JP2022150050A - water heater - Google Patents

water heater Download PDF

Info

Publication number
JP2022150050A
JP2022150050A JP2021052464A JP2021052464A JP2022150050A JP 2022150050 A JP2022150050 A JP 2022150050A JP 2021052464 A JP2021052464 A JP 2021052464A JP 2021052464 A JP2021052464 A JP 2021052464A JP 2022150050 A JP2022150050 A JP 2022150050A
Authority
JP
Japan
Prior art keywords
hot water
bypass
temperature
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021052464A
Other languages
Japanese (ja)
Other versions
JP7576498B2 (en
Inventor
悠也 宮崎
Yuya Miyazaki
篤 深谷
Atsushi Fukaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2021052464A priority Critical patent/JP7576498B2/en
Priority claimed from JP2021052464A external-priority patent/JP7576498B2/en
Publication of JP2022150050A publication Critical patent/JP2022150050A/en
Application granted granted Critical
Publication of JP7576498B2 publication Critical patent/JP7576498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/18Domestic hot-water supply systems using recuperated or waste heat

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Abstract

To provide a water heater capable of improving stability of hot water supply temperature even when determining a bypass ratio by using a heat exchanger hot water tapping temperature detected by a heat exchanger hot water temperature sensor.SOLUTION: A water heater 1 includes a control part 50 which determines a bypass ratio as a mixing rate of heat exchanger water passing quantity and bypass water passing quantity to control an opening of a bypass valve 34 on a bypass merging part 25. The control part 50 determines a bypass ratio BF by using a heat exchanger hot water tapping temperature, the heat exchanger hot water tapping temperature used for determination of the bypass ratio BF can be replaced for a relative heat exchanger hot water tapping temperature Thexx as a heat exchanger hot water tapping temperature Thex detected in the past, in place of present heat exchanger hot water tapping temperature Thex detected by a heat exchanger hot water tapping temperature sensor 32, and the relative heat exchanger hot water tapping temperature Thexx is constituted to use the past heat exchanger hot water tapping temperature Thex which goes back from the present to the past by a going-back time Tx required until hot water flowing through a hot water tapping passage 21 arrives at a bypass merging part 25 from a position of the heat exchanger hot water tapping temperature sensor 32.SELECTED DRAWING: Figure 2

Description

本発明は、給水通路と出湯通路とを短絡して熱交換器をバイパスするバイパス通路を有する給湯装置に関する。 TECHNICAL FIELD The present invention relates to a hot water supply apparatus having a bypass passage that short-circuits a water supply passage and a hot water discharge passage to bypass a heat exchanger.

この種の給湯装置では、設定された給湯設定温度の湯が得られるように、熱交換器の出口側に接続する出湯通路からの湯と、バイパス通路からの水との混合比率(バイパス比)を決定してバイパス弁の開度を制御するバイパスミキシング制御を行う技術が知られている(例えば、特許文献1)。従来、給湯装置のバイパスミキシング制御として、熱交換器で生成された湯の温度である熱交出湯温度と給湯設定温度との偏差に基づいてバイパス比を演算することにより再出湯時の給湯温度のオーバーシュートやアンダーシュートを抑制するものが知られている(特許文献2)。 In this type of water heater, the mixing ratio (bypass ratio) of the hot water from the hot water supply passage connected to the outlet side of the heat exchanger and the water from the bypass passage is used so that hot water with a set hot water supply temperature can be obtained. is known to perform bypass mixing control to control the degree of opening of the bypass valve (for example, Patent Literature 1). Conventionally, as a bypass mixing control of hot water supply equipment, the hot water supply temperature at the time of re-discharging hot water is calculated by calculating the bypass ratio based on the deviation between the heat exchange outlet hot water temperature, which is the temperature of the hot water generated by the heat exchanger, and the hot water supply set temperature. (Patent Document 2).

特開2017-75750号公報JP 2017-75750 A 特開平8-5144号公報JP-A-8-5144

しかしながら、熱交出湯温度を検出する熱交出湯温度センサは、出湯通路における熱交換器出口付近に取り付けられ、一方、出湯通路にバイパス通路が合流するバイパス合流部は、装置の構造上等から熱交換器出口付近から離れた下流位置に設けられている。このように、熱交出湯温度センサの取り付け位置とバイパス合流部の位置とは異なり、一定の距離だけ離れている。従って、出湯通路を流れる湯が熱交出湯温度センサの位置からバイパス合流部に到達するまでに一定時間要するため、熱交出湯温度センサが現在検出している熱交出湯温度と、バイパス合流部における出湯通路側の湯の温度とに差が生じる場合がある。この場合、熱交出湯温度センサで検出する熱交出湯温度を用いてバイパス比を決定すると、バイパス弁の開度を変更した過渡期等では、実際の給湯温度が目標の給湯設定温度からズレてしまうおそれがあった。例えば、バーナ燃焼により温度調節がバーナの点火と消火を交互に繰り返しながら最低号数より低い加熱量で行われる給湯条件下で且つ低水量の給湯が求められると、バーナの加熱量変化に応じて熱交出湯温度の変化が顕著となり、且つ熱交換器から出た湯がバイパス合流部に到達するのに要する時間も長くなる。そのため、出湯通路を流れる湯の温度が熱交出湯温度センサの位置とバイパス合流部の位置とで温度差が大きくなり、目標の給湯設定温度に対して実際の給湯温度のズレが顕著になる場合があった。 However, the heat exchange outlet water temperature sensor for detecting the heat exchange outlet water temperature is attached near the heat exchanger outlet in the hot water outlet path, while the bypass junction where the bypass passage joins the hot water outlet path is not suitable for the structure of the device. is provided at a downstream position away from the vicinity of the heat exchanger outlet. In this way, unlike the installation position of the heat exchange outlet hot water temperature sensor and the position of the bypass junction, they are separated by a certain distance. Therefore, it takes a certain amount of time for the hot water flowing through the outlet hot water passage to reach the bypass junction from the position of the heat exchange outlet hot water temperature sensor. There may be a difference in the temperature of the hot water on the side of the hot water outlet passage at the confluence. In this case, if the bypass ratio is determined using the temperature of the heat-exchanged hot water detected by the heat-exchanged hot water temperature sensor, the actual hot water supply temperature may deviate from the target hot water supply set temperature in the transitional period when the opening of the bypass valve is changed. There was a risk of slipping. For example, under hot water supply conditions in which temperature control is performed at a heating amount lower than the minimum number while alternately repeating burner ignition and extinguishing due to burner combustion, and a low amount of hot water is required, depending on the change in the heating amount of the burner, The change in the temperature of the hot water discharged from the heat exchanger becomes remarkable, and the time required for the hot water discharged from the heat exchanger to reach the bypass junction becomes longer. Therefore, the temperature difference between the temperature of the hot water flowing through the hot water outlet passage and the position of the heat exchange outlet hot water temperature sensor and the position of the bypass confluence becomes large, and the deviation of the actual hot water supply temperature from the target hot water supply set temperature becomes noticeable. there was a case.

本発明は、前記事情に鑑みてなされたものであり、熱交出湯温度センサで検出する熱交出湯温度を用いてバイパス比を決定する場合でも給湯温度の安定性を高めることを可能とする給湯装置を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and makes it possible to increase the stability of the hot water supply temperature even when the bypass ratio is determined using the heat exchanged hot water temperature detected by the heat exchanged hot water temperature sensor. An object of the present invention is to provide a water heater that

本発明に係る給湯装置は、
バーナによって加熱される熱交換器と、熱交換器に給水する給水通路と、熱交換器に接続されて熱交換器で生成された湯が流出する出湯通路と、給水通路と出湯通路とを短絡することによって熱交換器をバイパスするバイパス通路と、バイパス通路を通過する水の流量を増減させるバイパス弁と、熱交換器で生成された湯の温度である熱交出湯温度をバイパス通路が出湯通路に合流するバイパス合流部よりも上流側の出湯通路で検出する熱交出湯温度センサと、設定された給湯設定温度の湯が得られるようにバイパス合流部における出湯通路からの熱交換器通水量とバイパス通路からのバイパス通水量との混合比率であるバイパス比を決定してバイパス弁の開度を制御する動作を実行させる制御部とを備える給湯装置であって、
前記制御部は、
前記熱交出湯温度を用いてバイパス比を決定する構成を有し、前記バイパス比の決定に用いる熱交出湯温度は、熱交出湯温度センサが検出する現在の熱交出湯温度の代わりに、過去に検出した熱交出湯温度である相対熱交出湯温度に置き換えることを可能とし、
前記相対熱交出湯温度は、出湯通路を流れる湯が熱交出湯温度センサの位置からバイパス合流部に到達するまでに要する遡り時間だけ現在から過去に遡った過去の熱交出湯温度を用いる構成とするものである。
The water heater according to the present invention includes:
A heat exchanger heated by a burner, a water supply passage for supplying water to the heat exchanger, a hot water outlet passage connected to the heat exchanger for outflow of hot water produced by the heat exchanger, and a short circuit between the water supply passage and the hot water outlet passage. a bypass valve that increases or decreases the flow rate of water passing through the bypass passage; A heat exchanger output hot water temperature sensor that detects in the hot water outlet passage upstream of the bypass junction where the passage joins, and a heat exchanger communication from the hot water outlet passage in the bypass confluence so that hot water with a set hot water supply temperature can be obtained. A hot water supply apparatus comprising: a control unit that determines a bypass ratio, which is a mixing ratio of a water volume and a bypass water flow volume from a bypass passage, and controls an opening degree of a bypass valve,
The control unit
The heat-exchanged hot water temperature is used to determine the bypass ratio, and the heat-exchanged hot water temperature used for determining the bypass ratio is the current heat-exchanged hot water temperature detected by the heat-exchanged hot water temperature sensor. Instead, it is possible to replace the previously detected heat exchange outlet hot water temperature with the relative heat exchange outlet hot water temperature,
The relative heat-exchanged hot water temperature is the past heat-exchanged hot water temperature that goes back from the present to the past by the time required for the hot water flowing through the hot water outlet passage to reach the bypass junction from the position of the heat-exchanged hot water temperature sensor. This configuration is used.

前記構成によれば、バイパス合流部と熱交出湯温度センサの位置とが異なっていても、相対熱交出湯温度を用いることでバイパス合流部での現在(現時点)の熱交出湯温度を取得することができる。従って、相対熱交出湯温度を用いてバイパス比を決定してバイパス弁の開度制御を行うことにより、実際の給湯温度が給湯設定温度からズレることを抑制して給湯を行うことができる。例えば、低水量の給湯が要求されて熱交換器から出た湯がバイパス合流部に到達するのに比較的長い時間を要する場合でも、給湯設定温度と誤差のない給湯温度に温度調節することができる。よって、熱交出湯温度センサで検出する熱交出湯温度を用いてバイパス比を決定する場合でも相対熱交出湯温度を用いることで給湯温度の安定性を高めることが可能となる。 According to the above configuration, even if the positions of the bypass confluence and the heat exchange outlet water temperature sensor are different, the current (current) heat exchange outlet water temperature at the bypass confluence is determined by using the relative heat exchange outlet water temperature. can be obtained. Therefore, by determining the bypass ratio using the relative heat exchange output hot water temperature and controlling the opening degree of the bypass valve, it is possible to supply hot water while suppressing the deviation of the actual hot water supply temperature from the hot water supply set temperature. For example, even if a small amount of hot water is required and it takes a relatively long time for the hot water from the heat exchanger to reach the bypass confluence, the hot water supply temperature can be adjusted so that there is no error from the hot water supply set temperature. can. Therefore, even when the bypass ratio is determined using the heat-exchanged hot water temperature detected by the heat-exchanged hot water temperature sensor, the stability of the hot water supply temperature can be improved by using the relative heat-exchanged hot water temperature.

前記制御部は、
熱交出湯温度センサで検出する熱交出湯温度を一定時間ごとに継続して記憶値として記憶し、
熱交出湯温度センサの位置からバイパス合流部の位置までの出湯通路の容積に対する現在の熱交換器通水量の割合から前記遡り時間を算出し、
現在から前記遡り時間だけ前の熱交出湯温度の記憶値を前記相対熱交出湯温度として用いて前記バイパス比を算出する構成を備えるようにすることができる。
The control unit
continuously storing the temperature of the heat-exchanged hot water detected by the heat-exchanged hot water temperature sensor as a stored value at regular time intervals;
calculating the retrogression time from the ratio of the current heat exchanger water flow rate to the volume of the hot water outlet passage from the position of the heat exchange hot water temperature sensor to the position of the bypass junction;
A configuration may be provided in which the bypass ratio is calculated using a stored value of the heat exchange outlet hot water temperature before the retroactive time from the current time as the relative heat exchange outlet hot water temperature.

前記遡り時間は、熱交換器から流出して出湯通路を流れる湯が熱交出湯温度センサの位置からバイパス合流部に到達するのに要する時間に相当する。従って、現在(現時点)から前記遡り時間だけ前の熱交出湯温度の記憶値である前記相対熱交出湯温度は、今現在、バイパス合流部に到達している出湯通路側の湯の温度を示すこととなる。すなわち、前記遡り時間及び前記記憶値に基づいた相対熱交出湯温度によって、現在のバイパス合流部での正確な熱交出湯温度が分かることとなる。従って、実際の給湯温度が給湯設定温度からズレないようにバイパス比を精度よく決定することができる。よって、バイパスミキシング制御による湯の温度調節において、給湯設定温度と誤差のない給湯温度が得られるように温度調節することができ、給湯温度の安定性を高めることが可能となる。 The retrogression time corresponds to the time required for the hot water flowing out of the heat exchanger and flowing through the hot water outlet passage to reach the bypass junction from the position of the heat-exchanged hot water temperature sensor. Therefore, the relative heat exchange outlet hot water temperature, which is the stored value of the heat exchange outlet hot water temperature before the retroactive time from the present (current time), is the temperature of the hot water on the outlet passage side that reaches the bypass junction at the present time. will be shown. That is, the accurate temperature of the current heat-exchanged hot water at the bypass confluence can be obtained from the relative heat-exchanged hot water temperature based on the retrogression time and the stored value. Therefore, the bypass ratio can be accurately determined so that the actual hot water supply temperature does not deviate from the hot water supply set temperature. Therefore, in the hot water temperature adjustment by the bypass mixing control, the hot water temperature can be adjusted so as to obtain the hot water supply temperature without error from the hot water supply set temperature, and the stability of the hot water supply temperature can be improved.

前記制御部は、
前記相対熱交出湯温度を用いてバイパス比を決定しバイパス弁の開度を制御する動作を、バーナが点火と消火を交互に繰り返しながら温度調節される場合には実行する構成とすることができる。
The control unit
The operation of determining the bypass ratio and controlling the opening degree of the bypass valve using the relative heat exchange outlet water temperature may be configured to be executed when the burner temperature is adjusted while alternately repeating ignition and extinguishing. can.

これにより、バーナの加熱量変化に応じて熱交出湯温度の変化が顕著になるような場合でも、給湯設定温度と誤差のない給湯温度に温度調節することができる。 As a result, even when the temperature of the hot water supplied from the heat exchanger changes significantly in accordance with the change in the heating amount of the burner, it is possible to adjust the temperature of the hot water to be supplied without error from the hot water supply set temperature.

実施形態による給湯装置の内部構成を示す模式図である。1 is a schematic diagram showing an internal configuration of a water heater according to an embodiment; FIG. 実施形態による給湯装置におけるバイパスミキシング制御の処理を説明するための工程図である。FIG. 4 is a process diagram for explaining bypass mixing control processing in the hot water supply apparatus according to the embodiment; バイパスミキシング処理を行ったときの給湯温度の推移を示すグラフであり、同図(a)は本発明の実施例であり、同図(b)は比較例である。It is a graph which shows transition of the hot water supply temperature when a bypass mixing process is performed, the figure (a) is an Example of this invention, and the figure (b) is a comparative example.

以下に、本発明の実施形態について添付図面を参照しながら説明する。
図1に示すように、実施形態の給湯装置1は、湯を生成する熱交換器10と、熱交換器10を加熱するバーナ12を備える燃焼室11と、配管類と、制御部50とを備えている。バーナ12には、ガス通路13を介して燃料ガスが供給されており、ガス通路13には、燃料ガスの流量を制御するガス比例弁14が設けられている。燃焼室11には、バーナ12の燃焼用空気を供給するための燃焼ファン15が接続されている。
EMBODIMENT OF THE INVENTION Below, it demonstrates, referring an accompanying drawing for embodiment of this invention.
As shown in FIG. 1, the water heater 1 of the embodiment includes a heat exchanger 10 for generating hot water, a combustion chamber 11 having a burner 12 for heating the heat exchanger 10, piping, and a control unit 50. I have. Fuel gas is supplied to the burner 12 through a gas passage 13, and the gas passage 13 is provided with a gas proportional valve 14 for controlling the flow rate of the fuel gas. A combustion fan 15 for supplying combustion air for the burner 12 is connected to the combustion chamber 11 .

熱交換器10の上流側には給水通路20が接続されており、熱交換器10の下流側には出湯通路21が接続されている。給水通路20と出湯通路21とはバイパス通路22によって短絡されている。このため、給水通路20を流れる水の一部は、熱交換器10に流入する手前でバイパス通路22に分流し、残りが熱交換器10に流入して加熱された後、出湯通路21に流出する。出湯通路21に流出した湯は、出湯通路21にバイパス通路22が合流するバイパス合流部25で、バイパス通路22を流れてきた水と混合された後、出湯栓24に供給される。バイパス通路22には、バイパス弁34が設けられており、バイパス弁34の開度を調整することによってバイパス通路22を流れる水の水量が制御される。なお、本明細書では、バイパス合流部25よりも下流側の出湯通路21から延びる配管を給湯通路23と称して、バイパス合流部25よりも上流側の出湯通路21と区別することとする。従って、単に出湯通路21と表記した時は、熱交換器10の出口からバイパス合流部25までの通路を示し、給湯通路23と表記した時は、バイパス合流部25から出湯栓24までの通路を示すものとする。 A water supply passage 20 is connected to the upstream side of the heat exchanger 10 , and a hot water discharge passage 21 is connected to the downstream side of the heat exchanger 10 . The water supply passage 20 and hot water outlet passage 21 are short-circuited by a bypass passage 22 . Therefore, part of the water flowing through the water supply passage 20 is diverted to the bypass passage 22 before it flows into the heat exchanger 10, and the rest flows into the heat exchanger 10 and is heated before flowing out to the hot water discharge passage 21. do. The hot water flowing out to the hot water outlet passage 21 is mixed with the water flowing through the bypass passage 22 at a bypass junction part 25 where the hot water outlet passage 21 joins the bypass passage 22, and then supplied to the hot water outlet plug 24.例文帳に追加A bypass valve 34 is provided in the bypass passage 22 , and the amount of water flowing through the bypass passage 22 is controlled by adjusting the degree of opening of the bypass valve 34 . In this specification, the piping extending from the hot water supply passage 21 on the downstream side of the bypass junction 25 is referred to as the hot water supply passage 23 to distinguish it from the hot water supply passage 21 on the upstream side of the bypass junction 25 . Therefore, when simply referred to as the hot water outlet passage 21, it indicates the passage from the outlet of the heat exchanger 10 to the bypass confluence portion 25, and when referred to as the hot water supply passage 23, it indicates the passage from the bypass confluence portion 25 to the hot water outlet plug 24. shall be shown.

給水通路20には、給湯装置1に給水される水の温度(以下、給水温度)を検出する給水温度センサ31と、給湯装置1に給水される水の水量(以下、給水水量)を検出する流量センサ30とが設けられている。流量センサ30は、給水通路20からバイパス通路22が分岐する位置よりも上流側の位置に設けられている。このため、流量センサ30は、熱交換器10に流入する水量と、バイパス通路22側に分岐した水の水量とを合計した水量(従って、給湯通路23を流れる給湯水量)を検出していることになる。出湯通路21には、熱交換器10で生成された湯の温度(以下、熱交出湯温度)を検出する熱交出湯温度センサ32が熱交換器10の出口付近に取り付けられている。給湯通路23には、出湯通路21からの湯とバイパス通路22からの水がバイパス合流部25で混合された後の湯の温度(以下、給湯温度)を検出する給湯温度センサ33が取り付けられている。 Water supply passage 20 has a water supply temperature sensor 31 for detecting the temperature of water supplied to hot water supply device 1 (hereinafter referred to as water supply temperature), and a water supply temperature sensor 31 for detecting the amount of water supplied to hot water supply device 1 (hereinafter referred to as water supply amount). A flow sensor 30 is provided. The flow rate sensor 30 is provided upstream of a position where the bypass passage 22 branches from the water supply passage 20 . Therefore, the flow rate sensor 30 detects the sum of the amount of water flowing into the heat exchanger 10 and the amount of water branched to the bypass passage 22 (thus, the amount of hot water flowing through the hot water supply passage 23). become. A heat-exchanged hot water temperature sensor 32 for detecting the temperature of the hot water generated by the heat exchanger 10 (hereinafter referred to as heat-exchanged hot water temperature) is attached to the hot water outlet passage 21 near the outlet of the heat exchanger 10 . A hot water supply temperature sensor 33 is attached to the hot water supply passage 23 to detect the temperature of the hot water after the hot water from the hot water outlet passage 21 and the water from the bypass passage 22 are mixed at the bypass confluence portion 25 (hereinafter referred to as hot water temperature). there is

制御部50は、給湯する湯の温度を調節するための制御回路(バーナ12の加熱量制御、バイパス弁34の開度制御等)等の様々な制御回路、プログラムやデータ等を記憶するメモリ、時間を計測するタイマ等を備えている。制御部50には、流量センサ30、給水温度センサ31、熱交出湯温度センサ32、給湯温度センサ33が接続されている。また、制御部50には、リモコン51が接続されており、給湯装置1のユーザーは、リモコン51を操作することによって出湯栓24から給湯する湯の温度の設定、給湯運転の開始・停止等することができる。 The control unit 50 includes various control circuits such as a control circuit for adjusting the temperature of the hot water to be supplied (control of the heating amount of the burner 12, control of the degree of opening of the bypass valve 34, etc.), memory for storing programs and data, etc. A timer or the like for measuring time is provided. A flow rate sensor 30 , a water supply temperature sensor 31 , a heat exchange hot water temperature sensor 32 , and a hot water supply temperature sensor 33 are connected to the control unit 50 . A remote controller 51 is connected to the controller 50, and the user of the water heater 1 operates the remote controller 51 to set the temperature of the hot water to be supplied from the hot water tap 24, start/stop the hot water supply operation, and the like. be able to.

次に、実施形態の給湯装置1における給湯運転の動作を説明する。なお、給湯運転の動作の処理は、制御部50によって実行される。
出湯栓24が開栓されて給水通路20で作動水量の通水を流量センサ30が検出すると、燃焼ファン15を所定の回転数で作動し、ガス比例弁14を開弁してバーナ12を点火する。これにより、給湯運転が開始される。給湯運転が開始されると、給湯する湯の温度が給湯設定温度となるように温度調節される。この温度調節は、バーナ12による加熱量の制御と、バイパス弁34の開度を制御するバイパスミキシング制御とにより行われる。
Next, the hot water supply operation of the hot water supply apparatus 1 of the embodiment will be described. Note that the processing of the operation of the hot water supply operation is executed by the control unit 50 .
When the hot water tap 24 is opened and the flow rate sensor 30 detects the amount of working water flowing through the water supply passage 20, the combustion fan 15 is operated at a predetermined rotational speed, the gas proportional valve 14 is opened, and the burner 12 is ignited. do. As a result, the hot water supply operation is started. When the hot water supply operation is started, the temperature of the hot water to be supplied is adjusted to the hot water supply set temperature. This temperature adjustment is performed by controlling the amount of heat generated by the burner 12 and bypass mixing control for controlling the degree of opening of the bypass valve 34 .

バーナ12の加熱量の制御は、給湯設定温度、熱交出湯温度、給水温度、給水水量等に基づいてバーナ12の加熱量を決定し、この決定した加熱量に従ってバーナ燃焼の号数、バーナ燃焼のオンオフ制御(バーナ12の点火と消火を交互に繰り返す制御)等の所定の運転条件でバーナ12の燃焼状態を制御する。また、バイパスミキシング制御は、バイパス合流部25における出湯通路21側の熱交換器通水量とバイパス通路22側のバイパス通水量との混合比率となるバイパス比を決定し、この決定したバイパス比となるようにバイパス弁34の開度を制御する。これらの制御により、出湯栓24から得られる湯の給湯温度が、給湯設定温度となるように温度調節される。なお、前記温度調節の際、熱交換器10の温度が高くなり過ぎて熱交換器10内で沸騰が生じたり、熱交換器10の温度が低くなってドレンが発生しやすくなる等を防止するため、熱交出湯温度を所定の温度範囲内に保持するようにすることができる。 The heating amount of the burner 12 is controlled by determining the heating amount of the burner 12 based on the hot water supply set temperature, the heat exchange hot water temperature, the water supply temperature, the water supply water amount, etc., and according to the determined heating amount, the burner combustion size, the burner The combustion state of the burner 12 is controlled under predetermined operating conditions such as on/off control of combustion (control of alternately repeating ignition and extinguishing of the burner 12). Further, the bypass mixing control determines a bypass ratio, which is a mixing ratio of the heat exchanger water flow rate on the hot water discharge passage 21 side and the bypass water flow rate on the bypass passage 22 side, in the bypass merging portion 25, and the determined bypass ratio is obtained. The degree of opening of the bypass valve 34 is controlled as follows. Through these controls, the hot water supply temperature of hot water obtained from the hot water tap 24 is adjusted to the hot water supply set temperature. When adjusting the temperature, it is necessary to prevent the temperature of the heat exchanger 10 from becoming too high, causing boiling in the heat exchanger 10, or the temperature of the heat exchanger 10 from becoming low, which tends to cause drainage. Therefore, the temperature of the heat-exchanging hot water can be kept within a predetermined temperature range.

以下に、本実施形態におけるバイパスミキシング制御について説明する。
図2を参照して、給湯運転の開始により、制御部50は、ステップS1にて、熱交出湯温度センサ32で検出する熱交出湯温度Thexを、一定時間(例えば、0.5秒ごと)ごとに直近の任意時間分(例えば、60秒間分)だけ継続して記憶値としてメモリに記憶する。
The bypass mixing control in this embodiment will be described below.
Referring to FIG. 2, when the hot water supply operation is started, in step S1, control unit 50 changes the heat exchange outlet hot water temperature Thex detected by heat exchange outlet hot water temperature sensor 32 to a predetermined time (for example, 0.5 seconds). (every time), it is continuously stored in the memory as a stored value for the most recent arbitrary time (for example, 60 seconds).

次いで、制御部50は、ステップS2にて、出湯通路21を流れる湯が熱交出湯温度センサ32の位置からバイパス合流部25に到達するまでに要する時間である遡り時間Txを、次の式(1)により求める。 Next, in step S2, the control unit 50 calculates the backward time Tx, which is the time required for the hot water flowing through the hot water outlet passage 21 to reach the bypass confluence section 25 from the position of the heat exchange hot water temperature sensor 32, by the following equation: Obtained by (1).

Figure 2022150050000002
Figure 2022150050000002

式(1)において、Txは遡り時間、Nvは熱交出湯温度センサ32の位置からバイパス合流部25までの出湯通路21の水容積、Winは現在の給水水量、Bpnowは現在のバイパス比、をそれぞれ示す。なお、本明細書で「現在」とは現時点を意味する。 In equation (1), Tx is the backward time, Nv is the water volume of the hot water outlet passage 21 from the position of the heat exchange outlet hot water temperature sensor 32 to the bypass junction 25, Win is the current supply water amount, Bpnow is the current bypass ratio, respectively. In this specification, "currently" means the present time.

容積Nvは、出湯通路21の断面積と、熱交出湯温度センサ32の位置からバイパス合流部25までの出湯通路21の長さとの積により求められ、予め制御部50に記憶されている。現在の給水水量Winは、流量センサ30が検出する現在の検出値に基づいて取得する。現在のバイパス比Bpnowは、制御部50により決定されたものであり、制御部50において記憶されている。なお、給湯運転の開始時点のバイパス比Bpnowは、バイパス弁34を一定の開度又は閉弁状態としてもよい。 The volume Nv is obtained from the product of the cross-sectional area of the hot water outlet passage 21 and the length of the hot water outlet passage 21 from the position of the heat exchange outlet hot water temperature sensor 32 to the bypass junction portion 25, and is stored in the controller 50 in advance. The current water supply amount Win is acquired based on the current detection value detected by the flow rate sensor 30 . The current bypass ratio Bpnow is determined by the control section 50 and stored in the control section 50 . Note that the bypass ratio Bpnow at the start of the hot water supply operation may be such that the bypass valve 34 is in a constant opening or closed state.

前記式(1)の分母の値は、現在の熱交換器通水量を示すものである。すなわち、前記式(1)より、熱交出湯温度センサ32の位置からバイパス合流部25の位置までの出湯通路21の水容積Nvを、現在の熱交換器通水量で割り算することにより、出湯通路21を流れる湯が熱交出湯温度センサ32の位置からバイパス合流部25に到達するまでに要する時間である遡り時間Txが求められる。なお、遡り時間Txの算出は、前記式(1)で演算する場合に限らず、前記式(1)によるデータテーブル等から読み取るようにしてもよい。 The value of the denominator in the above formula (1) indicates the current water flow through the heat exchanger. That is, according to the above equation (1), by dividing the water volume Nv of the hot water discharge passage 21 from the position of the heat exchange hot water temperature sensor 32 to the position of the bypass junction portion 25 by the current heat exchanger water flow rate, A retrogression time Tx, which is the time required for the hot water flowing through the passage 21 to reach the bypass confluence portion 25 from the position of the heat-exchanged hot water temperature sensor 32, is obtained. The calculation of the backward time Tx is not limited to the case where the calculation is performed by the above equation (1), but may be read from the data table or the like according to the above equation (1).

そして、制御部50は、遡り時間Txが得られると、ステップS3にて、現在から遡り時間Txだけ前の熱交出湯温度Thexの記憶値をメモリから読み込んで、この読み込んだ記憶値を相対熱交出湯温度Thexxとして取得する。なお、給湯運転の開始当初で遡り時間Tx分の熱交出湯温度Thexの記憶値がメモリに未だ無い場合は、例えば、メモリの記憶値のうちで最古の記憶値を相対熱交出湯温度Thexxとみなす等のように、メモリの記憶値のうちの任意の記憶値、あるいは、熱交出湯温度センサ32で現在検出している熱交出湯温度Thexを相対熱交出湯温度Thexxとみなすようにすることができる。 Then, when the retroactive time Tx is obtained, in step S3, the control unit 50 reads from the memory the stored value of the heat exchange outlet hot water temperature Thex for the retroactive time Tx before the present, and stores the read stored value as a relative value. Obtained as the heat exchange outlet water temperature Thexx. When the stored value of the heat exchange hot water temperature Thex for the retroactive time Tx is not yet stored in the memory at the beginning of the hot water supply operation, for example, the oldest stored value among the stored values in the memory is set to the relative heat exchange hot water temperature. An arbitrary stored value among the stored values of the memory, or the heat exchanged hot water temperature Thex currently detected by the heat exchanged hot water temperature sensor 32 is regarded as the relative heat exchanged hot water temperature Thexx can be considered as

次いで、制御部50は、ステップS4にて、熱交出湯温度Thex、給湯設定温度Tqset及び給水温度Tinに基づいてバイパス比BFを決定する。但し、本実施形態では、バイパス比BFの決定に用いる熱交出湯温度Thexは、熱交出湯温度センサ32が検出する現在の熱交出湯温度Thexの代わりに、相対熱交出湯温度Thexxに置き換える。すなわち、バイパス弁34の開度を設定するためのバイパス比BFは、次の式(2)により求める。 Next, in step S4, the control unit 50 determines the bypass ratio BF based on the heat exchange outlet hot water temperature Thex, the hot water supply set temperature Tqset, and the water supply temperature Tin. However, in the present embodiment, instead of the current heat-exchanged hot water temperature Thex detected by the heat-exchanged hot water temperature sensor 32, the heat-exchanged hot water temperature Thex used to determine the bypass ratio BF is set to the relative heat-exchanged hot water temperature Replace with Thexx. That is, the bypass ratio BF for setting the degree of opening of the bypass valve 34 is obtained by the following equation (2).

Figure 2022150050000003
Figure 2022150050000003

式(2)において、相対熱交出湯温度Thexxは、前記ステップS3により取得された過去の熱交出湯温度Thexの記憶値である。給湯設定温度Tqsetは、出湯栓24から給湯される湯の給湯温度の設定値であり、ユーザーがリモコン51を操作して制御部50に対して予め設定されている。給水温度Tinは、給水温度センサ31が検出する現在の検出値に基づいて取得する。 In Equation (2), the relative heat exchange exit hot water temperature Thexx is a stored value of the past heat exchange exit hot water temperature Thex acquired in step S3. The hot water supply set temperature Tqset is a set value of the hot water supply temperature of hot water supplied from the hot water tap 24, and is set in advance for the controller 50 by the user operating the remote control 51. FIG. The feed water temperature Tin is acquired based on the current detection value detected by the feed water temperature sensor 31 .

前記式(2)は、バイパス合流部25において出湯通路21からの湯の放熱量とバイパス通路22からの水の吸熱量とが等しくなるという熱平衡の関係に基づいて、給湯設定温度Tqsetの湯を得るための熱交換器通水量とバイパス通水量との混合比率(バイパス通水量/熱交換器通水量)としてのバイパス比BFを算出する関係式である。前記式(2)では、バイパス比BFは、熱交換器通水量を1としたときのバイパス通水量の比率が算出される。但し、前記式(2)で算出したバイパス比BFの値が0未満(BF<0)の場合は、バイパス比BF=0とする。なお、バイパス比BFの算出は、前記式(2)で演算する場合に限らず、前記式(2)によるデータテーブル等から読み取るようにしてもよい。 The formula (2) is based on the thermal equilibrium relationship that the amount of heat released from hot water from the hot water supply passage 21 and the amount of heat absorbed from the water from the bypass passage 22 are equal at the bypass confluence portion 25. It is a relational expression for calculating a bypass ratio BF as a mixing ratio of the heat exchanger water flow rate and the bypass water flow rate (bypass water flow rate/heat exchanger water flow rate). In the above formula (2), the bypass ratio BF is calculated as the ratio of the bypass water flow rate when the heat exchanger water flow rate is 1. However, when the value of the bypass ratio BF calculated by the formula (2) is less than 0 (BF<0), the bypass ratio BF=0. The calculation of the bypass ratio BF is not limited to the calculation using the formula (2), and may be read from the data table or the like based on the formula (2).

そして、制御部50は、前記ステップS4での処理により相対熱交出湯温度Thexxを用いたバイパス比BFが算出されると、ステップS5にて、このバイパス比BFに従ってバイパス弁34の開度を設定するように指示する。これにより、バイパス弁34の開度は、バイパス比BFとなる開度に設定される。 Then, when the bypass ratio BF using the relative heat exchange outlet hot water temperature Thexx is calculated by the processing in step S4, the control unit 50 adjusts the opening degree of the bypass valve 34 according to the bypass ratio BF in step S5. Instruct to set. As a result, the degree of opening of the bypass valve 34 is set to the degree of opening corresponding to the bypass ratio BF.

以上説明したバイパス弁34の開度を制御する動作、すなわち、バイパスミキシング制御の動作は、給湯運転の開始当初から運転終了するまで実行される。 The operation of controlling the degree of opening of the bypass valve 34 described above, that is, the operation of the bypass mixing control is performed from the beginning of the hot water supply operation to the end of the operation.

以上より、本実施形態の給湯装置1によれば、バイパスミキシング制御においてバイパス比を決定するのに相対熱交出湯温度Thexxを用いるので、出湯通路21におけるバイパス合流部25と熱交出湯温度センサ32の位置とが異なっていても、バイパス合流部25での現在の熱交出湯温度(相対熱交出湯温度Thexx)を取得することができる。すなわち、遡り時間Txは、熱交換器10から流出して出湯通路21を流れる湯が熱交出湯温度センサ32の位置からバイパス合流部25に到達するのに要する時間である。相対熱交出湯温度Thexxは、過去の熱交出湯温度Thexの記憶値のうちで、現在から遡り時間Txだけ前の熱交出湯温度Thexの記憶値であり、今現在のバイパス合流部25に到達している出湯通路21側の湯の温度を示すこととなる。このように、遡り時間Tx及び熱交出湯温度Thexの記憶値に基づいた相対熱交出湯温度Thexxから、現在のバイパス合流部25での正確な熱交出湯温度が分かることとなる。 As described above, according to the hot water supply apparatus 1 of the present embodiment, the relative heat exchange outlet hot water temperature Thexx is used to determine the bypass ratio in the bypass mixing control. Even if the position of the sensor 32 is different, the current heat-exchanged hot water temperature (relative heat-exchanged hot water temperature Thexx) at the bypass junction section 25 can be acquired. That is, the retrogression time Tx is the time required for the hot water flowing out of the heat exchanger 10 and flowing through the hot water outlet passage 21 to reach the bypass junction portion 25 from the position of the heat exchange outlet hot water temperature sensor 32 . The relative heat-exchanged hot water temperature Thexx is a stored value of the heat-exchanged hot water temperature Thex before the retroactive time Tx from the present, among the stored values of the past heat-exchanged hot water temperature Thex, and is the current bypass junction part. This indicates the temperature of the hot water reaching 25 on the side of hot water discharge passage 21 . In this manner, the current accurate temperature of the heat-exchanged hot water at the bypass confluence section 25 can be obtained from the relative heat-exchanged hot water temperature Thexx based on the retrogression time Tx and the stored values of the heat-exchanged hot water temperature Thex.

従って、実際の給湯温度が給湯設定温度Tqsetからズレないようにバイパス比BFを精度よく決定することができる。従って、この相対熱交出湯温度Thexxを用いてバイパス比BFを決定することで、実際の給湯温度が給湯設定温度Tqsetからズレることを抑制して給湯を行うことができる。よって、バイパスミキシング制御による湯の温度調節において、給湯設定温度Tqsetと誤差のない給湯温度に温度調節することができ、給湯温度の安定性を高めることが可能となる。 Therefore, the bypass ratio BF can be accurately determined so that the actual hot water supply temperature does not deviate from the hot water supply set temperature Tqset. Therefore, by determining the bypass ratio BF using the relative heat exchange output hot water temperature Thexx, it is possible to supply hot water while suppressing the deviation of the actual hot water supply temperature from the hot water supply set temperature Tqset. Therefore, in adjusting the temperature of hot water by the bypass mixing control, it is possible to adjust the hot water supply temperature to a hot water supply temperature with no error from the hot water supply set temperature Tqset, and it is possible to improve the stability of the hot water supply temperature.

例えば、バーナ12側で点火と消火を交互に繰り返しながら温度調節がされている場合は、バーナ12の加熱量変化に応じて熱交出湯温度Thexの変化が頻繁になる。そのため、出湯通路21を流れる湯の温度が熱交出湯温度センサ32の位置とバイパス合流部25の位置とで温度差が大きくなり、目標の給湯設定温度Tqsetに対して実際の給湯温度のズレが顕著になるおそれがある。しかし、このような場合でも、バーナ12の点火、消火に伴う熱交出湯温度Thexの変化に適切なタイミングで適切なバイパス比BFによりバイパス弁34の開度を設定することができ、給湯設定温度Tqsetと誤差のない給湯温度が得られるように温度調節することができる。 For example, when the temperature is adjusted by alternately repeating ignition and extinguishing on the burner 12 side, the heat exchange discharge hot water temperature Thex changes frequently according to changes in the heating amount of the burner 12 . As a result, the difference in the temperature of the hot water flowing through the outlet hot water passage 21 between the position of the heat exchange outlet hot water temperature sensor 32 and the position of the bypass junction 25 becomes large, and the actual hot water supply temperature deviates from the target hot water supply set temperature Tqset. may become noticeable. However, even in such a case, the opening of the bypass valve 34 can be set with an appropriate bypass ratio BF at an appropriate timing for changes in the heat exchange hot water temperature Thex accompanying ignition and extinguishing of the burner 12. The temperature can be adjusted so as to obtain a hot water supply temperature that does not have an error with the temperature Tqset.

よって、熱交出湯温度センサ32で検出する熱交出湯温度Thexを用いてバイパス比BFを決定する場合でも、現在検出されている熱交出湯温度Thexに置き換えて相対熱交出湯温度Thexxを用いることにより給湯温度の安定性を高めることが可能となる。 Therefore, even when the bypass ratio BF is determined using the heat-exchanged hot water temperature Thex detected by the heat-exchanged hot water temperature sensor 32, the currently detected heat-exchanged hot water temperature Thex is replaced with the relative heat-exchanged hot water temperature By using Thexx, it is possible to improve the stability of the hot water supply temperature.

他の形態1
他の形態1では、制御部50は、相対熱交出湯温度Thexxを用いてバイパス比BFを決定してバイパスミキシング制御を行う動作を、要求される給湯水量が低水量(例えば、給水水量が3L/min以下)の場合に実行する構成とする。低水量以外の場合は、熱交出湯温度センサ32が検知している熱交出湯温度Thexを用いる等その他の方法でバイパス比を決定してバイパスミキシング制御を行ったり、あるいは、バイパス弁34の開度を一定開度に保持する等としてもよい。これにより、低水量のために熱交換器10から出た湯がバイパス合流部25に到達するのに比較的長く時間を要する場合でも、相対熱交出湯温度Thexxを用いてバイパス比BFを決定することにより、実際の給湯温度が給湯設定温度Tqsetからズレることを抑制して給湯を行うことができる。
Other form 1
In another form 1, the control unit 50 determines the bypass ratio BF using the relative heat exchange outlet hot water temperature Thexx and performs bypass mixing control when the requested hot water supply amount is low (for example, the water supply amount is 3 L/min or less). When the amount of water is not low, the bypass ratio is determined by another method such as using the heat exchanged hot water temperature Thex detected by the heat exchanged hot water temperature sensor 32 to perform bypass mixing control, or the bypass valve 34 may be maintained at a constant opening. As a result, even if it takes a relatively long time for the hot water coming out of the heat exchanger 10 to reach the bypass confluence portion 25 due to the low water volume, the relative heat exchange hot water temperature Thexx is used to determine the bypass ratio BF. By doing so, hot water can be supplied while suppressing deviation of the actual hot water supply temperature from the hot water supply set temperature Tqset.

他の形態2
他の形態2では、制御部50は、相対熱交出湯温度Thexxを用いてバイパス比BFを決定してバイパスミキシング制御を行う動作を、バーナ12が点火と消火を交互に繰り返しながら最低号数より低いバーナ加熱量で温度調節される場合に実行する構成とする。バーナ12の加熱量が最低号数以上の場合は、熱交出湯温度センサ32が検知している熱交出湯温度Thexを用いる等その他の方法でバイパス比を決定してバイパスミキシング制御を行ったり、あるいは、バイパス弁34の開度を一定開度に保持する等としてもよい。これにより、バーナ12の加熱量変化に応じて熱交出湯温度Thexの変化が顕著になるような場合でも、相対熱交出湯温度Thexxを用いてバイパス比BFを決定することにより、実際の給湯温度が給湯設定温度Tqsetからズレることを抑制して給湯を行うことができる。
Other form 2
In another form 2, the control unit 50 determines the bypass ratio BF using the relative heat exchange outlet hot water temperature Thexx, and performs bypass mixing control while the burner 12 alternately repeats ignition and extinguishing. It is configured to be executed when the temperature is adjusted with a lower burner heating amount. When the heating amount of the burner 12 is equal to or higher than the minimum number, the bypass ratio is determined by another method such as using the heat exchanged hot water temperature Thex detected by the heat exchanged hot water temperature sensor 32, and bypass mixing control is performed. Alternatively, the degree of opening of the bypass valve 34 may be maintained at a constant degree of opening. As a result, even when the change in the heat exchange outlet hot water temperature Thex becomes remarkable in accordance with the change in the heating amount of the burner 12, by determining the bypass ratio BF using the relative heat exchange outlet hot water temperature Thexx, the actual It is possible to supply hot water while suppressing deviation of the hot water supply temperature from the set hot water supply temperature Tqset.

次に、本発明の効果を確認するために試験を行ったので、以下に説明する。この試験は、図1に示す給湯装置1の構成に相当する給湯装置を用い、給湯設定温度Tqsetが40℃、給水温度Tinが26℃、給水水量が1.5L/minであり、バーナ12が点火と消火を交互に繰り返す条件下で、バイパスミキシング制御を行ったときの給湯温度(給湯温度センサ33の検出値)の状態を測定した。 Next, tests were conducted to confirm the effects of the present invention, which will be described below. In this test, a hot water supply apparatus corresponding to the configuration of the hot water supply apparatus 1 shown in FIG. The state of the hot water supply temperature (detected value of the hot water supply temperature sensor 33) when the bypass mixing control was performed under the condition that ignition and extinguishing were alternately repeated was measured.

図3は、この試験結果を示すグラフであり、図3(a)は、本発明の実施例であり、相対熱交出湯温度Thexxを用いて算出したバイパス比によりバイパスミキシング制御を行ったときの給湯温度の状態を示し、図3(b)は、比較例であり、熱交出湯温度センサ32で現在検出する熱交出湯温度Thexを用いて算出したバイパス比によりバイパスミキシング制御を行ったときの給湯温度の状態を示す。 FIG. 3 is a graph showing the results of this test, and FIG. 3(a) shows an embodiment of the present invention. FIG. 3B shows a comparative example in which bypass mixing control is performed using a bypass ratio calculated using the heat exchanged hot water temperature Thex currently detected by the heat exchanged hot water temperature sensor 32. shows the hot water supply temperature when

比較例では、図3(b)に示すように、熱交出湯温度の上昇によりバイパス弁34の開度を増加(バイパス比増)させるようにバイパス弁34の開度制御が行われたときには給湯温度の下降が見られ、また、熱交出湯温度の下降によりバイパス弁34の開度を減少(バイパス比減)させるようにバイパス弁34の開度制御が行われたときには給湯温度の上昇が見られた。これより、バイパス弁34の開度制御のタイミングが少し早いものと考えられる。 In the comparative example, as shown in FIG. 3B, when the degree of opening of the bypass valve 34 is controlled so as to increase the degree of opening of the bypass valve 34 (increase the bypass ratio) due to the rise in the temperature of the heat exchanged hot water. When the temperature of the hot water supplied drops, and when the opening of the bypass valve 34 is controlled so as to decrease the opening of the bypass valve 34 (reduce the bypass ratio) due to the drop in the temperature of the hot water supplied from heat exchange, the temperature of the hot water supplied rises. It was observed. From this, it is considered that the timing of the control of the degree of opening of the bypass valve 34 is slightly earlier.

また、比較例の給湯温度は、最高値が40.9℃、最低値が37.9℃、平均値が38.9℃であった。すなわち、給湯温度の平均値は、給湯設定温度40℃との間で1.1℃のズレ(温度差)があり、平均値と最高値との間で2.0℃、平均値と最低値との間で1.0℃のズレがあった。このように比較例では、とりわけバイパス弁34の開度変更後の過渡期では、給湯温度の給湯設定温度からのズレが顕著になっていた。 The hot water supply temperature of the comparative example had a maximum value of 40.9°C, a minimum value of 37.9°C, and an average value of 38.9°C. That is, the average value of the hot water supply temperature has a deviation (temperature difference) of 1.1°C from the hot water supply set temperature of 40°C, 2.0°C between the average value and the maximum value, and 2.0°C between the average value and the minimum value. There was a difference of 1.0°C between As described above, in the comparative example, especially in the transitional period after the opening degree of the bypass valve 34 is changed, the deviation of the hot water supply temperature from the hot water supply set temperature was remarkable.

実施例では、図3(a)に示すように、熱交出湯温度の上昇によりバイパス弁34の開度を増加させるようにバイパス弁34の開度制御が行われたとき、また、熱交出湯温度の下降によりバイパス弁34の開度を減少させるようにバイパス弁34の開度制御が行われたときのいずれの場合も、給湯温度の上昇、下降がほとんど見られず、給湯温度は一定温度を保ち安定していることが認められた。これより、バイパス弁34の開度制御のタイミングは適時のタイミングであることが実証された。 In the example, as shown in FIG. When the opening degree of the bypass valve 34 is controlled so as to decrease the opening degree of the bypass valve 34 due to the decrease in the temperature of the hot water supply, almost no increase or decrease in the temperature of the hot water supply is observed. It was confirmed that the temperature was kept constant and stable. This proves that the timing of controlling the degree of opening of the bypass valve 34 is timely.

また、実施例の給湯温度は、最高値が40.2℃、最低値が39.1℃、平均値が39.6℃であった。すなわち、給湯温度の平均値は、給湯設定温度40℃との間で0.4℃のズレ(温度差)があり、平均値と最高値との間で0.6℃、平均値と最低値との間で0.5℃のズレがあるものの、給湯温度と給湯設定温度との温度差は、比較例と比べて極僅かであった。このように、実施例では、バイパス弁34の開度変更後の過渡期において比較例のような給湯温度と給湯設定温度との間で見られた温度のズレが解消されていることがわかる。 The hot water supply temperature in the example was 40.2°C as the maximum value, 39.1°C as the minimum value, and 39.6°C as the average value. That is, the average value of the hot water supply temperature has a deviation (temperature difference) of 0.4°C from the hot water supply set temperature of 40°C, the difference between the average value and the maximum value is 0.6°C, and the average value and the minimum value are 0.6°C. Although there is a difference of 0.5° C. between the temperature and the hot water supply temperature, the temperature difference between the hot water supply temperature and the hot water supply set temperature was extremely small compared to the comparative example. As described above, it can be seen that in the example, the temperature deviation observed between the hot water supply temperature and the hot water supply set temperature as in the comparative example is eliminated in the transitional period after the opening degree of the bypass valve 34 is changed.

以上の実施例、比較例の結果より、本発明によれば、バーナ12が点火と消火を交互に繰り返しながら温度調節されている条件下であり且つ低水量の給湯が要求される場合であっても、給湯温度の安定性が高められるという効果が実証された。 From the results of the above examples and comparative examples, according to the present invention, even when the temperature is adjusted while the burner 12 alternately repeats ignition and extinguishing, and a small amount of hot water is required. Also, the effect of increasing the stability of the hot water supply temperature was demonstrated.

なお、本発明は、以上の実施形態に限定されるものではなく、特許請求の範囲内で様々な変更を施す形態とすることが可能である。例えば、本発明は、バーナが点火と消火とを交互に繰り返すバーナ燃焼の条件下で且つ低水量の給湯要求がなされている場合に実行するようにしてもよい。 It should be noted that the present invention is not limited to the above embodiments, and can be modified in various ways within the scope of the claims. For example, the present invention may be practiced under burner combustion conditions in which the burner alternately ignites and extinguishes and when a low water quantity hot water supply request is made.

1 給湯装置
10 燃焼装置
11 熱交換器
12 バーナ
13 ガス通路
14 ガス比例弁
15 燃焼ファン
20 給水通路
21 出湯通路
22 バイパス通路
23 給湯通路
24 出湯栓
25 バイパス合流部
30 流量センサ
31 給水温度センサ
32 熱交出湯温度センサ
33 給湯温度センサ
34 バイパス弁
50 制御部
51 リモコン
1 Hot water supply device 10 Combustion device 11 Heat exchanger 12 Burner 13 Gas passage 14 Gas proportional valve 15 Combustion fan 20 Water supply passage 21 Hot water supply passage 22 Bypass passage 23 Hot water supply passage 24 Hot water supply valve 25 Bypass junction 30 Flow sensor 31 Water supply temperature sensor 32 Heat Discharged hot water temperature sensor 33 Hot water supply temperature sensor 34 Bypass valve 50 Control unit 51 Remote controller

Claims (3)

バーナによって加熱される熱交換器と、熱交換器に給水する給水通路と、熱交換器に接続されて熱交換器で生成された湯が流出する出湯通路と、給水通路と出湯通路とを短絡することによって熱交換器をバイパスするバイパス通路と、バイパス通路を通過する水の流量を増減させるバイパス弁と、熱交換器で生成された湯の温度である熱交出湯温度をバイパス通路が出湯通路に合流するバイパス合流部よりも上流側の出湯通路で検出する熱交出湯温度センサと、設定された給湯設定温度の湯が得られるようにバイパス合流部における出湯通路からの熱交換器通水量とバイパス通路からのバイパス通水量との混合比率であるバイパス比を決定してバイパス弁の開度を制御する動作を実行させる制御部とを備える給湯装置であって、
前記制御部は、
前記熱交出湯温度を用いてバイパス比を決定する構成を有し、前記バイパス比の決定に用いる熱交出湯温度は、熱交出湯温度センサが検出する現在の熱交出湯温度の代わりに、過去に検出した熱交出湯温度である相対熱交出湯温度に置き換えることを可能とし、
前記相対熱交出湯温度は、出湯通路を流れる湯が熱交出湯温度センサの位置からバイパス合流部に到達するまでに要する遡り時間だけ現在から過去に遡った過去の熱交出湯温度を用いる構成とする、給湯装置。
A heat exchanger heated by a burner, a water supply passage for supplying water to the heat exchanger, a hot water outlet passage connected to the heat exchanger for outflow of hot water produced by the heat exchanger, and a short circuit between the water supply passage and the hot water outlet passage. a bypass valve that increases or decreases the flow rate of water passing through the bypass passage; A heat exchanger output hot water temperature sensor that detects in the hot water outlet passage upstream of the bypass junction where the passage joins, and a heat exchanger communication from the hot water outlet passage in the bypass confluence so that hot water with a set hot water supply temperature can be obtained. A hot water supply apparatus comprising: a control unit that determines a bypass ratio, which is a mixing ratio of a water volume and a bypass water flow volume from a bypass passage, and controls an opening degree of a bypass valve,
The control unit
The heat-exchanged hot water temperature is used to determine the bypass ratio, and the heat-exchanged hot water temperature used for determining the bypass ratio is the current heat-exchanged hot water temperature detected by the heat-exchanged hot water temperature sensor. Instead, it is possible to replace the previously detected heat-exchanged hot water temperature with the relative heat-exchanged hot water temperature,
The relative heat-exchanged hot water temperature is the past heat-exchanged hot water temperature that goes back from the present to the past by the time required for the hot water flowing through the hot water outlet passage to reach the bypass junction from the position of the heat-exchanged hot water temperature sensor. hot water supply device.
請求項1に記載の給湯装置において、
前記制御部は、
熱交出湯温度センサで検出する熱交出湯温度を一定時間ごとに継続して記憶値として記憶し、
熱交出湯温度センサの位置からバイパス合流部の位置までの出湯通路の容積に対する現在の熱交換器通水量の割合から前記遡り時間を算出し、
現在から前記遡り時間だけ前の熱交出湯温度の記憶値を前記相対熱交出湯温度として用いて前記バイパス比を算出する構成を備える、給湯装置。
In the water heater according to claim 1,
The control unit
continuously storing the temperature of the heat-exchanged hot water detected by the heat-exchanged hot water temperature sensor as a stored value at regular time intervals;
calculating the retrogression time from the ratio of the current heat exchanger water flow rate to the volume of the hot water outlet passage from the position of the heat exchange hot water temperature sensor to the position of the bypass junction;
A hot water supply apparatus comprising a configuration for calculating the bypass ratio using a stored value of a heat exchange outlet hot water temperature before the retroactive time from the present as the relative heat exchange outlet hot water temperature.
請求項1又は2に記載の給湯装置において、
前記制御部は、
前記相対熱交出湯温度を用いてバイパス比を決定しバイパス弁の開度を制御する動作を、バーナが点火と消火を交互に繰り返しながら温度調節される場合には実行する構成とする、給湯装置。
The water heater according to claim 1 or 2,
The control unit
The operation of determining the bypass ratio using the relative heat exchange output hot water temperature and controlling the opening degree of the bypass valve is executed when the temperature is adjusted while the burner alternately repeats ignition and extinguishing. Device.
JP2021052464A 2021-03-25 Hot water supply equipment Active JP7576498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021052464A JP7576498B2 (en) 2021-03-25 Hot water supply equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021052464A JP7576498B2 (en) 2021-03-25 Hot water supply equipment

Publications (2)

Publication Number Publication Date
JP2022150050A true JP2022150050A (en) 2022-10-07
JP7576498B2 JP7576498B2 (en) 2024-10-31

Family

ID=

Similar Documents

Publication Publication Date Title
US9885496B2 (en) Fluid heater with perforated flame holder
US9791171B2 (en) Fluid heater with a variable-output burner including a perforated flame holder and method of operation
JP7275601B2 (en) boiler equipment
CN110081605B (en) Exhaust safety detection method of water heater
KR0142396B1 (en) Hot-water supplier
JP2022150050A (en) water heater
JP7576498B2 (en) Hot water supply equipment
JP5819111B2 (en) Combustion device
JPS60259855A (en) Hot water supplying temperature control device of gas-fired water heater
JP6653079B2 (en) Water heater
JP2001141308A (en) Method of controlling latent heat recovery type water heater
JP6735572B2 (en) Water heater
JP4004170B2 (en) Heat source equipment
JP3744355B2 (en) Water heater
CN217503999U (en) Water supply system
JP7554707B2 (en) Combustion heat source unit
JP3628871B2 (en) Water heater
JP3854700B2 (en) Hot water control device for hot water heater of bypass mixing system
JP3884873B2 (en) Incomplete combustion detector for combustion equipment
JP3845099B2 (en) Water heater heating control device
JP2017048974A (en) Heating medium boiler
JP2908229B2 (en) Hot water supply temperature control device
JP3996157B2 (en) Water heater
JP3731450B2 (en) Hot water storage water heater
JP2013245895A (en) Water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241001