JP2022150670A - Manufacturing method of electrode plate - Google Patents

Manufacturing method of electrode plate Download PDF

Info

Publication number
JP2022150670A
JP2022150670A JP2021053373A JP2021053373A JP2022150670A JP 2022150670 A JP2022150670 A JP 2022150670A JP 2021053373 A JP2021053373 A JP 2021053373A JP 2021053373 A JP2021053373 A JP 2021053373A JP 2022150670 A JP2022150670 A JP 2022150670A
Authority
JP
Japan
Prior art keywords
active material
particles
powder
granulated
uncompressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021053373A
Other languages
Japanese (ja)
Other versions
JP7301087B2 (en
Inventor
知之 上薗
Tomoyuki Uezono
壮吉 大久保
Sokichi Okubo
桃香 宮島
Momoka MIYAJIMA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Planet Energy and Solutions Inc
Original Assignee
Prime Planet Energy and Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Planet Energy and Solutions Inc filed Critical Prime Planet Energy and Solutions Inc
Priority to JP2021053373A priority Critical patent/JP7301087B2/en
Publication of JP2022150670A publication Critical patent/JP2022150670A/en
Application granted granted Critical
Publication of JP7301087B2 publication Critical patent/JP7301087B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a manufacturing method of an electrode plate capable of appropriately forming an active material layer on a current collecting foil in a dry process without using magnetic carrier powder.SOLUTION: A manufacturing method of an electrode plate 1 includes supply steps S3 and S6 of supplying, to a film formation region MR1, an active material granulated powder 42 composed of active material granulated particles 41 in which active material composite particles 21 in which binder particles 13P are attached to active material particles 11 are bonded to each other is deposited and shaped into a layer of uniform thickness, uncompressed layer forming steps S4 and S7 of blowing the active material granulated particles 41 toward a current collector foil 3 by the electrostatic force Fs1 in the film formation region MR1, depositing the active material granulated particles 41 on the current collector foil 3, and forming uncompressed active material layers 5X and 6X, and pressing steps S5 and S8 of heat-pressing the uncompressed active material layers 5X and 6X and the current collector foil 3.SELECTED DRAWING: Figure 2

Description

本発明は、集電箔上に、活物質粒子及び結着剤を含む活物質層を有する電極板の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for manufacturing an electrode plate having an active material layer containing active material particles and a binder on a current collector foil.

電池に用いられる正極板や負極板など、集電箔上に、活物質粒子及び結着剤を含む活物質層が形成された電極板が知られている。このような電極板は、例えば以下の手法により製造する。即ち、予め、活物質粒子が集合した活物質粉体と、結着剤粒子が集合した結着剤粉体とを混合して、活物質粒子に結着剤粒子が付着した活物質複合粒子からなる活物質複合粉体を得ておく。そして、この活物質複合粉体を、別途用意した磁性キャリア粒子が集合した磁性キャリア粉体と混合して、個々の磁性キャリア粒子に多数の活物質複合粒子が静電吸着した複合キャリア粒子からなる複合キャリア粉体を得る。 2. Description of the Related Art Electrode plates, such as positive electrode plates and negative electrode plates used in batteries, are known in which an active material layer containing active material particles and a binder is formed on a collector foil. Such an electrode plate is manufactured, for example, by the following method. That is, an active material powder in which active material particles are aggregated and a binder powder in which binder particles are aggregated are mixed in advance, and active material composite particles in which the binder particles are attached to the active material particles are obtained. An active material composite powder is obtained. Then, this active material composite powder is mixed with separately prepared magnetic carrier powder in which magnetic carrier particles are aggregated to obtain composite carrier particles in which a large number of active material composite particles are electrostatically adsorbed to individual magnetic carrier particles. A composite carrier powder is obtained.

その後、この複合キャリア粉体をなす複合キャリア粒子をマグネットロールのロール表面に磁気吸着させる。続いて、このマグネットロールの回転により、ロール表面に磁気吸着させた複合キャリア粒子を、マグネットロールと、バックアップロールで搬送する集電箔との間隙(成膜領域)に搬送する。次に、この成膜領域において、静電気力により、複合キャリア粒子のうち活物質複合粒子をロール表面から集電箔に向けて飛ばし、集電箔上に活物質複合粒子を堆積させて、未圧縮の未圧縮活物質層を形成する。その後、この未圧縮活物質層及び集電箔からなる電極板を加熱プレスして、未圧縮活物質層から活物質層を形成する。なお、この電極板の製造方法に関連する従来技術として、特許文献1が挙げられる。 After that, the composite carrier particles forming the composite carrier powder are magnetically attracted to the roll surface of the magnet roll. Subsequently, by rotating the magnet roll, the composite carrier particles magnetically attracted to the roll surface are transported to the gap (film formation area) between the magnet roll and the collector foil transported by the backup roll. Next, in this film formation region, the active material composite particles among the composite carrier particles are blown from the roll surface toward the current collector foil by electrostatic force, depositing the active material composite particles on the current collector foil, and uncompressed to form an uncompressed active material layer of After that, the electrode plate composed of the uncompressed active material layer and the current collector foil is hot-pressed to form an active material layer from the uncompressed active material layer. Incidentally, Patent Document 1 can be cited as a conventional technique related to the manufacturing method of this electrode plate.

特開2020-149862号公報JP 2020-149862 A

上述の製造方法では、活物質粒子及び結着剤粒子を分散媒に分散させた活物質ペーストを用いることなく、乾式で活物質層を形成できるので、分散媒を除去するための加熱乾燥工程が不要であり、電極板の生産性が高い。
しかしながら、上述の製造方法では、磁性キャリア粉体が必要であり、また、活物質複合粉体と磁性キャリア粉体と混合して複合キャリア粉体を形成する工程が必要となるため、磁性キャリア粉体を用いることなく、電極板を製造する新たな手法が求められていた。
In the above-described manufacturing method, the active material layer can be formed in a dry process without using an active material paste in which the active material particles and the binder particles are dispersed in the dispersion medium. It is unnecessary, and the productivity of the electrode plate is high.
However, the above manufacturing method requires a magnetic carrier powder and a step of mixing the active material composite powder and the magnetic carrier powder to form a composite carrier powder. There has been a demand for a new method of manufacturing electrode plates without using a body.

本発明は、かかる現状に鑑みてなされたものであって、磁性キャリア粉体を用いることなく、乾式で集電箔上に活物質層を適切に形成できる電極板の製造方法を提供するものである。 SUMMARY OF THE INVENTION The present invention has been made in view of the current situation, and provides a method for manufacturing an electrode plate that can appropriately form an active material layer on a current collector foil in a dry process without using magnetic carrier powder. be.

上記課題を解決するための本発明の一態様は、集電箔上に、活物質粒子及び結着剤を含む活物質層を備える電極板の製造方法であって、上記活物質粒子に結着剤粒子が付着した活物質複合粒子同士が互いに結合した活物質造粒粒子が集合した活物質造粒粉体を、均一厚みの層状に堆積整形して、成膜領域に供給する供給工程と、上記成膜領域において、静電気力により、上記活物質造粒粒子を上記集電箔に向けて飛ばし、上記集電箔上に上記活物質造粒粒子を堆積させて、未圧縮の未圧縮活物質層を形成する未圧縮層形成工程と、上記未圧縮活物質層及び上記集電箔を加熱プレスして、上記未圧縮活物質層から上記活物質層を形成するプレス工程と、を備える電極板の製造方法である。 One aspect of the present invention for solving the above problems is a method for manufacturing an electrode plate provided with an active material layer containing active material particles and a binder on a current collector foil, wherein the electrode plate is bound to the active material particles. a supply step of accumulating and shaping the active material granulated powder in which the active material granulated particles in which the active material composite particles to which the agent particles are attached are aggregated into a layer having a uniform thickness, and supplying the powder to a film formation region; In the film formation region, the active material granulated particles are blown toward the current collector foil by electrostatic force, the active material granulated particles are deposited on the current collector foil, and the uncompressed uncompressed active material An electrode plate comprising: an uncompressed layer forming step of forming a layer; and a pressing step of hot-pressing the uncompressed active material layer and the current collector foil to form the active material layer from the uncompressed active material layer. is a manufacturing method.

本発明者は、まず、活物質粉体と結着剤粉体とを混合した前述の活物質複合粉体をそのまま用いて、供給工程、未圧縮層形成工程及びプレス工程を行って電極板を製造することを試みた。しかしながら、この製造方法では、集電箔上に未圧縮活物質層を適切に形成するのが難しいことが判ってきた。その原因は、活物質複合粉体は、活物質複合粒子同士の凝集力が強いため、活物質複合粒子に静電気力が掛かっても、活物質複合粒子が集電箔に向けて飛翔し難いからであると考えられた。 First, the present inventors used the active material composite powder, which is a mixture of the active material powder and the binder powder, as it is, and performed the supply step, the uncompressed layer forming step, and the pressing step to form an electrode plate. tried to manufacture. However, it has been found that it is difficult to properly form an uncompressed active material layer on the current collector foil by this manufacturing method. The reason for this is that the active material composite powder has a strong cohesive force between the active material composite particles, so even if an electrostatic force is applied to the active material composite particles, it is difficult for the active material composite particles to fly toward the current collector foil. It was thought that

これに対し、上述の電極板の製造方法では、活物質粒子に結着剤粒子が付着した活物質複合粒子同士が互いに結合した活物質造粒粒子からなる活物質造粒粉体を用いて、供給工程、未圧縮層形成工程及びプレス工程を行う。比較的小粒径の活物質複合粒子同士に比べて、複数の活物質複合粒子同士が結合して比較的大粒径となった活物質造粒粒子同士の凝集力は弱い。このため、未圧縮層形成工程において、静電気力により活物質造粒粒子を集電箔に向けて適切に飛翔させることができ、集電箔上に未圧縮活物質層を適切に形成できる。そして、プレス工程で活物質層を適切に形成できる。 On the other hand, in the above-described electrode plate manufacturing method, active material granulated powder made of active material granulated particles in which active material composite particles in which binder particles are attached to active material particles are bonded to each other is used. A supply step, an uncompressed layer forming step and a pressing step are performed. The cohesive force of active material granulated particles, which are relatively large particle diameters formed by combining a plurality of active material composite particles, is weaker than that of active material composite particles with relatively small particle diameters. Therefore, in the uncompressed layer forming step, the granulated active material particles can be appropriately caused to fly toward the current collector foil by electrostatic force, and the uncompressed active material layer can be appropriately formed on the current collector foil. Then, the active material layer can be properly formed in the pressing process.

「活物質複合粒子」としては、例えば、活物質粒子に結着剤粒子のみが付着した活物質複合粒子のほか、活物質粒子及び結着剤粒子に加え、例えば導電粒子など他の粒子が更に付着した活物質複合粒子などが挙げられる。
「供給工程」において、活物質造粒粉体を均一厚みの層状に堆積整形して成膜領域に供給する手法としては、例えば、供給ロールのロール表面上に活物質造粒粉体を均一厚みの層状に堆積整形し、供給ロールの回転により、この活物質造粒粉体の堆積層を成膜領域に供給する手法や、供給ベルトのベルト表面上に活物質造粒粉体を均一厚みの層状に堆積整形し、供給ベルトの移動により、この活物質造粒粉体の堆積層を成膜領域に供給する手法などが挙げられる。
Examples of the "active material composite particles" include, for example, active material composite particles in which only binder particles are attached to active material particles, and in addition to active material particles and binder particles, other particles such as conductive particles are further included. Adhered active material composite particles and the like can be mentioned.
In the "supply step", as a method of depositing and shaping the active material granulated powder into a layer of uniform thickness and supplying it to the film formation region, for example, the active material granulated powder is deposited on the roll surface of the supply roll with a uniform thickness are deposited and shaped in layers, and by rotating the supply roll, the deposited layer of the active material granulated powder is supplied to the film forming area, or the active material granulated powder is deposited on the belt surface of the supply belt so as to have a uniform thickness. For example, a method of depositing and shaping in layers and supplying the deposited layer of the active material granulated powder to the film-forming region by moving a supply belt.

更に、上記の電極板の製造方法であって、前記供給工程は、安息角θがθ≦40.0(deg)の前記活物質造粒粉体を用いる電極板の製造方法とすると良い。 Further, in the above electrode plate manufacturing method, it is preferable that the supply step uses the active material granulated powder having an angle of repose θ≦40.0 (deg).

上述の電極板の製造方法では、供給工程において、流動性の高い、具体的には安息角θがθ≦40.0(deg)の活物質造粒粉体を用いる。このような流動性の高い活物質造粒粉体は、粒子間の凝集力が特に弱いため、未圧縮層形成工程において活物質造粒粒子をより一層、集電箔に向けて飛翔させて、未圧縮活物質層をより適切に形成でき、プレス工程で活物質層をより適切に形成できる。 In the method for manufacturing an electrode plate described above, in the supply step, a highly fluid active material granulated powder having a repose angle θ of θ≦40.0 (deg) is used. Such a highly fluid active material granulated powder has a particularly weak cohesive force between particles. The uncompressed active material layer can be formed more appropriately, and the active material layer can be more appropriately formed in the pressing process.

なお、「活物質造粒粉体の安息角θ」は、以下の測定方法により求める。即ち、安息角θは、活物質造粒粉体を、所定の高さに配置した漏斗から、水平な基板の上に落下させて、円錐状の粉体堆積物を形成し、この粉体堆積物の直径及び高さから底角を算出することで得る。具体的には、安息角θは、JIS R 9301-2-2:1999「アルミナ粉末物性測定方法-2:安息角」の規定に準じて測定する。 The "angle of repose θ of the active material granulated powder" is obtained by the following measuring method. That is, the angle of repose θ is determined by dropping the active material granulated powder from a funnel placed at a predetermined height onto a horizontal substrate to form a conical powder deposit. It is obtained by calculating the base angle from the diameter and height of the object. Specifically, the angle of repose θ is measured in accordance with JIS R 9301-2-2:1999 “Method for measuring physical properties of alumina powder-2: angle of repose”.

更に、上記の電極板の製造方法であって、前記供給工程に先立ち、前記活物質複合粒子が集合した活物質複合粉体から、前記活物質造粒粒子が集合した前記活物質造粒粉体を作製する造粒粉体作製工程を更に備えており、上記造粒粉体作製工程は、上記活物質複合粉体をプレスして、シート状圧粉体を得るシート成形工程と、上記シート状圧粉体を破砕し、破砕粉体を得る破砕工程と、上記破砕粉体を整粒して、予め定めた粒度範囲内の粒度を有する整粒粉体を得る整粒工程と、を有する電極板の製造方法とすると良い。 Further, in the method for manufacturing an electrode plate described above, prior to the supply step, the active material granulated powder in which the active material granulated particles are aggregated from the active material composite powder in which the active material composite particles are aggregated. The granulated powder preparation step includes a sheet forming step of pressing the active material composite powder to obtain a sheet-like green compact, and a sheet-like compact An electrode comprising: a crushing step of crushing a green compact to obtain a crushed powder; and a sizing step of regulating the crushed powder to obtain a sized powder having a particle size within a predetermined particle size range. It is good to consider it as the manufacturing method of a board.

上述の電極板の製造方法では、活物質複合粉体から活物質造粒粉体を作製する造粒粉体作製工程を更に備えており、この造粒粉体作製工程は、上述のシート成形工程、破砕工程及び整粒工程を有する。このような造粒粉体作製工程を行うことで、安息角θ≦40.0(deg)で所望の流動性を有する活物質造粒粉体を容易に作製できる。従って、この活物質造粒粉体を用いて供給工程及び未圧縮層形成工程を行うことで、未圧縮活物質層をより適切に形成でき、プレス工程で活物質層をより適切に形成できる。 The electrode plate manufacturing method described above further includes a granulated powder preparation step of preparing an active material granulated powder from the active material composite powder. , a crushing process and a sizing process. By performing such a granulated powder production step, it is possible to easily produce an active material granulated powder having desired fluidity at an angle of repose θ≦40.0 (deg). Therefore, by performing the supplying step and the uncompressed layer forming step using this active material granulated powder, the uncompressed active material layer can be formed more appropriately, and the active material layer can be more appropriately formed in the pressing step.

更に、上記の電極板の製造方法であって、前記造粒粉体作製工程は、前記整粒工程で得られた前記整粒粉体を分級して、予め定めた粒度範囲内の粒度を有する分級粉体を得る分級工程を更に有する電極板の製造方法とすると良い。 Further, in the method for manufacturing an electrode plate described above, the granulated powder producing step classifies the sized powder obtained in the granule sizing step to have a particle size within a predetermined particle size range. It is preferable that the method for manufacturing an electrode plate further includes a classification step for obtaining classified powder.

上述の電極板の製造方法では、造粒粉体作製工程は、上述の分級工程を更に有する。これにより、より適切な流動性を有する活物質造粒粉体を容易に作製できる。従って、この活物質造粒粉体を用いて供給工程及び未圧縮層形成工程を行うことで、未圧縮活物質層をより適切に形成でき、プレス工程で活物質層をより適切に形成できる。 In the electrode plate manufacturing method described above, the granulated powder preparation step further includes the classification step described above. Thereby, an active material granulated powder having more suitable fluidity can be easily produced. Therefore, by performing the supplying step and the uncompressed layer forming step using this active material granulated powder, the uncompressed active material layer can be formed more appropriately, and the active material layer can be more appropriately formed in the pressing step.

実施形態1,2及び変形形態1,2に係る電極板の斜視図である。4 is a perspective view of an electrode plate according to Embodiments 1 and 2 and Modifications 1 and 2. FIG. 実施形態1,2及び変形形態1,2に係る電極板の製造方法のフローチャートである。4 is a flow chart of a method for manufacturing an electrode plate according to Embodiments 1 and 2 and Modifications 1 and 2. FIG. 実施形態1,2及び変形形態1,2に係り、混合粉体作製工程で作製する活物質複合粒子を模式的に示す説明図である。FIG. 2 is an explanatory diagram schematically showing active material composite particles produced in a mixed powder producing step according to Embodiments 1 and 2 and Modified Embodiments 1 and 2; 実施形態1,2及び変形形態1,2に係り、造粒粉体作製工程のうちシート成形工程で形成するシート状圧粉体の説明図である。FIG. 4 is an explanatory diagram of a sheet-like green compact formed in a sheet forming step of the granulated powder production step, according to Embodiments 1 and 2 and Modified Embodiments 1 and 2; 実施形態1,2及び変形形態1,2に係り、造粒粉体作製工程のうち破砕工程で形成する破砕粒子を模式的に示す説明図である。FIG. 4 is an explanatory diagram schematically showing crushed particles formed in a crushing step of the granulated powder production step according to Embodiments 1 and 2 and Modified Embodiments 1 and 2; 実施形態1,2及び変形形態1,2に係り、造粒粉体作製工程のうち整粒工程で形成する整粒粒子の説明図である。FIG. 5 is an explanatory diagram of sizing particles formed in a sizing step of the granulated powder production step, according to Embodiments 1 and 2 and Modifications 1 and 2; 実施形態1,2及び変形形態1,2に係り、造粒粉体作製工程のうち分級工程で形成する分級粒子の説明図である。FIG. 5 is an explanatory diagram of classified particles formed in a classification step of the granulated powder preparation step, according to Embodiments 1 and 2 and Modified Embodiments 1 and 2; 実施形態1及び変形形態1に係る活物質層形成装置の説明図である。FIG. 2 is an explanatory diagram of an active material layer forming apparatus according to Embodiment 1 and Modification 1; 実施形態1及び変形形態1に係り、成膜領域において活物質造粒粒子がロール表面から集電箔に向けて飛翔する様子を模試的に示す説明図である。FIG. 4 is an explanatory diagram schematically showing how active material granulated particles fly from a roll surface toward a current collector foil in a film formation region according to Embodiment 1 and Modified Embodiment 1; 実施形態2及び変形形態2に係る活物質層形成装置の説明図である。FIG. 10 is an explanatory diagram of an active material layer forming apparatus according to Embodiment 2 and Modified Embodiment 2; 実施形態2及び変形形態2に係り、成膜領域において活物質造粒粒子がベルト表面から集電箔に向けて飛翔する様子を模試的に示す説明図である。FIG. 10 is an explanatory diagram schematically showing how active material granulated particles fly from the belt surface toward the current collector foil in the film formation region, according to the second embodiment and the modified example 2;

(実施形態1)
以下、本発明の第1の実施形態を、図面を参照しつつ説明する。図1に、本実施形態1に係る電極板1の斜視図を示す。なお、以下では、電極板1の長手方向EH、幅方向FH及び厚み方向GHを、図1に示す方向と定めて説明する。この電極板1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池を製造するのに、具体的には、扁平状捲回型或いは積層型の電極体を製造するのに用いられる帯状の負極板である。
(Embodiment 1)
A first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a perspective view of an electrode plate 1 according to the first embodiment. In the following description, the longitudinal direction EH, width direction FH, and thickness direction GH of the electrode plate 1 are defined as the directions shown in FIG. Specifically, the electrode plate 1 is flatly wound to manufacture a rectangular and sealed lithium-ion secondary battery to be mounted on a vehicle such as a hybrid car, a plug-in hybrid car, an electric car, or the like. It is a strip-shaped negative electrode plate used for manufacturing a mold or laminated electrode assembly.

電極板(負極板)1は、長手方向EHに延びる帯状で、銅箔からなる集電箔3を有する。この集電箔3の第1主面3aのうち、幅方向FHの中央でかつ長手方向EHに延びる領域上には、第1活物質層5(以下、単に「活物質層5」ともいう)が帯状に形成されている。また、集電箔3の反対側の第2主面3bのうち、幅方向FHの中央でかつ長手方向EHに延びる領域上にも、第2活物質層6(以下、単に「活物質層6」ともいう)が帯状に形成されている。電極板1のうち幅方向FHの両端部は、それぞれ、厚み方向GHに活物質層5,6が存在せず、集電箔3が厚み方向GHに露出した露出部1rとなっている。 The electrode plate (negative electrode plate) 1 has a strip-shaped collector foil 3 made of copper foil extending in the longitudinal direction EH. A first active material layer 5 (hereinafter also simply referred to as "active material layer 5") is formed on a region extending in the longitudinal direction EH at the center in the width direction FH of the first main surface 3a of the current collector foil 3. is formed in a strip shape. Further, a second active material layer 6 (hereinafter simply referred to as "active material layer 6 ”) is formed in a strip shape. At both ends of the electrode plate 1 in the width direction FH, the active material layers 5 and 6 do not exist in the thickness direction GH, and the collector foil 3 is exposed in the thickness direction GH to form an exposed portion 1r.

活物質層5,6は、それぞれ、活物質粒子11と結着剤13から構成されている。活物質粒子11及び結着剤13の重量割合は、活物質粒子:結着剤=97.5:2.5である。本実施形態1では、活物質粒子11は、リチウムイオンを吸蔵及び放出可能な負極活物質粒子、具体的には黒鉛粒子である。また、結着剤13はポリフッ化ビニリデン(PVDF)である。 Active material layers 5 and 6 are each composed of active material particles 11 and binder 13 . The weight ratio of the active material particles 11 and the binder 13 is active material particles:binder=97.5:2.5. In Embodiment 1, the active material particles 11 are negative electrode active material particles capable of intercalating and deintercalating lithium ions, specifically graphite particles. Further, the binder 13 is polyvinylidene fluoride (PVDF).

次いで、上記の電極板1の製造方法について説明する(図2~図9参照)。まず「混合粉体作製工程S1」(図2参照)において、活物質粒子11に結着剤粒子13Pが付着した活物質複合粒子21からなる活物質複合粉体22を作製する(図3参照)。具体的には、活物質粒子11(本実施形態1では黒鉛粒子)が集合した活物質粉体12と、結着剤粒子13P(本実施形態1ではPVDF粒子)が集合した結着剤粉体14を用意する。そして、ミキサー(不図示)に、活物質粉体12及び結着剤粉体14を、活物質粉体:結着剤粉体=97.5:2.5の重量割合で投入し、1分間攪拌混合する。これにより、個々の活物質粒子11に複数の結着剤粒子13Pが付着した活物質複合粒子21からなり、粒度DA50(メディアン径)がDA50=約10μmの活物質複合粉体22を得る。 Next, a method for manufacturing the electrode plate 1 will be described (see FIGS. 2 to 9). First, in the “mixed powder preparation step S1” (see FIG. 2), active material composite powder 22 composed of active material composite particles 21 in which binder particles 13P are attached to active material particles 11 is prepared (see FIG. 3). . Specifically, active material powder 12 in which active material particles 11 (graphite particles in Embodiment 1) aggregate and binder powder in which binder particles 13P (PVDF particles in Embodiment 1) aggregate 14 is prepared. Then, the active material powder 12 and the binder powder 14 were put into a mixer (not shown) at a weight ratio of active material powder:binder powder=97.5:2.5 and mixed for 1 minute. Stir to mix. As a result, an active material composite powder 22 having a particle size DA 50 (median diameter) of DA 50 =approximately 10 μm is obtained. .

次に、「造粒粉体作製工程S2」(図2参照)において、上述の活物質複合粒子21が集合した活物質複合粉体22から、活物質複合粒子21同士が互いに結合した活物質造粒粒子41が集合した活物質造粒粉体42を作製する(図4~図7参照)。この造粒粉体作製工程S2は、シート成形工程S21、破砕工程S22、整粒工程S23及び分級工程S24をこの順に有する。
まず「シート成形工程S21」において、平板状に拡げた活物質複合粉体22を厚み方向にプレスして、シート状圧粉体30を得る(図4参照)。具体的には、活物質複合粉体22を一対のプレスロール(不図示)を用いてロールプレスすることにより、帯状のシート状圧粉体30を形成する。
次に、「破砕工程S22」において、シート状圧粉体30を破砕し、破砕粒子31が集合した破砕粉体32を得る(図5参照)。具体的には、シート状圧粉体30を攪拌羽(不図示)で破砕して、破砕粒子31からなり、粒度DB50(メディアン径)がDB50=約3mmの破砕粉体32を形成する。
Next, in the “granulated powder preparation step S2” (see FIG. 2), the active material composite powder 22 in which the active material composite particles 21 are aggregated, the active material composite particles 21 are bonded to each other to form an active material. An active material granulated powder 42 in which grains 41 are aggregated is produced (see FIGS. 4 to 7). The granulated powder production step S2 has a sheet forming step S21, a crushing step S22, a granule sizing step S23 and a classifying step S24 in this order.
First, in the "sheet forming step S21", the active material composite powder 22 spread into a flat plate is pressed in the thickness direction to obtain a sheet-like green compact 30 (see FIG. 4). Specifically, the strip-shaped sheet-like green compact 30 is formed by roll-pressing the active material composite powder 22 using a pair of press rolls (not shown).
Next, in the "crushing step S22", the sheet-like compact 30 is crushed to obtain crushed powder 32 in which crushed particles 31 are aggregated (see FIG. 5). Specifically, the sheet-like green compact 30 is crushed with a stirring blade (not shown) to form a crushed powder 32 composed of crushed particles 31 and having a grain size DB 50 (median diameter) of about 3 mm. .

次に、「整粒工程S23」において、破砕粉体32を整粒して、整粒粒子33が集合した整粒粉体34を得る(図6参照)。具体的には、破砕粉体32を20メッシュ(目開き800μm)の金網(不図示)上に配置し、この破砕粉体32を羽(不図示)で攪拌して金網を通過させる。これにより、予め定めた粒度範囲PR1(本実施形態1では、メディアン径D50が130~170μmの範囲)内の整粒粉体34、具体的には粒度DC50(メディアン径)がDC50=約150μmの整粒粉体34を得る。なお、この整粒粉体34には、粒径50μmよりも小さな整粒粒子33から、粒径450μmを超える大きな整粒粒子33まで、様々大きさの整粒粒子33が含まれている。 Next, in the "sizing step S23", the crushed powder 32 is sieved to obtain a sizing powder 34 in which sizing particles 33 are aggregated (see FIG. 6). Specifically, the crushed powder 32 is placed on a wire mesh (not shown) of 20 mesh (opening of 800 μm), and the crushed powder 32 is stirred with a wing (not shown) to pass through the wire mesh. As a result, the regulated powder 34 within the predetermined particle size range PR1 (in the first embodiment, the median diameter D is in the range of 130 to 170 μm), specifically, the particle size DC 50 (median diameter) is DC 50 = A regulated powder 34 of about 150 μm is obtained. The regulated powder 34 contains regulated particles 33 of various sizes, from regulated particles 33 smaller than 50 μm in diameter to large sized particles 33 exceeding 450 μm in diameter.

次に、「分級工程S24」において、整粒粉体34を分級して、所望の分級粒子35が集合した分級粉体36を得る(図7参照)。具体的には、目開きが425μmの篩と212μmの篩と100μmの篩と53μmの篩を有する多段篩(不図示)を用いて、整粒粉体34を5つの大きさのグループに分ける。そして、このうち212μmの篩を通過し100μmの篩の上に残った、主に粒径100μm~212μmの分級粒子35からなる分級粉体36を回収する。これにより、予め定めた粒度範囲PR2(本実施形態1では、メディアン径D50が130~170μmの範囲)内の分級粉体36、具体的には粒度DD50(メディアン径)がDD50=約150μmの分級粉体36を得る。なお、本実施形態1では、この分級粒子35からなる分級粉体36を、活物質造粒粒子41からなる活物質造粒粉体42として、以下の工程で用いる。この活物質造粒粉体42の安息角θは、θ≦40.0(deg)、具体的にはθ=35.8degである。なお、安息角θは、前述の手法により測定する。本実施形態では、ホソカワミクロン株式会社のパウダテスタを用いて安息角θを測定した。 Next, in the "classifying step S24", the sized powder 34 is classified to obtain the classified powder 36 in which the desired classified particles 35 are aggregated (see FIG. 7). Specifically, a multistage sieve (not shown) having 425 μm, 212 μm, 100 μm and 53 μm sieves is used to divide the sized powder 34 into five size groups. Then, the classified powder 36 mainly composed of the classified particles 35 having a particle size of 100 μm to 212 μm, which passed through the 212 μm sieve and remained on the 100 μm sieve, is recovered. As a result, the classified powder 36 within the predetermined particle size range PR2 (in the first embodiment, the median diameter D 50 is in the range of 130 to 170 μm), specifically, the particle size DD 50 (median diameter) is DD 50 =about A classified powder 36 of 150 μm is obtained. In the first embodiment, the classified powder 36 composed of the classified particles 35 is used as the active material granulated powder 42 composed of the active material granulated particles 41 in the following steps. The repose angle θ of this active material granulated powder 42 is θ≦40.0 (deg), specifically θ=35.8 deg. The repose angle θ is measured by the method described above. In this embodiment, the repose angle θ was measured using a powder tester manufactured by Hosokawa Micron Corporation.

次に、「第1供給工程S3」(図2参照)において、上述の活物質造粒粉体42を均一厚みの層状に堆積整形して、成膜領域MR1に供給する。この第1供給工程S3と後述する第1未圧縮層形成工程S4及び第1プレス工程S5は、活物質層形成装置200(図8及び図9参照)を用いて連続して行う。活物質層形成装置200は、集電箔3上に未圧縮の未圧縮活物質層5Xを形成する層形成部203と、未圧縮活物質層5X及び集電箔3を加熱プレスして未圧縮活物質層5Xから活物質層5を形成するプレス部205とを備える。 Next, in the “first supply step S3” (see FIG. 2), the above-described active material granulated powder 42 is deposited and shaped into a layer having a uniform thickness, and supplied to the film formation region MR1. This first supply step S3 and the first uncompressed layer forming step S4 and first pressing step S5, which will be described later, are continuously performed using the active material layer forming apparatus 200 (see FIGS. 8 and 9). The active material layer forming apparatus 200 includes a layer forming unit 203 that forms an uncompressed active material layer 5X on the current collector foil 3, and a heat press on the uncompressed active material layer 5X and the current collector foil 3 to form an uncompressed layer. and a pressing part 205 for forming the active material layer 5 from the active material layer 5X.

このうち層形成部203は、ホッパー210と、ホッパー210の下方に配置された供給ロール220と、供給ロール220と平行に配置され、集電箔3を長手方向EHに搬送するバックアップロール230と、これら供給ロール220及びバックアップロール230に電気的に接続する直流電源240とを有する。
このうちホッパー210は、ホッパー210内に投入された活物質造粒粉体42を一時的に収容すると共に、活物質造粒粉体42を下方の排出口から排出して、供給ロール220のロール表面220m上に配置する。
Among these, the layer forming unit 203 includes a hopper 210, a supply roll 220 arranged below the hopper 210, a backup roll 230 arranged parallel to the supply roll 220 and conveying the current collector foil 3 in the longitudinal direction EH, It has a DC power supply 240 electrically connected to the supply roll 220 and the backup roll 230 .
Of these, the hopper 210 temporarily accommodates the granulated active material powder 42 introduced into the hopper 210 , discharges the granulated active material powder 42 from a lower discharge port, and Place on surface 220m.

供給ロール220は、これに連結されたモータ(不図示)によって、図8及び図9中、時計回りに回転可能に構成されており、供給ロール220の回転によって、ホッパー210からロール表面220m上に配置された活物質造粒粉体42を、供給ロール220と集電箔3との間隙KB(成膜領域MR1)に向けて搬送する。また、供給ロール220の図8中、右上の近傍には、ロール間隙KCを空けて、供給ロール220と平行にロール状のスキージ225が配置されている。このスキージ225は、これに連結されたモータ(不図示)によって、供給ロール220と同方向(図8中、時計回り)に回転可能に構成されている。このスキージ225は、ロール表面220m上の活物質造粒粉体42を均して、活物質造粒粉体42を均一厚みの層状に堆積整形し、活物質造粒粉体42の堆積層43を形成する。 The supply roll 220 is configured to be rotatable clockwise in FIGS. 8 and 9 by a motor (not shown) connected thereto, and the rotation of the supply roll 220 causes the hopper 210 to move from the hopper 210 onto the roll surface 220m. The arranged active material granulated powder 42 is conveyed toward the gap KB (film formation region MR1) between the supply roll 220 and the current collector foil 3 . A roll-shaped squeegee 225 is arranged in parallel with the supply roll 220 with a roll gap KC in the vicinity of the upper right of the supply roll 220 in FIG. The squeegee 225 is rotatable in the same direction as the supply roll 220 (clockwise in FIG. 8) by a motor (not shown) connected thereto. This squeegee 225 smoothes the granulated active material powder 42 on the roll surface 220 m, deposits and shapes the granulated active material powder 42 into a layer having a uniform thickness, and forms a deposited layer 43 of the granulated active material powder 42 . to form

バックアップロール230は、ロール間隙KAを空けて、供給ロール220に対し平行かつ水平方向(図8及び図9中、右方)に配置されている。バックアップロール230は、これに連結されたモータ(不図示)によって、供給ロール220と同方向(図8及び図9中、時計回り)に回転し、図8中、右下から活物質層形成装置200の層形成部203に供給される集電箔3の第2主面3bに接触して、巻きつけた集電箔3を後述するプレス部205に向けて長手方向EHに搬送する。 The backup roll 230 is arranged in parallel and horizontally with respect to the supply roll 220 (to the right in FIGS. 8 and 9) with a roll gap KA therebetween. The backup roll 230 is rotated in the same direction as the supply roll 220 (clockwise in FIGS. 8 and 9) by a motor (not shown) connected thereto. The second main surface 3b of the collector foil 3 supplied to the layer forming unit 203 of 200 is brought into contact with the wound collector foil 3 and conveyed in the longitudinal direction EH toward the press unit 205 described later.

直流電源240は、その正極がバックアップロール230に、負極が供給ロール220に電気的に接続され、また、バックアップロール230は接地されている。この直流電源240により、本実施形態1では、供給ロール220とバックアップロール230との間に直流電圧Vd1=-2kVを掛ける。具体的には、バックアップロール230を基準(0V)として、供給ロール220の電位を-2kVとする。これにより、供給ロール220上の活物質造粒粉体42をなす活物質造粒粒子41に静電気力Fs1が掛かり、活物質造粒粒子41がロール表面220mから集電箔3に向けて飛翔する。 The DC power supply 240 has its positive electrode electrically connected to the backup roll 230 and its negative electrode electrically connected to the supply roll 220, and the backup roll 230 is grounded. The DC power supply 240 applies a DC voltage Vd1=-2 kV between the supply roll 220 and the backup roll 230 in the first embodiment. Specifically, with the backup roll 230 as a reference (0 V), the potential of the supply roll 220 is -2 kV. As a result, an electrostatic force Fs1 is applied to the active material granulated particles 41 forming the active material granulated powder 42 on the supply roll 220 , and the active material granulated particles 41 fly from the roll surface 220 m toward the current collector foil 3 . .

活物質層形成装置200のプレス部205は、ロール間隙KDを空けて平行に配置された一対のプレスロール271,272を有する。これらのプレスロール271,272は、層形成部203から搬送される集電箔3及び未圧縮活物質層5Xを、ロール間隙KDにおいて加熱プレス可能に構成されている。 The press section 205 of the active material layer forming apparatus 200 has a pair of press rolls 271 and 272 arranged in parallel with a roll gap KD therebetween. These press rolls 271 and 272 are configured to be able to heat-press the collector foil 3 and the uncompressed active material layer 5X transported from the layer forming section 203 in the roll gap KD.

次に、上述の活物質層形成装置200を用いて行う第1供給工程S3、第1未圧縮層形成工程S4及び第1プレス工程S5(図2参照)について説明する(図8及び図9参照)。まず「第1供給工程S3」において、活物質造粒粉体42を均一厚みの層状に堆積整形して、活物質造粒粉体42の堆積層43を形成し、これを成膜領域MR1に供給する。具体的には、ホッパー210から下方に供給された活物質造粒粉体42は、供給ロール220のロール表面220m上に配置される。このロール表面220m上の活物質造粒粉体42は、供給ロール220の回転により成膜領域MR1に向かう途中で、スキージ225によって均され、均一厚みの層状に堆積整形される。更に、この活物質造粒粉体42の堆積層43は、供給ロール220の回転に伴って、成膜領域MR1に搬送される。 Next, the first supply step S3, the first uncompressed layer forming step S4, and the first pressing step S5 (see FIG. 2) performed using the active material layer forming apparatus 200 described above will be described (see FIGS. 8 and 9). ). First, in the "first supply step S3", the active material granulated powder 42 is deposited and shaped into a layer having a uniform thickness to form a deposited layer 43 of the active material granulated powder 42, which is deposited in the film formation region MR1. supply. Specifically, active material granulated powder 42 supplied downward from hopper 210 is placed on roll surface 220 m of supply roll 220 . The active material granulated powder 42 on the roll surface 220m is flattened by the squeegee 225 on the way to the film forming region MR1 due to the rotation of the supply roll 220, and deposited and shaped into a layer of uniform thickness. Further, the deposited layer 43 of the active material granulated powder 42 is conveyed to the film formation region MR1 as the supply roll 220 rotates.

続く「第1未圧縮層形成工程S4」では、成膜領域MR1において、供給ロール220と集電箔3との間に印加した直流電圧Vd1により、活物質造粒粒子41をロール表面220mから集電箔3に向けて飛ばし、集電箔3上に活物質造粒粒子41を堆積させて未圧縮活物質層5Xを形成する。これにより、集電箔3の第1主面3a上に活物質造粒粒子41が堆積した未圧縮活物質層5Xが連続して形成される。本実施形態1では、安息角θ≦40.0(deg)、具体的には安息角θ=35.8degの流動性の高い活物質造粒粉体42を、成膜領域MR1に供給しているため、活物質造粒粉体42をなす活物質造粒粒子41同士が凝集せず、活物質造粒粒子41が個々に容易に飛翔し、効率よく堆積して未圧縮活物質層5Xが形成される。 In the subsequent “first uncompressed layer forming step S4”, the active material granulated particles 41 are collected from the roll surface 220m by the DC voltage Vd1 applied between the supply roll 220 and the current collector foil 3 in the film formation region MR1. The active material granulated particles 41 are deposited on the current collector foil 3 by flying toward the electric foil 3 to form the uncompressed active material layer 5X. As a result, an uncompressed active material layer 5X in which the active material granulated particles 41 are deposited on the first main surface 3a of the current collector foil 3 is continuously formed. In the first embodiment, the highly fluid active material granulated powder 42 having the repose angle θ≦40.0 (deg), specifically, the repose angle θ=35.8 deg, is supplied to the film formation region MR1. Therefore, the active material granulated particles 41 forming the active material granulated powder 42 do not aggregate with each other, and the active material granulated particles 41 easily fly individually and accumulate efficiently to form the uncompressed active material layer 5X. It is formed.

続いて、「第1プレス工程S5」において、未圧縮活物質層5X及び集電箔3を加熱プレスして、未圧縮活物質層5Xから活物質層5を形成する。具体的には、未圧縮活物質層5Xが形成された集電箔3を、層形成部203からプレス部205に搬送し、プレス部205の一対のプレスロール271,272により加熱プレスする。これにより、未圧縮活物質層5Xに含まれる結着剤粒子13Pが一旦溶融して、結着剤13を介して活物質粒子11同士や活物質粒子11と集電箔3とが結着する。かくして、活物質粒子11及び結着剤13からなる活物質層5が集電箔3上に連続形成される。なお、この集電箔3上に活物質層5を有する電極板を「片側電極板1Y」ともいう。 Subsequently, in the "first pressing step S5", the uncompressed active material layer 5X and the current collector foil 3 are hot-pressed to form the active material layer 5 from the uncompressed active material layer 5X. Specifically, the current collector foil 3 on which the uncompressed active material layer 5X is formed is conveyed from the layer forming section 203 to the press section 205 and is hot-pressed by the pair of press rolls 271 and 272 of the press section 205 . As a result, the binder particles 13P contained in the uncompressed active material layer 5X are once melted, and the active material particles 11 and the current collector foil 3 are bound to each other through the binder 13. . Thus, the active material layer 5 composed of the active material particles 11 and the binder 13 is continuously formed on the collector foil 3 . The electrode plate having the active material layer 5 on the collector foil 3 is also referred to as "one-sided electrode plate 1Y".

次に、上述の片側電極板1Yについて、前述の第1供給工程S3と同様な「第2供給工程S6」(図2参照)と、第1未圧縮層形成工程S4と同様な「第2未圧縮層形成工程S7」を行って、集電箔3の第2主面3b上に第2未圧縮活物質層6X(以下、単に「未圧縮活物質層6X」ともいう)を形成する。即ち、まず第2供給工程S6において、活物質造粒粉体42を均一厚みの層状に堆積整形し、成膜領域MR1に供給する。続いて、第2未圧縮層形成工程S7において、成膜領域MR1において、活物質造粒粒子41を集電箔3に向けて飛ばし、集電箔3上に活物質造粒粒子41を堆積させて未圧縮活物質層6Xを形成する。その後、前述の第1プレス工程S5と同様な「第2プレス工程S8」(図2参照)を行う。即ち、第2未圧縮活物質層6X、集電箔3及び第1活物質層5を加熱プレスして、第2未圧縮活物質層6Xから第2活物質層6を形成する。かくして、図1に示した電極板1が製造される。 Next, for the one-side electrode plate 1Y described above, a “second supply step S6” (see FIG. 2) similar to the first supply step S3 and a “second uncompressed layer formation step S4” similar to the first uncompressed layer formation step S4 are performed. Compressed layer forming step S7” is performed to form a second uncompressed active material layer 6X (hereinafter also simply referred to as “uncompressed active material layer 6X”) on the second main surface 3b of the current collector foil 3 . That is, first, in the second supply step S6, the active material granulated powder 42 is deposited and shaped into a layer having a uniform thickness, and supplied to the film formation region MR1. Subsequently, in the second uncompressed layer forming step S7, in the film forming region MR1, the active material granulated particles 41 are blown toward the current collector foil 3 to deposit the active material granulated particles 41 on the current collector foil 3. to form an uncompressed active material layer 6X. After that, the “second pressing step S8” (see FIG. 2) similar to the first pressing step S5 described above is performed. That is, the second uncompressed active material layer 6X, the current collector foil 3, and the first active material layer 5 are hot-pressed to form the second active material layer 6 from the second uncompressed active material layer 6X. Thus, the electrode plate 1 shown in FIG. 1 is manufactured.

(変形形態1)
次いで、実施形態1の変形形態1について説明する。実施形態1では、負極板である電極板1の製造について説明したのに対し、本変形形態1では、正極板である電極板101を製造する点が異なる。
(Modified form 1)
Next, Modification 1 of Embodiment 1 will be described. In Embodiment 1, manufacturing of the electrode plate 1, which is the negative electrode plate, has been described.

本変形形態1の電極板(正極板)101は、実施形態1の電極板(負極板)1と基本的に同様な形態を有する。即ち、電極板101は、帯状のアルミニウム箔からなる集電箔103を有し、集電箔103の第1主面103aには、第1活物質層105(以下、単に「活物質層105」ともいう)が帯状に形成され、集電箔103の反対側の第2主面103bには、第2活物質層106(以下、単に「活物質層106」ともいう)が帯状に形成されている。また、電極板101のうち幅方向FHの両端部は、それぞれ露出部101rとなっている。 The electrode plate (positive electrode plate) 101 of Modified Embodiment 1 has basically the same shape as the electrode plate (negative electrode plate) 1 of Embodiment 1. FIG. That is, the electrode plate 101 has a current collector foil 103 made of a strip-shaped aluminum foil, and a first active material layer 105 (hereinafter simply referred to as "active material layer 105") is formed on a first main surface 103a of the current collector foil 103. ) is formed in a strip shape, and a second active material layer 106 (hereinafter also simply referred to as “active material layer 106”) is formed in a strip shape on the second main surface 103b on the opposite side of the current collector foil 103. there is Both ends of the electrode plate 101 in the width direction FH are exposed portions 101r.

活物質層105,106は、それぞれ、活物質粒子111と結着剤113と導電粒子115から構成されている。活物質粒子111、結着剤113及び導電粒子115の重量割合は、活物質粒子:結着剤:導電粒子=90:5:5である。本変形形態1では、活物質粒子111は、リチウムイオンを吸蔵及び放出可能な正極活物質粒子、具体的にはリチウム遷移金属複合酸化物粒子、詳細にはリチウムニッケルコバルトマンガン複合酸化物粒子である。また、結着剤113は、実施形態1の結着剤13と同様にPVDFである。また、導電粒子115は、アセチレンブラック(AB)粒子である。 Active material layers 105 and 106 are composed of active material particles 111, binder 113, and conductive particles 115, respectively. The weight ratio of the active material particles 111, the binder 113, and the conductive particles 115 is active material particles:binder:conductive particles=90:5:5. In Modification 1, the active material particles 111 are positive electrode active material particles capable of intercalating and deintercalating lithium ions, specifically lithium-transition metal composite oxide particles, specifically lithium-nickel-cobalt-manganese composite oxide particles. . Further, the binder 113 is PVDF, like the binder 13 of the first embodiment. Also, the conductive particles 115 are acetylene black (AB) particles.

この電極板101も、実施形態1の電極板1と概ね同様にして製造する。即ち、まず「混合粉体作製工程S101」において、活物質粒子111(本変形形態1ではリチウムニッケルコバルトマンガン複合酸化物粒子)からなる活物質粉体112と、結着剤粒子113P(本変形形態1ではPVDF粒子)からなる結着剤粉体114と、導電粒子115(AB粒子)からなる導電粉体116とを用い、それ以外は実施形態1の混合粉体作製工程S1と同様に混合して、活物質粒子111に結着剤粒子113P及び導電粒子115が付着した活物質複合粒子121からなる活物質複合粉体122を作製する(図3参照)。 This electrode plate 101 is also manufactured in substantially the same manner as the electrode plate 1 of the first embodiment. That is, first, in the “mixed powder preparation step S101”, active material powder 112 made of active material particles 111 (lithium-nickel-cobalt-manganese composite oxide particles in this modification 1) and binder particles 113P (this modification 1, a binder powder 114 made of PVDF particles) and a conductive powder 116 made of conductive particles 115 (AB particles) are used, and the rest is mixed in the same manner as in the mixed powder preparation step S1 of Embodiment 1. Then, an active material composite powder 122 composed of the active material composite particles 121 in which the binder particles 113P and the conductive particles 115 are attached to the active material particles 111 is produced (see FIG. 3).

次に、「造粒粉体作製工程S102」のうち「シート成形工程S121」で、活物質複合粉体122をプレスして、シート状圧粉体130を得る(図4参照)。その後、「破砕工程S122」で、このシート状圧粉体130を破砕して、破砕粒子131が集合した破砕粉体132を得る(図5参照)。 Next, in the "sheet forming step S121" of the "granulated powder preparation step S102", the active material composite powder 122 is pressed to obtain a sheet-like compact 130 (see FIG. 4). Thereafter, in the "crushing step S122", the sheet-like green compact 130 is crushed to obtain crushed powder 132 in which crushed particles 131 are aggregated (see FIG. 5).

その後、「整粒工程S123」で、破砕粉体132を整粒して、整粒粒子133が集合した整粒粉体134を得る(図6参照)。具体的には、実施形態1の整粒工程S23と同様にして、予め定めた粒度範囲PR1(本変形形態1では、メディアン径D50が130~170μmの範囲)内の整粒粉体134、具体的には粒度DC50(メディアン径)がDC50=約150μmの整粒粉体134を形成する。 After that, in the "sizing step S123", the crushed powder 132 is sieved to obtain a sizing powder 134 in which the sizing particles 133 are aggregated (see FIG. 6). Specifically, in the same manner as in the sizing step S23 of Embodiment 1, the sizing powder 134 within a predetermined particle size range PR1 (in the present modification 1, the median diameter D 50 is in the range of 130 to 170 μm), Specifically, a regulated powder 134 having a particle size DC 50 (median diameter) of DC 50 =about 150 μm is formed.

次に、「分級工程S124」で、整粒粉体134を分級して、所望の分級粒子135が集合した分級粉体136を得る(図7参照)。具体的には、実施形態1の整粒工程S23と同様にして、予め定めた粒度範囲PR2(本変形形態1では、メディアン径D50が130~170μmの範囲)内の分級粉体136、具体的には、粒度DD50(メディアン径)がDD50=約150μmの分級粉体136を得る。この分級粒子135からなる分級粉体136を、活物質造粒粒子141からなる活物質造粒粉体142として、その後の工程で用いる。この活物質造粒粉体142の安息角θは、θ≦40.0(deg)、具体的にはθ=36.9degである。 Next, in a "classifying step S124", the sized powder 134 is classified to obtain a classified powder 136 in which desired classified particles 135 are aggregated (see FIG. 7). Specifically, in the same manner as in the sizing step S23 of the first embodiment, the classified powder 136 within the predetermined particle size range PR2 (in the first modification, the median diameter D is in the range of 130 to 170 μm), Specifically, a classified powder 136 having a particle size DD 50 (median diameter) of DD 50 =approximately 150 μm is obtained. The classified powder 136 composed of the classified particles 135 is used in subsequent steps as the active material granulated powder 142 composed of the active material granulated particles 141 . The repose angle θ of this active material granulated powder 142 is θ≦40.0 (deg), specifically θ=36.9 deg.

次に、「第1供給工程S103」において、活物質造粒粉体142を均一厚みの層状に堆積整形し、活物質造粒粉体142の堆積層143を形成して、これを成膜領域MR1に供給する。
続いて、「第1未圧縮層形成工程S104」において、成膜領域MR1において、活物質造粒粒子141を集電箔103に向けて飛ばし、集電箔103上に活物質造粒粒子141を堆積させて未圧縮活物質層105Xを形成する。本変形形態1でも、安息角θ≦40.0(deg)、具体的には安息角θ=36.9degの流動性の高い活物質造粒粉体142を、成膜領域MR1に供給しているため、活物質造粒粉体142をなす活物質造粒粒子141同士が凝集せず、活物質造粒粒子141が個々に容易に飛翔し、効率よく堆積して未圧縮活物質層105Xが形成される。
その後、「第1プレス工程S105」において、未圧縮活物質層105X及び集電箔103を加熱プレスして、未圧縮活物質層105Xから活物質層105を形成し、片側電極板101Yを作製する。
Next, in the "first supply step S103", the active material granulated powder 142 is deposited and shaped into a layer having a uniform thickness to form a deposited layer 143 of the active material granulated powder 142, which is placed in the film formation region. Feed MR1.
Subsequently, in the "first uncompressed layer forming step S104", the active material granulated particles 141 are blown toward the current collector foil 103 in the film formation region MR1, and the active material granulated particles 141 are formed on the current collector foil 103. Deposit to form uncompressed active material layer 105X. In the present modification 1 as well, the highly fluid active material granulated powder 142 having the angle of repose θ≦40.0 (deg), specifically the angle of repose θ=36.9 deg, is supplied to the film formation region MR1. Therefore, the active material granulated particles 141 forming the active material granulated powder 142 do not aggregate, and the active material granulated particles 141 easily fly individually and efficiently accumulate to form the uncompressed active material layer 105X. It is formed.
After that, in the "first pressing step S105", the uncompressed active material layer 105X and the current collector foil 103 are hot-pressed to form the active material layer 105 from the uncompressed active material layer 105X, thereby fabricating the one-sided electrode plate 101Y. .

次に、「第2供給工程S106」において、活物質造粒粉体142を均一厚みの層状に堆積整形し、成膜領域MR1に供給する。続いて、「第1未圧縮層形成工程S107」において、成膜領域MR1において、活物質造粒粒子141を集電箔103に向けて飛ばし、集電箔103上に活物質造粒粒子141を堆積させて未圧縮活物質層106Xを形成する。その後、「第2プレス工程S108」において、未圧縮活物質層106X、集電箔103及び活物質層105を加熱プレスして、未圧縮活物質層106Xから活物質層106を形成し、電極板101を作製する。 Next, in the “second supply step S106”, the active material granulated powder 142 is deposited and shaped into a layer having a uniform thickness, and is supplied to the film formation region MR1. Subsequently, in the "first uncompressed layer forming step S107", the active material granulated particles 141 are blown toward the current collector foil 103 in the film formation region MR1, and the active material granulated particles 141 are formed on the current collector foil 103. Deposit to form uncompressed active material layer 106X. After that, in the “second pressing step S108”, the uncompressed active material layer 106X, the current collector foil 103, and the active material layer 105 are hot-pressed to form the active material layer 106 from the uncompressed active material layer 106X, and the electrode plate 101 is made.

(実施形態2及び変形形態2)
次いで、実施形態2及びその変形形態2について説明する。実施形態1及び変形形態1では、電極板(負極板)1又は電極板(正極板)101の製造にあたり、活物質層形成装置200(図8及び図9参照)の供給ロール220を用いて、活物質造粒粉体42,142を成膜領域MR1に供給した。これに対し、実施形態2及び変形形態2では、電極板(負極板)1又は電極板(正極板)101の製造にあたり、活物質層形成装置300(図10及び図11参照)のベルト型供給装置320を用いて、活物質造粒粉体42,142を成膜領域MR2に供給する点が異なる。
(Embodiment 2 and Modification 2)
Next, Embodiment 2 and its Modification 2 will be described. In Embodiment 1 and Modification 1, in manufacturing the electrode plate (negative electrode plate) 1 or the electrode plate (positive electrode plate) 101, the supply roll 220 of the active material layer forming apparatus 200 (see FIGS. 8 and 9) is used to Active material granulated powders 42 and 142 were supplied to the film formation region MR1. On the other hand, in Embodiment 2 and Modified Embodiment 2, when manufacturing the electrode plate (negative electrode plate) 1 or the electrode plate (positive electrode plate) 101, the belt type supply of the active material layer forming apparatus 300 (see FIGS. 10 and 11) is performed. The difference is that the device 320 is used to supply the active material granulated powders 42 and 142 to the film formation region MR2.

この活物質層形成装置300は、集電箔3,103上に未圧縮活物質層5X,105Xを形成する層形成部303と、実施形態1の活物質層形成装置200と同様なプレス部205とを備える。このうち層形成部303は、実施形態1のホッパー210、バックアップロール230及び直流電源240と同様のホッパー310、バックアップロール330、直流電源340のほか、供給ロール220に代わるベルト型供給装置320を有する。 This active material layer forming apparatus 300 includes a layer forming section 303 for forming uncompressed active material layers 5X and 105X on current collector foils 3 and 103, and a pressing section 205 similar to the active material layer forming apparatus 200 of the first embodiment. and Of these, the layer forming section 303 has a hopper 310, a backup roll 330, a DC power supply 340 similar to the hopper 210, the backup roll 230, and the DC power supply 240 of the first embodiment, and a belt-type supply device 320 instead of the supply roll 220. .

一方、ベルト型供給装置320は、ホッパー310から供給ベルト321のベルト表面321m上に供給された活物質造粒粉体42,142を、供給ベルト321と、バックアップロール330で搬送される集電箔3,103との間隙KF(成膜領域MR2)に向けて搬送可能に構成されている。具体的には、供給ベルト321は、一対の搬送ロール322,323に架け渡されている。各搬送ロール322,323の回転によって、供給ベルト321のうち上側の部分は、ホッパー310の下方から、バックアップロール330の下方の成膜領域MR2に向かって、図10中、右方に進む。 On the other hand, the belt-type supply device 320 feeds the active material granulated powders 42 and 142 supplied onto the belt surface 321m of the supply belt 321 from the hopper 310 to the current collecting foil conveyed by the supply belt 321 and the backup roll 330. 3 and 103 to the gap KF (film formation region MR2). Specifically, the supply belt 321 is stretched over a pair of transport rolls 322 and 323 . Due to the rotation of the transport rolls 322 and 323, the upper portion of the supply belt 321 advances rightward in FIG.

また、供給ベルト321の近傍には、第1振動子325及び第2振動子326が配置されている。第1振動子325は、ホッパー310からベルト表面321m上に供給された活物質造粒粉体42,142に、供給ベルト321の下方から振動を与えることによって活物質造粒粉体42,142を均して、活物質造粒粉体42,142を均一厚みの層状に堆積整形し、活物質造粒粉体42,142の堆積層43,143を形成する。
一方、第2振動子326は、成膜領域MR2の下方に配置されており、ベルト表面321m上の活物質造粒粉体42,142の堆積層43,143に、供給ベルト321の下方から振動を与えることによって、成膜領域MR2において、堆積層43,143をなす活物質造粒粒子41,141が集電箔3,103に向けて上方に飛翔し易くする。
A first oscillator 325 and a second oscillator 326 are arranged near the supply belt 321 . The first vibrator 325 vibrates the granulated active material powders 42 and 142 supplied from the hopper 310 onto the belt surface 321m from below the supply belt 321, thereby vibrating the granulated active material powders 42 and 142. The active material granulated powders 42 and 142 are evenly deposited and shaped into a layer having a uniform thickness to form deposited layers 43 and 143 of the active material granulated powders 42 and 142 .
On the other hand, the second vibrator 326 is arranged below the film formation region MR2, and vibrates the deposited layers 43, 143 of the active material granulated powders 42, 142 on the belt surface 321m from below the supply belt 321. , the active material granulated particles 41 and 141 forming the deposited layers 43 and 143 are made easier to fly upward toward the current collector foils 3 and 103 in the film formation region MR2.

次いで、実施形態2及び変形形態2による電極板1,101の製造方法について説明する。本実施形態2及び変形形態2でも、混合粉体作製工程S1,S101及び造粒粉体作製工程S2,S102は、実施形態1及び変形形態1と同様にして行う。その後、第1供給工程S3,S103以降の各工程を、上述の活物質層形成装置300を用いて行う。 Next, a method for manufacturing the electrode plates 1 and 101 according to Embodiment 2 and Modification 2 will be described. Also in the second embodiment and the second modification, the mixed powder preparation steps S1 and S101 and the granulated powder preparation steps S2 and S102 are performed in the same manner as in the first embodiment and the first modification. Thereafter, each step after the first supply step S3, S103 is performed using the active material layer forming apparatus 300 described above.

第1供給工程S3,S103では、活物質造粒粉体42,142を均一厚みの層状に堆積整形し、活物質造粒粉体42,142の堆積層43,143を形成して、成膜領域MR2に供給する。具体的には、ホッパー310から下方に供給された活物質造粒粉体42,142は、供給ベルト321のベルト表面321m上に配置される。このベルト表面321m上の活物質造粒粉体42,142は、搬送ロール322,323による供給ベルト321の移動に伴って、図8及び図9中、右方へ搬送され、第1振動子325による振動によって均一厚みの層状に堆積整形され、更にこの活物質造粒粉体42,142の堆積層43,143は成膜領域MR2に搬送される。 In the first supply steps S3 and S103, the active material granulated powders 42 and 142 are deposited and shaped into layers having a uniform thickness to form deposited layers 43 and 143 of the active material granulated powders 42 and 142, thereby forming a film. supply to region MR2. Specifically, the active material granulated powders 42 and 142 supplied downward from the hopper 310 are placed on the belt surface 321 m of the supply belt 321 . The active material granulated powder 42, 142 on the belt surface 321m is conveyed rightward in FIGS. The active material granulated powders 42 and 142 are deposited and shaped into layers 43 and 143 of a uniform thickness by the vibration caused by the vibration, and the deposited layers 43 and 143 of the active material granulated powders 42 and 142 are transported to the film forming region MR2.

続いて、第1未圧縮層形成工程S4,S104で、成膜領域MR2において、供給ベルト321と集電箔3,103との間に印加した直流電圧Vd2(実施形態2及び変形形態2では、Vd2=-2kV)により、活物質造粒粒子41,141をベルト表面321mから集電箔3,103に向けて飛ばし、集電箔3,103上に活物質造粒粒子41,141を堆積させて未圧縮活物質層5X,105Xを形成する。実施形態2及び変形形態2でも、安息角θ≦40.0(deg)の流動性の高い活物質造粒粉体42,142を、成膜領域MR2に供給しているため、活物質造粒粉体42,142をなす活物質造粒粒子41,141同士が凝集せず、活物質造粒粒子41,141が個々に容易に飛翔し、効率よく堆積して未圧縮活物質層5X,105Xが形成される。 Subsequently, in first uncompressed layer forming steps S4 and S104, DC voltage Vd2 (in Embodiment 2 and Modification 2, Vd2=−2 kV), the active material granulated particles 41, 141 are blown from the belt surface 321m toward the current collector foil 3, 103, and the active material granulated particles 41, 141 are deposited on the current collector foil 3, 103. to form uncompressed active material layers 5X and 105X. Also in Embodiment 2 and Modified Embodiment 2, the highly fluid active material granulated powders 42 and 142 having a repose angle θ≦40.0 (deg) are supplied to the film forming region MR2. Granulated active material particles 41 and 141 forming powders 42 and 142 do not agglomerate, and granulated active material particles 41 and 141 easily fly individually and efficiently accumulate to form uncompressed active material layers 5X and 105X. is formed.

続いて、第1プレス工程S5,S105において、実施形態1及び変形形態1と同様に、プレス部205において未圧縮活物質層5X,105X及び集電箔3,103を加熱プレスして、未圧縮活物質層5X,105Xから活物質層5,105を形成し、片側電極板1Y,101Yを作製する。 Subsequently, in the first pressing steps S5 and S105, the uncompressed active material layers 5X and 105X and the current collector foils 3 and 103 are hot-pressed in the press section 205 to obtain uncompressed Active material layers 5 and 105 are formed from active material layers 5X and 105X, and one-side electrode plates 1Y and 101Y are produced.

次に、この片側電極板1Y,101Yについて、活物質層形成装置300を用い、第1供給工程S3,S103と同様な第2供給工程S6,S106と、第1未圧縮層形成工程S4,S104と同様な第2未圧縮層形成工程S7,S107を行って、集電箔3,103上に第2未圧縮活物質層6X,106Xを形成する。更に、第1プレス工程S5,S105と同様な第2プレス工程S8,S108を行って、第2未圧縮活物質層6X,106Xから第2活物質層6,106を形成し、電極板(負極板)1又は電極板(正極板)101を作製する。 Next, second supply steps S6 and S106 similar to the first supply steps S3 and S103 and first uncompressed layer formation steps S4 and S104 are performed on the one-side electrode plates 1Y and 101Y using the active material layer forming apparatus 300. Second uncompressed layer forming steps S7 and S107 similar to , are performed to form second uncompressed active material layers 6X and 106X on current collector foils 3 and 103, respectively. Furthermore, second pressing steps S8 and S108 similar to the first pressing steps S5 and S105 are performed to form the second active material layers 6 and 106 from the second uncompressed active material layers 6X and 106X, and the electrode plates (negative electrodes plate) 1 or an electrode plate (positive electrode plate) 101 is produced.

(実験結果)
次いで、本発明の効果を検証するために行った実験結果について説明する。まず電極板(負極板)1の製造において、供給工程S3で用いる活物質粉体(活物質複合粉体22または活物質造粒粉体42)の安息角θ(deg)と、未圧縮層形成工程S4において活物質粒子(活物質複合粒子21または活物質造粒粒子41)が集電箔3に向けて飛翔する飛翔し易さ(飛翔性)との関係について調査した。
(Experimental result)
Next, the results of experiments conducted to verify the effects of the present invention will be described. First, in the manufacture of the electrode plate (negative electrode plate) 1, the angle of repose θ (deg) of the active material powder (the active material composite powder 22 or the active material granulated powder 42) used in the supply step S3 and the uncompressed layer formation In step S4, the relationship between the easiness of flight (flyability) of the active material particles (active material composite particles 21 or active material granulated particles 41) to fly toward the current collector foil 3 was investigated.

比較例1として、実施形態1の混合粉体作製工程S1で得た(造粒粉体作製工程S2は行っていない)、活物質複合粒子21からなる活物質複合粉体22(安息角θ=46.2deg)をそのまま用いて、それ以外は実施形態1と同様に供給工程S3~プレス工程S5を行って、片側電極板1Yを作製した。 As Comparative Example 1, active material composite powder 22 (angle of repose θ = 46.2deg) was used as it was, and the supply step S3 to the press step S5 were carried out in the same manner as in Embodiment 1 except for this to fabricate the one-side electrode plate 1Y.

Figure 2022150670000002
Figure 2022150670000002

次に、実施例1~5として、供給工程S3で用いる活物質造粒粉体42の製造手法以外は、実施形態1と同様に混合粉体作製工程S1~プレス工程S5を行って、片側電極板1Yをそれぞれ作製した。具体的には、実施例1では、分級工程S24において53μmの篩から落ちた、主に粒径53μm未満の活物質造粒粒子41からなる活物質造粒粉体42(安息角θ=40.5deg)を用いて、供給工程S3~プレス工程S5を行い、片側電極板1Yを作製した。
実施例2では、分級工程S24において100μmの篩を通過したが53μmの篩の上に残った、主に粒径53~100μmの活物質造粒粒子41からなる活物質造粒粉体42(安息角θ=36.1deg)を用いて供給工程S3~プレス工程S5を行った。
Next, as Examples 1 to 5, the mixed powder production step S1 to the pressing step S5 were performed in the same manner as in Embodiment 1 except for the method of manufacturing the active material granulated powder 42 used in the supply step S3, and one-sided electrode Plate 1Y was produced respectively. Specifically, in Example 1, the active material granulated powder 42 (angle of repose θ=40. 5deg), the supplying step S3 to the pressing step S5 were performed to fabricate the one-sided electrode plate 1Y.
In Example 2, in the classification step S24, the granulated active material powder 42 (rest The supply step S3 to the press step S5 were performed using the angle θ=36.1 deg).

実施例3では、分級工程S24において212μmの篩を通過したが100μmの篩の上に残った、主に粒径100~212μmの活物質造粒粒子41からなる活物質造粒粉体42(安息角θ=35.8deg)を用いて供給工程S3~プレス工程S5を行った。
実施例4では、分級工程S24において425μmの篩を通過したが212μmの篩の上に残った、主に粒径212~425μmの活物質造粒粒子41からなる活物質造粒粉体42(安息角θ=35.3deg)を用いて供給工程S3~プレス工程S5を行った。
実施例5では、分級工程S24において425μmの篩の上に残った、主に粒径425μmを超える活物質造粒粒子41からなる活物質造粒粉体42(安息角θ=34.1deg)を用いて供給工程S3~プレス工程S5を行った。
In Example 3, in the classification step S24, the granulated active material powder 42 (rest The supply step S3 to the press step S5 were performed using the angle θ=35.8 deg).
In Example 4, the active material granulated powder 42 (rest The supply step S3 to the press step S5 were performed using the angle θ=35.3 deg).
In Example 5, the active material granulated powder 42 (angle of repose θ = 34.1 deg) mainly composed of the active material granulated particles 41 having a particle size of more than 425 µm, which remained on the 425 µm sieve in the classification step S24, was collected. The supply step S3 to the press step S5 were carried out using this.

次に、電極板(正極板)101についても同様に、比較例2及び実施例6~10の片側電極板101Yをそれぞれ作製した。即ち、比較例2として、変形形態1の混合粉体作製工程S101で得た(造粒粉体作製工程S2は行っていない)、活物質複合粒子121からなる活物質複合粉体122(安息角θ=67.6deg)をそのまま用いて、それ以外は変形形態1と同様に供給工程S103~プレス工程S105を行って、片側電極板101Yを作製した。 Next, for the electrode plate (positive electrode plate) 101, similarly, one-side electrode plates 101Y of Comparative Example 2 and Examples 6 to 10 were produced. That is, as Comparative Example 2, active material composite powder 122 (angle of repose θ=67.6 deg) was used as it was, and the supply step S103 to the press step S105 were carried out in the same manner as in Modified Embodiment 1 to produce the one-sided electrode plate 101Y.

また、実施例6~10として、供給工程S103で用いる活物質造粒粉体142の製造手法以外は、変形形態1と同様に混合粉体作製工程S101~プレス工程S105を行って、片側電極板101Yをそれぞれ作製した。具体的には、実施例6では、分級工程S124において53μmの篩から落ちた、主に粒径53μm未満の活物質造粒粒子141からなる活物質造粒粉体142(安息角θ=50.4deg)を用いて、供給工程S103~プレス工程S105を行い、片側電極板101Yを作製した。
また、実施例7では、分級工程S124において100μmの篩を通過したが53μmの篩の上に残った、主に粒径53~100μmの活物質造粒粒子141からなる活物質造粒粉体142(安息角θ=39.6deg)を用いて供給工程S103~プレス工程S105を行った。
Further, as Examples 6 to 10, the mixed powder preparation step S101 to the pressing step S105 were performed in the same manner as in Modification 1 except for the method of manufacturing the active material granulated powder 142 used in the supply step S103, and the one-side electrode plate was prepared. 101Y were prepared respectively. Specifically, in Example 6, active material granulated powder 142 (angle of repose θ=50. 4deg), the supplying step S103 to the pressing step S105 were performed to fabricate the one-sided electrode plate 101Y.
Further, in Example 7, active material granulated powder 142 mainly composed of active material granulated particles 141 having a particle size of 53 to 100 μm, which passed through a 100 μm sieve in the classification step S124 but remained on the 53 μm sieve. (Angle of repose θ=39.6 deg) was used to perform the supply step S103 to the press step S105.

また、実施例8では、分級工程S124において212μmの篩を通過したが100μmの篩の上に残った、主に粒径100~212μmの活物質造粒粒子141からなる活物質造粒粉体142(安息角θ=35.8deg)を用いて供給工程S103~プレス工程S105を行った。
また、実施例9では、分級工程S124において425μmの篩を通過したが212μmの篩の上に残った、主に粒径212~425μmの活物質造粒粒子141からなる活物質造粒粉体142(安息角θ=35.3deg)を用いて供給工程S103~プレス工程S105を行った。
また、実施例10では、分級工程S124において425μmの篩の上に残った、主に粒径425μmが超える活物質造粒粒子141からなる活物質造粒粉体142(安息角θ=34.1deg)を用いて供給工程S103~プレス工程S105を行った。
In Example 8, active material granulated powder 142 mainly composed of active material granulated particles 141 having a particle size of 100 to 212 μm, which passed through a 212 μm sieve in the classification step S124 but remained on the 100 μm sieve. (Angle of repose θ=35.8 deg) was used to perform the supply step S103 to the press step S105.
In Example 9, active material granulated powder 142 mainly composed of active material granulated particles 141 having a particle size of 212 to 425 μm, which passed through a 425 μm sieve in the classification step S124 but remained on the 212 μm sieve. (Angle of repose θ=35.3 deg) was used to perform the supply step S103 to the press step S105.
In Example 10, active material granulated powder 142 (angle of repose θ = 34.1 deg ) was used to perform the supply step S103 to the press step S105.

その結果、比較例1,2では、未圧縮層形成工程S4,S104において、活物質複合粒子21,121が殆ど集電箔3,103に向けて飛翔しなかった(表1の飛翔性評価の欄に「×」印を示す)。このため、未圧縮活物質層5X,105Xは殆ど形成されず、活物質層5,105も殆ど形成されなかった。活物質複合粉体22,122は、活物質造粒粉体142よりも安息角θが大きく、流動性が低い。このような流動性の低い活物質複合粉体22,122は、粒子間の凝集力が強いため、成膜領域MR1において活物質複合粒子21,121が集電箔3,103に向けて飛翔しなかったと考えられる。 As a result, in Comparative Examples 1 and 2, the active material composite particles 21 and 121 hardly flew toward the current collector foils 3 and 103 in the uncompressed layer forming steps S4 and S104 (flying property evaluation in Table 1). "X" marks are shown in the columns). Therefore, the uncompressed active material layers 5X and 105X were hardly formed, and the active material layers 5 and 105 were hardly formed. The active material composite powders 22 and 122 have a larger repose angle θ than the active material granulated powder 142 and have lower fluidity. Such active material composite powders 22 and 122 with low fluidity have a strong cohesive force between particles, so that the active material composite particles 21 and 121 fly toward the current collector foils 3 and 103 in the film formation region MR1. It is thought that there was not.

これに対し、実施例1~10では、未圧縮層形成工程S4,S104において、成膜領域MR1に供給した活物質造粒粒子41,141のうち、30%以上の活物質造粒粒子41,141が集電箔3,103に向けて飛翔した。このため、未圧縮活物質層5X,105Xが適切に形成され、活物質層5,105も適切に形成された。特に実施例2~5,7~10では、成膜領域MR1に供給した活物質造粒粒子41,141のうち、80%以上の活物質造粒粒子41,141が集電箔3,103に向けて飛翔した。このため、実施例1,6よりも実施例2~5,7~10で、目付量の多い未圧縮活物質層5X,105Xが形成され、目付量の多い活物質層5,105が形成された。なお、表1の飛翔性評価の欄に、実施例1,5は「〇」印、実施例2~5,7~10は「◎」印を示す。 On the other hand, in Examples 1 to 10, 30% or more of the active material granulated particles 41 and 141 supplied to the film formation region MR1 in the uncompressed layer forming steps S4 and S104 141 flew toward the collector foils 3 and 103 . Therefore, the uncompressed active material layers 5X and 105X were properly formed, and the active material layers 5 and 105 were also properly formed. In particular, in Examples 2 to 5 and 7 to 10, 80% or more of the active material granulated particles 41 and 141 supplied to the film forming region MR1 were deposited on the current collector foils 3 and 103. flew towards it. Therefore, in Examples 2 to 5 and 7 to 10, uncompressed active material layers 5X and 105X with a larger basis weight are formed, and active material layers 5 and 105 with a larger basis weight are formed in Examples 2 to 5 and 7 to 10 than in Examples 1 and 6. rice field. In addition, in the flight performance evaluation column of Table 1, Examples 1 and 5 are marked with "O", and Examples 2 to 5 and 7 to 10 are marked with "◎".

実施例1~10で用いた活物質造粒粉体42,142は、流動性が高く、活物質造粒粒子41,141同士が凝集し難い。特に実施例2~5,7~10で用いた活物質造粒粉体42,142は、いずれも安息角θが40.0deg以下で流動性が高く、活物質造粒粒子41,141同士が特に凝集し難い。このように個々の活物質造粒粒子41,141がバラバラになっている一方、大きさに応じた適量の電荷が帯電しているため、成膜領域MR1において、印加された直流電圧Vd1により、活物質造粒粒子41,141が容易に個々に飛翔する。これにより、多くの活物質造粒粒子41,141を集電箔3,103に向けて飛翔させ得た考えられる。
これらの結果から、供給工程S3,S103~プレス工程S5,S105は、活物質造粒粒子41,141からなる活物質造粒粉体42,142を用いて行うのが好ましく、更には、安息角θ≦40.0(deg)を満たす活物質造粒粉体42,142を用いて行うのが特に好ましいことが判る。
The active material granulated powders 42 and 142 used in Examples 1 to 10 have high fluidity, and the active material granulated particles 41 and 141 are less likely to agglomerate. In particular, the active material granulated powders 42 and 142 used in Examples 2 to 5 and 7 to 10 each have an angle of repose θ of 40.0 deg or less and have high fluidity, and the active material granulated particles 41 and 141 It is particularly difficult to agglomerate. In this way, while the individual granulated active material particles 41 and 141 are separated, they are charged with an appropriate amount of charge according to their size. Active material granulated particles 41 and 141 easily fly individually. As a result, it is considered that many active material granulated particles 41 and 141 were able to fly toward the current collector foils 3 and 103 .
From these results, the supply steps S3, S103 to the pressing steps S5, S105 are preferably performed using the active material granulated powders 42, 142 composed of the active material granulated particles 41, 141. Furthermore, the repose angle It can be seen that it is particularly preferable to use active material granulated powders 42 and 142 satisfying θ≦40.0 (deg).

以上で説明したように、電極板1,101の製造方法では、活物質粒子11,111に結着剤粒子13P,113Pが付着した活物質複合粒子21,121同士が互いに結合した活物質造粒粒子41,141からなる活物質造粒粉体42,142を用いて、供給工程S3,S6,S103,S106、未圧縮層形成工程S4,S7,S104,S107及びプレス工程S5,S8,S105,S108を行う。比較的小粒径の活物質複合粒子21,121同士に比べて、複数の活物質複合粒子21,121同士が結合して比較的大粒径となった活物質造粒粒子41,141同士の凝集力は弱い。このため、未圧縮層形成工程S4,S7,S104,S107において、活物質造粒粒子41,141を静電気力Fs1,Fs2により集電箔3,103に向けて適切に飛翔させることができ、集電箔3,103上に未圧縮活物質層5X,6X,105X,106Xを適切に形成できる。そして、活物質層5,6,105,106を適切に形成できる。 As described above, in the method for manufacturing the electrode plates 1 and 101, the active material composite particles 21 and 121 in which the binder particles 13P and 113P are attached to the active material particles 11 and 111 are bound to each other by active material granulation. Using the active material granulated powder 42, 142 composed of the particles 41, 141, supply steps S3, S6, S103, S106, uncompressed layer forming steps S4, S7, S104, S107 and pressing steps S5, S8, S105, S108 is performed. Compared to the active material composite particles 21 and 121 having relatively small particle diameters, the active material granulated particles 41 and 141 having relatively large particle diameters due to the bonding of a plurality of active material composite particles 21 and 121 to each other. Cohesion is weak. Therefore, in the uncompressed layer forming steps S4, S7, S104, and S107, the active material granulated particles 41 and 141 can be appropriately caused to fly toward the current collector foils 3 and 103 by the electrostatic forces Fs1 and Fs2. Uncompressed active material layers 5X, 6X, 105X, and 106X can be appropriately formed on the electric foils 3 and 103. Then, the active material layers 5, 6, 105 and 106 can be properly formed.

更に、電極板1,101の製造方法では、供給工程S3,S6,S103,S106において、流動性の高い、具体的には安息角θがθ≦40.0(deg)の活物質造粒粉体42,142を用いている。このような流動性の高い活物質造粒粉体42,142は、粒子間の凝集力が特に弱いため、未圧縮層形成工程S4,S7,S104,S107において、活物質造粒粒子41,141がより一層、集電箔3,103に向けて飛翔し易くなり、未圧縮活物質層5X,6X,105X,106Xをより適切に形成でき、活物質層5,6,105,106をより適切に形成できる。 Further, in the method for manufacturing the electrode plates 1 and 101, in the supply steps S3, S6, S103, and S106, the active material granulated powder having high fluidity, specifically, an angle of repose θ≦40.0 (deg) A body 42, 142 is used. Such highly fluid active material granulated powders 42 and 142 have a particularly weak cohesive force between particles. is more likely to fly toward the current collector foils 3 and 103, the uncompressed active material layers 5X, 6X, 105X, and 106X can be formed more appropriately, and the active material layers 5, 6, 105, and 106 can be formed more appropriately. can be formed to

また、電極板1,101の製造方法では、シート成形工程S21,S121、破砕工程S22,S122及び整粒工程S23,S123を有する造粒粉体作製工程S2,S102を備えている。このような造粒粉体作製工程S2,S102を行うことで、安息角θ≦40.0(deg)で所望の流動性を有する活物質造粒粉体42,142を容易に作製できる。従って、この活物質造粒粉体42,142を用いることにより、未圧縮活物質層5X,6X,105X,106Xをより適切に形成でき、活物質層5,6,105,106をより適切に形成できる。 Further, the method for manufacturing the electrode plates 1 and 101 includes granulated powder production steps S2 and S102 having sheet forming steps S21 and S121, crushing steps S22 and S122, and sizing steps S23 and S123. By performing the granulated powder production steps S2 and S102, the active material granulated powders 42 and 142 having desired fluidity at the angle of repose θ≦40.0 (deg) can be easily produced. Therefore, by using the active material granulated powder 42, 142, the uncompressed active material layers 5X, 6X, 105X, 106X can be formed more appropriately, and the active material layers 5, 6, 105, 106 can be formed more appropriately. can be formed.

また、電極板1,101の製造方法では、造粒粉体作製工程S2,S102は、分級工程S24,S124を更に有する。これにより、より適切な流動性を有する活物質造粒粉体42,142を容易に作製できる。従って、この活物質造粒粉体42,142を用いることにより、未圧縮活物質層5X,6X,105X,106Xをより適切に形成でき、活物質層5,6,105,106をより適切に形成できる。 In the method of manufacturing the electrode plates 1 and 101, the granulated powder production steps S2 and S102 further include classification steps S24 and S124. Thereby, the active material granulated powders 42 and 142 having more suitable fluidity can be easily produced. Therefore, by using the active material granulated powder 42, 142, the uncompressed active material layers 5X, 6X, 105X, 106X can be formed more appropriately, and the active material layers 5, 6, 105, 106 can be formed more appropriately. can be formed.

以上において、本発明を実施形態1,2及び変形形態1,2に即して説明したが、本発明は実施形態1,2及び変形形態1,2に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態1,2等では、造粒のほか、整粒及び分級を行って得た活物質造粒粉体42,142を用いて、供給工程S3,S6,S103,S106を行ったが、これに限られない。整粒や分級を行わないで得た活物質造粒粉体を用いて、供給工程S3,S6等を行ってもよい。
In the above, the present invention has been described in accordance with Embodiments 1 and 2 and Modified Embodiments 1 and 2, but the present invention is not limited to Embodiments 1 and 2 and Modified Embodiments 1 and 2. Needless to say, it can be applied with appropriate changes within a range that does not deviate.
For example, in Embodiments 1, 2, etc., supply steps S3, S6, S103, and S106 were performed using the active material granulated powders 42 and 142 obtained by granulation, sizing, and classification. , but not limited to this. The supply steps S3, S6, etc. may be performed using the active material granulated powder obtained without sizing or classification.

1 電極板(負極板)
101 電極板(正極板)
3,103 集電箔
5,105 第1活物質層
5X,105X 第1未圧縮活物質層
6,106 第2活物質層
6X,106X 第2未圧縮活物質層
11,111 活物質粒子
12,112 活物質粉体
13,113 結着剤
13P,113P 結着剤粒子
14,114 結着剤粉体
21,121 活物質複合粒子
22,122 活物質複合粉体
30,130 シート状圧粉体
31,131 破砕粒子
32,132 破砕粉体
33,133 整粒粒子
34,134 整粒粉体
35,135 分級粒子
36,136 分級粉体
41,141 活物質造粒粒子
42,142 活物質造粒粉体
43,143 (活物質造粒粉体の)堆積層
200,300 活物質層形成装置
210,310 ホッパー
220 供給ロール
230,330 バックアップロール
240,340 直流電源
320 ベルト型供給装置
321 供給ベルト
DA50 (活物質複合粉体の)メディアン径
DB50 (破砕粉体の)メディアン径
DC50 (整粒粉体の)メディアン径
DD50 (分級粉体の)メディアン径
PR1 (整粒粉体の予め定めた)粒度範囲
PR2 (分級粉体の予め定めた)粒度範囲
MR1,MR2 成膜領域
Fs1,Fs2 静電気力
S1,S101 混合粉体作製工程
S2,S102 造粒粉体作製工程
S21,S121 シート成形工程
S22,S122 破砕工程
S23,S123 整粒工程
S24,S124 分級工程
S3,S103 第1供給工程
S4,S104 第1未圧縮層形成工程
S5,S105 第1プレス工程
S6,S106 第2供給工程
S7,S107 第2未圧縮層形成工程
S8,S108 第2プレス工程
1 electrode plate (negative plate)
101 electrode plate (positive electrode plate)
3, 103 current collector foils 5, 105 first active material layers 5X, 105X first uncompressed active material layers 6, 106 second active material layers 6X, 106X second uncompressed active material layers 11, 111 active material particles 12, 112 Active material powders 13, 113 Binders 13P, 113P Binder particles 14, 114 Binder powders 21, 121 Active material composite particles 22, 122 Active material composite powders 30, 130 Sheet-like green compact 31 , 131 Crushed particles 32, 132 Crushed powder 33, 133 Sized particles 34, 134 Sized powder 35, 135 Classified particles 36, 136 Classified powder 41, 141 Active material granulated particles 42, 142 Active material granulated powder Body 43, 143 (active material granulated powder) deposited layers 200, 300 active material layer forming device 210, 310 hopper 220 supply rolls 230, 330 backup rolls 240, 340 DC power supply 320 belt type supply device 321 supply belt DA 50 Median diameter (of active material composite powder) DB 50 Median diameter (of crushed powder) DC 50 (of sizing powder) Median diameter DD 50 (of classified powder) Median diameter PR1 (predetermined of sizing powder) Particle size range PR2 (Predetermined particle size range of classified powder) MR1, MR2 Film forming regions Fs1, Fs2 Electrostatic forces S1, S101 Mixed powder production steps S2, S102 Granulated powder production steps S21, S121 Sheet forming step S22, S122 Crushing steps S23, S123 Grain regulating steps S24, S124 Classification steps S3, S103 First supply steps S4, S104 First uncompressed layer formation steps S5, S105 First press steps S6, S106 Second supply steps S7, S107 Second uncompressed layer forming steps S8, S108 Second pressing step

Claims (4)

集電箔上に、活物質粒子及び結着剤を含む活物質層を備える電極板の製造方法であって、
上記活物質粒子に結着剤粒子が付着した活物質複合粒子同士が互いに結合した活物質造粒粒子が集合した活物質造粒粉体を、均一厚みの層状に堆積整形して、成膜領域に供給する供給工程と、
上記成膜領域において、静電気力により、上記活物質造粒粒子を上記集電箔に向けて飛ばし、上記集電箔上に上記活物質造粒粒子を堆積させて、未圧縮の未圧縮活物質層を形成する未圧縮層形成工程と、
上記未圧縮活物質層及び上記集電箔を加熱プレスして、上記未圧縮活物質層から上記活物質層を形成するプレス工程と、を備える
電極板の製造方法。
A method for manufacturing an electrode plate comprising an active material layer containing active material particles and a binder on a current collector foil, comprising:
The active material granulated powder, in which the active material granulated particles in which the active material composite particles having the binder particles attached to the active material particles are bonded to each other, is deposited and shaped into a layer having a uniform thickness to form a film forming region. a supply step for supplying to
In the film formation region, the active material granulated particles are blown toward the current collector foil by electrostatic force, the active material granulated particles are deposited on the current collector foil, and the uncompressed uncompressed active material an uncompressed layer forming step of forming a layer;
and a pressing step of hot-pressing the uncompressed active material layer and the current collector foil to form the active material layer from the uncompressed active material layer.
請求項1に記載の電極板の製造方法であって、
前記供給工程は、
安息角θがθ≦40.0(deg)の前記活物質造粒粉体を用いる
電極板の製造方法。
A method for manufacturing the electrode plate according to claim 1,
The supply step includes
A method for producing an electrode plate using the active material granulated powder having an angle of repose θ≦40.0 (deg).
請求項2に記載の電極板の製造方法であって、
前記供給工程に先立ち、前記活物質複合粒子が集合した活物質複合粉体から、前記活物質造粒粒子が集合した前記活物質造粒粉体を作製する造粒粉体作製工程を更に備えており、
上記造粒粉体作製工程は、
上記活物質複合粉体をプレスして、シート状圧粉体を得るシート成形工程と、
上記シート状圧粉体を破砕し、破砕粉体を得る破砕工程と、
上記破砕粉体を整粒して、予め定めた粒度範囲内の粒度を有する整粒粉体を得る整粒工程と、を有する
電極板の製造方法。
A method for manufacturing the electrode plate according to claim 2,
Prior to the supply step, a granulated powder producing step of producing the active material granulated powder in which the active material granulated particles are aggregated from the active material composite powder in which the active material composite particles are aggregated is further provided. cage,
The granulated powder preparation process includes:
a sheet forming step of pressing the active material composite powder to obtain a sheet-like green compact;
A crushing step of crushing the sheet-like compact to obtain crushed powder;
and a sizing step of sizing the crushed powder to obtain a sizing powder having a particle size within a predetermined particle size range.
請求項3に記載の電極板の製造方法であって、
前記造粒粉体作製工程は、
前記整粒工程で得られた前記整粒粉体を分級して、予め定めた粒度範囲内の粒度を有する分級粉体を得る分級工程を更に有する
電極板の製造方法。
A method for manufacturing an electrode plate according to claim 3,
The granulated powder preparation step includes:
A method for manufacturing an electrode plate, further comprising a classifying step of classifying the sized powder obtained in the sizing step to obtain a classified powder having a grain size within a predetermined grain size range.
JP2021053373A 2021-03-26 2021-03-26 Electrode plate manufacturing method Active JP7301087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021053373A JP7301087B2 (en) 2021-03-26 2021-03-26 Electrode plate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021053373A JP7301087B2 (en) 2021-03-26 2021-03-26 Electrode plate manufacturing method

Publications (2)

Publication Number Publication Date
JP2022150670A true JP2022150670A (en) 2022-10-07
JP7301087B2 JP7301087B2 (en) 2023-06-30

Family

ID=83464559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021053373A Active JP7301087B2 (en) 2021-03-26 2021-03-26 Electrode plate manufacturing method

Country Status (1)

Country Link
JP (1) JP7301087B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015026432A (en) * 2013-07-24 2015-02-05 日本ゼオン株式会社 Composite particle with reduced particle size for electrochemical element electrode and method for producing composite particle with reduced particle size for electrochemical element electrode
JP2016119207A (en) * 2014-12-19 2016-06-30 トヨタ自動車株式会社 Manufacturing apparatus for electrode for lithium ion secondary battery
JP2020092020A (en) * 2018-12-06 2020-06-11 トヨタ自動車株式会社 Electrode sheet manufacturing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015026432A (en) * 2013-07-24 2015-02-05 日本ゼオン株式会社 Composite particle with reduced particle size for electrochemical element electrode and method for producing composite particle with reduced particle size for electrochemical element electrode
JP2016119207A (en) * 2014-12-19 2016-06-30 トヨタ自動車株式会社 Manufacturing apparatus for electrode for lithium ion secondary battery
JP2020092020A (en) * 2018-12-06 2020-06-11 トヨタ自動車株式会社 Electrode sheet manufacturing device

Also Published As

Publication number Publication date
JP7301087B2 (en) 2023-06-30

Similar Documents

Publication Publication Date Title
JP6597701B2 (en) Negative electrode mixture, negative electrode including the negative electrode mixture, and all-solid-state lithium ion secondary battery including the negative electrode
JP7261601B2 (en) Method for manufacturing battery electrode
US20200295353A1 (en) Electrode sheet manufacturing method
US20210351393A1 (en) Powder applying apparatus, energy device manufacturing method, positive electrode for battery, and negative electrode for battery
JPWO2013027686A1 (en) Composite active material for lithium secondary battery and method for producing the same
KR102067640B1 (en) Lithium transition metal phosphate secondary agglomerates and process for its manufacture
CN109962221B (en) Composite positive electrode material, positive plate, preparation method of positive plate and lithium ion battery
KR20090125281A (en) Positive electrode active material sintered body for battery
JP2019106286A (en) Positive electrode mixture, positive electrode active material layer, all-solid battery and method for manufacturing positive electrode active material layer
JP2015057364A (en) Method of producing plurality of thin sheet-like silicon materials, silicon negative electrode of lithium ion secondary battery, and production method of the electrode
JP6700204B2 (en) Electrode manufacturing method
KR102550755B1 (en) A method for manufacturing silicon powder for secondary battery and silicon powder
JP7301087B2 (en) Electrode plate manufacturing method
KR20210058684A (en) Method for producing all solid state battery and all solid state battery
JP5944853B2 (en) Lithium ion secondary battery electrode sheet manufacturing apparatus and lithium ion secondary battery electrode sheet manufacturing method
JP2012113945A (en) Negative electrode material for lithium ion battery and method for producing the same
US11949094B2 (en) Method for manufacturing electrode for secondary battery, and moisture powder
WO2020090340A1 (en) Glass frit, crystallized glass, method for producing crystallized glass, solid electrolyte, and lithium ion secondary battery
JP2013219018A (en) Composite active material for lithium secondary battery and production method therefor
JP7339133B2 (en) Electrode plate manufacturing method
CN107086291B (en) The method for producing electrode plate
JP2022106594A (en) Active material layer forming device and manufacturing method of electrode plate
WO2023171062A1 (en) Powder coating device
JP7402838B2 (en) Manufacturing method of negative electrode plate
US20230246159A1 (en) Electrode for Energy Storage Device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230620

R150 Certificate of patent or registration of utility model

Ref document number: 7301087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150