JP2022150658A - Magnetic recording medium and magnetic storage device - Google Patents

Magnetic recording medium and magnetic storage device Download PDF

Info

Publication number
JP2022150658A
JP2022150658A JP2021053351A JP2021053351A JP2022150658A JP 2022150658 A JP2022150658 A JP 2022150658A JP 2021053351 A JP2021053351 A JP 2021053351A JP 2021053351 A JP2021053351 A JP 2021053351A JP 2022150658 A JP2022150658 A JP 2022150658A
Authority
JP
Japan
Prior art keywords
magnetic recording
magnetic
recording layer
layer
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021053351A
Other languages
Japanese (ja)
Inventor
健洋 山口
Takehiro Yamaguchi
寿人 柴田
Hisato Shibata
隆之 福島
Takayuki Fukushima
晨 徐
Chen Xu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2021053351A priority Critical patent/JP2022150658A/en
Priority to US17/650,119 priority patent/US20220310119A1/en
Priority to CN202210282511.1A priority patent/CN115132233A/en
Publication of JP2022150658A publication Critical patent/JP2022150658A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/82Disk carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/012Recording on, or reproducing or erasing from, magnetic disks

Abstract

To provide a magnetic recording medium capable of having excellent electromagnetic conversion characteristics.SOLUTION: A magnetic recording medium according to the present invention includes a substrate, a ground layer, and a magnetic layer containing an alloy having an L10 type crystal structure laminated in this order. The ground layer contains MgO, the magnetic layer has at least three or more layers, when the three magnetic layers are a first magnetic recording layer, a second magnetic recording layer, and a third magnetic recording layer in order from the substrate side, Curie temperature Tc of the second magnetic recording layer is -30K to -100K lower than the Curie temperature Tc of the first magnetic recording layer and the third magnetic recording layer, respectively, and the average grain size of a bottom portion of magnetic grains forming the first magnetic recording layer is more than 15% smaller than the average grain size of the bottom portion of the magnetic grains forming the second magnetic recording layer and the third magnetic recording layer.SELECTED DRAWING: Figure 1

Description

本発明は、磁気記録媒体及び磁気記憶装置に関する。 The present invention relates to magnetic recording media and magnetic storage devices.

磁気記録媒体は、一般に、基板上に、下地層、磁性層及び保護層をこの順に積層して備える。磁気記録媒体に磁気情報を記録する方法として、磁気記録媒体にレーザー光又はマイクロ波を照射して局所的に保磁力を低下させて磁気情報を記録する熱アシスト記録方式又はマイクロ波アシスト記録方式がある。熱アシスト記録方式及びマイクロ波アシスト記録方式は、2Tbit/inchクラスの面記録密度を実現することができることから、磁気記録媒体の小型化、薄板化、高記録密度化に伴い、記憶容量を高めることができる次世代の磁気記録方式として検討されている。 A magnetic recording medium generally comprises an underlayer, a magnetic layer and a protective layer laminated in this order on a substrate. As a method for recording magnetic information on a magnetic recording medium, there is a heat-assisted recording method or a microwave-assisted recording method in which the magnetic recording medium is irradiated with laser light or microwaves to locally decrease the coercive force to record magnetic information. be. Thermally-assisted recording and microwave-assisted recording can achieve two-class areal recording densities of 2 Tbit/inch, so the storage capacity will increase as magnetic recording media become smaller, thinner, and have higher recording densities. It is considered as a next-generation magnetic recording method that can

熱アシスト記録方式に用いることが可能な磁気記録媒体として、例えば、基板と、基板上に形成された複数の下地層と、L10構造を有する合金を主成分とする磁性層とからなり、複数の下地層が、NiO下地層と、配向制御層とを含む磁気記録媒体が開示されている(例えば、特許文献1参照)。この磁気記録媒体では、配向制御層は、BCC構造の合金からなる下地層と、NaCl構造を有するMgO等の下地層を含み、NiO下地層に(100)配向をとらせるようにしている。 As a magnetic recording medium that can be used for the thermally assisted recording system, for example, a substrate, a plurality of underlayers formed on the substrate, and a magnetic layer mainly composed of an alloy having an L10 structure. The underlayer includes a NiO underlayer and an orientation control layer (see, for example, Patent Document 1). In this magnetic recording medium, the orientation control layer includes an underlayer made of an alloy with a BCC structure and an underlayer such as MgO having a NaCl structure, so that the NiO underlayer is (100) oriented.

磁気記録培媒体の磁性層として、L1構造を有するFePt合金を用いる場合、磁性層の結晶配向面として(001)面が用いられる。FePt合金を(001)配向させるため、下地層としては、一般に、(100)配向しているMgOが用いられることが多い。即ち、MgOの(100)面は、FePt合金の(001)面と格子整合性が高いため、MgO層の上方に、FePt合金を含む磁性層を成膜することにより、FePt合金は、(001)配向させやすくなる。また、特許文献1の磁気記録媒体では、NiO下地層も(100)配向をとらせるため、配向制御層の下地層として、MgOが用いられる。 When an FePt alloy having an L10 structure is used as the magnetic layer of the magnetic recording medium, the (001) plane is used as the crystal orientation plane of the magnetic layer. In order to make the FePt alloy (001) oriented, generally (100) oriented MgO is often used as the underlayer. That is, the (100) plane of MgO has a high lattice match with the (001) plane of the FePt alloy. ) becomes easier to orient. Further, in the magnetic recording medium of Patent Document 1, MgO is used as the underlayer of the orientation control layer because the NiO underlayer is also (100) oriented.

特開2016-26368号公報JP 2016-26368 A

ここで、MgOの格子定数が0.42nmであるのに対し、FePtは0.39nmであるため、MgO膜上にFePt膜をエピタキシャル成長させた時、わずかに格子不整合(ミスフィット)が生じ、FePt膜には引っ張り応力が生じる。このFePt膜に生じる引っ張り応力は、FePt粒子を肥大化させる方向に作用するため、磁性粒子が肥大化することで、磁気記録媒体の電磁変換特性が低下し、磁気記録媒体の高記録密度化を阻害する可能性が高い。また、さらに肥大化して接触面積の大きくなった粒子ほど、大きな応力を受け易いため、更に肥大化し易く、結晶粒子径のばらつきが大きくなることで、磁気記録媒体の電磁変換特性を低下させる可能性が高い。 Here, the lattice constant of MgO is 0.42 nm, while that of FePt is 0.39 nm. Therefore, when the FePt film is epitaxially grown on the MgO film, a slight lattice mismatch (misfit) occurs. Tensile stress is generated in the FePt film. Since the tensile stress generated in the FePt film acts in the direction of enlarging the FePt grains, the enlarging of the magnetic grains reduces the electromagnetic conversion characteristics of the magnetic recording medium, which leads to the increase in the recording density of the magnetic recording medium. likely to interfere. In addition, the larger the grain size and the larger the contact area, the more likely it is to receive a large stress, and the larger the grain size, the greater the variation in crystal grain size, which may reduce the electromagnetic conversion characteristics of the magnetic recording medium. is high.

本発明の一態様は、優れた電磁変換特性を有することができる磁気記録媒体を提供することを目的とする。 An object of one aspect of the present invention is to provide a magnetic recording medium that can have excellent electromagnetic conversion characteristics.

本発明の一態様に係る磁気記録媒体は、基板と、下地層と、L1型結晶構造を有する合金を含む磁性層とをこの順に積層して備え、前記下地層は、MgOを含み、前記磁性層は、少なくとも3層以上有し、3層の前記磁性層が、前記基板側から順に、第1の磁気記録層、第2の磁気記録層及び第3の磁気記録層である時、前記第2の磁気記録層のキュリー温度Tcは、前記第1の磁気記録層及び前記第3の磁気記録層のキュリー温度Tcよりも、それぞれ、-30K~-100K低く、前記第1の磁気記録層を構成する磁性粒子の底面部の平均粒径は、前記第2の磁気記録層及び前記第3の磁気記録層を構成する磁性粒子の底面部の平均粒径よりも、それぞれ、15%以上小さい。 A magnetic recording medium according to an aspect of the present invention includes a substrate, an underlayer, and a magnetic layer containing an alloy having an L10 type crystal structure laminated in this order, the underlayer containing MgO, The magnetic layer has at least three layers, and when the three magnetic layers are a first magnetic recording layer, a second magnetic recording layer and a third magnetic recording layer in order from the substrate side, The Curie temperature Tc of the second magnetic recording layer is −30 K to −100 K lower than the Curie temperatures Tc of the first magnetic recording layer and the third magnetic recording layer, respectively, and the first magnetic recording layer is 15% or more smaller than the average particle size of the bottom surface portion of the magnetic grains constituting the second magnetic recording layer and the third magnetic recording layer. .

本発明の一態様によれば、優れた電磁変換特性を有することができる。 According to one aspect of the present invention, excellent electromagnetic conversion characteristics can be obtained.

本実施形態に係る磁気記録媒体の構成の一例を示す断面図である。1 is a cross-sectional view showing an example of the configuration of a magnetic recording medium according to an embodiment; FIG. 本実施形態に係る磁気記録媒体1の断面の一例を示すTEM写真である。1 is a TEM photograph showing an example of a cross section of a magnetic recording medium 1 according to this embodiment. 本実施形態に係る磁気記録媒体を用いた磁気記憶装置の一例を示す斜視図である。1 is a perspective view showing an example of a magnetic storage device using a magnetic recording medium according to this embodiment; FIG. 磁気ヘッドの一例を示す模式図である。1 is a schematic diagram showing an example of a magnetic head; FIG.

以下、本発明の実施の形態について詳細に説明する。なお、説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の符号を付して、重複する説明は省略する。また、図面における各部材の縮尺は実際とは異なる場合がある。本明細書において数値範囲を示す「~」は、別段の断わりがない限り、その前後に記載された数値を下限値及び上限値として含むことを意味する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail. In addition, in order to facilitate understanding of the description, the same components are denoted by the same reference numerals in each drawing, and overlapping descriptions are omitted. Also, the scale of each member in the drawings may differ from the actual scale. Unless otherwise specified, "-" indicating a numerical range in this specification means that the numerical values before and after it are included as lower and upper limits.

[磁気記録媒体]
図1は、本実施形態に係る磁気記録媒体の構成の一例を示す断面図である。図1に示すように、磁気記録媒体1は、基板10、下地層20及び磁性層30を、基板10側からこの順に積層して備える。
[Magnetic recording medium]
FIG. 1 is a cross-sectional view showing an example of the configuration of a magnetic recording medium according to this embodiment. As shown in FIG. 1, the magnetic recording medium 1 includes a substrate 10, an underlayer 20 and a magnetic layer 30 which are laminated in this order from the substrate 10 side.

なお、本明細書では、磁気記録媒体1の厚さ方向(垂直方向)をZ軸方向とし、厚さ方向と直交する横方向(水平方向)をX軸方向とする。Z軸方向の磁性層30側を+Z軸方向とし、基板10側を-Z軸方向とする。以下の説明において、説明の便宜上、+Z軸方向を上又は上方といい、-Z軸方向を下又は下方と称すが、普遍的な上下関係を表すものではない。 In this specification, the thickness direction (perpendicular direction) of the magnetic recording medium 1 is defined as the Z-axis direction, and the lateral direction (horizontal direction) orthogonal to the thickness direction is defined as the X-axis direction. The magnetic layer 30 side in the Z-axis direction is the +Z-axis direction, and the substrate 10 side is the -Z-axis direction. In the following description, for convenience of explanation, the +Z-axis direction is referred to as upward or upward, and the −Z-axis direction is referred to as downward or downward, but this does not represent a universal vertical relationship.

図1では、基板10の上方にのみ下地層20及び磁性層30を示すが、磁気記録媒体1は、基板10の下方にも、基板10側から下地層20及び磁性層30をこの順に積層して備える。 Although FIG. 1 shows the underlayer 20 and the magnetic layer 30 only above the substrate 10, the magnetic recording medium 1 also has the underlayer 20 and the magnetic layer 30 stacked in this order below the substrate 10 from the substrate 10 side. be prepared.

磁気記録媒体1は、基板10の上下両面の上に、下地層20及び磁性層30を有し、情報を基板10の上下両面に記録(両面記録)できるが、基板10の上面又は下面の一方の面のみに下地層20及び磁性層30を有し、情報を基板10の片面にのみ記録(片面記録)できるものでもよい。 The magnetic recording medium 1 has an underlayer 20 and a magnetic layer 30 on both upper and lower surfaces of the substrate 10, and information can be recorded on both upper and lower surfaces of the substrate 10 (double-sided recording). The substrate 10 may have the underlayer 20 and the magnetic layer 30 only on the surface of the substrate 10 so that information can be recorded only on one side of the substrate 10 (single-sided recording).

基板10を構成する材料は、磁気記録媒体に使用可能な材料であれば特に限定されず使用できる。基板10を構成する材料としては、例えば、AlMg合金等のAl合金、ソーダガラス、アルミノシリケート系ガラス、アモルファスガラス類、シリコン、チタン、セラミックス、サファイア、石英、樹脂等が挙げられる。これらの中でも、Al合金や、結晶化ガラス、アモルファスガラス等のガラスが好ましい。 The material constituting the substrate 10 is not particularly limited as long as it is a material that can be used for magnetic recording media. Examples of materials forming the substrate 10 include Al alloys such as AlMg alloys, soda glass, aluminosilicate glass, amorphous glasses, silicon, titanium, ceramics, sapphire, quartz, and resins. Among these, Al alloys, crystallized glass, amorphous glass, and other glasses are preferable.

磁気記録媒体1を製造する際に、基板10を500℃以上の温度に加熱する場合があるため、基板10としては、例えば、軟化温度が500℃以上、好ましくは600℃以上である耐熱ガラス基板を用いることが好ましい。 When manufacturing the magnetic recording medium 1, the substrate 10 may be heated to a temperature of 500° C. or higher. is preferably used.

下地層20は、基板10の上方に設けられている。下地層20は、MgOを含む層を備える。 The underlying layer 20 is provided above the substrate 10 . The underlying layer 20 comprises a layer containing MgO.

MgOを含む層は、MgOを含み、MgOから実質的になることが好ましく、MgOのみからなることがより好ましい。「実質的に」とは、MgO以外に、製造過程で不可避的に含まれ得る不可避不純物を含んでもよいことを意味する。 The layer containing MgO preferably contains MgO and consists essentially of MgO, and more preferably consists of MgO only. “Substantially” means that, in addition to MgO, unavoidable impurities that may be unavoidably included during the manufacturing process may be included.

本実施形態では、下地層20は、第1の磁気記録層31と接しているため、MgOの(100)面と、第1の磁気記録層31に含まれる、L1構造を有する磁性合金の(001)面とが格子整合し易くなるため、磁性合金の結晶配向性を高めることができる。 In the present embodiment, since the underlayer 20 is in contact with the first magnetic recording layer 31, the (100) plane of MgO and the magnetic alloy having the L10 structure contained in the first magnetic recording layer 31 Since lattice matching with the (001) plane is facilitated, the crystal orientation of the magnetic alloy can be enhanced.

下地層20は、NaCl型化合物を含むことが好ましい。NaCl型化合物しては、MgO以外では、例えば、TiO、NiO、TiN、TaN、HfN、NbN、ZrC、HfC、TaC、NbC、TiC等が挙げられ、二種以上を併用してもよい。 The underlying layer 20 preferably contains a NaCl-type compound. Examples of NaCl-type compounds other than MgO include TiO, NiO, TiN, TaN, HfN, NbN, ZrC, HfC, TaC, NbC, and TiC, and two or more of them may be used in combination.

下地層20は、磁性層30に含まれるL1構造を有する磁性粒子を(001)面配向させることが可能であれば、他の層を含んだ多層構造としてもよい。 The underlayer 20 may have a multi-layer structure including other layers as long as the magnetic grains having the L10 structure contained in the magnetic layer 30 can be oriented in the (001) plane.

磁性層30は、下地層20の上方に設けられている。磁性層30は、第1の磁気記録層31、第2の磁気記録層32及び第3の磁気記録層33を、下地層20側からこの順に積層して備える。なお、磁性層30は、第1の磁気記録層31、第2の磁気記録層32及び第3の磁気記録層33で構成されてもよい。また、磁性層30は、第1の磁気記録層31、第2の磁気記録層32、第3の磁気記録層33以外の磁性層をさらに1つ以上備えてもよい。 The magnetic layer 30 is provided above the underlayer 20 . The magnetic layer 30 includes a first magnetic recording layer 31, a second magnetic recording layer 32, and a third magnetic recording layer 33, which are laminated in this order from the underlayer 20 side. The magnetic layer 30 may be composed of a first magnetic recording layer 31 , a second magnetic recording layer 32 and a third magnetic recording layer 33 . Also, the magnetic layer 30 may further include one or more magnetic layers other than the first magnetic recording layer 31 , the second magnetic recording layer 32 , and the third magnetic recording layer 33 .

磁性層30は、L1構造を有する磁性粒子を含む。即ち、磁性層30に含まれる、第1の磁気記録層31、第2の磁気記録層32及び第3の磁気記録層33は、L1構造を有する磁性粒子を含む。 The magnetic layer 30 includes magnetic grains having an L10 structure. That is, the first magnetic recording layer 31, the second magnetic recording layer 32, and the third magnetic recording layer 33 included in the magnetic layer 30 contain magnetic grains having the L10 structure.

第1の磁気記録層31を構成する磁性粒子の底面部の平均粒径を第2の磁気記録層32及び第3の磁気記録層33を構成する磁性粒子の底面部の平均粒径よりも15%以上、それぞれ、小さく、より好ましくは30%~60%の範囲内で小さくすることで、磁性粒子の肥大化を防止すると共に、磁性粒子の底面部の平均粒径のばらつきの大きさを低減することができる。 The average grain size of the bottom portion of the magnetic grains forming the first magnetic recording layer 31 is 15 larger than the average grain size of the bottom portions of the magnetic grains forming the second magnetic recording layer 32 and the third magnetic recording layer 33. % or more, respectively, and more preferably within the range of 30% to 60%, to prevent enlargement of the magnetic particles and reduce the variation in the average particle size of the bottom surface of the magnetic particles. can do.

ここで、磁性粒子の底面部の平均粒径とは、磁性粒子の下の界面部における平均粒径をいう。即ち、下地層20、第1の磁気記録層31、第2の磁気記録層32及び第3の磁気記録層33を構成する粒子はそれぞれエピタキシャル成長するので、これらの粒子は連続した柱状晶となる。この柱状晶で、下地層20と第1の磁気記録層31の界面部の平均粒径を、第1の磁気記録層31を構成する磁性粒子の底面の平均粒径とする。第1の磁気記録層31と第2の磁気記録層32の界面部の平均粒径を、第2の磁気記録層32を構成する磁性粒子の底面の平均粒径とする。第2の磁気記録層32と第3の磁気記録層33の界面部の平均粒径を、第3の磁気記録層33を構成する磁性粒子の底面の平均粒径とする。 Here, the average particle size of the bottom portion of the magnetic particles means the average particle size of the interface portion below the magnetic particles. That is, since the grains forming the underlayer 20, the first magnetic recording layer 31, the second magnetic recording layer 32, and the third magnetic recording layer 33 grow epitaxially, these grains form continuous columnar crystals. In this columnar crystal, the average grain size at the interface between the underlayer 20 and the first magnetic recording layer 31 is taken as the average grain size at the bottom surface of the magnetic grains forming the first magnetic recording layer 31 . Let the average grain size of the interface between the first magnetic recording layer 31 and the second magnetic recording layer 32 be the average grain size of the bottom surface of the magnetic grains forming the second magnetic recording layer 32 . Let the average grain size at the interface between the second magnetic recording layer 32 and the third magnetic recording layer 33 be the average grain size at the bottom surface of the magnetic grains forming the third magnetic recording layer 33 .

なお、本実施形態において、磁性粒子の底面部の平均粒径は、走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)を用いて行う。例えば、TEMを用いて磁気記録層の断面観察を行った場合、電子線は10nm以上透過するため断面の奥行情報を得ることができる。この断面情報を解析することで磁性粒子の平均粒径を測定することができる。 In this embodiment, the average particle size of the bottom portion of the magnetic particles is determined using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). For example, when the cross section of the magnetic recording layer is observed using a TEM, depth information of the cross section can be obtained because the electron beam penetrates 10 nm or more. By analyzing this cross-sectional information, the average particle size of the magnetic particles can be measured.

第2の磁気記録層32のキュリー温度Tcは、第1の磁気記録層31及び第3の磁気記録層33のそれぞれのキュリー温度Tcよりも、それぞれ、-30K~-100K低くする。上述の通り、第1の磁気記録層31を構成する磁性粒子の体積は、第1の磁気記録層31及び第2の磁気記録層32に比べて小さいため、第1の磁気記録層31の磁気特性は、第1の磁気記録層31と接する第2の磁気記録層32に比べて弱くなる。本実施形態では、第2の磁気記録層32のキュリー温度Tcを、第1の磁気記録層31及び第3の磁気記録層33のそれぞれのキュリー温度Tcよりも所定の範囲内で小さくすることで、第1の磁気記録層31の磁気特性を強めるように作用することができる。これにより、第1の磁気記録層31の磁気特性が強まり、第1の磁気記録層31に起因するノイズを低減できる。 The Curie temperature Tc of the second magnetic recording layer 32 is -30K to -100K lower than the Curie temperatures Tc of the first magnetic recording layer 31 and the third magnetic recording layer 33, respectively. As described above, since the volume of the magnetic grains constituting the first magnetic recording layer 31 is smaller than those of the first magnetic recording layer 31 and the second magnetic recording layer 32, the magnetic field of the first magnetic recording layer 31 The characteristics are weaker than those of the second magnetic recording layer 32 in contact with the first magnetic recording layer 31 . In the present embodiment, the Curie temperature Tc of the second magnetic recording layer 32 is made smaller than the Curie temperature Tc of each of the first magnetic recording layer 31 and the third magnetic recording layer 33 within a predetermined range. , can act to enhance the magnetic properties of the first magnetic recording layer 31 . As a result, the magnetic properties of the first magnetic recording layer 31 are enhanced, and noise caused by the first magnetic recording layer 31 can be reduced.

図2は、本実施形態に係る磁気記録媒体1の断面の一例を示すTEM写真である。図2に示す磁気記録媒体は、基板10の上に、MgOを含む下地層20、第1の磁気記録層31、第2の磁気記録層32、第3の磁気記録層33及び保護層40をこの順に積層した構造を有している。図2中の3つの破線は、図中の下側から、それぞれ、順に、第1の磁気記録層31を構成する磁性粒子の底面部の平均粒径、第2の磁気記録層32を構成する磁性粒子の底面部の平均粒径、第3の磁気記録層33を構成する磁性粒子の底面部の平均粒径を示す。第1の磁気記録層31、第2の磁気記録層32及び第3の磁気記録層33は構成する材料の組成が相違するため、それぞれの境界位置は、TEM写真におけるコントラストの違いから判別できる。第1の磁気記録層31を構成する磁性粒子の底面部の平均粒径は、第2の磁気記録層32を構成する磁性粒子の底面部の平均粒径及び第3の磁気記録層33を構成する磁性粒子の底面部の平均粒径よりも小さいことが確認できる。 FIG. 2 is a TEM photograph showing an example of a cross section of the magnetic recording medium 1 according to this embodiment. A magnetic recording medium shown in FIG. It has a structure laminated in this order. The three dashed lines in FIG. 2 indicate, from the lower side of the figure, the average particle size of the bottom portion of the magnetic grains constituting the first magnetic recording layer 31 and the second magnetic recording layer 32, respectively. The average grain size of the bottom surface portion of the magnetic grains and the average grain size of the bottom portion of the magnetic grains forming the third magnetic recording layer 33 are shown. Since the first magnetic recording layer 31, the second magnetic recording layer 32, and the third magnetic recording layer 33 have different compositions of constituent materials, their boundary positions can be determined from differences in contrast in TEM photographs. The average grain size of the bottom portion of the magnetic grains forming the first magnetic recording layer 31 is the average grain size of the bottom portion of the magnetic grains forming the second magnetic recording layer 32 and the average grain size of the bottom portion of the magnetic grains forming the third magnetic recording layer 33. It can be confirmed that the diameter is smaller than the average particle size of the bottom surface of the magnetic particles.

第1の磁気記録層31を構成する磁性粒子の底面部の平均粒径を第2の磁気記録層32及び第3の磁気記録層33を構成する磁性粒子の底面部の平均粒径よりも5%~40%の範囲内で、それぞれ、小さくする方法としては、例えば、第1の磁気記録層31の成膜にスパッタリング法を使用し、基板10に正のバイアス電位を印加する方法等がある。 The average grain size of the bottom portion of the magnetic grains forming the first magnetic recording layer 31 is 5 more than the average grain size of the bottom portions of the magnetic grains forming the second magnetic recording layer 32 and the third magnetic recording layer 33 . % to 40%, for example, a method of using a sputtering method for film formation of the first magnetic recording layer 31 and applying a positive bias potential to the substrate 10. .

第1の磁気記録層31の膜厚は、0.4nm~1.5nmであることが好ましく、0.5nm~1.0nmがより好ましく、0.6nm~0.8nmがさらに好ましい。第1の磁気記録層31の膜厚が上記の好ましい範囲内であれば、第1の磁気記録層31の第2の磁気記録層32との界面で生じる引っ張り応力に耐えることができるため、第1の磁気記録層31は磁気特性を発揮できる。 The film thickness of the first magnetic recording layer 31 is preferably 0.4 nm to 1.5 nm, more preferably 0.5 nm to 1.0 nm, even more preferably 0.6 nm to 0.8 nm. If the film thickness of the first magnetic recording layer 31 is within the above preferable range, the tensile stress generated at the interface between the first magnetic recording layer 31 and the second magnetic recording layer 32 can be endured. The magnetic recording layer 31 of 1 can exhibit magnetic properties.

なお、本実施形態において、第1の磁気記録層31の膜厚は、第1の磁気記録層31の主面に垂直な方向の長さをいう。第1の磁気記録層31の膜厚は、例えば、第1の磁気記録層31の断面において、任意の場所を測定した時の厚さとしてよい。第1の磁気記録層31の断面において、任意の場所で数ヵ所測定した場合は、これらの測定箇所の厚さの平均値としてよい。 In this embodiment, the film thickness of the first magnetic recording layer 31 refers to the length of the first magnetic recording layer 31 in the direction perpendicular to the main surface thereof. The thickness of the first magnetic recording layer 31 may be, for example, the thickness measured at an arbitrary location in the cross section of the first magnetic recording layer 31 . If the cross section of the first magnetic recording layer 31 is measured at several arbitrary locations, the average value of the thickness at these measured locations may be used.

第2の磁気記録層32の膜厚は、0.8nm~3.0nmであることが好ましく、1.0nm~2.5nmがより好ましく、1.2nm~2.0nmがさらに好ましい。第2の磁気記録層32の膜厚が上記の好ましい範囲内であれば、第2の磁気記録層32の第1の磁気記録層31又は第3の磁気記録層33との界面で生じる引っ張り応力に耐えることができるため、第2の磁気記録層32は磁気特性を発揮できる。 The film thickness of the second magnetic recording layer 32 is preferably 0.8 nm to 3.0 nm, more preferably 1.0 nm to 2.5 nm, even more preferably 1.2 nm to 2.0 nm. If the film thickness of the second magnetic recording layer 32 is within the above preferable range, the tensile stress generated at the interface between the second magnetic recording layer 32 and the first magnetic recording layer 31 or the third magnetic recording layer 33 , the second magnetic recording layer 32 can exhibit its magnetic properties.

第3の磁気記録層33の膜厚は、3nm以上であることが好ましい。3.5nm~10.0nmがより好ましく、4.5nm~6.0nmがさらに好ましい。第3の磁気記録層33の膜厚が上記の好ましい範囲内であれば、第3の磁気記録層33の第2の磁気記録層32との界面で生じる引っ張り応力に耐えることができるため、第3の磁気記録層33は磁気特性を発揮できる。 The film thickness of the third magnetic recording layer 33 is preferably 3 nm or more. 3.5 nm to 10.0 nm is more preferable, and 4.5 nm to 6.0 nm is even more preferable. If the film thickness of the third magnetic recording layer 33 is within the above preferable range, the tensile stress generated at the interface between the third magnetic recording layer 33 and the second magnetic recording layer 32 can be endured. The magnetic recording layer 33 of No. 3 can exhibit magnetic properties.

第1の磁気記録層31、第2の磁気記録層32及び第3の磁気記録層33第1の磁気記録層31のそれぞれの膜厚を、上記の好ましい範囲内にすることで、それぞれの磁気記録層同士の界面で生じる引っ張り応力に対する作用に耐えられるため、磁気記録媒体1の電磁変換特性を高められる。 First magnetic recording layer 31, second magnetic recording layer 32, and third magnetic recording layer 33 By setting the film thickness of each of the first magnetic recording layers 31 within the above preferred range, each magnetic The electromagnetic conversion characteristics of the magnetic recording medium 1 can be improved because the magnetic recording medium 1 can withstand the effect of tensile stress generated at the interface between the recording layers.

磁性層30に含まれる、L1構造を有する磁性粒子としては、例えば、FePt合金粒子、CoPt合金粒子等を用いることができる。FePt合金の結晶磁気異方性定数(Ku)が7×10J/m以下であり、CoPt合金のKuが5×10J/m以下であり、いずれも、1×10J/m代のKuが高い材料(高Ku材料)である。そのため、FePt合金又はCoPt合金が磁性層30に含まれることで、磁性層30は、熱安定性を維持したまま、磁性層30を構成する磁性粒子を、例えば粒径が6nm以下になるまで微細化することができる。 As the magnetic grains having the L10 structure contained in the magnetic layer 30, for example, FePt alloy grains, CoPt alloy grains, or the like can be used. The magnetocrystalline anisotropy constant (Ku) of the FePt alloy is 7×10 6 J/m 3 or less, and the Ku of the CoPt alloy is 5×10 6 J/m 3 or less, both of which are 1×10 6 J. /m A material with a high Ku of 3 generations (high Ku material). Therefore, by including the FePt alloy or the CoPt alloy in the magnetic layer 30, the magnetic layer 30 can finely reduce the magnetic grains constituting the magnetic layer 30 to, for example, a grain size of 6 nm or less while maintaining thermal stability. can be

また、磁性層30は、粒界部を含むグラニュラー構造を有してもよい。 Further, the magnetic layer 30 may have a granular structure including grain boundaries.

磁性層30がグラニュラー構造を有する場合は、磁性層30中の粒界部の含有量は、25体積%~50体積%の範囲内が好ましく、35体積%~45体積%の範囲内がより好ましい。磁性層30中の粒界部の含有量を上記の好ましい範囲内とすることで、磁性層30に含まれる磁性粒子の異方性を高めることができる。 When the magnetic layer 30 has a granular structure, the grain boundary content in the magnetic layer 30 is preferably in the range of 25% to 50% by volume, more preferably in the range of 35% to 45% by volume. . By setting the grain boundary content in the magnetic layer 30 within the above preferred range, the anisotropy of the magnetic grains contained in the magnetic layer 30 can be increased.

ここで、粒界部は、炭化物、窒化物、酸化物、ホウ化物等を用いることができる。これらの具体例としては、BN、BC、C、MoO、GeO等が挙げられる。 Here, carbides, nitrides, oxides, borides, etc. can be used for the grain boundary portion. Specific examples thereof include BN, B4C ,C, MoO3 , GeO2 and the like.

磁性層30に含まれる磁性粒子は、基板10に対して、c軸配向させること、即ち、(001)面配向させることが好ましい。磁性層30に含まれる磁性粒子を基板10に対してc軸配向させる方法は、特に限定されず、例えば、下地層20を用いて、磁性層30をc軸方向にエピタキシャル成長させる方法等を用いることができる。 The magnetic grains contained in the magnetic layer 30 are preferably c-axis oriented with respect to the substrate 10, that is, the (001) plane orientation. The method of orienting the magnetic grains contained in the magnetic layer 30 along the c-axis with respect to the substrate 10 is not particularly limited. can be done.

磁気記録媒体1は、磁性層30上に、さらに保護層40を有することが好ましい。保護層40は、磁気記録媒体1が磁気ヘッド等との接触による損傷等から磁気記録媒体1を保護する機能を有する。 The magnetic recording medium 1 preferably further has a protective layer 40 on the magnetic layer 30 . The protective layer 40 has a function of protecting the magnetic recording medium 1 from damage caused by contact with a magnetic head or the like.

保護層40としては、例えば、硬質炭素膜等が挙げられる。 Examples of the protective layer 40 include a hard carbon film and the like.

保護層40の形成方法としては、例えば、炭化水素ガス(原料ガス)を高周波プラズマで分解して成膜するRF-CVD(Radio Frequency-Chemical Vapor Deposition)法、フィラメントから放出された電子で原料ガスをイオン化して成膜するIBD(Ion Beam Deposition)法、原料ガスを用いずに、固体炭素ターゲットを用いて成膜するFCVA(Filtered Cathodic Vacuum Arc)法等が挙げられる。 Examples of the method for forming the protective layer 40 include an RF-CVD (Radio Frequency-Chemical Vapor Deposition) method in which a film is formed by decomposing a hydrocarbon gas (raw material gas) with high-frequency plasma, and a raw material gas with electrons emitted from a filament. and a FCVA (Filtered Cathodic Vacuum Arc) method of forming a film using a solid carbon target without using a raw material gas.

保護層40の厚さは、1nm~6nmであることが好ましい。保護層40の厚さが1nm以上であると、磁気ヘッドの浮上特性が良好となると共に、磁気スペーシングが小さくなり、磁気記録媒体1のSNRが向上する。 The thickness of the protective layer 40 is preferably 1 nm to 6 nm. When the thickness of the protective layer 40 is 1 nm or more, the flying characteristics of the magnetic head are improved, the magnetic spacing is reduced, and the SNR of the magnetic recording medium 1 is improved.

磁気記録媒体1は、保護層40上に、潤滑剤層50をさらに有してもよい。 The magnetic recording medium 1 may further have a lubricant layer 50 on the protective layer 40 .

湿潤剤としては、例えば、パーフルオロポリエーテル等のフッ素樹脂が挙げられる。 Wetting agents include, for example, fluororesins such as perfluoropolyethers.

本実施形態に係る磁気記録媒体1は、基板10、下地層20及び磁性層30をこの順に積層して備え、下地層20は、MgOを含み、磁性層30は、第1の磁気記録層31、第2の磁気記録層32及び第3の磁気記録層33を基板10側からこの順に積層して備える。そして、磁気記録媒体1は、第2の磁気記録層32のキュリー温度Tcを、第1の磁気記録層31及び第3の磁気記録層33のキュリー温度Tcよりも、それぞれ、-30K~-100K低くし、第1の磁気記録層31を構成する磁性粒子の底面部の平均粒径を、第2の磁気記録層32及び第3の磁気記録層33を構成する磁性粒子の底面部の平均粒径よりも、それぞれ、15%以上小さくしている。第1の磁気記録層31を構成する磁性粒子の底面部の平均粒径は、第2の磁気記録層32及び第3の磁気記録層33を構成する磁性粒子の底面部の平均粒径よりも15%以上小さいため、その分だけ、第1の磁気記録層31の磁気特性は、第2の磁気記録層32及び第3の磁気記録層33の磁気特性よりも、通常、低くなる。本実施形態では、第2の磁気記録層32は、第1の磁気記録層31及び第3の磁気記録層33よりも所定の範囲だけ小さいキュリー温度Tcを有しているため、第2の磁気記録層32の磁気特性が第1の磁気記録層31及び第3の磁気記録層33を強めるように作用することができる。そのため、第1の磁気記録層31が直接的に又は間接的に接する第2の磁気記録層32及び第3の磁気記録層33より磁気特性が低くても、第2の磁気記録層32及び第3の磁気記録層33によって、第1の磁気記録層31の磁気特性を高めることができる。これにより、第1の磁気記録層31の磁気特性が強まり、第1の磁気記録層31に起因するノイズを低減できる。よって、磁気記録媒体1は、優れた電磁変換特性を発揮することができる。 The magnetic recording medium 1 according to the present embodiment includes a substrate 10, an underlayer 20, and a magnetic layer 30 which are laminated in this order. The underlayer 20 contains MgO, and the magnetic layer 30 is the first magnetic recording layer 31 , a second magnetic recording layer 32 and a third magnetic recording layer 33 are laminated in this order from the substrate 10 side. In the magnetic recording medium 1, the Curie temperature Tc of the second magnetic recording layer 32 is -30 K to -100 K higher than the Curie temperatures Tc of the first magnetic recording layer 31 and the third magnetic recording layer 33, respectively. The average grain size of the bottom surface portion of the magnetic grains constituting the first magnetic recording layer 31 is reduced to the average grain size of the bottom surface portions of the magnetic grains constituting the second magnetic recording layer 32 and the third magnetic recording layer 33. They are each made 15% or more smaller than the diameter. The average grain size of the bottom portion of the magnetic grains forming the first magnetic recording layer 31 is larger than the average grain size of the bottom portions of the magnetic grains forming the second magnetic recording layer 32 and the third magnetic recording layer 33. Since it is smaller by 15% or more, the magnetic properties of the first magnetic recording layer 31 are generally lower than the magnetic properties of the second magnetic recording layer 32 and the third magnetic recording layer 33 by that amount. In the present embodiment, the second magnetic recording layer 32 has a Curie temperature Tc that is lower than the first magnetic recording layer 31 and the third magnetic recording layer 33 by a predetermined range. The magnetic properties of the recording layer 32 can act to enhance the first magnetic recording layer 31 and the third magnetic recording layer 33 . Therefore, even if the magnetic properties of the second magnetic recording layer 32 and the third magnetic recording layer 33 are lower than those of the second magnetic recording layer 32 and the third magnetic recording layer 33 with which the first magnetic recording layer 31 is in direct or indirect contact, The magnetic properties of the first magnetic recording layer 31 can be enhanced by the third magnetic recording layer 33 . As a result, the magnetic properties of the first magnetic recording layer 31 are enhanced, and noise caused by the first magnetic recording layer 31 can be reduced. Therefore, the magnetic recording medium 1 can exhibit excellent electromagnetic conversion characteristics.

磁気記録媒体1の電磁変換特性は、SNR(信号/ノイズ比(S/N比))より評価できる。磁気記録媒体のSNRが小さいほど、磁気記録媒体1は、優れた電磁変換特性を有すると評価できる。SNRの測定は、特に限定されず、例えば、リードライトアナライザRWA1632及びスピンスタンドS1701MP(いずれも、GUZIK社製)を用いて行うことができる。 The electromagnetic conversion characteristics of the magnetic recording medium 1 can be evaluated from SNR (signal/noise ratio (S/N ratio)). As the SNR of the magnetic recording medium is smaller, the magnetic recording medium 1 can be evaluated to have better electromagnetic conversion characteristics. The SNR measurement is not particularly limited, and can be performed using, for example, a read/write analyzer RWA1632 and a spinstand S1701MP (both manufactured by GUZIK).

磁気記録媒体1は、第1の磁気記録層31を構成する磁性粒子の底面部の平均粒径を、第2の磁気記録層32及び第3の磁気記録層33を構成する磁性粒子の底面部の平均粒径よりも30%~60%の範囲内で小さい状態で、それぞれの磁気記録層内に磁性粒子を含むことができる。第1の磁気記録層31を構成する磁性粒子の大きさが第2の磁気記録層32及び第3の磁気記録層33に対して上記の範囲内で小さくても、第1の磁気記録層31の磁気特性を強め、第1の磁気記録層31に起因するノイズを低減できる。よって、磁気記録媒体1は、優れた電磁変換特性を発揮することができる。 In the magnetic recording medium 1, the average grain size of the bottom surface portion of the magnetic grains forming the first magnetic recording layer 31 is set to the bottom surface portion of the magnetic grains forming the second magnetic recording layer 32 and the third magnetic recording layer 33. Magnetic grains can be included in each magnetic recording layer within a range of 30% to 60% smaller than the average grain size of . Even if the size of the magnetic grains constituting the first magnetic recording layer 31 is smaller than those of the second magnetic recording layer 32 and the third magnetic recording layer 33 within the above range, the first magnetic recording layer 31 The magnetic properties of the first magnetic recording layer 31 can be enhanced, and the noise caused by the first magnetic recording layer 31 can be reduced. Therefore, the magnetic recording medium 1 can exhibit excellent electromagnetic conversion characteristics.

磁気記録媒体1は、第1の磁気記録層31の膜厚を0.4nm~1.5nmにできる。これにより、磁気記録媒体1は、第1の磁気記録層31の磁気特性を十分発揮できるため、優れた電磁変換特性を確実に発揮することができる。 In the magnetic recording medium 1, the film thickness of the first magnetic recording layer 31 can be set to 0.4 nm to 1.5 nm. As a result, the magnetic recording medium 1 can sufficiently exhibit the magnetic characteristics of the first magnetic recording layer 31, and can reliably exhibit excellent electromagnetic conversion characteristics.

磁気記録媒体1は、第2の磁気記録層32の膜厚を0.8nm~3.0nmにできる。これにより、磁気記録媒体1は、第2の磁気記録層32の磁気特性を十分発揮できるため、優れた電磁変換特性を確実に発揮することができる。 In the magnetic recording medium 1, the film thickness of the second magnetic recording layer 32 can be set to 0.8 nm to 3.0 nm. As a result, the magnetic recording medium 1 can sufficiently exhibit the magnetic characteristics of the second magnetic recording layer 32, and can reliably exhibit excellent electromagnetic conversion characteristics.

磁気記録媒体1は、第3の磁気記録層33の膜厚を3nm以上にできる。これにより、磁気記録媒体1は、第3の磁気記録層33の磁気特性を十分発揮できるため、優れた電磁変換特性を確実に発揮することができる。 In the magnetic recording medium 1, the film thickness of the third magnetic recording layer 33 can be 3 nm or more. As a result, the magnetic recording medium 1 can sufficiently exhibit the magnetic characteristics of the third magnetic recording layer 33, and can reliably exhibit excellent electromagnetic conversion characteristics.

磁気記録媒体1は、磁性層30が、L1構造を有するFePt合金及びCoPt合金の少なくとも一方を含むことができる。FePt合金及びCoPt合金は、いずれも、1×10J/m台の高Ku材料である。そのため、FePt合金及びCoPt合金の少なくとも一方を磁性層30を構成する材料として用いることで、熱安定性を維持したまま、磁性層30を構成する磁性粒子を、例えば、粒径が6nm以下になるまで微細化することができる。よって、記録方式として熱アシスト記録方式又はマイクロ波アシスト記録方式を用いた際には、磁性層30は、室温において数十kOeの保磁力を有することができ、磁性層30に、磁気ヘッドの記録磁界によって、磁気情報を容易に記録することができる。 In the magnetic recording medium 1 , the magnetic layer 30 can contain at least one of an FePt alloy and a CoPt alloy having an L10 structure. Both FePt and CoPt alloys are high Ku materials in the order of 1×10 6 J/m 3 . Therefore, by using at least one of an FePt alloy and a CoPt alloy as a material forming the magnetic layer 30, the magnetic grains forming the magnetic layer 30 can be reduced in size to, for example, 6 nm or less while maintaining thermal stability. can be miniaturized to Therefore, when the thermally-assisted recording method or the microwave-assisted recording method is used as the recording method, the magnetic layer 30 can have a coercive force of several tens of kOe at room temperature, and the magnetic layer 30 can be used for recording by the magnetic head. The magnetic field facilitates the recording of magnetic information.

[磁気記憶装置]
本実施形態に係る磁気記録媒体を用いた磁気記憶装置について説明する。本実施形態に係る磁気記憶装置は、本実施形態に係る磁気記録媒体を有すれば、形態は特に限定されない。なお、ここでは、磁気記憶装置が熱アシスト記録方式を用いて磁気情報を磁気記録媒体に記録する場合について説明する。
[Magnetic storage device]
A magnetic storage device using the magnetic recording medium according to this embodiment will be described. The form of the magnetic storage device according to this embodiment is not particularly limited as long as it has the magnetic recording medium according to this embodiment. Here, the case where the magnetic storage device records magnetic information on the magnetic recording medium using the thermally assisted recording method will be described.

本実施形態に係る磁気記憶装置は、例えば、本実施形態に係る磁気記録媒体を回転させるための磁気記録媒体駆動部と、先端部に近接場光発生素子が設けられている磁気ヘッドと、磁気ヘッドを移動させるための磁気ヘッド駆動部と、記録再生信号処理部を有することができる。 The magnetic storage device according to this embodiment includes, for example, a magnetic recording medium driving unit for rotating the magnetic recording medium according to this embodiment, a magnetic head having a near-field light generating element at its tip, a magnetic It can have a magnetic head driving section for moving the head and a recording/reproducing signal processing section.

また、磁気ヘッドは、熱アシスト記録方式の磁気ヘッドであり、例えば、磁気記録媒体を加熱するためのレーザー光発生部と、レーザー光発生部から発生したレーザー光を近接場光発生素子まで導く導波路を有する。 The magnetic head is a thermally-assisted recording type magnetic head. have a wave path.

図3は、本実施形態に係る磁気記録媒体を用いた磁気記憶装置の一例を示す斜視図である。図3に示すように、磁気記憶装置100は、磁気記録媒体101と、磁気記録媒体101を回転させるための磁気記録媒体駆動部102と、先端部に近接場光発生素子を備えた磁気ヘッド103と、磁気ヘッド103を移動させるための磁気ヘッド駆動部104と、記録再生信号処理部105とを有することができる。磁気記録媒体101は、上述の本実施形態に係る磁気記録媒体1が用いられる。 FIG. 3 is a perspective view showing an example of a magnetic storage device using the magnetic recording medium according to this embodiment. As shown in FIG. 3, the magnetic storage device 100 includes a magnetic recording medium 101, a magnetic recording medium driving section 102 for rotating the magnetic recording medium 101, and a magnetic head 103 having a near-field light generating element at its tip. , a magnetic head driving section 104 for moving the magnetic head 103, and a recording/reproducing signal processing section 105. FIG. As the magnetic recording medium 101, the magnetic recording medium 1 according to the present embodiment described above is used.

図4は、磁気ヘッド103の一例を示す模式図である。図4に示すように、磁気ヘッド103は、記録ヘッド110と、再生ヘッド120とを有する。 FIG. 4 is a schematic diagram showing an example of the magnetic head 103. As shown in FIG. As shown in FIG. 4, the magnetic head 103 has a recording head 110 and a reproducing head 120 .

記録ヘッド110は、主磁極111と、補助磁極112と、磁界を発生させるコイル113と、レーザー光発生部であるレーザーダイオード(LD)114と、LD114から発生したレーザー光Lを近接場光発生素子115まで伝送する導波路116とを有する。 The recording head 110 includes a main magnetic pole 111, an auxiliary magnetic pole 112, a coil 113 for generating a magnetic field, a laser diode (LD) 114 as a laser light generating section, and a near-field light generating element for generating a laser light L generated from the LD 114. and a waveguide 116 transmitting to 115 .

再生ヘッド120は、シールド121と、シールド121で挟まれた再生素子122を有する。 The read head 120 has a shield 121 and a read element 122 sandwiched between the shields 121 .

図3に示すように、磁気記憶装置100は、磁気記録媒体101の中心部をスピンドルモータの回転軸に取り付けて、スピンドルモータにより回転駆動される磁気記録媒体101の面上を磁気ヘッド103が浮上走行しながら、磁気記録媒体101に対して情報の書き込み又は読み出しを行う。 As shown in FIG. 3, in the magnetic storage device 100, the central portion of the magnetic recording medium 101 is attached to the rotating shaft of a spindle motor, and the magnetic head 103 floats above the surface of the magnetic recording medium 101 that is rotationally driven by the spindle motor. Information is written to or read from the magnetic recording medium 101 while running.

本実施形態に係る磁気記憶装置100は、磁気記録媒体101に本実施形態に係る磁気記録媒体1を用いることで、磁気記録媒体101を高記録密度化することができるため、記録密度を高めることができる。 The magnetic storage device 100 according to the present embodiment can increase the recording density of the magnetic recording medium 101 by using the magnetic recording medium 1 according to the present embodiment as the magnetic recording medium 101. Therefore, it is possible to increase the recording density. can be done.

なお、磁気記憶装置は、磁気ヘッド103に熱アシスト記録方式の磁気ヘッドに代えて、マイクロ波アシスト記録方式の磁気ヘッドを用いてもよい。 In the magnetic storage device, the magnetic head 103 may use a microwave-assisted recording type magnetic head instead of the thermally-assisted recording type magnetic head.

以下、実施例及び比較例を示して実施形態を具体的に説明するが、実施形態はこれらの実施例及び比較例により限定されるものではない。 EXAMPLES Hereinafter, the embodiments will be specifically described with reference to Examples and Comparative Examples, but the embodiments are not limited to these Examples and Comparative Examples.

<磁気記録媒体の製造>
[実施例1]
以下の方法により、磁気記録媒体を製造した。
<Manufacture of magnetic recording media>
[Example 1]
A magnetic recording medium was manufactured by the following method.

ガラス基板上に、下地層として、厚さ100nmのCr-50at%Ti合金層と、厚さ30nmのCo-27at%Fe-5at%Zr-5at%B合金層とを順次形成した。次に、ガラス基板を250℃まで加熱した後、厚さ10nmのCr層と、厚さ5nmのMgO層とを順次形成した。次に、ガラス基板を450℃まで加熱した後、第1の磁気記録層として、厚さ1nmのFePt―40mol%Cを基板に+10Vのバイアス電位をかけながら成膜した。次に、ガラス基板を630℃まで加熱した後、第2の磁気記録層として、厚さ2nmのFePt5at%Rh―40mol%Cを製膜した。次に、第3の磁気記録層として、厚さ3nmのFePt-16SiOを順次形成した。次に、保護層として、厚さ3nmのカーボン膜を形成し、磁気記録媒体を作製した。 A Cr-50 at % Ti alloy layer with a thickness of 100 nm and a Co-27 at % Fe-5 at % Zr-5 at % B alloy layer with a thickness of 30 nm were successively formed as underlayers on a glass substrate. Next, after heating the glass substrate to 250° C., a Cr layer with a thickness of 10 nm and an MgO layer with a thickness of 5 nm were sequentially formed. Next, after heating the glass substrate to 450° C., a 1 nm-thick FePt-40 mol % C film was formed as a first magnetic recording layer while applying a +10 V bias potential to the substrate. Next, after heating the glass substrate to 630° C., a 2 nm-thick FePt 5 at % Rh-40 mol % C film was formed as the second magnetic recording layer. Next, FePt-16SiO 2 with a thickness of 3 nm was sequentially formed as a third magnetic recording layer. Next, a carbon film having a thickness of 3 nm was formed as a protective layer to produce a magnetic recording medium.

[実施例2~10、比較例1-1~1-5]
実施例1において、第1の磁気記録層、第2の磁気記録層及び第3の磁気記録層の少なくとも1つ以上を構成する材料を表1に示すように変更した以外は、実施例1と同様にして、磁気記録媒体を作製した。
[Examples 2 to 10, Comparative Examples 1-1 to 1-5]
Example 1 was the same as Example 1, except that the materials constituting at least one of the first magnetic recording layer, the second magnetic recording layer, and the third magnetic recording layer were changed as shown in Table 1. A magnetic recording medium was produced in the same manner.

[比較例2-1~2-5]
実施例1において、第1の磁気記録層の成膜時のガラス基板温度を650℃とし、かつ、第1の磁気記録層の成膜時にバイアス電位をかけないこと以外は、実施例1と同様にして行い、磁気記録媒体を作製した。
[Comparative Examples 2-1 to 2-5]
Example 1 is the same as Example 1, except that the temperature of the glass substrate during the deposition of the first magnetic recording layer is set to 650° C. and no bias potential is applied during the deposition of the first magnetic recording layer. Then, a magnetic recording medium was produced.

[比較例3-1]
実施例1において、磁性層を構成する材料を表1に示すように変更し、かつ、第1の磁気記録層の成膜時にバイアス電位をかけないこと以外は、実施例1と同様に行い、磁気記録媒体を作製した。
[Comparative Example 3-1]
In Example 1, the same procedure as in Example 1 was carried out, except that the material constituting the magnetic layer was changed as shown in Table 1, and no bias potential was applied during the deposition of the first magnetic recording layer. A magnetic recording medium was produced.

製造した各実施例及び比較例の磁気記録媒体の断面をTEM観察して、第1の磁気記録層を構成する磁性粒子の底面部の平均粒径、第2の磁気記録層を構成する磁性粒子の底面部の平均粒径及び第3の磁気記録層を構成する磁性粒子の底面部の平均粒径とを測定した。それぞれの測定結果を表1に示す。 The cross sections of the magnetic recording media of each of the manufactured examples and comparative examples were observed with a TEM, and the average particle size of the bottom portion of the magnetic grains constituting the first magnetic recording layer and the magnetic grains constituting the second magnetic recording layer were determined. and the average grain size of the bottom portion of the magnetic grains constituting the third magnetic recording layer were measured. Table 1 shows the respective measurement results.

<磁気記録媒体の評価>
(電磁変換特性)
米国GUZIK社製のリードライトアナライザRWA1632及びスピンスタンドS1701MPを用いて、製造した各実施例及び比較例の磁気記録媒体の電磁変換特性としてSNR(信号/ノイズ比(S/N比))の評価を行った。
<Evaluation of magnetic recording medium>
(Electromagnetic conversion characteristics)
SNR (signal/noise ratio (S/N ratio)) was evaluated as the electromagnetic conversion characteristics of the magnetic recording media of each of the manufactured examples and comparative examples using a read/write analyzer RWA1632 and a spin stand S1701MP manufactured by Guzik, USA. gone.

Figure 2022150658000002
Figure 2022150658000002

表1より、実施例1~実施例11では、SNRが6.2以上であった。一方、比較例1-1~1-5、2-1~2-4及び3-1では、SNRが5.8以下であった。 From Table 1, in Examples 1 to 11, the SNR was 6.2 or more. On the other hand, in Comparative Examples 1-1 to 1-5, 2-1 to 2-4 and 3-1, the SNR was 5.8 or less.

よって、実施例1~実施例11の磁気記録媒体は、比較例1-1~1-5、2-1~2-4及び3-1の磁気記録媒体と異なり、第2の磁気記録層32のキュリー温度Tcが第1の磁気記録層31及び第3の磁気記録層33のキュリー温度Tcよりも、それぞれ、-30K~-100K低く、第1の磁気記録層31を構成する磁性粒子の底面部の平均粒径は、第2の磁気記録層32及び第3の磁気記録層33を構成する磁性粒子の底面部の平均粒径よりも15%以上小さかった。これにより、磁気記録媒体1は、磁性層30に含まれる磁性粒子の粒径を小さくできるため、優れた電磁変換特性を発揮することができるといえる。 Therefore, the magnetic recording media of Examples 1 to 11 differ from the magnetic recording media of Comparative Examples 1-1 to 1-5, 2-1 to 2-4 and 3-1 in that the second magnetic recording layer 32 The Curie temperature Tc of the first magnetic recording layer 31 and the Curie temperature Tc of the third magnetic recording layer 33 are respectively lower than -30 K to -100 K, and the bottom surface of the magnetic grains constituting the first magnetic recording layer 31 The average grain size of the portion was 15% or more smaller than the average grain size of the bottom portion of the magnetic grains forming the second magnetic recording layer 32 and the third magnetic recording layer 33 . As a result, the magnetic recording medium 1 can reduce the particle size of the magnetic particles contained in the magnetic layer 30, so that it can be said that excellent electromagnetic conversion characteristics can be exhibited.

以上の通り、実施形態を説明したが、上記実施形態は、例として提示したものであり、上記実施形態により本発明が限定されるものではない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の組み合わせ、省略、置き換え、変更等を行うことが可能である。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 As described above, the embodiment has been described, but the above embodiment is presented as an example, and the present invention is not limited by the above embodiment. The above embodiments can be implemented in various other forms, and various combinations, omissions, replacements, changes, etc. can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.

1、101 磁気記録媒体
10 基板
20 下地層
30 磁性層
31 第1の磁気記録層
32 第2の磁気記録層
33 第3の磁気記録層
100 磁気記憶装置
Reference Signs List 1, 101 magnetic recording medium 10 substrate 20 underlayer 30 magnetic layer 31 first magnetic recording layer 32 second magnetic recording layer 33 third magnetic recording layer 100 magnetic storage device

Claims (6)

基板と、下地層と、L1型結晶構造を有する合金を含む磁性層とをこの順に積層して備え、
前記下地層は、MgOを含み、
前記磁性層は、少なくとも3層以上有し、
3層の前記磁性層が、前記基板側から順に、第1の磁気記録層、第2の磁気記録層及び第3の磁気記録層である時、前記第2の磁気記録層のキュリー温度Tcは、前記第1の磁気記録層及び前記第3の磁気記録層のキュリー温度Tcよりも、それぞれ、-30K~-100K低く、前記第1の磁気記録層を構成する磁性粒子の底面部の平均粒径は、前記第2の磁気記録層及び前記第3の磁気記録層を構成する磁性粒子の底面部の平均粒径よりも、それぞれ、15%以上小さい磁気記録媒体。
A substrate, an underlayer, and a magnetic layer containing an alloy having an L10 type crystal structure are laminated in this order,
The underlayer contains MgO,
The magnetic layer has at least three layers,
When the three magnetic layers are a first magnetic recording layer, a second magnetic recording layer and a third magnetic recording layer in order from the substrate side, the Curie temperature Tc of the second magnetic recording layer is , -30 K to -100 K lower than the Curie temperature Tc of the first magnetic recording layer and the third magnetic recording layer, respectively, and the average grain size of the bottom portion of the magnetic grains constituting the first magnetic recording layer A magnetic recording medium whose diameter is 15% or more smaller than the average particle diameter of the bottom portion of the magnetic grains constituting the second magnetic recording layer and the third magnetic recording layer.
前記第1の磁気記録層を構成する磁性粒子の底面部の平均粒径は、前記第2の磁気記録層及び前記第3の磁気記録層を構成する磁性粒子の底面部の平均粒径よりも30%~60%小さい請求項1に記載の磁気記録媒体。 The average grain size of the bottom portion of the magnetic grains forming the first magnetic recording layer is larger than the average grain size of the bottom portion of the magnetic grains forming the second magnetic recording layer and the third magnetic recording layer. The magnetic recording medium of claim 1, which is 30% to 60% smaller. 前記第1の磁気記録層の膜厚が、0.4nm~1.5nmである請求項1又は2に記載の磁気記録媒体。 3. The magnetic recording medium according to claim 1, wherein the thickness of said first magnetic recording layer is 0.4 nm to 1.5 nm. 前記第2の磁気記録層の膜厚が0.8nm~3.0nmである請求項1~3の何れか1項に記載の磁気記録媒体。 4. The magnetic recording medium according to claim 1, wherein the second magnetic recording layer has a film thickness of 0.8 nm to 3.0 nm. 前記第3の磁気記録層の膜厚が、3nm以上である請求項1~4の何れか1項に記載の磁気記録媒体。 5. The magnetic recording medium according to claim 1, wherein the thickness of said third magnetic recording layer is 3 nm or more. 請求項1~5の何れか1項に記載の磁気記録媒体を備える磁気記憶装置。 A magnetic storage device comprising the magnetic recording medium according to any one of claims 1 to 5.
JP2021053351A 2021-03-26 2021-03-26 Magnetic recording medium and magnetic storage device Pending JP2022150658A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021053351A JP2022150658A (en) 2021-03-26 2021-03-26 Magnetic recording medium and magnetic storage device
US17/650,119 US20220310119A1 (en) 2021-03-26 2022-02-07 Magnetic recording medium and magnetic storage apparatus
CN202210282511.1A CN115132233A (en) 2021-03-26 2022-03-22 Magnetic recording medium and magnetic storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021053351A JP2022150658A (en) 2021-03-26 2021-03-26 Magnetic recording medium and magnetic storage device

Publications (1)

Publication Number Publication Date
JP2022150658A true JP2022150658A (en) 2022-10-07

Family

ID=83363627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021053351A Pending JP2022150658A (en) 2021-03-26 2021-03-26 Magnetic recording medium and magnetic storage device

Country Status (3)

Country Link
US (1) US20220310119A1 (en)
JP (1) JP2022150658A (en)
CN (1) CN115132233A (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241766B2 (en) * 2006-01-20 2012-08-14 Seagate Technology Llc Laminated exchange coupling adhesion (LECA) media for heat assisted magnetic recording
CN102163433B (en) * 2010-02-23 2013-12-25 昭和电工株式会社 Thermally assisted magnetic recording medium and magnetic recording storage
JP6274305B2 (en) * 2014-04-03 2018-02-07 富士電機株式会社 Magnetic recording medium
US20160099017A1 (en) * 2014-10-02 2016-04-07 HGST Netherlands B.V. Layered segregant heat assisted magnetic recording (hamr) media
US9558777B2 (en) * 2014-11-26 2017-01-31 HGST Netherlands B.V. Heat assisted magnetic recording (HAMR) media having a highly ordered crystalline structure

Also Published As

Publication number Publication date
CN115132233A (en) 2022-09-30
US20220310119A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
US8279739B2 (en) Heat-assisted magnetic recording medium and magnetic storage device
JP6317896B2 (en) Magnetic recording medium and magnetic storage device
JP6145332B2 (en) Magnetic recording medium, magnetic storage device
WO2011096472A1 (en) Thermally assisted magnetic recording medium and magnetic storage device
US9361924B2 (en) Magnetic recording medium and magnetic recording and reproducing apparatus
US10008220B2 (en) Magnetic recording medium and magnetic memory device including magnetic layers having granular structure of magnetic grains and grain boundary portion
US10360936B2 (en) Assisted magnetic recording medium including a pinning layer and magnetic storage device
CN110660414B (en) Heat-assisted magnetic recording medium and magnetic storage device
JP5797308B2 (en) Perpendicular magnetic recording medium
JP5961439B2 (en) Thermally assisted magnetic recording medium and magnetic recording / reproducing apparatus
CN113053422B (en) Magnetic recording medium and magnetic storage device
JP2022150658A (en) Magnetic recording medium and magnetic storage device
CN110648693B (en) Heat-assisted magnetic recording medium and magnetic storage device
US10685674B2 (en) Assisted magnetic recording medium and magnetic storage apparatus
US11545176B2 (en) Magnetic recording medium, magnetic storage apparatus, and method for manufacturing magnetic recording medium
US20200357436A1 (en) Magnetic recording medium and magnetic read/write apparatus
CN111798876B (en) Magnetic recording medium and magnetic storage device
JP7375676B2 (en) Magnetic recording media and magnetic storage devices
JP2022159710A (en) Method of manufacturing magnetic recording medium, magnetic recording medium, and magnetic storage device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230131

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240206