instrument main body 41 that can be introduced into the furnace from the opening 14 of the furnace body 11, and a distance measuring instrument 42 is installed at the tip thereof.
The distance measuring device 42 is an existing non-contact distance measuring device that irradiates an object to be measured with measurement beams 43 and 44 of microwaves or millimeter waves and detects the beams reflected by the object to be measured, and measures the distance to the object to be measured. It is measurable.
The distance measuring device 42 is normally placed inside the blast furnace 10 during operation or even when the air is not blown, and is retracted outside the furnace as necessary, such as when conditions inside the furnace differ from normal conditions.

制御装置50には、表面プロファイル測定部51が形成されている。
表面プロファイル測定部51は、距離測定器42を制御して装入物表面24に測定ビーム43を照射し、装入物表面24を走査することで装入物表面24の三次元形状(装入物表面形状)を測定可能である。
得られた装入物表面24の三次元形状は、制御装置50が装入装置20の装入動作を制御する際に参照される。
A surface profile measuring section 51 is formed in the control device 50 .
The surface profile measuring unit 51 controls the distance measuring device 42 to irradiate the charge surface 24 with the measurement beam 43 and scan the charge surface 24 to determine the three-dimensional shape of the charge surface 24 (charge object surface shape) can be measured.
The resulting three-dimensional shape of the charge surface 24 is referenced by the controller 50 in controlling the charging operation of the charging device 20 .

制御装置50には、さらに摩耗判定部52が形成されている。
摩耗判定部52は、距離測定器42を制御してシュート21の内面に測定ビーム44を照射し、ライナ32の表面までの距離を測定することで、ライナ32の表面の摩耗を判定可能である。
図4に示すように、判定する際には、摩耗判定部52は、シュート21を旋回させてシュート21を距離測定器42に対向させるとともに、シュート21を傾動させてシュート21の延長方向と測定ビーム44とが略直交する角度に配置し、これによりシュート21を所定の測定姿勢としておく。
A wear determination unit 52 is further formed in the control device 50 .
The wear determining unit 52 can determine the wear of the surface of the liner 32 by controlling the distance measuring device 42 to irradiate the inner surface of the chute 21 with the measurement beam 44 and measuring the distance to the surface of the liner 32. .
As shown in FIG. 4 , when performing the determination, the wear determination unit 52 rotates the chute 21 to face the distance measuring device 42 and tilts the chute 21 to measure the extension direction of the chute 21 and the wear determination unit 52 . The chute 21 is arranged at an angle substantially orthogonal to the beam 44, thereby setting the chute 21 in a predetermined measurement posture.

所定の測定姿勢としては、シュート21が距離測定器42に向かう旋回角度位置(垂直な軸線A1まわり)にあり、かつシュート21の傾斜角度位置(水平な軸線A2まわり)が、シュート21の延伸方向の軸線A3と距離測定器42からの測定ビーム44とが直交または直角に近い角度で交差する傾斜角度位置にある状態とする。
図5に示すように、前述した所定の測定姿勢を保ったまま、測定ビーム44の照射角度およびシュート21の傾動角度をそれぞれ変化させることで、測定ビーム44のライナ32表面に対する照射位置を、シュート21の基端部側からシュート21の先端側に至る所定長さにわたって変化させることができる。
このような測定動作を行うことで、ライナ32の表面の一方の端部から他方の端部にわたる範囲の複数の点で間欠的または連続的に測定距離Dtを測定することができ、測定した測定距離Dtは、ライナ32の表面の一方の端部から他方の端部にわたる範囲の測定形状Ptとして記憶しておく。
As a predetermined measurement posture, the chute 21 is at the turning angle position (around the vertical axis A1) toward the distance measuring device 42, and the inclination angle position (around the horizontal axis A2) of the chute 21 is the extension direction of the chute 21. and the measuring beam 44 from the distance measuring device 42 intersect at a right angle or an angle close to a right angle.
As shown in FIG. 5, by changing the irradiation angle of the measurement beam 44 and the tilt angle of the chute 21 while maintaining the above-described predetermined measurement posture, the irradiation position of the measurement beam 44 with respect to the surface of the liner 32 can be adjusted to the chute. It can be changed over a predetermined length from the base end side of the chute 21 to the tip end side of the chute 21 .
By performing such a measurement operation, the measured distance Dt can be intermittently or continuously measured at a plurality of points in the range from one end to the other end of the surface of the liner 32, and the measured distance Dt can be measured. The distance Dt is stored as the measured shape Pt of the range from one end of the surface of the liner 32 to the other end.

図6に示すように、ライナ32の基端部側から先端側にかけての測定形状Ptにおいては、基端部近傍に測定距離Dtの大きな谷があり、先端側に向けて浅い領域が続く。これは、シュート21の基端部近傍では、装入物供給装置22から投入された装入物23が落下し、ライナ32の表面の摩耗が大きいことによる。ライナ32に受けられた装入物23がシュート21の先端側に向けて流下することで、ライナ32の表面に摩耗が生じるが、この領域では基端部近傍よりも摩耗の程度が小さくなる。
一方、ライナ32の基端側の端部では、装入物23の落下が少なく、ライナ32の表面の摩耗が最も小さくなる。そこで、この最小の測定距離Dtを基準距離Drとすることができる。そして、選択された基準距離Drと、測定形状Ptに記録された他の地点の基準距離Drとの差分Wt=Dt-Drを順次計算し、得られた差分Wtのいずれかが既定のライナ32の摩耗判定値Wsを超えていれば、摩耗状態で交換等が必要と判定できる。
As shown in FIG. 6, in the measurement shape Pt from the proximal end side to the distal end side of the liner 32, there is a valley with a large measurement distance Dt near the proximal end, and a shallow region continues toward the distal end side. This is because the charge 23 fed from the charge supply device 22 drops in the vicinity of the base end of the chute 21 and the surface of the liner 32 is greatly worn. As the charge 23 received by the liner 32 flows down toward the tip side of the chute 21, the surface of the liner 32 is worn, but the degree of wear is smaller in this area than near the base end.
On the other hand, at the proximal end of the liner 32, the charge 23 is less likely to fall, and the wear of the surface of the liner 32 is the smallest. Therefore, this minimum measured distance Dt can be used as the reference distance Dr. Then, the difference Wt=Dt−Dr between the selected reference distance Dr and the reference distance Dr at another point recorded in the measured shape Pt is sequentially calculated. If the wear determination value Ws is exceeded, it can be determined that replacement or the like is necessary due to wear.

このように、摩耗判定部52は、測定形状Ptに記録された複数の測定距離Dtのうち最小のものを基準距離Drとするとともに、他の測定距離Dtと比較して各々の位置における差分Wt=Dt-Drを計算することで、各点での摩耗を測定することができる。そして、得られた各点の差分Wtを、既定のライナ32の摩耗判定値Wsと比較することで、これを超えていれば摩耗状態で交換等が必要と判定することができる。
これらの距離測定器42および摩耗判定部52により、本発明の旋回シュート内面摩耗検査装置9が構成されている。
In this way, the wear determining unit 52 sets the smallest one of the plurality of measured distances Dt recorded in the measured shape Pt as the reference distance Dr, and compares the other measured distances Dt to the difference Wt at each position. By calculating =Dt-Dr, the wear at each point can be measured. Then, by comparing the obtained difference Wt at each point with the predetermined wear determination value Ws of the liner 32, it is possible to determine that the liner 32 is in a worn state and needs to be replaced if it exceeds this value.
The revolving chute inner surface wear inspection device 9 of the present invention is configured by the distance measuring device 42 and the wear determination unit 52 .

図7において、本実施形態では次のような動作を行う。
高炉10が稼働状態(操業中または休風時も含む)にあるとき(処理P1)、制御装置50は摩耗検査の実行タイミングまで稼働を維持する(処理P2)。ユーザの指示あるいは定期実行時刻になったとき、制御装置50は摩耗判定部52に制御を渡し、摩耗判定部52が摩耗判定動作(処理P3~P6)を実行する。
In FIG. 7, the following operations are performed in this embodiment.
When the blast furnace 10 is in an operating state (including during operation or during shutdown) (process P1), the control device 50 maintains the operation until the execution timing of the wear inspection (process P2). When instructed by the user or when the regular execution time comes, the control device 50 transfers control to the wear determination unit 52, and the wear determination unit 52 executes the wear determination operation (processes P3 to P6).

摩耗判定動作では、摩耗判定部52は、シュート21を所定の測定姿勢に配置する(処理P3)。
続いて、摩耗判定部52は、シュート21の傾動角度を変化させつつ測定ビーム44の照射角度を変化させ、測定ビーム44が延長方向の軸線A3と略直交した状態を維持したまま、シュート21の基端部側から先端側までの複数の点でライナ32の表面までの測定距離Dtを測定し、シュート21の内面の横断形状を示す測定形状Ptとして記憶する(処理P4)。
In the wear determination operation, the wear determination unit 52 places the chute 21 in a predetermined measurement posture (process P3).
Subsequently, the wear determination unit 52 changes the irradiation angle of the measurement beam 44 while changing the tilt angle of the chute 21, and while maintaining the state in which the measurement beam 44 is substantially perpendicular to the axis A3 in the extension direction, Measured distances Dt to the surface of the liner 32 are measured at a plurality of points from the base end side to the tip side, and stored as a measured shape Pt indicating the transverse shape of the inner surface of the chute 21 (process P4).

摩耗判定部52は、得られた測定形状Ptに記録された複数の測定距離Dtのうち、最小のものを基準距離Drとして選択する(処理P5)。
そして、選択された基準距離Drと、測定形状Ptに記録された他の地点の測定距離Dtとの差分Wt=Dt-Drを順次計算し、得られた差分Wtのいずれかが既定のライナ32の摩耗判定値Wsを超えていれば、摩耗状態で交換等が必要と判定する。
摩擦判定が済んだら、摩耗判定部52は、制御装置50に制御を返す。
The wear determining unit 52 selects the smallest one of the plurality of measured distances Dt recorded in the obtained measured shape Pt as the reference distance Dr (process P5).
Then, the difference Wt=Dt−Dr between the selected reference distance Dr and the measured distance Dt of the other point recorded in the measured shape Pt is sequentially calculated. If the wear determination value Ws is exceeded, it is determined that replacement or the like is necessary due to wear.
After completing the friction determination, the wear determination unit 52 returns control to the control device 50 .

このような本実施形態によれば、次のような効果が得られる。
本実施形態では、高炉10の内部に導入された距離測定器42により、シュート21の内面までの測定距離Dtを測定することで、測定距離Dtに基づいてシュート21内面に張られたライナ32表面の摩耗を判定することができる。従って、高炉10の休風時以外の任意の時期にあっても、機械測定による定量的な検査を効率よく実施できる。
According to this embodiment, the following effects can be obtained.
In this embodiment, by measuring the measured distance Dt to the inner surface of the chute 21 with the distance measuring device 42 introduced inside the blast furnace 10, the surface of the liner 32 stretched on the inner surface of the chute 21 is measured based on the measured distance Dt. wear can be determined. Therefore, even at any time other than when the blast furnace 10 is out of wind, quantitative inspection by mechanical measurement can be efficiently carried out.

本実施形態では、距離測定器42として、マイクロ波ないしミリ波の測定ビームを照射して高炉10に装入された装入物表面24の三次元形状を測定する装入物表面形状測定器40を兼用することで、新規に距離測定器を設置する必要がなく、実施が容易である。
本実施形態では、摩耗判定部52の制御によりシュート21を所定の測定姿勢に配置することで、高炉10の内部に導入された距離測定器42に対するシュート21の相対位置を一定にでき、常に同じ条件で測定距離Dtを測定することで、摩耗判定の精度を高めることができる。
In this embodiment, as the distance measuring device 42, a charge surface shape measuring device 40 that measures the three-dimensional shape of the charge surface 24 charged into the blast furnace 10 by irradiating a microwave or millimeter wave measurement beam. , there is no need to install a new distance measuring device, and implementation is easy.
In the present embodiment, by placing the chute 21 in a predetermined measurement posture under the control of the wear determination unit 52, the relative position of the chute 21 with respect to the distance measuring device 42 introduced into the blast furnace 10 can be made constant and always the same. By measuring the measurement distance Dt under certain conditions, it is possible to improve the accuracy of wear determination.

本実施形態では、摩耗判定部52が、複数の測定距離Dtを測定し、測定された測定距離Dtのうち最小のものを基準距離Drとして選択し、基準距離Drと他の測定距離Dtとの差分Wtに基づいてライナ32の表面の摩耗を判定するとしたため、比較判定の基準となる基準距離Drを容易に設定することができる。 In this embodiment, the wear determination unit 52 measures a plurality of measured distances Dt, selects the smallest measured distance Dt as the reference distance Dr, and determines the difference between the reference distance Dr and the other measured distances Dt. Since the wear of the surface of the liner 32 is determined based on the difference Wt, it is possible to easily set the reference distance Dr as a reference for comparison determination.

〔第2実施形態〕
図8から図10には本発明の第2実施形態が示されている。
本実施形態は、前述した第1実施形態の旋回シュート内面摩耗検査装置9と基本構成が同様であり、共通の構成については重複する説明を省略し、以下には相違部分のみ説明する。
前述した第1実施形態では、シュート21の延長方向(軸線A3方向)に沿ってライナ32までの距離を測定し、同方向に沿ったライナ32の摩耗量の変化を検出していた。
これに対し、本実施形態では、シュート21の横断方向(軸線A2方向)に沿ってライナ32までの距離を測定し、同方向に沿ったライナ32の摩耗量の変化を検出する。
[Second embodiment]
A second embodiment of the present invention is shown in FIGS. 8-10.
This embodiment has the same basic configuration as the swivel chute inner surface wear inspection device 9 of the first embodiment described above, so redundant description of the common configuration will be omitted, and only differences will be described below.
In the first embodiment described above, the distance to the liner 32 is measured along the extension direction of the chute 21 (axis A3 direction), and the change in the amount of wear of the liner 32 along the same direction is detected.
In contrast, in the present embodiment, the distance to the liner 32 is measured along the transverse direction of the chute 21 (the direction of the axis A2), and the change in the amount of wear of the liner 32 along the same direction is detected.

本実施形態の装入装置20は、シュート21が、図示しないシュート回動機構により、その延長方向の軸線A3まわりに回動可能である。この場合のシュート21の回動角度は、360とされる。
さらに、本実施形態の摩耗判定部52は、シュート21を延長方向の軸線A3まわりに回動させることにより、測定ビーム44をライナ32の両側領域に対してもなるべく直角に照射させることができる。
In the charging device 20 of this embodiment, the chute 21 is rotatable about the axis A3 in its extension direction by a chute rotating mechanism (not shown). The rotation angle of the chute 21 in this case is 360 degrees .
Furthermore, the wear determination unit 52 of the present embodiment can irradiate the measurement beam 44 on both side regions of the liner 32 at right angles as much as possible by rotating the chute 21 around the axis A3 in the extension direction.

前述した図4において、距離測定器42から測定ビーム44を照射しつつ、シュート21を軸線A3まわりに回動させることで、図8に示すライナ32の内側表面を横断方向(軸線A2方向)に走査し、「-90度」方向から「0度」方向をへて「+90度」方向までのライナ32の表面までの距離を測定することができる。測定された距離は、図9に示す展開図のグラフとして表すことができる。
図9のグラフでは、左端の「-90度」位置は、図8のライナ32の「-90度」側の端部を示し、右側の「+90度」位置は、図3のライナ32の「-90度」側の端部を示す。
4, by rotating the chute 21 around the axis A3 while irradiating the measurement beam 44 from the distance measuring device 42, the inner surface of the liner 32 shown in FIG. It is possible to scan and measure the distance to the surface of liner 32 from the "-90 degrees" direction through the "0 degrees" direction to the "+90 degrees" direction. The measured distance can be represented as a developed graph shown in FIG.
In the graph of FIG. 9, the "-90 degrees" position on the left end indicates the "-90 degrees" side end of the liner 32 in FIG. 8, and the "+90 degrees" position on the right side indicates the " -90 degrees” side end.

図9(A)のように、ライナ32が新品で摩耗がない場合、ライナ32の表面は新規表面321である。新規表面321に測定ビーム44を照射しつつシュート21を回動させることで、新規表面321の一方の端部から他方の端部にわたる範囲の複数の点で間欠的または連続的に基準距離Dsを測定することができる。得られた複数の基準距離Dsは、基準形状Psつまり新規表面321の一方の端部から他方の端部にわたる横断形状として記録することができる。 As shown in FIG. 9A, when the liner 32 is new and not worn, the surface of the liner 32 is the new surface 321 . By rotating the chute 21 while irradiating the new surface 321 with the measurement beam 44, the reference distance Ds is measured intermittently or continuously at a plurality of points in the range from one end to the other end of the new surface 321. can be measured. The resulting plurality of reference distances Ds can be recorded as a reference shape Ps, the transverse shape from one end of the new surface 321 to the other.

図9(B)のように、装入物23が投入されることで、新規表面321が摩耗し、表面322,323のように変化する。表面322,323の摩耗は、通常姿勢でシュート21の底部となるシュート21の横断方向の中央部(0度方向の近辺)で顕著であり、通常姿勢でシュート21の側部となるシュート21の横断方向の両端部(-90度方向および+90度方向の近辺)では摩耗が少なくなる。 As shown in FIG. 9(B), the new surface 321 is abraded and changed into surfaces 322 and 323 as the charge 23 is introduced. The wear of the surfaces 322 and 323 is conspicuous in the transverse central portion (near the 0 degree direction) of the chute 21, which is the bottom of the chute 21 in the normal posture, and the wear of the chute 21, which is the side of the chute 21 in the normal posture. There is less wear at the transverse ends (near the -90 and +90 degree directions).

図9(C)のように、摩耗が進んだ表面323に対して、測定ビーム44を照射しつつシュート21を回動させることで、表面323の一方の端部から他方の端部にわたる範囲の複数の点で間欠的または連続的に測定距離Dtを測定することができる。得られた複数の測定距離Dtは、測定形状Ptつまり表面323の一方の端部から他方の端部にわたる横断形状として記録することができる。 As shown in FIG. 9C, by rotating the chute 21 while irradiating the measurement beam 44 on the worn surface 323, the area from one end of the surface 323 to the other end is measured. The measurement distance Dt can be measured intermittently or continuously at multiple points. The resulting plurality of measured distances Dt can be recorded as a measured profile Pt, ie a transverse profile across the surface 323 from one end to the other.

摩耗判定部52においては、測定形状Ptに記録された複数の測定距離Dtに対して、基準形状Psから対応する地点の基準距離Dsを選択し、これらの差分Wt=Dt-Dsを計算することで、各点での摩耗を測定することができる。得られた差分Wtを、既定のライナ32の摩耗判定値Wsと比較し、これを超えていれば摩耗状態で交換等が必要と判定することができる。
これらの距離測定器42および摩耗判定部52により、本発明の旋回シュート内面摩耗検査装置9が構成されている。
In the wear determination unit 52, for a plurality of measured distances Dt recorded in the measured shape Pt, the reference distances Ds at the corresponding points are selected from the reference shape Ps, and the difference Wt=Dt−Ds is calculated. , the wear at each point can be measured. The obtained difference Wt is compared with a predetermined wear determination value Ws of the liner 32, and if it exceeds this, it can be determined that the liner 32 is worn and needs to be replaced.
The revolving chute inner surface wear inspection device 9 of the present invention is configured by the distance measuring device 42 and the wear determination unit 52 .

図10において、本実施形態では次のような動作を行う。
高炉10が新規築炉あるいは改修を経て試運転状態にあるとき(処理P10)、外部指令あるいは既定のタイミングにより、制御装置50は摩耗判定部52に制御を渡し、摩耗判定部52が基準形状測定動作(処理P11~P16)を実行する。
In FIG. 10, the following operations are performed in this embodiment.
When the blast furnace 10 is in a trial operation state after being newly constructed or refurbished (process P10), the control device 50 transfers control to the wear determination unit 52 according to an external command or predetermined timing, and the wear determination unit 52 performs the reference shape measurement operation. (Processes P11 to P16) are executed.

基準形状測定動作では、摩耗判定部52は、シュート21を所定の測定姿勢に配置する(処理P11)。
続いて、摩耗判定部52は、シュート21の延長方向である軸線A3上の測定位置を選択する(処理P12)。測定位置は、少なくともシュート21に張られたライナ32の1枚につき1箇所となるように配置する。
測定位置を選択したら、距離測定器42でライナ32の表面までの基準距離Dsを測定し(処理P13)、シュート21の内面の横断形状を示す基準形状Psとして記憶する(処理P14)。測定位置ごとの基準形状Psには、シュート21の横断方向の複数の点の基準距離Dsが、シュート21の横断方向の位置(軸線A3まわりの角度位置)とともに記憶される。
1つの測定位置についての基準形状Ps(複数の基準距離Dsを含む)の測定が済んだら、未測定の測定位置があるかを判定し(処理P15)、あれば次の測定位置を選択し(処理P12)、同様の処理P13~P15を繰り返す。
In the reference shape measurement operation, the wear determination unit 52 places the chute 21 in a predetermined measurement posture (process P11).
Subsequently, the wear determination unit 52 selects a measurement position on the axis A3, which is the extension direction of the chute 21 (process P12). At least one measurement position is arranged for each liner 32 stretched over the chute 21 .
After selecting the measurement position, the reference distance Ds to the surface of the liner 32 is measured by the distance measuring device 42 (process P13), and is stored as the reference shape Ps indicating the cross-sectional shape of the inner surface of the chute 21 (process P14). In the reference shape Ps for each measurement position, the reference distances Ds of a plurality of points in the transverse direction of the chute 21 are stored together with the transverse position of the chute 21 (angular position about the axis A3).
After measuring the reference shape Ps (including a plurality of reference distances Ds) for one measurement position, it is determined whether there is an unmeasured measurement position (process P15), and if there is, the next measurement position is selected ( Process P12) and similar processes P13 to P15 are repeated.

処理P15で未測定の測定位置がなくなったら、摩耗判定部52は、制御装置50に制御を返す。
高炉10が稼働状態(操業中または休風時も含む)にあるとき(処理P20)、制御装置50は摩耗検査の実行タイミングまで稼働を維持する(処理P21)。ユーザの指示あるいは定期実行時刻になったとき、制御装置50は摩耗判定部52に制御を渡し、摩耗判定部52が摩耗判定動作(処理P22~P27)を実行する。
When there are no more unmeasured measurement positions in process P15, the wear determination unit 52 returns control to the control device 50. FIG.
When the blast furnace 10 is in operation (including during operation or when the wind is not blowing) (process P20), the control device 50 maintains the operation until the execution timing of the wear inspection (process P21). When instructed by the user or when the regular execution time comes, the control device 50 transfers control to the wear determination unit 52, and the wear determination unit 52 executes the wear determination operation (processes P22 to P27).

摩耗判定動作では、摩耗判定部52は、シュート21を所定の測定姿勢に配置する(処理P22)。
続いて、摩耗判定部52は、シュート21の延長方向である軸線A3上の測定位置を選択し(処理P23)、選択した測定位置のライナ32の表面までの測定距離Dtを測定し(処理P24)、シュート21の内面の横断形状を示す測定形状Ptとして記憶する(処理P25)。測定位置ごとの測定形状Ptには、シュート21の横断方向の複数の点の測定距離Dtが、シュート21の横断方向の位置(軸線A3まわりの角度位置)とともに記憶される。
In the wear determination operation, the wear determination unit 52 places the chute 21 in a predetermined measurement posture (process P22).
Subsequently, the wear determination unit 52 selects a measurement position on the axis A3 that is the extension direction of the chute 21 (process P23), and measures the measurement distance Dt from the selected measurement position to the surface of the liner 32 (process P24 ), and stored as a measured shape Pt indicating the transverse shape of the inner surface of the chute 21 (process P25). In the measurement shape Pt for each measurement position, the measured distances Dt of a plurality of points in the transverse direction of the chute 21 are stored together with the transverse position of the chute 21 (angular position about the axis A3).

摩耗判定部52は、得られた測定形状Ptの各点の測定距離Dtと、先に記憶しておいた基準形状Psの対応する点の基準距離Dsとを比較し、各点での差分Wt=Dt-Dsを計算し、各々の差分Wtのいずれかが予め設定されている摩耗判定値Wsより大きければ、その地点を含むライナ32が摩耗していると判定する(処理P26)。
摩耗判定部52は、1つの測定位置についての摩耗検査が済んだら、未測定の測定位置があるかを判定し(処理P27)、あれば次の測定位置を選択し(処理P23)、同様の処理P24~P27を繰り返す。
処理P27で未測定の測定位置がなくなったら、摩耗判定部52は、制御装置50に制御を返す。
制御装置50は、高炉10の稼働(処理P20~P21)に戻る。
The wear determining unit 52 compares the measured distance Dt of each point of the obtained measured shape Pt with the reference distance Ds of the corresponding point of the previously stored reference shape Ps, and determines the difference Wt at each point. =Dt-Ds is calculated, and if any of the differences Wt is greater than a preset wear determination value Ws, it is determined that the liner 32 including that point is worn (process P26).
When the wear inspection for one measurement position is completed, the wear determination unit 52 determines whether there is an unmeasured measurement position (process P27), selects the next measurement position if there is (process P23), and performs similar operations. Processes P24 to P27 are repeated.
When there are no more unmeasured measurement positions in process P27, the wear determination unit 52 returns control to the control device 50. FIG.
The controller 50 returns to the operation of the blast furnace 10 (processes P20-P21).

このような本実施形態によれば、前述した第1実施形態と同様な効果が得られるとともに、次のような効果が得られる。 According to this embodiment, the same effects as those of the above-described first embodiment can be obtained, and the following effects can be obtained.

本実施形態では、測定距離Dtを測定する際に、シュート回動機構28でシュート21を軸線A3まわりに回動させることで、距離測定器42による測定対象部位をシュート21の内面を横断するように転移させることができる。例えば、距離測定器42からの測定ビーム44をシュート21の横断方向へ振ってシュート21の内面を走査した場合、シュート21の両端近傍では測定ビーム44が内面に対して浅い角度となり、摩耗判定には好ましくないことがある。これに対し、シュート21を回動させることで、測定ビーム44の交差角度が直角に近くなる領域を拡大でき、摩耗判定の精度を高めることができる。
シュート21を延長方向の軸線A3まわりに回動させる構成としては、既存の装入装置20に設置されているシュート回動機構28を利用することができ、装置の複雑化をまねくことは避けられる。
In this embodiment, when measuring the measurement distance Dt, the chute rotation mechanism 28 rotates the chute 21 around the axis A3 so that the part to be measured by the distance measuring device 42 traverses the inner surface of the chute 21. can be transferred to For example, when the measuring beam 44 from the distance measuring device 42 is swung across the chute 21 to scan the inner surface of the chute 21, the measuring beam 44 forms a shallow angle with respect to the inner surface in the vicinity of both ends of the chute 21, making it difficult to determine wear. may not be preferred. On the other hand, by rotating the chute 21, it is possible to expand the area where the crossing angle of the measurement beams 44 is close to a right angle, and to improve the accuracy of wear determination.
As a structure for rotating the chute 21 around the axis A3 in the extension direction, the chute rotation mechanism 28 installed in the existing charging apparatus 20 can be used, and complication of the apparatus can be avoided. .

本実施形態では、高炉10の稼働開始時などシュート21の内面が更新された状態、つまり摩耗を生じていないシュート21の内面つまり新品のライナ32の表面(図9の新規表面321)までの距離を測定して基準距離Dsとして記憶しておき、稼働経過後に測定距離Dtを測定して基準距離Dsと比較するようにしたので、稼働により生じたライナ32の摩耗を適切に測定できる。 In the present embodiment, the inner surface of the chute 21 is renewed when the blast furnace 10 starts operating, that is, the distance to the inner surface of the chute 21 that is not worn, that is, the surface of the new liner 32 (new surface 321 in FIG. 9) is measured and stored as the reference distance Ds, and the measured distance Dt is measured after the operation is completed and compared with the reference distance Ds, so that the wear of the liner 32 caused by the operation can be properly measured.

〔第3実施形態〕
図11および図12には本発明の第3実施形態が示されている。
本実施形態は、前述した第2実施形態の旋回シュート内面摩耗検査装置9と基本構成が同様であり、共通の構成については重複する説明を省略し、以下には相違部分のみ説明する。
前述した第2実施形態では、シュート21を軸線A3まわりに回転させつつ測定ビーム44を照射し、摩耗がないライナ32の基準距離Dsを測定しておき、摩耗したライナ32の測定距離Dtとの差分Wtにより摩耗を判定していた。
これに対し、本実施形態では、シュート21を軸線A3まわりに回転させつつ測定ビーム44を照射することは共通するが、測定した測定距離Dtのうち最小のものを基準距離Drとして選択し、この基準距離Drと他の測定距離Dtとの差分Wt=Dt-Drに基づいて摩耗を判定する。
[Third Embodiment]
11 and 12 show a third embodiment of the invention.
This embodiment has the same basic configuration as the revolving chute inner surface wear inspection device 9 of the second embodiment described above, so redundant description of the common configuration will be omitted, and only differences will be described below.
In the above-described second embodiment, the chute 21 is rotated about the axis A3 while the measurement beam 44 is irradiated, the reference distance Ds of the non-worn liner 32 is measured, and the measured distance Dt of the worn liner 32 is measured. Wear was determined by the difference Wt.
On the other hand, in the present embodiment, the chute 21 is rotated about the axis A3 while the measurement beam 44 is emitted, but the minimum measured distance Dt is selected as the reference distance Dr. Wear is determined based on the difference Wt=Dt-Dr between the reference distance Dr and another measured distance Dt.

図11(A)のように、装入物23が投入されることで、新規表面321が摩耗し、表面322,323のように変化する(第2実施形態の図9(B)と同様)。
図11(B)のように、摩耗が進んだ表面323に対して、測定ビーム44を照射しつつシュート21を回動させることで、表面323の一方の端部から他方の端部にわたる範囲の複数の点で間欠的または連続的に測定距離Dtを測定し、得られた複数の測定距離Dtは測定形状Ptとして記録しておく(第2実施形態の図9(C)と同様)。
As shown in FIG. 11(A), the new surface 321 is abraded and changed to surfaces 322 and 323 by introducing the charge 23 (similar to FIG. 9(B) of the second embodiment). .
As shown in FIG. 11B, by rotating the chute 21 while irradiating the measurement beam 44 on the worn surface 323, the area from one end of the surface 323 to the other end is measured. The measured distances Dt are intermittently or continuously measured at a plurality of points, and the obtained plurality of measured distances Dt are recorded as the measured shape Pt (similar to FIG. 9C of the second embodiment).

ここで、表面323の摩耗は、通常姿勢でシュート21の底部となるシュート21の横断方向の中央部(0度方向の近辺)で顕著であり、測定距離Dtが相対的に大きくなる。
一方、通常姿勢でシュート21の側部となるシュート21の横断方向の両端部(-90度方向および+90度方向の近辺)では摩耗が少なくなり、測定距離Dtが小さくなる。
Here, the abrasion of the surface 323 is conspicuous in the transverse central portion (near the 0 degree direction) of the chute 21, which is the bottom portion of the chute 21 in the normal posture, and the measured distance Dt becomes relatively large.
On the other hand, both lateral end portions of the chute 21 (near the −90 degree direction and the +90 degree direction), which are the side portions of the chute 21 in the normal posture, are less worn and the measured distance Dt is smaller.

図11(C)のように、摩耗判定部52において、測定形状Ptに記録された複数の測定距離Dtのうち、最小のものを基準距離Drとして選択する。通常はシュート21の横断方向の両端部で測定された測定距離Dtが該当する。
選択された基準距離Drと、測定形状Ptに記録された他の地点の測定距離Dtとの差分Wt=Dt-Drを順次計算し、得られた差分Wtのいずれかが既定のライナ32の摩耗判定値Wsを超えていれば、摩耗状態で交換等が必要と判定することができる。
As shown in FIG. 11(C), the wear determining unit 52 selects the smallest measured distance Dt recorded in the measured shape Pt as the reference distance Dr. This is usually the measured distance Dt measured at the transverse ends of the chute 21 .
A difference Wt=Dt−Dr between the selected reference distance Dr and the measured distance Dt at another point recorded in the measured shape Pt is sequentially calculated, and one of the obtained differences Wt is the predetermined wear of the liner 32. If the determination value Ws is exceeded, it can be determined that the wear state requires replacement or the like.

図12において、本実施形態では次のような動作を行う。
高炉10が稼働状態(操業中または休風時も含む)にあるとき(処理P30)、制御装置50は摩耗検査の実行タイミングまで稼働を維持する(処理P31)。ユーザの指示あるいは定期実行時刻になったとき、制御装置50は摩耗判定部52に制御を渡し、摩耗判定部52が摩耗判定動作(処理P32~P38)を実行する。
In FIG. 12, the following operations are performed in this embodiment.
When the blast furnace 10 is in operation (including during operation or when the wind is not blowing) (process P30), the control device 50 maintains the operation until the execution timing of the wear inspection (process P31). When instructed by the user or when the regular execution time comes, the control device 50 transfers the control to the wear determination section 52, and the wear determination section 52 executes the wear determination operation (processes P32 to P38).

摩耗判定動作では、摩耗判定部52は、シュート21を所定の測定姿勢に配置する(処理P32)。
続いて、摩耗判定部52は、シュート21の延長方向である軸線A3上の測定位置を選択し(処理P33)、選択した測定位置のライナ32の表面までの測定距離Dtを測定し(処理P34)、シュート21の内面の横断形状を示す測定形状Ptとして記憶する(処理P35)。測定位置ごとの測定形状Ptには、シュート21の横断方向の複数の点の測定距離Dtが、シュート21の横断方向の位置(軸線A3まわりの角度位置)とともに記憶される。
In the wear determination operation, the wear determination unit 52 places the chute 21 in a predetermined measurement posture (process P32).
Subsequently, the wear determining unit 52 selects a measurement position on the axis A3, which is the extension direction of the chute 21 (process P33), and measures the measurement distance Dt from the selected measurement position to the surface of the liner 32 (process P34). ), and stored as a measured shape Pt indicating the transverse shape of the inner surface of the chute 21 (process P35). In the measurement shape Pt for each measurement position, the measured distances Dt of a plurality of points in the transverse direction of the chute 21 are stored together with the transverse position of the chute 21 (angular position about the axis A3).

摩耗判定部52は、得られた測定形状Ptに記録された複数の測定距離Dtのうち、最小のものを基準距離Drとして選択する(処理P36)。
そして、選択された基準距離Drと、測定形状Ptに記録された他の地点の測定距離Dtとの差分Wt=Dt-Drを順次計算し、得られた差分Wtのいずれかが既定のライナ32の摩耗判定値Wsを超えていれば、摩耗状態で交換等が必要と判定する。
The wear determining unit 52 selects the smallest one of the plurality of measured distances Dt recorded in the obtained measured shape Pt as the reference distance Dr (process P36).
Then, the difference Wt=Dt−Dr between the selected reference distance Dr and the measured distance Dt of the other point recorded in the measured shape Pt is sequentially calculated. If the wear determination value Ws is exceeded, it is determined that replacement or the like is necessary due to wear.

摩耗判定部52は、1つの測定位置についての摩耗検査が済んだら、未測定の測定位置があるかを判定し(処理P38)、あれば次の測定位置を選択し(処理P33)、同様の処理P34~P37を繰り返す。
処理P37で未測定の測定位置がなくなったら、摩耗判定部52は、制御装置50に制御を返す。
制御装置50は、高炉10の稼働(処理P30~P31)に戻る。
After finishing the wear inspection for one measurement position, the wear determination unit 52 determines whether there is an unmeasured measurement position (process P38), selects the next measurement position if there is (process P33), and performs the same operation. Processes P34 to P37 are repeated.
When there are no more unmeasured measurement positions in process P37, the wear determination unit 52 returns control to the control device 50. FIG.
The controller 50 returns to the operation of the blast furnace 10 (processes P30-P31).

このような本実施形態によれば、前述した第2実施形態と同様な効果が得られるとともに、前述した第1実施形態と同様に測定距離Dtのうち最小のものを基準距離Drとすることで、第2実施形態における予め基準距離Dsを測定して基準形状Psとして記憶しておく処理が必要なく、第2実施形態よりも処理を簡素化できる。 According to this embodiment, the same effects as those of the second embodiment described above can be obtained. , the process of measuring the reference distance Ds in advance and storing it as the reference shape Ps in the second embodiment is not required, and the process can be simplified more than the second embodiment.

〔他の実施形態〕
なお、本発明は前述した実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形などは本発明に含まれる。
前記実施形態では、距離測定器42として、マイクロ波ないしミリ波の測定ビーム43を照射して高炉10に装入された装入物表面24の三次元形状を測定する装入物表面形状測定器40を兼用したが、異なる測定原理の非接触式距離測定器などを専用で設置してもよい。
前記実施形態では、シュート21の内側にライナ32を設置し、その表面をシュート21の内面としたが、ライナ32を省略し、シュート21自体の表面をシュート21の内面としてその摩耗検査を行ってもよい。
[Other embodiments]
It should be noted that the present invention is not limited to the above-described embodiments, and includes modifications within the scope of achieving the object of the present invention.
In the above-described embodiment, as the distance measuring device 42, a charge surface profile measuring device that measures the three-dimensional shape of the charge surface 24 charged into the blast furnace 10 by irradiating a microwave or millimeter wave measurement beam 43. 40 is also used, but a non-contact distance measuring device or the like with a different measurement principle may be installed exclusively.
In the above-described embodiment, the liner 32 is installed inside the chute 21 and its surface is used as the inner surface of the chute 21. However, the liner 32 is omitted and the surface of the chute 21 itself is used as the inner surface of the chute 21 for wear inspection. good too.

本発明は旋回シュート内面摩耗検査装置および旋回シュート内面摩耗検査方法に利用できる。 INDUSTRIAL APPLICABILITY The present invention can be used for a rotating chute inner surface wear inspection device and a rotating chute inner surface wear inspection method.

9…旋回シュート内面摩耗検査装置、10…高炉、11…炉体、12…炉頂、14…開口部、20…装入装置、21…シュート、22…装入物供給装置、23…装入物、24…装入物表面、32…ライナ、321…新規表面、322,323…表面、40…装入物表面形状測定器、41…測定器本体、42…距離測定器、43,44…測定ビーム、50…制御装置、51…表面プロファイル測定部、52…摩耗判定部、A1…旋回動作の軸線、A2…傾動動作の軸線、A3…シュートの延伸方向の軸線、Ds,Dr…基準距離、Dt…測定距離、Ps…基準形状、Pt…測定形状、Ws…摩耗判定値、Wt…差分。 9... Turning chute inner surface wear inspection device, 10... Blast furnace, 11... Furnace body, 12... Furnace top, 14... Opening, 20... Charging device, 21... Chute, 22... Charge supply device, 23... Charging Material 24 Charge surface 32 Liner 321 New surface 322, 323 Surface 40 Charge surface shape measuring instrument 41 Measuring instrument body 42 Distance measuring instrument 43, 44 Measuring beam 50 Control device 51 Surface profile measuring unit 52 Wear determining unit A1 Axis of turning operation A2 Axis of tilting operation A3 Axis in chute extending direction Ds, Dr Reference distance , Dt: measured distance, Ps: reference shape, Pt: measured shape, Ws: wear determination value, Wt: difference.

本発明の旋回シュート内面摩耗検査装置において、前記摩耗判定部は、前記シュートを前記距離測定器に対向する所定の測定姿勢に配置する制御を行うことが好ましい。
このような本発明では、摩耗判定部の制御によりシュートを所定の測定姿勢に配置することで、高炉の内部に導入された距離測定器に対するシュートの相対位置を一定にでき、常に同じ条件で測定距離を測定することで、摩耗判定の精度を高めることができる。
シュートを所定の測定姿勢に配置する構成としては、既存の装入装置に設置されている機構、すなわちシュートを旋回させる旋回機構(垂直な軸まわり)およびシュートの傾斜角度をきめる傾動機構(水平な軸まわり)が利用できる。
所定の測定姿勢としては、シュートが距離測定器に向かう旋回角度位置(垂直な軸まわり)にあり、かつシュートの傾斜角度位置が、シュートの延伸方向軸線と距離測定器からの測定ビームとが直交または直角に近い角度で交差する傾斜角度位置(水平な軸まわり)にある状態とすることができる。
In the revolving chute inner surface wear inspection device of the present invention, it is preferable that the wear determination section performs control to dispose the chute in a predetermined measurement posture facing the distance measuring device.
In this aspect of the invention, the chute is placed in a predetermined measurement posture under the control of the wear determination unit, so that the relative position of the chute with respect to the distance measuring device introduced into the blast furnace can be kept constant, and measurement is always performed under the same conditions. By measuring the distance, it is possible to improve the accuracy of wear determination.
As a configuration for placing the chute in a predetermined measurement posture, the mechanisms installed in the existing charging equipment, namely, a turning mechanism for turning the chute (around the vertical axis) and a tilting mechanism for determining the inclination angle of the chute (horizontal) are used. axis) can be used.
As a predetermined measurement posture, the chute is at a turning angle position (around the vertical axis) toward the rangefinder, and the chute is tilted so that the longitudinal axis of the chute is perpendicular to the measurement beam from the rangefinder. Alternatively, it can be in a state of being in an inclined angle position (around a horizontal axis) where they intersect at an angle close to a right angle.

Claims (7)

高炉の装入装置に設置されたシュートの内面の摩耗を検査する装置であって、
前記高炉の内部に導入可能かつ前記内面までの測定距離を測定可能な非接触式の距離測定器と、
前記距離測定器で測定された前記測定距離に基づいて前記内面の摩耗を判定する摩耗判定部と、を有する、旋回シュート内面摩耗検査装置。
A device for inspecting wear of the inner surface of a chute installed in a blast furnace charging device,
a non-contact distance measuring device that can be introduced into the interior of the blast furnace and that can measure the measurement distance to the inner surface;
a wear determination unit that determines wear of the inner surface based on the measured distance measured by the distance measuring device.
請求項1に記載の旋回シュート内面摩耗検査装置において、
前記距離測定器として、マイクロ波ないしミリ波の測定ビームを照射して前記高炉に装入された装入物表面の三次元形状を測定する装入物表面形状測定器を兼用する、旋回シュート内面摩耗検査装置。
In the revolving chute inner surface wear inspection device according to claim 1,
The inner surface of the revolving chute, which also serves as the distance measuring instrument as a charge surface shape measuring instrument for measuring the three-dimensional shape of the surface of the charge charged into the blast furnace by irradiating it with a microwave or millimeter wave measurement beam. Abrasion inspection device.
請求項1または請求項2に記載の旋回シュート内面摩耗検査装置において、
前記摩耗判定部は、前記シュートを前記距離測定器に対抗する所定の測定姿勢に配置する制御を行う、旋回シュート内面摩耗検査装置。
In the revolving chute inner surface wear inspection device according to claim 1 or claim 2,
The inner surface wear inspection device of the revolving chute, wherein the wear determination unit performs control to place the chute in a predetermined measurement posture facing the distance measuring device.
請求項3に記載の旋回シュート内面摩耗検査装置において、
前記シュートは前記シュートの延長方向の軸線まわりに回動可能であり、前記摩耗判定部は前記測定距離を測定する際に前記シュートを回動させる制御を行う、旋回シュート内面摩耗検査装置。
In the revolving chute inner surface wear inspection device according to claim 3,
The rotating chute inner surface wear inspection device, wherein the chute is rotatable around an axis in an extension direction of the chute, and the wear determination section performs control to rotate the chute when measuring the measurement distance.
請求項1から請求項4のいずれか一項に記載の旋回シュート内面摩耗検査装置において、
前記摩耗判定部は、予め前記距離測定器で測定された前記内面までの基準距離を記憶しており、前記測定距離を前記基準距離と比較して前記内面の摩耗を判定する、旋回シュート内面摩耗検査装置。
In the revolving chute inner surface wear inspection device according to any one of claims 1 to 4,
The wear determination unit stores a reference distance to the inner surface measured in advance by the distance measuring device, and compares the measured distance with the reference distance to determine wear of the inner surface of the revolving chute. inspection equipment.
請求項1から請求項4のいずれか一項に記載の旋回シュート内面摩耗検査装置において、
前記摩耗判定部は、複数の前記測定距離を測定し、測定された前記測定距離のうち最小のものを基準距離として選択し、前記基準距離と他の前記測定距離との差分に基づいて前記内面の摩耗を判定する、旋回シュート内面摩耗検査装置。
In the revolving chute inner surface wear inspection device according to any one of claims 1 to 4,
The wear determination unit measures a plurality of the measured distances, selects the smallest of the measured distances as a reference distance, and wears the inner surface based on the difference between the reference distance and the other measured distances. A swivel chute inner surface wear inspection device that determines the wear of the
高炉の装入装置に設置されたシュートの内面の摩耗を検査する方法であって、
前記高炉の内部に非接触式の距離測定器を導入し、
前記距離測定器で前記内面までの測定距離を測定し、
前記測定距離に基づいて前記内面の摩耗を判定する旋回シュート内面摩耗検査方法。
A method for inspecting the wear of the inner surface of a chute installed in a blast furnace charging apparatus, comprising:
introducing a non-contact distance measuring device inside the blast furnace,
Measure the measured distance to the inner surface with the distance measuring device,
A swivel chute inner surface wear inspection method for determining wear of the inner surface based on the measured distance.
JP2021055427A 2021-03-29 2021-03-29 Swivel chute inner surface wear inspection device and swivel chute inner surface wear inspection method Active JP6951601B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021055427A JP6951601B1 (en) 2021-03-29 2021-03-29 Swivel chute inner surface wear inspection device and swivel chute inner surface wear inspection method
PCT/JP2021/045136 WO2022209022A1 (en) 2021-03-29 2021-12-08 Rotating chute inner surface wear testing apparatus and rotating chute inner surface wear testing method
BR112023019503A BR112023019503A2 (en) 2021-03-29 2021-12-08 DEVICE FOR INSPECTING WEAR OF THE INTERNAL SURFACE OF A ROTARY GUTTER, AND METHOD FOR INSPECTING WEAR OF AN INTERNAL SURFACE OF A GUTTER
KR1020237033277A KR20230151014A (en) 2021-03-29 2021-12-08 Swiveling chute inner wear inspection device and slewing chute inner wear inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021055427A JP6951601B1 (en) 2021-03-29 2021-03-29 Swivel chute inner surface wear inspection device and swivel chute inner surface wear inspection method

Publications (2)

Publication Number Publication Date
JP6951601B1 JP6951601B1 (en) 2021-10-20
JP2022152599A true JP2022152599A (en) 2022-10-12

Family

ID=78114188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021055427A Active JP6951601B1 (en) 2021-03-29 2021-03-29 Swivel chute inner surface wear inspection device and swivel chute inner surface wear inspection method

Country Status (4)

Country Link
JP (1) JP6951601B1 (en)
KR (1) KR20230151014A (en)
BR (1) BR112023019503A2 (en)
WO (1) WO2022209022A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046220A (en) 1996-08-02 1998-02-17 Sumitomo Metal Ind Ltd Distributing chute of blast furnace
TW200821537A (en) * 2006-11-10 2008-05-16 China Steel Corp Methods for evaluating effect of gunite process and measuring the wall thickness remaining in blast furnace
JP2008223120A (en) * 2007-03-15 2008-09-25 Nippon Steel Corp Method for evaluating furnace wall surface state at upper part of blast furnace shaft
JP2019151886A (en) 2018-03-02 2019-09-12 株式会社Wadeco Surface detection device for blast furnace charge

Also Published As

Publication number Publication date
BR112023019503A2 (en) 2023-10-31
WO2022209022A1 (en) 2022-10-06
KR20230151014A (en) 2023-10-31
JP6951601B1 (en) 2021-10-20

Similar Documents

Publication Publication Date Title
RU2337756C1 (en) Method for controlling technological parameters of cone crusher
DK2231318T3 (en) DEVICE AND PROCEDURE FOR LOADING SOLID PARTICLES INTO A ROOM
US20120217357A1 (en) System and method for monitoring condition of surface subject to wear
EP2558816B1 (en) System for measuring the inner space of a container and method of performing the same
JPH0712541A (en) Method for measuring wa wear of container, and container
JP5677447B2 (en) Method of measuring and aligning a cylindrical rotating device
JPS5938553B2 (en) Distance radar device
WO2022209022A1 (en) Rotating chute inner surface wear testing apparatus and rotating chute inner surface wear testing method
JP2013511033A5 (en)
TW200401875A (en) A method for repairing a protective lining of an industrial reaction or transport vessel
JP4383313B2 (en) Method and apparatus for measuring surface shape of blast furnace interior
JP6951600B1 (en) Blast furnace inner surface wear inspection device and blast furnace inner surface wear inspection method
JPH09150269A (en) Automatic welding equipment and method
US11149323B2 (en) Device and method for sensing a conveying rate of a liquid material
JP7440715B2 (en) Charge measuring method, charging method, charge measuring device and charging device
JP5633121B2 (en) Method for producing sintered ore
KR20160146489A (en) Apparatus and method for imparting selected topographies to aluminum sheet metal and applications there for
JP6466827B2 (en) Reduced iron production equipment
JP7009339B2 (en) Fire top device
JPH05256584A (en) Method and apparatus for repairing damaged part on furnace wall in melting furnace
RU2771836C1 (en) Method for monitoring and ensuring the quality of deicing treatment of the surface of the pavement and sidewalk by a machine with a plate distributor
JP2024063485A (en) Gutter shape measurement method and gutter shape measurement system
KR102113472B1 (en) Equipment for restoring erosion of tilting runner and method for restoring erosion of tilting runner using the same
JP2023100256A (en) Roller life prediction device and method for vertical mill
JP3872785B2 (en) Control method and control apparatus for X-ray diffraction apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210402

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210402

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210924

R150 Certificate of patent or registration of utility model

Ref document number: 6951601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350