JP2022149735A - Program, image processing method, image processing device and model generation method - Google Patents

Program, image processing method, image processing device and model generation method Download PDF

Info

Publication number
JP2022149735A
JP2022149735A JP2021052013A JP2021052013A JP2022149735A JP 2022149735 A JP2022149735 A JP 2022149735A JP 2021052013 A JP2021052013 A JP 2021052013A JP 2021052013 A JP2021052013 A JP 2021052013A JP 2022149735 A JP2022149735 A JP 2022149735A
Authority
JP
Japan
Prior art keywords
information
blood vessel
lumen
flash
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021052013A
Other languages
Japanese (ja)
Inventor
智仁 纐纈
Tomohito Koketsu
昌典 時田
Masanori Tokita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2021052013A priority Critical patent/JP2022149735A/en
Publication of JP2022149735A publication Critical patent/JP2022149735A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Endoscopes (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

To provide a program or the like capable of proposing various conditions in flash operation.SOLUTION: A computer acquires an ultrasonic tomographic image of a cross section of a blood vessel by using an ultrasonic signal, according to a program. Further, the computer calculates information on a lumen of the vessel in the ultrasonic tomographic image, based on the acquired ultrasonic tomographic image. Then, the computer identifies operation information on a flash operation in imaging cross-sections of blood vessels by using a light signal, based on the calculated information on the lumen.SELECTED DRAWING: Figure 1

Description

本発明は、プログラム、画像処理方法、画像処理装置及びモデル生成方法に関する。 The present invention relates to a program, an image processing method, an image processing apparatus, and a model generation method.

患者の血管内にカテーテルを挿入し、バルーン又はステントを用いて血管の狭窄部位を拡張する血管内治療が行われている。血管内治療では、光干渉断層診断装置(OCT:Optical Coherence Tomography)を用いて血管内から血管の断層画像を撮影し、得られた断層画像によって血管の観察が行われている。OCTによる撮影時には、赤血球等の血球成分を含む血液によって光の乱反射と減衰が起こることがあるので、造影剤、低分子デキストラン又は生理食塩水等を血管内に注入して血液が無い状態を一時的に作り出すフラッシュ操作が行われる。特許文献1には、画像診断に使用する断層画像を適切に撮影するためのフラッシュ操作に用いるフラッシュ液が開示されている。 BACKGROUND ART Endovascular treatment is performed by inserting a catheter into a patient's blood vessel and dilating a stenotic site of the blood vessel using a balloon or a stent. In endovascular treatment, an optical coherence tomography (OCT) is used to capture a tomographic image of a blood vessel from within the blood vessel, and the blood vessel is observed using the obtained tomographic image. During OCT imaging, blood containing blood cell components such as red blood cells may cause diffuse reflection and attenuation of light. A flash operation is performed that creates a Japanese Patent Laid-Open No. 2003-100000 discloses a flushing liquid used in a flushing operation for appropriately capturing a tomographic image used for diagnostic imaging.

特許第6562902号公報Japanese Patent No. 6562902

フラッシュ操作においてフラッシュ液の種類及び希釈率、注入量及び注入する際の流速等の条件を適切に設定する必要がある。適切な条件でのフラッシュ操作が行われなかった場合、フラッシュ操作のやり直し及び断層画像の撮り直し等が発生し、手技時間が延長する。フラッシュ操作における条件は、治療対象の血管の状態や、使用するカテーテルのサイズ等を考慮して設定する必要があり、適切に選択することは容易ではない。特許文献1では、フラッシュ操作における各種の条件の選択については言及されていない。 In the flush operation, it is necessary to appropriately set conditions such as the type and dilution ratio of the flush liquid, the injection amount, and the flow rate at the time of injection. If the flash operation is not performed under appropriate conditions, the flash operation must be redone, the tomographic image must be retaken, and the procedure time will be extended. Conditions for the flash operation must be set in consideration of the condition of the blood vessel to be treated, the size of the catheter used, etc., and it is not easy to select them appropriately. Patent Document 1 does not mention the selection of various conditions in the flash operation.

一つの側面では、フラッシュ操作における条件(フラッシュ操作に関する操作情報)を提案することが可能なプログラム等を提供することを目的とする。 An object of one aspect is to provide a program or the like capable of proposing conditions (operation information regarding flash operation) in flash operation.

一つの側面に係るプログラムは、超音波信号を用いて血管の横断面を撮影した超音波断層画像を取得し、取得した超音波断層画像に基づいて、前記血管の内腔に関する情報を算出し、算出した前記内腔に関する情報に基づいて、光信号を用いて前記血管の横断面を撮影する際のフラッシュ操作に関する操作情報を特定する処理をコンピュータに実行させる。 A program according to one aspect obtains an ultrasonic tomographic image of a cross section of a blood vessel using an ultrasonic signal, calculates information about the lumen of the blood vessel based on the obtained ultrasonic tomographic image, Based on the calculated information about the lumen, the computer is caused to execute a process of identifying operation information about a flash operation when photographing the cross section of the blood vessel using an optical signal.

一つの側面では、フラッシュ操作における条件(フラッシュ操作に関する操作情報)を提案することができる。 In one aspect, it is possible to propose conditions for flash operations (operation information related to flash operations).

画像診断システムの構成例を示す説明図である。It is an explanatory view showing an example of composition of an image diagnosis system. ガイディングカテーテルの概要を説明する説明図である。FIG. 2 is an explanatory diagram for explaining an outline of a guiding catheter; FIG. 画像処理装置の構成例を示すブロック図である。1 is a block diagram showing a configuration example of an image processing apparatus; FIG. 診療DBの構成例を示す説明図である。It is explanatory drawing which shows the structural example of medical treatment DB. 学習モデルの概要を示す説明図である。FIG. 4 is an explanatory diagram showing an outline of a learning model; フラッシュ情報の画面例を示す模式図である。FIG. 4 is a schematic diagram showing an example of a flash information screen; 第2学習モデルの生成処理手順の一例を示すフローチャートである。FIG. 11 is a flowchart showing an example of a processing procedure for generating a second learning model; FIG. フラッシュ情報の提示処理手順の一例を示すフローチャートである。FIG. 10 is a flowchart showing an example of a procedure for presenting flash information; FIG. 学習モデルの変形例を示す説明図である。It is explanatory drawing which shows the modification of a learning model.

以下、本開示のプログラム、画像処理方法、画像処理装置及びモデル生成方法について、その実施形態を示す図面に基づいて詳述する。以下の実施形態では、血管内治療である心臓カテーテル治療を一例に説明する。 Hereinafter, the program, image processing method, image processing apparatus, and model generation method of the present disclosure will be described in detail based on the drawings showing the embodiments. In the following embodiments, cardiac catheterization, which is endovascular treatment, will be described as an example.

図1は、画像診断システムの構成例を示す説明図である。本実施形態の画像診断システムは、血管内検査装置1と、透視画像撮影装置2と、画像処理装置3と、表示装置4と、入力装置5とを備える。血管内検査装置1は、患者の血管内断層像をイメージングするための装置であり、血管内から血管の横断面の断層画像を撮影する。本実施形態の血管内検査装置1は、血管内超音波診断法(IVUS)及び光干渉断層診断法(OCT)の両方の機能を備えるデュアルタイプのイメージングカテーテル10を用いた画像診断装置である。デュアルタイプのイメージングカテーテル10では、IVUSのみによって超音波断層画像を取得するIVUSモードと、OCTのみによって光干渉断層画像を取得するOCTモードと、IVUS及びOCTによって両方の断層画像を取得するデュアルモードとが設けられており、これらのモードを切り替えて使用することができる。なお、本実施形態の血管内検査装置1は、デュアルタイプのイメージングカテーテル10を用いた構成に限定されず、IVUSのみ又はOCTのみを備えるイメージングカテーテルを用いた構成でもよい。以下、超音波断層画像及び光干渉断層画像それぞれを適宜、IVUS画像及びOCT画像という。 FIG. 1 is an explanatory diagram showing a configuration example of a diagnostic imaging system. The diagnostic imaging system of this embodiment includes an intravascular examination device 1 , a fluoroscopic image capturing device 2 , an image processing device 3 , a display device 4 and an input device 5 . The intravascular examination apparatus 1 is an apparatus for imaging a patient's intravascular tomographic image, and captures a cross-sectional tomographic image of the blood vessel from within the blood vessel. The intravascular examination apparatus 1 of this embodiment is an image diagnostic apparatus using a dual-type imaging catheter 10 having both intravascular ultrasound (IVUS) and optical coherence tomography (OCT) functions. In the dual-type imaging catheter 10, an IVUS mode for acquiring an ultrasonic tomographic image only by IVUS, an OCT mode for acquiring an optical coherence tomographic image only by OCT, and a dual mode for acquiring both tomographic images by IVUS and OCT. is provided and can be used by switching between these modes. Note that the intravascular examination apparatus 1 of the present embodiment is not limited to the configuration using the dual-type imaging catheter 10, and may be configured using an imaging catheter that includes only IVUS or only OCT. Hereinafter, an ultrasound tomographic image and an optical coherence tomographic image will be referred to as an IVUS image and an OCT image, respectively.

イメージングカテーテル10は患者の血管内に挿入される医用器具であり、血管内検査装置1は、血管内に挿入されたイメージングカテーテル10によって血管内から血管のIVUS画像及びOCT画像を撮影する。イメージングカテーテル10を用いてIVUS画像又はOCT画像を撮影する場合、医療従事者はまず、後述のガイディングカテーテル60(図2参照)を患者の血管内に挿入し、血管内に挿入したガイディングカテーテル60内に、イメージングカテーテル10を挿入する。イメージングカテーテル10は、画像診断用プローブ11(図2参照)を有しており、画像診断用プローブ11には、超音波(超音波信号)を送信すると共に血管内からの反射波を受信する超音波送受信部と、近赤外光(光信号)を送信すると共に血管内からの反射光を受信する光送受信部とが設けられている。血管内検査装置1は、イメージングカテーテル10の超音波送受信部で受信した超音波の反射波の信号に基づいてIVUS画像を生成し、光送受信部で受信した反射光の信号に基づいてOCT画像を生成する。血管内検査装置1がイメージングカテーテル10を用いて撮影したIVUS画像及びOCT画像は、画像処理装置3を介して表示装置4に表示される。 The imaging catheter 10 is a medical instrument inserted into a patient's blood vessel, and the intravascular examination apparatus 1 captures IVUS images and OCT images of the blood vessel from within the blood vessel using the imaging catheter 10 inserted into the blood vessel. When imaging an IVUS image or an OCT image using the imaging catheter 10, a medical professional first inserts a guiding catheter 60 (see FIG. 2), which will be described later, into the patient's blood vessel, and then inserts the guiding catheter into the blood vessel. Imaging catheter 10 is inserted into 60 . The imaging catheter 10 has a diagnostic imaging probe 11 (see FIG. 2), and the diagnostic imaging probe 11 is equipped with an ultrasonic transducer for transmitting ultrasonic waves (ultrasonic signals) and receiving reflected waves from within blood vessels. A sound wave transmitting/receiving section and an optical transmitting/receiving section for transmitting near-infrared light (optical signal) and receiving reflected light from inside the blood vessel are provided. The intravascular examination apparatus 1 generates an IVUS image based on the reflected ultrasonic wave signal received by the ultrasonic transmission/reception unit of the imaging catheter 10, and generates an OCT image based on the reflected light signal received by the optical transmission/reception unit. Generate. IVUS images and OCT images captured by the intravascular examination apparatus 1 using the imaging catheter 10 are displayed on the display device 4 via the image processing device 3 .

なお、医療従事者は、OCT画像を撮影する際に、造影剤、低分子デキストラン又は生理食塩水等で構成されるフラッシュ液を血管内に注入して一時的に血液が無い状態(血液がフラッシュ液に置換された状態)を作り出すフラッシュ操作を行う。フラッシュ操作において、医療従事者は、血管内に挿入したガイディングカテーテル60を介してフラッシュ液の血管への注入を行う。 In addition, when taking OCT images, medical staff may inject a flash liquid composed of a contrast agent, low-molecular-weight dextran, or physiological saline into the blood vessel to temporarily remove blood (blood flush). A flush operation is performed to create a state of being replaced by liquid. In the flush operation, the medical staff injects flush liquid into the blood vessel through the guiding catheter 60 inserted into the blood vessel.

透視画像撮影装置2は、患者体内を透視した透視画像を撮影するための装置であり、例えば患者の血管に造影剤を注入しながら患者の生体外からX線を用いて血管を撮影し、当該血管の透視画像であるアンギオ画像を得るためのアンギオグラフィ装置である。透視画像撮影装置2は、X線源及びX線センサを備え、X線源から照射されたX線をX線センサが受信することにより、患者のX線透視画像をイメージングする。なお、イメージングカテーテル10及びガイディングカテーテル60の先端にはX線を透過しないX線不透過マーカが装着されており、透視画像においてイメージングカテーテル10及びガイディングカテーテル60(X線不透過マーカ)の位置が可視化される。透視画像撮影装置2が撮影した透視画像は、画像処理装置3を介して表示装置4に表示される。本実施形態では、画像診断システムが、アンギオ画像を撮影する透視画像撮影装置2を備える構成とするが、生体外の複数の方向から患者の血管及びカテーテル10,60を撮影する装置であれば、特に限定されるものではない。 The fluoroscopic image capturing device 2 is a device for capturing a fluoroscopic image of the inside of a patient's body. An angiography apparatus for obtaining an angiographic image, which is a fluoroscopic image of a blood vessel. The fluoroscopic imaging apparatus 2 includes an X-ray source and an X-ray sensor, and the X-ray sensor receives X-rays emitted from the X-ray source to image a patient's X-ray fluoroscopic image. X-ray opaque markers that do not transmit X-rays are attached to the tips of the imaging catheter 10 and the guiding catheter 60, and the positions of the imaging catheter 10 and the guiding catheter 60 (X-ray opaque markers) in the fluoroscopic image is visualized. A fluoroscopic image captured by the fluoroscopic image capturing device 2 is displayed on the display device 4 via the image processing device 3 . In this embodiment, the diagnostic imaging system is configured to include the fluoroscopic image capturing device 2 for capturing angiographic images. It is not particularly limited.

画像処理装置3には、表示装置4及び入力装置5が接続されている。表示装置4は、例えば液晶ディスプレイ又は有機ELディスプレイ等であり、血管内検査装置1で撮影されたIVUS画像及びOCT画像、透視画像撮影装置2で撮影されたアンギオ画像等の医用画像を表示する。入力装置5は、例えばキーボード、マウス、トラックボール又はマイク等であり、術者による各種の操作を受け付ける。表示装置4と入力装置5とは、一体に積層されて、タッチパネルを構成していてもよい。また入力装置5と画像処理装置3とは、一体に構成されていてもよい。更に入力装置5は、ジェスチャ入力又は視線入力等を受け付けるセンサであってもよい。 A display device 4 and an input device 5 are connected to the image processing device 3 . The display device 4 is, for example, a liquid crystal display or an organic EL display, and displays medical images such as IVUS images and OCT images captured by the intravascular examination apparatus 1 and angiographic images captured by the fluoroscopic imaging apparatus 2 . The input device 5 is, for example, a keyboard, mouse, trackball, microphone, or the like, and receives various operations by the operator. The display device 4 and the input device 5 may be laminated integrally to form a touch panel. Also, the input device 5 and the image processing device 3 may be configured integrally. Furthermore, the input device 5 may be a sensor that accepts gesture input, line-of-sight input, or the like.

画像処理装置3は、血管内検査装置1で撮影されたIVUS画像及びOCT画像と、透視画像撮影装置2で撮影された透視画像とを表示装置4に出力して表示させる。また画像処理装置3は、血管内検査装置1が撮影したIVUS画像に基づいて、撮影対象の血管のサイズ(径及び血管の走行方向の長さ)等を特定し、特定した血管のサイズ等に基づいて、OCT画像の撮影時に行うフラッシュ操作に関する操作情報(以下、フラッシュ情報という)を生成する。よって、本実施形態では、OCT画像を撮影する前にIVUS画像を撮影することにより、画像処理装置3がIVUS画像に基づいてフラッシュ情報を生成して術者に提示することができる。 The image processing device 3 outputs the IVUS image and the OCT image captured by the intravascular examination apparatus 1 and the fluoroscopic image captured by the fluoroscopic imaging device 2 to the display device 4 for display. In addition, the image processing device 3 specifies the size (diameter and length of the blood vessel in the running direction) of the blood vessel to be imaged based on the IVUS image taken by the intravascular examination device 1, and determines the size of the specified blood vessel. Based on this, operation information (hereinafter referred to as flash information) relating to the flash operation performed when capturing an OCT image is generated. Therefore, in this embodiment, by capturing an IVUS image before capturing an OCT image, the image processing apparatus 3 can generate flash information based on the IVUS image and present it to the operator.

図2はガイディングカテーテル60の概要を説明する説明図である。ガイディングカテーテル60は、シース61と、シース61の端部に装着された分岐ハブ62とを有する。以下の説明ではガイディングカテーテル60の分岐ハブ62から遠い側を先端側と記載し、分岐ハブ62側を基端側と記載する。シース61は、先端部から分岐ハブ62の開口部64に亘って連続する管部を形成しており、分岐ハブ62の開口部64は、血管内検査装置1に接続されたイメージングカテーテル10(画像診断用プローブ11)の挿入口として用いられる。また分岐ハブ62にはサイドポート63が設けられており、サイドポート63は、フラッシュ液72を充填済みのシリンジ70の接続用ポートとして用いられる。ガイディングカテーテル60は、予め血管内に挿入されたガイドワイヤを受け入れ、ガイドワイヤによって冠動脈の入口付近まで導かれる。ガイディングカテーテル60の内部には、コネクタ部13に接続された画像診断用プローブ11が、分岐ハブ62の開口部64から挿通されている。 FIG. 2 is an explanatory diagram for explaining the outline of the guiding catheter 60. As shown in FIG. The guiding catheter 60 has a sheath 61 and a branched hub 62 attached to the end of the sheath 61 . In the following description, the side of the guiding catheter 60 farther from the branch hub 62 is referred to as the distal end side, and the branch hub 62 side is referred to as the proximal end side. The sheath 61 forms a continuous tubular portion extending from the distal end to the opening 64 of the branch hub 62 , and the opening 64 of the branch hub 62 is connected to the imaging catheter 10 (image It is used as an insertion port for the diagnostic probe 11). Also, the branch hub 62 is provided with a side port 63 , and the side port 63 is used as a connection port for the syringe 70 filled with the flush liquid 72 . The guiding catheter 60 receives a guide wire that has been inserted into the blood vessel in advance, and is guided by the guide wire to the vicinity of the entrance of the coronary artery. The diagnostic imaging probe 11 connected to the connector portion 13 is inserted through the guiding catheter 60 through the opening 64 of the branch hub 62 .

イメージングカテーテル10は、画像診断用プローブ11と、画像診断用プローブ11の端部(基端側)に配置されたコネクタ部13とを有する。イメージングカテーテル10は、コネクタ部13を介して血管内検査装置1のMDU(Motor Drive Unit)(図示せず)に接続される。画像診断用プローブ11は、ガイディングカテーテル60に挿入されるシース(図示せず)と、シース内に挿通されたシャフトと、シャフトの先端に設けられたセンサ部12とを有する。シースの先端部には、ガイドワイヤが挿通可能なガイドワイヤ挿通部(図示せず)が設けられている。ガイドワイヤ挿通部は、予め血管内に挿入されたガイドワイヤを受け入れ、ガイドワイヤによって画像診断用プローブ11を観察部位又は患部まで導くのに使用される。センサ部12は超音波送受信部及び光送受信部を有する。シャフトには、超音波送受信部に接続された電気信号ケーブル(図示せず)と、光送受信部に接続された光ファイバケーブル(図示せず)とが内挿されており、電気信号ケーブル及び光ファイバケーブルはコネクタ部13に接続されている。画像診断用プローブ11は、ガイディングカテーテル60の内部で進退可能であり、シャフト及びセンサ部12は、画像診断用プローブ11のシース内部で進退可能であり、また周方向に回転することができる。血管内検査装置1は、コネクタ部13によってイメージングカテーテル10が着脱可能に取り付けられる駆動装置(MDU)を有しており、医療従事者の操作に応じて内蔵モータを駆動することにより、血管100内に挿入された画像診断用プローブ11の動作を制御する。例えばMDUは、画像診断用プローブ11を一定の速度で引っ張りながら周方向に回転させるプルバック操作を行う。画像診断用プローブ11は、プルバック操作によって先端側から基端側に移動しながら回転しつつ、所定の時間間隔で連続的に血管100内を走査することにより、画像診断用プローブ11に略垂直な複数枚のIVUS画像又はOCT画像を連続的に撮影する。 The imaging catheter 10 has a diagnostic imaging probe 11 and a connector section 13 arranged at an end (proximal side) of the diagnostic imaging probe 11 . The imaging catheter 10 is connected to an MDU (Motor Drive Unit) (not shown) of the intravascular examination apparatus 1 via a connector portion 13 . The diagnostic imaging probe 11 has a sheath (not shown) inserted into the guiding catheter 60, a shaft inserted through the sheath, and a sensor section 12 provided at the tip of the shaft. A guide wire insertion part (not shown) through which a guide wire can be inserted is provided at the distal end of the sheath. The guidewire insertion part receives a guidewire that has been inserted into a blood vessel in advance, and is used to guide the diagnostic imaging probe 11 to an observation site or an affected area by the guidewire. The sensor unit 12 has an ultrasonic transmission/reception unit and an optical transmission/reception unit. An electric signal cable (not shown) connected to the ultrasonic transmitter/receiver and an optical fiber cable (not shown) connected to the optical transmitter/receiver are inserted into the shaft. A fiber cable is connected to the connector section 13 . The diagnostic imaging probe 11 can move forward and backward inside the guiding catheter 60, and the shaft and the sensor section 12 can move forward and backward inside the sheath of the diagnostic imaging probe 11, and can rotate in the circumferential direction. The intravascular examination apparatus 1 has a driving unit (MDU) to which the imaging catheter 10 is detachably attached via a connector portion 13. By driving a built-in motor according to the operation of a medical worker, the intravascular examination apparatus 1 can be It controls the operation of the diagnostic imaging probe 11 inserted into the . For example, the MDU performs a pullback operation in which the diagnostic imaging probe 11 is rotated in the circumferential direction while being pulled at a constant speed. The diagnostic imaging probe 11 rotates while moving from the distal side to the proximal side by a pull-back operation, and continuously scans the inside of the blood vessel 100 at predetermined time intervals, so that the diagnostic imaging probe 11 is rotated substantially perpendicularly to the diagnostic imaging probe 11 . A plurality of IVUS or OCT images are taken in succession.

フラッシュ操作を行う場合、医療従事者は、分岐ハブ62のサイドポート63に、フラッシュ液72を充填済みのシリンジ70を装着し、画像診断用プローブ11の先端部を観察位置付近に配置した後に、シリンジ70のプランジャー71を押し込む。これにより、シリンジ70内のフラッシュ液72が、ガイディングカテーテル60内を通って、ガイディングカテーテル60の先端から血管100内に射出される。射出されたフラッシュ液72により、当該部位の血液が押し流され、フラッシュ液72が充満する状態となる。この状態で画像診断用プローブ11(センサ部12)によってOCT画像を撮影することにより、血液の影響を受けないOCT画像を得ることができる。なお、プランジャー71の押し込みは例えばオートインジェクタを用いて行われる。 When performing the flush operation, the medical staff attaches the syringe 70 filled with the flush liquid 72 to the side port 63 of the branch hub 62, and after placing the tip of the diagnostic imaging probe 11 near the observation position, The plunger 71 of the syringe 70 is pushed in. As a result, the flush liquid 72 in the syringe 70 passes through the guiding catheter 60 and is ejected from the tip of the guiding catheter 60 into the blood vessel 100 . The ejected flush liquid 72 sweeps away the blood of the site, and the flush liquid 72 fills the area. By capturing an OCT image with the diagnostic imaging probe 11 (sensor unit 12) in this state, an OCT image that is not affected by blood can be obtained. The pushing of the plunger 71 is performed using an auto-injector, for example.

図3は画像処理装置3の構成例を示すブロック図である。画像処理装置3はコンピュータであり、制御部31、主記憶部32、入出力I/F33、補助記憶部34、読取部35を備える。制御部31は、一又は複数のCPU(Central Processing Unit)、MPU(Micro-Processing Unit)、GPU(Graphics Processing Unit)、GPGPU(General-purpose computing on graphics processing units)、TPU(Tensor Processing Unit)等の演算処理装置を用いて構成されている。制御部31は、バスを介して画像処理装置3を構成するハードウェア各部と接続されている。 FIG. 3 is a block diagram showing a configuration example of the image processing device 3. As shown in FIG. The image processing apparatus 3 is a computer and includes a control section 31 , a main storage section 32 , an input/output I/F 33 , an auxiliary storage section 34 and a reading section 35 . The control unit 31 includes one or more CPU (Central Processing Unit), MPU (Micro-Processing Unit), GPU (Graphics Processing Unit), GPGPU (General-purpose computing on graphics processing units), TPU (Tensor Processing Unit), etc. is configured using an arithmetic processing unit. The control unit 31 is connected to each hardware unit constituting the image processing apparatus 3 via a bus.

主記憶部32は、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)、フラッシュメモリ等の一時記憶領域であり、制御部31が演算処理を実行するために必要なデータを一時的に記憶する。 The main storage unit 32 is a temporary storage area such as SRAM (Static Random Access Memory), DRAM (Dynamic Random Access Memory), flash memory, etc., and temporarily stores data necessary for the control unit 31 to perform arithmetic processing. Remember.

入出力I/F33は、血管内検査装置1及び透視画像撮影装置2、表示装置4及び入力装置5が接続されるインタフェースである。制御部31は、入出力I/F33を介して、血管内検査装置1からIVUS画像又はOCT画像を取得し、透視画像撮影装置2からアンギオ画像を取得する。また制御部31は、入出力I/F33を介して、IVUS画像、OCT画像、又はアンギオ画像の医用画像信号を表示装置4へ出力することによって、表示装置4に医用画像を表示する。更に、制御部31は、入出力I/F33を介して、入力装置5に入力された情報を受け付ける。 The input/output I/F 33 is an interface to which the intravascular examination apparatus 1, the fluoroscopic imaging apparatus 2, the display device 4, and the input device 5 are connected. The control unit 31 acquires an IVUS image or an OCT image from the intravascular examination apparatus 1 and acquires an angio image from the fluoroscopic imaging apparatus 2 via the input/output I/F 33 . Further, the control unit 31 displays a medical image on the display device 4 by outputting a medical image signal of an IVUS image, an OCT image, or an angio image to the display device 4 via the input/output I/F 33 . Furthermore, the control unit 31 receives information input to the input device 5 via the input/output I/F 33 .

補助記憶部34は、ハードディスク、EEPROM(Electrically Erasable Programmable ROM)、フラッシュメモリ等の記憶装置である。補助記憶部34は、制御部31が実行するコンピュータプログラムP、制御部31の処理に必要な各種データを記憶する。また、補助記憶部34は、後述する第1学習モデルM1、第2学習モデルM2及び診療DB34aを記憶する。第1学習モデルM1は、所定の訓練データを学習済みの機械学習モデルであり、IVUS画像を入力として、入力されたIVUS画像中の血管内腔の領域を出力するモデルである。第2学習モデルM2(第2の学習モデル)は、所定の訓練データを学習済みの機械学習モデルであり、血管情報、治療情報、及び患者情報を入力として、フラッシュ操作に関するフラッシュ情報を出力するモデルである。第1学習モデルM1及び第2学習モデルM2は、人工知能ソフトウェアを構成するプログラムモジュールとしての利用が想定される。診療DB34aは、患者の診療データを格納するデータベースである。なお、補助記憶部34は画像処理装置3に接続された外部記憶装置であってもよい。コンピュータプログラムPは、画像処理装置3の製造段階において補助記憶部34に書き込まれてもよいし、遠隔のサーバ装置が配信するものを画像処理装置3が通信にて取得して補助記憶部34に記憶させてもよい。 The auxiliary storage unit 34 is a storage device such as a hard disk, EEPROM (Electrically Erasable Programmable ROM), flash memory, or the like. The auxiliary storage unit 34 stores a computer program P executed by the control unit 31 and various data necessary for processing of the control unit 31 . The auxiliary storage unit 34 also stores a first learning model M1, a second learning model M2, and a medical care DB 34a, which will be described later. The first learning model M1 is a machine learning model that has already learned predetermined training data, and is a model that receives an IVUS image as input and outputs the region of the blood vessel lumen in the input IVUS image. The second learning model M2 (second learning model) is a machine learning model that has already learned predetermined training data, and is a model that receives blood vessel information, treatment information, and patient information as inputs and outputs flash information related to flash operation. is. The first learning model M1 and the second learning model M2 are assumed to be used as program modules constituting artificial intelligence software. The medical care DB 34a is a database that stores patient medical care data. Incidentally, the auxiliary storage unit 34 may be an external storage device connected to the image processing device 3 . The computer program P may be written in the auxiliary storage unit 34 at the manufacturing stage of the image processing apparatus 3, or may be distributed by a remote server apparatus and acquired by the image processing apparatus 3 through communication and stored in the auxiliary storage unit 34. may be stored.

読取部35は、CD(Compact Disk)、DVD(Digital Versatile Disc)、USB(Universal Serial Bus)メモリ等の記録媒体30に記憶されたデータを読み取る。コンピュータプログラムPは、記録媒体30に読み出し可能に記録された態様であってもよく、読取部35が記録媒体30から読み出して補助記憶部34に記憶させてもよい。また、コンピュータプログラムPは半導体メモリに記録された態様であってもよく、制御部31は半導体メモリからコンピュータプログラムPを読み出して実行してもよい。 A reading unit 35 reads data stored in a recording medium 30 such as a CD (Compact Disk), a DVD (Digital Versatile Disc), a USB (Universal Serial Bus) memory, or the like. The computer program P may be readable and recorded on the recording medium 30 , or may be read from the recording medium 30 by the reading section 35 and stored in the auxiliary storage section 34 . Further, the computer program P may be recorded in a semiconductor memory, and the control unit 31 may read the computer program P from the semiconductor memory and execute it.

画像処理装置3は、複数のコンピュータを含んで構成されるマルチコンピュータであってよい。また、画像処理装置3は、サーバクライアントシステムや、クラウドサーバ、ソフトウェアによって仮想的に構築された仮想マシンであってもよい。以下の説明では、画像処理装置3が1台のコンピュータであるものとして説明する。 The image processing device 3 may be a multicomputer including a plurality of computers. Further, the image processing device 3 may be a server client system, a cloud server, or a virtual machine virtually constructed by software. In the following description, it is assumed that the image processing apparatus 3 is one computer.

本実施形態の画像処理装置3において、制御部31は、補助記憶部34に記憶されたコンピュータプログラムPを読み出して実行することにより、血管内検査装置1で撮影したIVUS画像に基づいて、撮影された血管の内腔のサイズを検出する処理を実行する。また制御部31は、検出した血管内腔のサイズ(血管情報)と、血管内検査装置1による血管内治療に用いる治療用デバイスに関する情報(治療情報)と、患者の情報(患者情報)とに基づいて、OCT画像を撮影する際に行うフラッシュ操作に関するフラッシュ情報を生成する処理を実行する。よって、本実施形態の画像処理装置3は、OCT画像を撮影する際のフラッシュ操作に関するフラッシュ情報を術者に提示することができる。なお、本実施形態の画像処理装置3では、IVUS画像中の血管内腔を検出する際に第1学習モデルM1を用い、血管情報、治療情報及び患者情報からフラッシュ操作の操作情情報を生成する際に第2学習モデルM2を用いる。 In the image processing apparatus 3 of the present embodiment, the control unit 31 reads out and executes the computer program P stored in the auxiliary storage unit 34, based on the IVUS image captured by the intravascular examination apparatus 1. A process for detecting the size of the lumen of the blood vessel is executed. In addition, the control unit 31 stores the size of the detected blood vessel lumen (blood vessel information), information (treatment information) on the therapeutic device used for intravascular treatment by the intravascular examination apparatus 1, and patient information (patient information). Based on this, a process of generating flash information relating to the flash operation performed when capturing an OCT image is executed. Therefore, the image processing apparatus 3 of the present embodiment can present the operator with flash information regarding the flash operation when capturing an OCT image. Note that the image processing apparatus 3 of the present embodiment uses the first learning model M1 when detecting a blood vessel lumen in an IVUS image, and generates flash operation information from blood vessel information, treatment information, and patient information. In this case, the second learning model M2 is used.

図4は診療DB34aの構成例を示す説明図である。診療DB34aは、診療ID列、患者情報列、治療情報列、画像情報列を含む。診療ID列は、各診療データを識別するための診療IDを記憶する。患者情報列、治療情報列及び画像情報列はそれぞれ、診療IDに対応付けて、診療対象の患者に関する患者情報、当該患者に実施した治療及び実施予定の治療に関する治療情報、及び当該患者を検査して得た医用画像を記憶している。患者情報は、治療を実施した患者又は実施予定の患者に関する情報であり、患者の診療記録である。患者情報は、患者の年齢、性別、体重、身長、腎機能レベル(例えばCr値を5段階で評価した値)、診断名、既往歴等を含む。また患者情報は、治療歴、薬の服用歴、血液検査結果等を含んでもよい。治療情報は、患者に実施した血管内治療又は実施予定の血管内治療に関する情報である。治療情報は、例えば治療実施日又は実施予定日、治療した病変部の位置(病変部位)、病変部における血管内腔の大きさ(直径、長さ、体積)及び形状、使用したガイディングカテーテル60又は使用予定のガイディングカテーテル60の種類(例えば製品名)、直径及び長さ等の情報、使用したイメージングカテーテル10又は使用予定のイメージングカテーテル10の種類、直径及び長さ等の情報等を含む。また治療情報は、OCT画像を撮影する際のフラッシュ操作に使用したフラッシュ液(例えば造影剤)の種類、希釈率、投与量(フラッシュ量)及び流速(フラッシュ流速)等のフラッシュ情報を含む。更に治療情報は、フラッシュ情報に対応付けて、フラッシュ情報に含まれる各条件でフラッシュ操作を行った場合の成功確率を含む。成功確率は、フラッシュ操作を行ってOCT画像を撮影した術者によって登録される値であり、例えばOCT画像の撮影後に術者によって登録される。なお、フラッシュ操作の成功とは画像診断に十分用いることができるOCT画像を撮影できたと術者が判断したことを意味し、成功確率は例えば100点満点で術者の満足度を示す。また治療情報は、IVUS画像又はOCT画像を撮影する際のプルバック速度及び移動距離、透視画像撮影装置2でアンギオ画像を撮影する際に使用した造影剤の種類、希釈率及び投与量等を含む。更に治療情報は、病変部の性状、ガイディングカテーテル60の穿刺部位、透視画像の撮影時間、留置したステントの種類、直径、長さ及び総数、バルーンの種類、長さ、最大拡張径、最大拡張圧、拡張時間及び減衰時間、治療後の経過情報(例えば合併症発症の有無)等を含んでもよい。医用画像は、患者の血管をイメージングした画像であり、アンギオ画像、IVUS画像及びOCT画像を含む。また医用画像は、コンピュータ断層撮影画像(CT画像)、磁気共鳴画像(MRI画像)等を含んでもよい。 FIG. 4 is an explanatory diagram showing a configuration example of the medical care DB 34a. The medical care DB 34a includes a medical care ID column, a patient information column, a treatment information column, and an image information column. The medical care ID column stores a medical care ID for identifying each medical care data. The patient information string, the treatment information string, and the image information string are associated with the medical care ID, respectively, and include patient information on a patient to be treated, treatment information on the treatment performed and scheduled to be performed on the patient, and examination information on the patient. It stores medical images obtained by The patient information is information relating to a patient who has undergone treatment or is scheduled to undergo treatment, and is a medical record of the patient. The patient information includes the patient's age, sex, weight, height, renal function level (for example, Cr value evaluated on a scale of 5), diagnosis, medical history, and the like. The patient information may also include treatment history, medication history, blood test results, and the like. The treatment information is information about the endovascular treatment that has been performed or is scheduled to be performed on the patient. The treatment information includes, for example, the date of treatment or the scheduled date of treatment, the position of the treated lesion (lesion site), the size (diameter, length, volume) and shape of the vascular lumen at the lesion, and the guiding catheter 60 used. Alternatively, it includes information such as the type (eg, product name), diameter and length of the guiding catheter 60 to be used, information such as the type, diameter and length of the imaging catheter 10 used or planned to be used. The treatment information also includes flash information such as the type, dilution rate, dose (flash amount), and flow rate (flash flow rate) of the flash liquid (e.g., contrast agent) used in the flash operation when capturing an OCT image. Further, the treatment information includes, in association with the flash information, the probability of success when flash operation is performed under each condition included in the flash information. The probability of success is a value registered by the operator who performed the flash operation to capture the OCT image, and is registered by the operator after capturing the OCT image, for example. Note that the success of the flash operation means that the operator has determined that an OCT image that can be sufficiently used for diagnostic imaging has been captured, and the probability of success indicates the operator's degree of satisfaction, for example, out of 100 points. The treatment information also includes the pullback speed and movement distance when capturing an IVUS image or an OCT image, the type of contrast agent used when capturing an angio image with the fluoroscopic image capturing device 2, the dilution rate, the dose, and the like. Furthermore, the treatment information includes the properties of the lesion, the puncture site of the guiding catheter 60, the imaging time of the fluoroscopic image, the type, diameter, length and total number of indwelling stents, the type and length of the balloon, the maximum expansion diameter, and the maximum expansion diameter. Pressure, expansion time and attenuation time, post-treatment follow-up information (for example, presence or absence of complications), etc. may be included. Medical images are images obtained by imaging a patient's blood vessels, and include angio images, IVUS images, and OCT images. Medical images may also include computed tomography images (CT images), magnetic resonance images (MRI images), and the like.

図5は学習モデルM1,M2の概要を示す説明図である。図5Aは第1学習モデルM1を示し、図5Bは第2学習モデルM2を示す。第1学習モデルM1は、IVUS画像に含まれる所定のオブジェクトを認識するモデルである。第1学習モデルM1は、例えばセマンティックセグメンテーションにより、画像中のオブジェクトを画素単位で分類することができるモデルである。本実施形態の第1学習モデルM1は、1枚のIVUS画像を入力とし、IVUS画像に含まれる血管内腔を認識するように学習済みの機械学習モデルであり、認識した結果を出力する。具体的には、第1学習モデルM1は、入力されたIVUS画像の各画素を血管内腔の領域と、それ以外の領域とに分類し、各画素に領域毎のラベルを対応付けた分類済みのIVUS画像(以下ではラベル画像という)を出力する。第1学習モデルM1は、例えばU-Net、FCN(Fully Convolutional Network )、SegNet等で構成することができる。 FIG. 5 is an explanatory diagram showing an overview of the learning models M1 and M2. FIG. 5A shows the first learning model M1, and FIG. 5B shows the second learning model M2. The first learning model M1 is a model for recognizing predetermined objects included in IVUS images. The first learning model M1 is a model that can classify objects in an image pixel by pixel, for example, by semantic segmentation. The first learning model M1 of the present embodiment is a machine learning model that receives one IVUS image as an input, has been trained to recognize a blood vessel lumen included in the IVUS image, and outputs the recognition result. Specifically, the first learning model M1 classifies each pixel of the input IVUS image into a blood vessel lumen region and other regions, and associates each pixel with a label for each region. IVUS image (hereinafter referred to as a label image) is output. The first learning model M1 can be composed of, for example, U-Net, FCN (Fully Convolutional Network), SegNet, and the like.

第1学習モデルM1は、入力層、中間層及び出力層(図示せず)を有し、中間層は、畳み込み層及びプーリング層と、逆畳み込み層とを有する。畳み込み層は、入力層を介して入力された画像の画素情報から画像の特徴量を抽出して特徴量マップを生成し、プーリング層は、生成された特徴量マップを圧縮する。逆畳み込み層は、畳み込み層及びプーリング層によって生成された特徴量マップを元の画像サイズに拡大(マッピング)する。なお、逆畳み込み層は、畳み込み層で抽出された特徴量に基づいて画像内にどのオブジェクトがどの位置に存在するかを画素単位で識別し、各画素がどのオブジェクトに対応するかを示したラベル画像を生成する。図5A右側に示すように、第1学習モデルM1から出力されるラベル画像は、IVUS画像の各画素が、血管内腔の領域と、それ例外の領域とにそれぞれ分類され、各領域に応じた画素値が割り当てられた画像となる。図5Aでは、血管内腔の領域に分類された画素をハッチングで示している。 The first learning model M1 has an input layer, an intermediate layer and an output layer (not shown), and the intermediate layer has a convolution layer, a pooling layer, and a deconvolution layer. The convolution layer extracts the feature amount of the image from the pixel information of the image input through the input layer to generate a feature amount map, and the pooling layer compresses the generated feature amount map. The deconvolution layer expands (maps) the feature maps generated by the convolution and pooling layers to the original image size. In addition, the deconvolution layer identifies which object exists in which position in the image on a pixel-by-pixel basis based on the feature amount extracted by the convolution layer, and labels each pixel to indicate which object it corresponds to. Generate an image. As shown on the right side of FIG. 5A, in the label image output from the first learning model M1, each pixel of the IVUS image is classified into a blood vessel lumen region and an exception region, respectively. The result is an image with assigned pixel values. In FIG. 5A, the pixels classified into the blood vessel lumen region are indicated by hatching.

上述した構成の第1学習モデルM1は、訓練用のIVUS画像と、図5A右側に示すようにIVUS画像中の各画素に対して、判別すべきオブジェクト(ここでは血管内腔)を示すデータがラベリングされたラベル画像とを含む訓練データを用意し、この訓練データを用いて未学習の学習モデルを機械学習させることにより生成することができる。なお、訓練用のラベル画像では、訓練用のIVUS画像に対して、各オブジェクトの領域に対応する座標範囲と、各オブジェクトの種類とを表すラベルが付与されている。第1学習モデルM1は、訓練データに含まれるIVUS画像が入力された場合に、訓練データに含まれるラベル画像を出力するように学習する。具体的には、第1学習モデルM1は、入力されたIVUS画像に基づいて中間層での演算を行い、IVUS画像中の各オブジェクト(ここでは血管内腔)を検出した検出結果を取得する。より具体的には、第1学習モデルM1は、IVUS画像中の各画素に対して、分類されたオブジェクトの種類を示す値がラベリングされたラベル画像を出力として取得する。そして第1学習モデルM1は、取得した検出結果(ラベル画像)を、訓練データが示す正解のオブジェクト領域の座標範囲及びオブジェクトの種類と比較し、両者が近似するように、ニューロン間の重み(結合係数)等のパラメータを最適化する。パラメータの最適化の方法は特に限定されないが、最急降下法、誤差逆伝播法等を用いることができる。これにより、IVUS画像が入力された場合に、IVUS画像中の血管内腔の領域を示すラベル画像を出力する第1学習モデルM1が得られる。 The first learning model M1 having the above-described configuration includes a training IVUS image and, as shown on the right side of FIG. Training data including the labeled image can be prepared, and an unlearned learning model can be generated by machine learning using this training data. In the label images for training, labels indicating the coordinate range corresponding to the region of each object and the type of each object are added to the IVUS image for training. The first learning model M1 learns to output the label image included in the training data when the IVUS image included in the training data is input. Specifically, the first learning model M1 performs computation in the intermediate layer based on the input IVUS image, and obtains the detection result of detecting each object (in this case, the blood vessel lumen) in the IVUS image. More specifically, the first learning model M1 obtains as an output a label image in which each pixel in the IVUS image is labeled with a value indicating the type of the classified object. Then, the first learning model M1 compares the obtained detection result (label image) with the coordinate range of the correct object region indicated by the training data and the type of object, and weights (connection coefficient) and other parameters. The parameter optimization method is not particularly limited, but steepest descent method, error backpropagation method, or the like can be used. As a result, a first learning model M1 is obtained that, when an IVUS image is input, outputs a label image indicating the region of the blood vessel lumen in the IVUS image.

画像処理装置3は、このような第1学習モデルM1を予め用意しておき、IVUS画像中の血管内腔の検出に用いる。なお、第1学習モデルM1は、IVUS画像中の血管内腔の位置及び形状を識別可能であればよい。本実施形態では、第1学習モデルM1は、IVUS画像中の血管内腔を認識できればよいが、血管内腔に加えて、血管壁(中膜及びプラーク)及びカテーテルの領域を認識するように構成されていてもよい。第1学習モデルM1の学習は他の学習装置で行われてもよい。他の学習装置で学習が行われて生成された学習済みの第1学習モデルM1は、例えばネットワーク経由又は記録媒体30経由で学習装置から画像処理装置3にダウンロードされて補助記憶部34に記憶される。 The image processing device 3 prepares such a first learning model M1 in advance, and uses it to detect a blood vessel lumen in an IVUS image. Note that the first learning model M1 only needs to be able to identify the position and shape of the blood vessel lumen in the IVUS image. In the present embodiment, the first learning model M1 only needs to be able to recognize the vascular lumen in the IVUS image. may have been The learning of the first learning model M1 may be performed by another learning device. A trained first learning model M1 generated by learning in another learning device is downloaded from the learning device to the image processing device 3 via, for example, a network or via the recording medium 30, and stored in the auxiliary storage unit 34. be.

第2学習モデルM2は、第1学習モデルM1を用いてIVUS画像から検出された血管内腔に関する血管情報と、患者に行う予定の血管内治療に関する治療情報と、診療DB34aに格納されている患者情報とを入力とする。なお、血管情報、治療情報及び患者情報の各項目のうちで用意できない情報がある場合、項目毎に予め設定されたデフォルトの情報を第2学習モデルM2に入力してもよい。そして第2学習モデルM2は、図5B右側に示すような各項目について推定した推定結果をフラッシュ情報として出力する。血管情報は、例えば血管内の病変部(治療対象箇所)の直径、長さ及び体積を含む。また血管情報は、冠動脈に対するガイディングカテーテル60の先端の位置、及び、ガイディングカテーテル60の先端と冠動脈との係合状態を含んでもよい。なお、病変部の長さは、例えば血管内検査装置1がIVUS画像を撮影した際のプルバック操作におけるプルバック距離を用いることができる。また、ガイディングカテーテル60の先端の位置、及び冠動脈との係合状態は、例えば透視画像撮影装置2で撮影されたアンギオ画像に基づいて検出可能である。なお、プルバック距離は、1回のプルバック操作によって撮影されたIVUS画像の枚数と、プルバック速度とに基づいて算出できる。 The second learning model M2 is based on the vascular information on the vascular lumen detected from the IVUS image using the first learning model M1, the treatment information on the endovascular treatment scheduled to be performed on the patient, and the patient information stored in the medical care DB 34a. Information and input. If there is information that cannot be prepared among the items of blood vessel information, treatment information, and patient information, default information preset for each item may be input to the second learning model M2. Then, the second learning model M2 outputs, as flash information, an estimation result estimated for each item as shown on the right side of FIG. 5B. The blood vessel information includes, for example, the diameter, length and volume of a lesion (treatment target site) in the blood vessel. The blood vessel information may also include the position of the tip of the guiding catheter 60 relative to the coronary artery and the state of engagement between the tip of the guiding catheter 60 and the coronary artery. For the length of the lesion, for example, the pullback distance in the pullback operation when the intravascular examination apparatus 1 captures an IVUS image can be used. Also, the position of the tip of the guiding catheter 60 and the state of engagement with the coronary artery can be detected based on an angio image captured by the fluoroscopic imaging device 2, for example. Note that the pullback distance can be calculated based on the number of IVUS images captured by one pullback operation and the pullback speed.

治療情報は、例えば病変部の位置(例えば血管の種類)を含む。また治療情報は、使用予定のガイディングカテーテル60の種類(例えば商品名)、形状(直径及び長さ)、フラッシュ操作の際にガイディングカテーテル60の先端が配置される予定の位置、使用予定のイメージングカテーテル10の種類、形状(直径及び長さ)、フラッシュ操作の際にイメージングカテーテル10の先端が配置される予定の位置等、カテーテルに関するカテーテル情報を含む。なお、ガイディングカテーテル60及びイメージングカテーテル10の先端の位置は、透視画像撮影装置2によって撮影されたアンギオ画像に基づいて特定された位置を用いることができる。また治療情報は、使用予定の造影剤の種類、希釈率、造影剤の投与に使用するシリンジ70における内圧限界等、造影剤に関する造影剤情報を含む。また治療情報は、IVUS画像の撮影時に行ったプルバック操作におけるプルバック速度及びプルバック距離等、プルバック操作に関するプルバック情報を含む。また治療情報は、患者のアンギオ画像を含んでもよい。更に治療情報は、血管内治療が実施中である場合、既に使用された造影剤の種類、希釈率及び投与量と、今後に使用予定の造影剤の種類、希釈率及び投与量とを含んでもよい。患者情報は、例えば患者の年齢(年齢層)、体重、腎機能レベルを含む。上述したような治療情報及び患者情報は、診療DB34aに記録されている各情報を用いることができる。 The treatment information includes, for example, the location of the lesion (eg, blood vessel type). The treatment information includes the type (for example, product name) and shape (diameter and length) of the guiding catheter 60 to be used, the position where the tip of the guiding catheter 60 is to be placed during the flash operation, Contains catheter information about the catheter, such as the type of imaging catheter 10, its shape (diameter and length), and where the tip of the imaging catheter 10 is to be placed during a flush operation. As for the positions of the distal ends of the guiding catheter 60 and the imaging catheter 10, positions specified based on the angiographic image captured by the fluoroscopic image capturing device 2 can be used. The treatment information also includes contrast agent information regarding the contrast agent, such as the type of contrast agent to be used, the dilution ratio, and the internal pressure limit of the syringe 70 used to administer the contrast agent. The treatment information also includes pullback information regarding the pullback operation, such as the pullback speed and pullback distance in the pullback operation performed when the IVUS image was captured. Treatment information may also include angiographic images of the patient. Further, if endovascular treatment is being performed, the treatment information may include the type, dilution rate, and dose of the contrast medium already used, and the type, dilution rate, and dose of the contrast medium to be used in the future. good. The patient information includes, for example, the patient's age (age group), weight, and renal function level. As the treatment information and patient information as described above, each information recorded in the medical care DB 34a can be used.

第2学習モデルM2が出力するフラッシュ情報は、フラッシュ液に使用する造影剤の種類及び希釈率、フラッシュ液を投与する際の流速(フラッシュ流速)及び投与量(フラッシュ流量)、これらの条件でフラッシュ操作を行った場合の成功確率を含む。第2学習モデルM2は、例えばCNN(Convolutional Neural Network)で構成されるが、決定木、ランダムフォレスト、SVM(Support Vector Machine)、RNN(Recurrent Neural Network)等のアルゴリズムを用いて構成されてもよく、複数のアルゴリズムを組み合わせて構成されてもよい。 The flash information output by the second learning model M2 includes the type and dilution ratio of the contrast agent used in the flush liquid, the flow rate (flush flow rate) and dose (flush flow rate) when administering the flush liquid, and the flash flow under these conditions. Contains the probability of success when performing an operation. The second learning model M2 is configured by, for example, a CNN (Convolutional Neural Network), but may be configured using an algorithm such as a decision tree, random forest, SVM (Support Vector Machine), or RNN (Recurrent Neural Network). , may be configured by combining a plurality of algorithms.

第2学習モデルM2は、訓練用の血管情報、治療情報及び患者情報と、正解のフラッシュ情報とが対応付けられた訓練データを用意し、この訓練データを用いて未学習の学習モデルを機械学習させることにより生成することができる。訓練用の血管情報、治療情報及び患者情報は、血管内治療を実施した患者の診療データを用いることができ、例えば診療DB34aに記憶してある各情報を用いることができる。正解のフラッシュ情報も、患者の診療データに含まれるフラッシュ情報を用いることができる。画像処理装置3は、訓練データに含まれる血管情報、治療情報及び患者情報を第2学習モデルM2に入力し、訓練データに含まれる正解のフラッシュ情報を出力するように第2学習モデルM2の学習を行う。 The second learning model M2 prepares training data in which blood vessel information, treatment information, and patient information for training are associated with correct flash information. can be generated by Blood vessel information for training, treatment information, and patient information can use medical data of a patient who has undergone endovascular treatment, and can use each information stored in the medical DB 34a, for example. The correct flash information can also use the flash information included in the patient's clinical data. The image processing device 3 inputs blood vessel information, treatment information, and patient information included in the training data to the second learning model M2, and trains the second learning model M2 so as to output correct flash information included in the training data. I do.

具体的には、画像処理装置3は、訓練用の血管情報、治療情報及び患者情報を第2学習モデルM2に入力し、図5Bに例示した各項目のフラッシュ情報を出力として第2学習モデルM2から取得する。画像処理装置3は、出力されたフラッシュ情報を、訓練データに含まれる正解のフラッシュ情報と比較し、両者が近似するように、ニューロン間の重み(結合係数)等のパラメータを最適化する。パラメータの最適化の方法は特に限定されないが、最急降下法、誤差逆伝播法等を用いることができる。これにより、患者の血管情報、治療情報及び患者情報が入力された場合にフラッシュ情報を出力する第2学習モデルM2が得られる。 Specifically, the image processing device 3 inputs blood vessel information for training, treatment information, and patient information to the second learning model M2, outputs flash information of each item illustrated in FIG. Get from The image processing device 3 compares the output flash information with the correct flash information included in the training data, and optimizes parameters such as weights (coupling coefficients) between neurons so that the two approximate each other. The parameter optimization method is not particularly limited, but steepest descent method, error backpropagation method, or the like can be used. As a result, a second learning model M2 is obtained that outputs flash information when the patient's blood vessel information, treatment information, and patient information are input.

なお、図5Bに示した各項目において、「造影剤の種類」は分類結果で示される項目であるが、その他の項目は連続値で表現される項目である。このように第2学習モデルM2は、いわゆる分類問題と回帰問題とを同時に扱うが、例えば全ての項目を回帰問題と見なして連続値を出力し、分類結果として示すべき項目を連続値から二値に変換すればよい。あるいは、各項目に対応する出力層を別々に設け、中間層で抽出された特徴量を各出力層に入力して、各項目の推定を別々に行うようにしてもよい。あるいは、第2学習モデルM2自体を項目別に用意し、別々に推定を行ってもよい。 In addition, in each item shown in FIG. 5B, "contrast agent type" is an item indicated by the classification result, but the other items are items represented by continuous values. In this way, the second learning model M2 handles a so-called classification problem and a regression problem at the same time. should be converted to Alternatively, an output layer corresponding to each item may be provided separately, and the feature amount extracted in the intermediate layer may be input to each output layer to estimate each item separately. Alternatively, the second learning model M2 itself may be prepared for each item and estimated separately.

画像処理装置3は、このような第2学習モデルM2を予め用意しておき、新たに治療を実施する患者に対するフラッシュ情報の生成に用いる。なお、新たに治療を実施する患者のフラッシュ情報を生成する場合、画像処理装置3は、当該患者のIVUS画像を血管内検査装置1で撮影し、得られたIVUS画像から第1学習モデルM1を用いて血管内腔の大きさを検出する。また画像処理装置3は、検出した血管内腔の大きさ(血管情報)に、患者の治療予定の内容(治療情報)及び患者情報を加えて第2学習モデルM2に入力することでフラッシュ情報を生成する。画像処理装置3は、生成したフラッシュ情報を表示装置4に出力して表示させる。 The image processing device 3 prepares such a second learning model M2 in advance, and uses it to generate flash information for a patient to be newly treated. Note that when generating flash information for a new patient undergoing treatment, the image processing apparatus 3 captures an IVUS image of the patient with the intravascular examination apparatus 1, and generates a first learning model M1 from the obtained IVUS image. is used to detect the size of the vessel lumen. In addition, the image processing device 3 adds flash information to the second learning model M2 by adding details of the patient's treatment schedule (treatment information) and patient information to the size of the detected blood vessel lumen (blood vessel information). Generate. The image processing device 3 outputs the generated flash information to the display device 4 for display.

第2学習モデルM2の学習は他の学習装置で行われてもよい。他の学習装置で学習が行われた場合、学習済みの第2学習モデルM2は、例えばネットワーク経由又は記録媒体30経由で学習装置から画像処理装置3にダウンロードされて補助記憶部34に記憶される。 The learning of the second learning model M2 may be performed by another learning device. When learning is performed by another learning device, the learned second learning model M2 is downloaded from the learning device to the image processing device 3 via, for example, a network or via the recording medium 30, and stored in the auxiliary storage unit 34. .

図6はフラッシュ情報の画面例を示す模式図である。図6に示す画面は、術者に提示するフラッシュ情報として、フラッシュ液(例えば造影剤)の投与量(フラッシュ量)の低減を重視したパターンと、フラッシュ液の流速(フラッシュ流速)の低減を重視したパターンとの2パターンのフラッシュ情報を表示している。また図6に示すフラッシュ情報は、フラッシュ流速、フラッシュ量(造影剤の総量)、成功確率を含んでおり、更に、このフラッシュ情報に関する注意事項及びアドバイスを含んでいる。注意事項及びアドバイスは、例えばフラッシュ情報が、フラッシュ量又はフラッシュ流速のいずれの低減を重視したものであるかに応じて、予め補助記憶部34に記憶されている。よって、制御部31は、生成したフラッシュ情報の内容に応じた注意事項及びアドバイスを補助記憶部34から読み出して表示画面に表示させることによって、フラッシュ情報と共に注意事項及びアドバイスを術者に提示することができる。 FIG. 6 is a schematic diagram showing an example of a flash information screen. The screen shown in FIG. 6 has a pattern emphasizing a reduction in the dose (flushing volume) of the flush liquid (e.g., contrast agent) and a pattern emphasizing reduction in the flow rate of the flush liquid (flush flow rate) as flash information to be presented to the operator. Two patterns of flash information are displayed. Also, the flash information shown in FIG. 6 includes flash flow rate, flash amount (total amount of contrast agent), success probability, and further includes precautions and advice regarding this flash information. The precautions and advice are stored in the auxiliary storage unit 34 in advance, depending on whether the flash information emphasizes reduction of the amount of flash or the flow velocity of flash. Therefore, the control unit 31 reads from the auxiliary storage unit 34 the precautions and advice according to the contents of the generated flash information and displays them on the display screen, thereby presenting the precautions and advice to the operator along with the flash information. can be done.

なお、図6のパターンAに示すアドバイスのように、フラッシュ操作の際にガイディングカテーテル60の先端位置を血管に対して適切な位置に位置合わせすることにより、フラッシュ液が他の血管に流れ出る量を減らすことができ、その結果、フラッシュ量の低減が可能となる。また、図6のパターンBに示すアドバイスのように、フラッシュ液に使用する造影剤の希釈率を上昇させることにより、フラッシュ液の粘度が低下するので、血管に対する負荷の低減が可能となる。このようにフラッシュ量の低減又はフラッシュ流速の低減を更に実現できるアドバイスを術者に提示することができる。なお、フラッシュ情報に造影剤の種類及び希釈率を含めて表示してもよい。また画像処理装置3は、患者の情報から最適なフラッシュ情報を特定し、特定したフラッシュ情報のみを表示する構成でもよい。 It should be noted that, as in the advice shown in pattern A in FIG. can be reduced, and as a result, the amount of flash can be reduced. Also, as in the advice shown in pattern B in FIG. 6, by increasing the dilution rate of the contrast agent used in the flush fluid, the viscosity of the flush fluid is reduced, so the load on blood vessels can be reduced. In this way, the operator can be presented with advice that can further reduce the flash amount or the flash flow velocity. Note that the flash information may be displayed including the type and dilution ratio of the contrast medium. Further, the image processing apparatus 3 may be configured to identify optimum flash information from patient information and display only the identified flash information.

術者は、提示された各パターンのフラッシュ情報の各情報及び注意事項に基づいて、最適なフラッシュ情報を特定する。例えば術者は、患者の体調を考慮して、最適なパターンのフラッシュ情報を特定する。また術者は、フラッシュ情報と共に提示されるアドバイスと自身の手技技術とを考慮して最適なフラッシュ情報を特定する。そして術者は、特定したフラッシュ情報(フラッシュ条件)でのフラッシュ操作を行う。ここでは、術者は、例えばオートインジェクタに対して、特定したフラッシュ条件(フラッシュ流速及びフラッシュ量等)を設定し、オートインジェクタによるフラッシュ液の注入を実行する。そして、術者は、フラッシュ操作を実行した後、OCT画像の撮影を実行する。 The operator specifies the optimum flash information based on each information and notes of the presented flash information of each pattern. For example, the operator considers the physical condition of the patient and specifies the optimum pattern of flash information. Also, the operator identifies the optimum flash information in consideration of the advice presented along with the flash information and his own technique. Then, the operator performs a flash operation with the specified flash information (flash conditions). Here, the operator sets specified flush conditions (flush flow rate, flush amount, etc.) for the autoinjector, for example, and executes flush liquid injection by the autoinjector. After performing the flash operation, the operator captures an OCT image.

フラッシュ情報と共に術者に提示される注意事項及びアドバイスは、フラッシュ情報がフラッシュ量の低減を重視したものである場合、例えばプルバック速度を上昇させることによってフラッシュ量の総量の低減をアドバイスする情報であってもよい。なお、プルバック速度を上昇させた場合、プルバック操作に要する時間が短縮されるので、少ない量のフラッシュ液でのフラッシュ操作が可能となる。 The precautions and advice presented to the operator along with the flash information are information advising to reduce the total flash amount by increasing the pullback speed, for example, when the flash information emphasizes reduction of the flash amount. may When the pullback speed is increased, the time required for the pullback operation is shortened, so the flush operation can be performed with a small amount of flush liquid.

以下に、訓練データを学習して第2学習モデルM2を生成する処理について説明する。図7は第2学習モデルM2の生成処理手順の一例を示すフローチャートである。以下の処理は、画像処理装置3の制御部31が、補助記憶部34に記憶してあるコンピュータプログラムPに従って行うが、他の学習装置で行われてもよい。 Processing for learning the training data and generating the second learning model M2 will be described below. FIG. 7 is a flow chart showing an example of the processing procedure for generating the second learning model M2. The following processing is performed by the control unit 31 of the image processing device 3 according to the computer program P stored in the auxiliary storage unit 34, but may be performed by another learning device.

画像処理装置3の制御部31は、1人の患者に関する血管情報、治療情報及び患者情報と、この患者に対して実施したフラッシュ操作に関するフラッシュ情報とを対応付けた訓練データを取得する(S11)。フラッシュ情報には、当該フラッシュ情報に含まれる各条件でのフラッシュ操作に対する成功確率が含まれる。訓練データ用の血管情報、治療情報及び患者情報と、訓練データ用のフラッシュ情報とは、診療DB34aに記憶されている各情報を用いることができる。なお、訓練データは、予め訓練データ用の血管情報、治療情報及び患者情報と、フラッシュ情報とを用意して訓練データDB(図示せず)に登録しておいてもよい。この場合、制御部31は、訓練データDBから訓練データを取得すればよい。 The control unit 31 of the image processing apparatus 3 acquires training data in which blood vessel information, treatment information, and patient information regarding one patient are associated with flash information regarding a flash operation performed on this patient (S11). . The flash information includes the probability of success for flash operations under each condition included in the flash information. Information stored in the medical care DB 34a can be used for blood vessel information, treatment information, and patient information for training data, and flash information for training data. As training data, blood vessel information, treatment information, patient information, and flash information for training data may be prepared in advance and registered in a training data DB (not shown). In this case, the control unit 31 may acquire training data from the training data DB.

制御部31は、取得した訓練データを用いて第2学習モデルM2の学習処理を行う(S12)。ここでは、制御部31は、訓練データに含まれる血管情報、治療情報及び患者情報を第2学習モデルM2に入力し、フラッシュ情報の各項目に関する出力値を取得する。制御部31は、出力された各項目に関する出力値を、正解の各項目の情報と比較し、両者が近似するようにニューロン間の重み等のパラメータを最適化する。 The control unit 31 performs learning processing of the second learning model M2 using the acquired training data (S12). Here, the control unit 31 inputs blood vessel information, treatment information, and patient information included in the training data to the second learning model M2, and acquires output values for each item of flash information. The control unit 31 compares the outputted output value for each item with the correct information for each item, and optimizes parameters such as weights between neurons so that the two approximate each other.

制御部31は、未処理のデータがあるか否かを判断する(S13)。例えば訓練データが予め訓練データDBに登録してある場合、制御部31は、訓練データDBに記憶してある訓練データにおいて、未処理の訓練データがあるか否かを判断する。未処理のデータがあると判断した場合(S13:YES)、制御部31はステップS11の処理に戻り、学習処理が未処理の訓練データに基づいて、ステップS11~S12の処理を行う。未処理のデータがないと判断した場合(S13:NO)、制御部31は一連の処理を終了する。 The control unit 31 determines whether or not there is unprocessed data (S13). For example, when training data is registered in the training data DB in advance, the control unit 31 determines whether there is unprocessed training data in the training data stored in the training data DB. If it is determined that there is unprocessed data (S13: YES), the control unit 31 returns to the process of step S11, and performs the processes of steps S11 to S12 based on the unprocessed training data. If it is determined that there is no unprocessed data (S13: NO), the controller 31 terminates the series of processes.

上述した処理により、患者の血管情報、治療情報及び患者情報を入力した場合にフラッシュ情報を出力するように学習された第2学習モデルM2が得られる。なお、上述したような訓練データを用いた学習処理を繰り返し行うことにより、第2学習モデルM2を更に最適化することができる。また、既に学習済みの第2学習モデルM2についても、上述した処理を行うことによって再学習させることができ、この場合、判別精度がより高い第2学習モデルM2が得られる。 Through the above-described processing, the second learning model M2 that has been learned to output flash information when the patient's blood vessel information, treatment information, and patient information is input is obtained. The second learning model M2 can be further optimized by repeating the learning process using the training data as described above. Also, the second learning model M2 that has already been trained can be re-learned by performing the above-described processing, and in this case, the second learning model M2 with higher discrimination accuracy can be obtained.

図8は、フラッシュ情報の提示処理手順の一例を示すフローチャートである。以下の処理は、画像処理装置3の制御部31が、補助記憶部34に記憶してあるコンピュータプログラムPに従って行う。なお、本実施形態の画像診断システムでは、血管内治療を行う際に血管の断層画像を撮影する場合、まず血管内検査装置1をIVUSモードで使用してIVUS画像を撮影する。その後、必要に応じて血管内検査装置1をOCTモードで使用してOCT画像を撮影する。その際に、画像処理装置3は、先に撮影したIVUS画像に基づいて、OCT画像の撮影時に行うべきフラッシュ操作における条件(フラッシュ情報)を生成して術者に提示する。術者は、提示されたフラッシュ情報を考慮して、実行すべきフラッシュ操作の内容(フラッシュ情報)を選択できる。 FIG. 8 is a flow chart showing an example of the flash information presentation processing procedure. The following processing is performed by the control unit 31 of the image processing device 3 according to the computer program P stored in the auxiliary storage unit 34 . In the diagnostic imaging system of this embodiment, when capturing a tomographic image of a blood vessel when performing endovascular treatment, first, the intravascular examination apparatus 1 is used in the IVUS mode to capture an IVUS image. After that, the intravascular examination apparatus 1 is used in the OCT mode to take an OCT image, if necessary. At that time, the image processing apparatus 3 generates conditions (flash information) for flash operation to be performed when capturing an OCT image based on the previously captured IVUS image, and presents them to the operator. The operator can select the content of the flash operation (flash information) to be executed in consideration of the presented flash information.

画像処理装置3の制御部31(取得部)は、患者の血管を血管内から撮影したIVUS画像を血管内検査装置1から取得する(S21)。そして、制御部31は、取得したIVUS画像に基づいてフラッシュ情報を生成する。なお、制御部31は、ステップS21の処理後、例えば入力装置5を介して術者からOCT画像の撮影指示を受け付けた場合に、IVUS画像に基づいてフラッシュ情報を生成する処理を実行してもよい。 The control unit 31 (acquisition unit) of the image processing apparatus 3 acquires an IVUS image obtained by imaging the patient's blood vessel from inside the blood vessel from the intravascular examination apparatus 1 (S21). Then, the control unit 31 generates flash information based on the obtained IVUS image. Note that, after the process of step S21, for example, when receiving an OCT image capturing instruction from the operator via the input device 5, the control unit 31 may perform the process of generating flash information based on the IVUS image. good.

フラッシュ情報を生成する場合、制御部31はまず、IVUS画像を第1学習モデルM1に入力し、第1学習モデルM1からの出力画像に基づいて、IVUS画像中の血管内腔を検出する(S22)。そして制御部31(算出部)は、検出した血管内腔に基づいて血管内腔の直径を算出する(S23)。血管内腔の直径は例えば、血管内腔の中心を通る血管内径の最小値及び最大値であり、制御部31は、例えばIVUS画像中の血管内径上の画素数に基づいて直径を算出する。また制御部31(算出部)は、検出した血管内腔に基づいて、IVUSで撮影された血管内腔の長さを算出する(S24)。血管内腔の長さは、血管の走行方向(長軸方向)の長さであり、例えばIVUS画像の撮影時に行ったプルバック操作によるプルバック距離である。なお、プルバック距離は、1回のプルバック操作によって撮影されたIVUS画像の枚数と、プルバック速度とに基づいて算出できる。更に制御部31(算出部)は、検出した血管内腔に基づいて、血管内腔の体積を算出する(S25)。血管内腔の体積は、血管内腔の断面積及び長さから算出される体積である。血管内腔の断面積は、算出した血管内腔の直径に基づいて算出されてもよく、IVUS画像中の血管内腔内の画素数に基づいて算出されてもよい。制御部31は例えば、1枚のIVUS画像における血管内腔の断面積を算出し、隣り合うIVUS画像間の距離(IVUS画像の撮影位置間の距離)に基づいて、1枚のIVUS画像における血管内腔の体積を算出する。そして制御部31は、それぞれのIVUS画像における血管内腔の体積を加算することにより、IVUSで撮影された血管内腔の体積を算出する。このような処理により、制御部31は、IVUS画像で撮影された血管内腔の直径、長さ及び体積等、血管内腔に関する血管情報を算出する。なお、これらの各情報の算出処理は、従来使用されている血管内検査装置1又は画像処理装置3で行われている算出処理によって実行可能である。また制御部31は、例えば透視画像撮影装置2で撮影したアンギオ画像に基づいて、この時点でのガイディングカテーテル60の先端の位置及び画像診断用プローブ11の先端の位置を検出し、検出した位置を血管情報として用いる。 When generating flash information, the control unit 31 first inputs an IVUS image to the first learning model M1, and detects a blood vessel lumen in the IVUS image based on the output image from the first learning model M1 (S22 ). Then, the control unit 31 (calculating unit) calculates the diameter of the blood vessel lumen based on the detected blood vessel lumen (S23). The diameter of the blood vessel lumen is, for example, the minimum and maximum values of the blood vessel inner diameter passing through the center of the blood vessel lumen, and the controller 31 calculates the diameter based on the number of pixels on the blood vessel inner diameter in the IVUS image, for example. The control unit 31 (calculating unit) also calculates the length of the vascular lumen imaged by IVUS based on the detected vascular lumen (S24). The length of the blood vessel lumen is the length in the running direction (major axis direction) of the blood vessel, and is, for example, the pullback distance of the pullback operation performed during imaging of the IVUS image. Note that the pullback distance can be calculated based on the number of IVUS images captured by one pullback operation and the pullback speed. Furthermore, the control unit 31 (calculating unit) calculates the volume of the blood vessel lumen based on the detected blood vessel lumen (S25). The volume of the vascular lumen is the volume calculated from the cross-sectional area and length of the vascular lumen. The cross-sectional area of the blood vessel lumen may be calculated based on the calculated diameter of the blood vessel lumen, or may be calculated based on the number of pixels in the blood vessel lumen in the IVUS image. For example, the control unit 31 calculates the cross-sectional area of the vascular lumen in one IVUS image, and based on the distance between adjacent IVUS images (the distance between the imaging positions of the IVUS images), the blood vessel in one IVUS image. Calculate the lumen volume. Then, the control unit 31 calculates the volume of the vascular lumen imaged by IVUS by adding the volumes of the vascular lumen in each IVUS image. Through such processing, the control unit 31 calculates blood vessel information related to the blood vessel lumen, such as the diameter, length, and volume of the blood vessel lumen captured by the IVUS image. The calculation processing of each of these pieces of information can be executed by the calculation processing performed by the intravascular examination apparatus 1 or the image processing apparatus 3 that are conventionally used. Further, the control unit 31 detects the position of the tip of the guiding catheter 60 and the position of the tip of the diagnostic imaging probe 11 at this time based on, for example, an angio image captured by the fluoroscopic imaging device 2, and detects the detected positions. is used as blood vessel information.

制御部31(特定部)は、患者の治療情報及び患者情報を診療DB34aから読み出し、算出した血管情報と、読み出した患者の治療情報及び患者情報とを第2学習モデルM2に入力し、第2学習モデルM2からの出力情報に基づいてフラッシュ情報を生成する(S26)。制御部31は、生成したフラッシュ情報を表示装置4に出力し、例えば図6に示すような画面にてフラッシュ情報を表示する(S27)。フラッシュ情報は、例えば図6に示すように複数パターンが表示され、術者は、表示されたフラッシュ情報から、実行すべきフラッシュ情報を選択する。また術者は、選択したフラッシュ情報に基づいて、例えばオートインジェクタに対して、選択したフラッシュ液72が充填されたシリンジ70の装着、フラッシュ流速及びフラッシュ量の設定等を行い、フラッシュ操作を実行する。なお、制御部31は、例えば入力装置5を介して、いずれかのフラッシュ情報に対する術者の選択を受け付け(S28)、選択を受け付けた場合、選択されたフラッシュ情報を診療DB34aに記憶しておく(S29)。 The control unit 31 (identifying unit) reads patient treatment information and patient information from the medical care DB 34a, inputs the calculated blood vessel information and the read patient treatment information and patient information to the second learning model M2, Flash information is generated based on the output information from the learning model M2 (S26). The control unit 31 outputs the generated flash information to the display device 4, and displays the flash information on a screen as shown in FIG. 6, for example (S27). A plurality of patterns of flash information are displayed, for example, as shown in FIG. 6, and the operator selects flash information to be executed from the displayed flash information. Also, based on the selected flash information, for example, the operator attaches the syringe 70 filled with the selected flash liquid 72 to the autoinjector, sets the flash flow rate and flash amount, etc., and executes the flash operation. . Note that the control unit 31 accepts the operator's selection of any flash information via the input device 5 (S28), and stores the selected flash information in the medical care DB 34a when the selection is accepted. (S29).

オートインジェクタは、術者によって設定されたフラッシュ条件に基づくフラッシュ操作を実行し、その後、術者は、血管内検査装置1を用いてOCT画像の撮影を行う。制御部31は、OCT画像を血管内検査装置1から取得し(S30)、取得したOCT画像を表示装置4に出力して表示する(S31)。術者は、表示されたOCT画像にて血管の状態を観察し、必要に応じて血管内治療を行う。なお、血管内治療では、術者は、ガイディングカテーテル60からイメージングカテーテル10を一旦取り出し、ガイディングカテーテル60にバルーンカテーテル等の治療用カテーテルを挿入して手技を行う。 The auto-injector performs a flash operation based on flash conditions set by the operator, and then the operator uses the intravascular examination apparatus 1 to capture an OCT image. The control unit 31 acquires an OCT image from the intravascular examination apparatus 1 (S30), and outputs and displays the acquired OCT image on the display device 4 (S31). The operator observes the condition of the blood vessel on the displayed OCT image, and performs endovascular treatment as necessary. In endovascular treatment, the operator once removes the imaging catheter 10 from the guiding catheter 60 and inserts a therapeutic catheter such as a balloon catheter into the guiding catheter 60 to perform the procedure.

なお、制御部31は、血管内検査装置1で撮影されたOCT画像を表示装置4に表示した場合に、例えばOCT画像に対する評価に関する情報を入力装置5を介して術者から取得する(S32)。OCT画像に対する評価情報は、例えばOCT画像が画像診断に十分用いることができるクリアフレームであるか否かを示す情報であり、例えばクリアフレームである(可)又はクリアフレームでない(否)ことを示す情報であってもよい。またOCT画像に対する評価情報は、術者が画像診断に用いる際の満足度(例えば5段階評価又は100点満点の各値)であってもよい。また制御部31は、血管内検査装置1によるOCT画像の撮り直しが行われたか否かを判断し、撮り直しが行われた場合に、このときのフラッシュ情報に対して低評価(例えば5段階評価の1)を付与し、撮り直しが行われなかった場合に、このときのフラッシュ情報に対して高評価(例えば5段階評価の5)を付与してもよい。更に制御部31は、1回のプルバック操作で撮影された複数のOCT画像について、術者によって所定以上の評価が得られたOCT画像(クリアフレーム)、又は、病変部の画質又は輝度が所定の画質又は輝度以上であるOCT画像(クリアフレーム)を抽出し、クリアフレームの割合を算出し、算出した割合を評価情報に用いてもよい。なお、OCT画像がクリアフレームであるか否かの判定を、機械学習によって構築された学習モデル(ニューラルネットワーク)を用いて行ってもよい。例えばCNNで構成され、OCT画像が入力された場合に、OCT画像が画像診断に十分用いることができるクリアな画像であるか否かを示す情報を出力するように学習された学習モデルを用いてもよい。この場合、画像処理装置3は、OCT画像を学習済みの学習モデルに入力し、学習モデルからの出力情報に基づいて、OCT画像がクリアフレームであるか否かを判定することができる。このように各フラッシュ情報に付与される評価情報は、フラッシュ操作における成功確率を示していてもよく、このような評価情報から成功確率が算出されてもよい。制御部31は、フラッシュ情報に対する評価情報を取得した場合、フラッシュ情報に対応付けて、取得した評価情報(成功確率)を診療DB34aに記憶しておく。これにより、診療DB34aに記憶したフラッシュ情報及びフラッシュ情報に対する評価情報を、第2学習モデルM2の学習における訓練データに用いることができる。 Note that when the OCT image captured by the intravascular examination apparatus 1 is displayed on the display device 4, the control unit 31 acquires, for example, information regarding the evaluation of the OCT image from the operator via the input device 5 (S32). . The evaluation information for the OCT image is, for example, information indicating whether or not the OCT image is a clear frame that can be used sufficiently for image diagnosis, and indicates, for example, whether the OCT image is a clear frame (acceptable) or not a clear frame (no). It may be information. Further, the evaluation information for the OCT image may be the operator's degree of satisfaction (e.g., 5-grade evaluation or each value out of 100 points) when the operator uses the image for diagnosis. In addition, the control unit 31 determines whether or not the OCT image has been retaken by the intravascular examination apparatus 1, and if the OCT image has been retaken, the flash information at this time is given a low evaluation (for example, 5 grades). An evaluation of 1) may be given, and if re-shooting is not performed, a high evaluation (for example, 5 out of 5) may be given to the flash information at this time. Further, the control unit 31 selects an OCT image (clear frame) for which the operator has obtained a predetermined evaluation or higher for a plurality of OCT images captured by a single pullback operation, or a An OCT image (clear frame) that is equal to or higher than the image quality or brightness may be extracted, the ratio of the clear frame may be calculated, and the calculated ratio may be used as the evaluation information. A learning model (neural network) constructed by machine learning may be used to determine whether the OCT image is a clear frame. For example, using a learning model configured by CNN and trained to output information indicating whether the OCT image is a clear image that can be used for image diagnosis when an OCT image is input. good too. In this case, the image processing device 3 can input the OCT image to the learned model and determine whether the OCT image is a clear frame based on the output information from the learned model. The evaluation information attached to each piece of flash information in this way may indicate the probability of success in the flash operation, and the success probability may be calculated from such evaluation information. When the evaluation information for the flash information is acquired, the control unit 31 stores the acquired evaluation information (success probability) in the medical care DB 34a in association with the flash information. As a result, the flash information and the evaluation information for the flash information stored in the medical care DB 34a can be used as training data for learning the second learning model M2.

上述した処理により、本実施形態では、OCT画像を撮影する際に実施すべきフラッシュ操作における条件(フラッシュ情報)が、IVUS画像と、患者の治療情報及び患者情報とに基づいて生成される。よって、フラッシュ操作によって適切に血液を除去できないフラッシュ不良の発生が抑制され、適切なフラッシュ操作を実施できる可能性が向上する。適切なフラッシュ操作が実施できた場合、フラッシュ操作のやり直し及びOCT画像の撮り直し等の発生が抑制され、手技時間の延長が回避できる。また、フラッシュ液に造影剤を用いたフラッシュ操作を実施する場合には、フラッシュ操作のやり直しによる造影剤の投与量の増加、正確には造影剤に含まれるヨードの投与量の増加を回避でき、患者の腎機能への影響を最小限に留めることができ、腎機能に対する負担を軽減できる。 By the above-described processing, in the present embodiment, conditions (flash information) for flash operation to be performed when capturing an OCT image are generated based on the IVUS image and the patient's treatment information and patient information. Therefore, it is possible to suppress the occurrence of flash failure in which blood cannot be properly removed by the flash operation, and improve the possibility of performing the proper flush operation. If an appropriate flash operation can be performed, redoing the flash operation, retaking an OCT image, and the like can be suppressed, and extension of the procedure time can be avoided. In addition, when a flash operation is performed using a contrast medium in the flash liquid, an increase in the dose of the contrast medium, or more accurately, an increase in the dose of iodine contained in the contrast medium due to redoing the flash operation, can be avoided. The effect on the patient's renal function can be minimized, and the burden on the renal function can be reduced.

本実施形態のように、デュアルタイプのイメージングカテーテル10を用いる血管内検査装置1では、血管内治療の実施後、例えば病変部にステントを留置した後に、ステントの留置位置を確認するためにOCT画像の撮影が行われる。このときにも、OCT画像の撮影を行う前にIVUS画像を撮影し、得られたIVUS画像からフラッシュ情報を生成し、生成されたフラッシュ情報を術者に提示することができる。このような場合にも、術者は、提示されたフラッシュ情報に基づいて、実行すべきフラッシュ操作の内容を特定することにより、最適なフラッシュ条件を選定できる。 As in the present embodiment, in the intravascular examination apparatus 1 using the dual-type imaging catheter 10, after performing endovascular treatment, for example, after placing a stent in a lesion, an OCT image is used to confirm the placement position of the stent. is filmed. Also at this time, an IVUS image can be captured before an OCT image is captured, flash information can be generated from the obtained IVUS image, and the generated flash information can be presented to the operator. Even in such a case, the operator can select the optimum flash condition by specifying the contents of the flash operation to be executed based on the presented flash information.

図9は学習モデルの変形例を示す説明図である。上述した第1学習モデルM1及び第2学習モデルM2は、図9に示すように1つの学習モデルで構成されていてもよい。図9に示す学習モデルM3は、例えば1回のプルバック操作によって撮影された複数のIVUS画像と、患者の治療情報及び患者情報とを入力とし、上述した第2学習モデルM2と同様のフラッシュ情報を出力する構成を有する。図9に示す学習モデルM3は例えばCNNを有し、CNNによって、入力されたIVUS画像から画像の特徴量を抽出する。ここで抽出される特徴量は、IVUS画像中の血管内腔に関する血管情報に相当する。よって、学習モデルM3は、CNNで抽出した特徴量と、入力された治療情報及び患者情報とに基づいてフラッシュ情報を生成することができる。このように1つの学習モデルM3で構成した場合であっても、IVUS画像と、患者の治療情報及び患者情報とからフラッシュ情報が生成され、生成されたフラッシュ情報を術者に提示することができる。 FIG. 9 is an explanatory diagram showing a modification of the learning model. The first learning model M1 and the second learning model M2 described above may be composed of one learning model as shown in FIG. The learning model M3 shown in FIG. 9 receives, for example, a plurality of IVUS images captured by one pullback operation, patient treatment information and patient information, and flash information similar to the second learning model M2 described above. It has a configuration to output. The learning model M3 shown in FIG. 9 has, for example, a CNN, and the CNN extracts image feature amounts from the input IVUS image. The feature amount extracted here corresponds to blood vessel information regarding the blood vessel lumen in the IVUS image. Therefore, the learning model M3 can generate flash information based on the feature amount extracted by the CNN and the input treatment information and patient information. Even when configured with one learning model M3 in this way, flash information can be generated from the IVUS image and the patient's treatment information and patient information, and the generated flash information can be presented to the operator. .

本実施形態において、患者の血管情報、治療情報及び患者情報からフラッシュ操作における各情報を生成する処理は第2学習モデルM2を用いる構成の代わりに、ルールベースで行うように構成されていてもよい。この場合、例えば、血管情報、治療情報及び患者情報の各情報の組合せに対して、最適なフラッシュ情報を対応付けたテーブルを用意しておき、画像処理装置3は、テーブルの内容から、患者の血管情報、治療情報及び患者情報に応じたフラッシュ情報を特定する。この場合にも、患者に応じた最適なフラッシュ情報を術者に提示できる。 In the present embodiment, the process of generating each piece of information in the flash operation from the patient's blood vessel information, treatment information, and patient information may be configured to be performed on a rule basis instead of using the second learning model M2. . In this case, for example, a table in which optimal flash information is associated with each combination of blood vessel information, treatment information, and patient information is prepared. Identify flash information corresponding to vessel information, treatment information and patient information. In this case as well, it is possible to present the operator with optimal flash information according to the patient.

本実施形態では、第1学習モデルM1及び第2学習モデルM2を用いてIVUS画像と、患者の治療情報及び患者情報とに基づいてフラッシュ情報を生成する処理を画像処理装置3がローカルで行う構成であるが、この構成に限定されない。例えば、第1学習モデルM1及び第2学習モデルM2を用いたフラッシュ情報の生成処理を行うサーバを設けてもよい。この場合、画像処理装置3は、IVUS画像、治療情報及び患者情報をサーバへ送信し、サーバで生成されたフラッシュ情報を取得するように構成されていてもよい。なお、ここでのサーバが診療DB34aを記憶するサーバである場合、画像処理装置3は、IVUS画像のみをサーバへ送信し、サーバで生成されたフラッシュ情報を取得することができる。このような構成とした場合であっても、本実施形態と同様の処理が可能であり、同様の効果が得られる。 In this embodiment, the image processing apparatus 3 locally performs processing for generating flash information based on the IVUS image and the patient's treatment information and patient information using the first learning model M1 and the second learning model M2. However, it is not limited to this configuration. For example, a server may be provided for generating flash information using the first learning model M1 and the second learning model M2. In this case, the image processing device 3 may be configured to transmit IVUS images, treatment information and patient information to the server and obtain flash information generated by the server. If the server here is a server that stores the medical care DB 34a, the image processing apparatus 3 can transmit only IVUS images to the server and acquire flash information generated by the server. Even with such a configuration, the same processing as in the present embodiment is possible, and the same effects can be obtained.

本実施形態において、第2学習モデルM2は、例えばフラッシュ液(造影剤)の投与量の低減を重視する場合、又はフラッシュ液の流速の低減を重視する場合等のように治療のシチュエーション毎に用意されていてもよい。また第2学習モデルM2は、フラッシュ操作の処理対象の部位(例えば血管の種類)毎、又は、血管に対するガイディングカテーテル60の先端の位置毎に用意されていてもよい。例えば、右冠動脈用のモデル、左前下行枝用のモデル、回旋枝用のモデル、ガイディングカテーテル60の先端が冠動脈に十分係合している場合用のモデル、係合状態が浅い場合用のモデルが用意されていてもよい。この場合、画像処理装置3は、それぞれのモデルを用いて生成したフラッシュ情報を術者に提示してもよい。また、画像処理装置3は、処理対象の血管の種類又は術者による設定入力に応じて使用するモデルを選択し、選択したモデルを用いてフラッシュ情報を生成して術者に提示することができる。 In this embodiment, the second learning model M2 is prepared for each treatment situation, for example, when emphasis is placed on reducing the dose of the flushing fluid (contrast medium), or when emphasizing reducing the flow rate of the flushing fluid. may have been Also, the second learning model M2 may be prepared for each site (for example, type of blood vessel) to be processed by the flash operation, or for each position of the tip of the guiding catheter 60 with respect to the blood vessel. For example, a model for the right coronary artery, a model for the left anterior descending artery, a model for the circumflex artery, a model for when the tip of the guiding catheter 60 is sufficiently engaged with the coronary artery, and a model for when the engagement state is shallow. may be provided. In this case, the image processing device 3 may present flash information generated using each model to the operator. In addition, the image processing apparatus 3 can select a model to be used according to the type of blood vessel to be processed or the setting input by the operator, generate flash information using the selected model, and present it to the operator. .

今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time are illustrative in all respects and should not be considered restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above-described meaning, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.

1 血管内検査装置
2 透視画像撮影装置
3 画像処理装置
4 表示装置
5 入力装置
10 イメージングカテーテル
11 画像診断用プローブ
60 ガイディングカテーテル
61 シース
62 分岐ハブ
70 シリンジ
34a 診療DB
M1 第1学習モデル
M2 第2学習モデル
REFERENCE SIGNS LIST 1 intravascular examination device 2 fluoroscopic imaging device 3 image processing device 4 display device 5 input device 10 imaging catheter 11 diagnostic imaging probe 60 guiding catheter 61 sheath 62 branch hub 70 syringe 34a medical care DB
M1 First learning model M2 Second learning model

Claims (9)

超音波信号を用いて血管の横断面を撮影した超音波断層画像を取得し、
取得した超音波断層画像に基づいて、前記血管の内腔に関する情報を算出し、
算出した前記内腔に関する情報に基づいて、光信号を用いて前記血管の横断面を撮影する際のフラッシュ操作に関する操作情報を特定する
処理をコンピュータに実行させるプログラム。
Acquiring an ultrasonic tomographic image of a cross section of a blood vessel using an ultrasonic signal,
calculating information about the lumen of the blood vessel based on the acquired ultrasound tomographic image;
A program for causing a computer to execute a process of identifying operation information related to flash operation when photographing a cross section of the blood vessel using an optical signal, based on the calculated information about the lumen.
超音波断層画像を入力した場合に前記超音波断層画像中の血管の内腔の領域を示す情報を出力するように学習済みの学習モデルに、取得した前記超音波断層画像を入力して、前記超音波断層画像中の血管の内腔の領域を出力し、
出力した内腔の領域に基づいて、前記内腔に関する情報を算出する
処理を前記コンピュータに実行させる請求項1に記載のプログラム。
Inputting the acquired ultrasonic tomographic image to a learning model that has already been trained so as to output information indicating the region of the lumen of the blood vessel in the ultrasonic tomographic image when the ultrasonic tomographic image is input, outputting the area of the lumen of the blood vessel in the ultrasonic tomographic image,
The program according to claim 1, which causes the computer to execute a process of calculating information about the lumen based on the output region of the lumen.
前記内腔に関する情報は、前記内腔の横断面の径、及び、前記内腔の長軸方向の長さを含み、
超音波信号を用いて前記血管の横断面を複数箇所で撮影した複数の超音波断層画像を取得し、
取得した超音波断層画像の枚数に基づいて、撮影した前記血管の内腔の長軸方向の長さを算出する
処理を前記コンピュータに実行させる請求項1又は2に記載のプログラム。
the information about the lumen includes a cross-sectional diameter of the lumen and a longitudinal length of the lumen;
Acquiring a plurality of ultrasonic tomographic images obtained by imaging a cross section of the blood vessel at a plurality of locations using ultrasonic signals,
3. The program according to claim 1, which causes the computer to execute a process of calculating the longitudinal length of the lumen of the captured blood vessel based on the number of acquired ultrasonic tomographic images.
前記フラッシュ操作において前記血管内の血液と置換されるフラッシュ液の流量及び流速を含む前記操作情報を特定する
請求項1から3までのいずれかひとつに記載のプログラム。
4. The program according to any one of claims 1 to 3, wherein the operation information including the flow rate and flow velocity of the flush liquid that replaces the blood in the blood vessel in the flush operation is specified.
前記内腔に関する情報を入力した場合に前記フラッシュ操作に関する操作情報を出力するように学習済みの第2の学習モデルに、算出した前記内腔に関する情報を入力して、前記フラッシュ操作に関する操作情報を出力する
処理を前記コンピュータに実行させる請求項1から4までのいずれかひとつに記載のプログラム。
The calculated information about the lumen is input to a second learning model that has already learned to output the operation information about the flash operation when the information about the lumen is input, and the operation information about the flash operation is output. The program according to any one of claims 1 to 4, which causes the computer to execute a process of outputting.
前記第2の学習モデルは、前記内腔に関する情報及び患者に関する患者情報を入力した場合に前記フラッシュ操作に関する操作情報を出力するように学習してあり、
患者に関する患者情報を取得し、
算出した前記内腔に関する情報及び取得した前記患者情報を前記第2の学習モデルに入力して、前記フラッシュ操作に関する操作情報を出力する
処理を前記コンピュータに実行させる請求項5に記載のプログラム。
The second learning model is learned to output operation information related to the flash operation when information related to the lumen and patient information related to the patient are input,
obtain patient information about a patient,
6. The program according to claim 5, causing the computer to execute a process of inputting the calculated information about the lumen and the obtained patient information into the second learning model and outputting operation information about the flash operation.
超音波信号を用いて血管の横断面を撮影した超音波断層画像を取得し、
取得した超音波断層画像に基づいて、前記血管の内腔に関する情報を算出し、
算出した前記内腔に関する情報に基づいて、光信号を用いて前記血管の横断面を撮影する際のフラッシュ操作に関する操作情報を特定する
処理をコンピュータが実行する画像処理方法。
Acquiring an ultrasonic tomographic image of a cross section of a blood vessel using an ultrasonic signal,
calculating information about the lumen of the blood vessel based on the acquired ultrasound tomographic image;
An image processing method in which a computer executes a process of identifying operation information related to a flash operation when photographing a cross section of the blood vessel using an optical signal, based on the calculated information about the lumen.
超音波信号を用いて血管の横断面を撮影した超音波断層画像を取得する取得部と、
取得した超音波断層画像に基づいて、前記血管の内腔に関する情報を算出する算出部と、
算出した前記内腔に関する情報に基づいて、光信号を用いて前記血管の横断面を撮影する際のフラッシュ操作に関する操作情報を特定する特定部と
を備える画像処理装置。
an acquisition unit that acquires an ultrasonic tomographic image obtained by imaging a cross section of a blood vessel using an ultrasonic signal;
a calculation unit that calculates information about the lumen of the blood vessel based on the acquired ultrasound tomographic image;
An image processing apparatus comprising: a specifying unit that specifies operation information related to a flash operation when photographing a cross section of the blood vessel using an optical signal, based on the calculated information about the lumen.
患者の血管の内腔に関する情報と、光信号を用いて前記血管の横断面を撮影する際のフラッシュ操作に関する操作情報とを関連付けた訓練データを取得し、
前記訓練データを用いて、血管の内腔に関する情報を入力した場合に前記フラッシュ操作に関する操作情報を出力する学習済みの学習モデルを生成する
処理をコンピュータが実行するモデル生成方法。
Acquiring training data that associates information about the lumen of a patient's blood vessel with operation information about a flash operation when imaging a cross section of the blood vessel using an optical signal;
A model generation method in which a computer executes a process of generating a trained learning model that outputs operation information about the flash operation when information about the lumen of a blood vessel is input, using the training data.
JP2021052013A 2021-03-25 2021-03-25 Program, image processing method, image processing device and model generation method Pending JP2022149735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021052013A JP2022149735A (en) 2021-03-25 2021-03-25 Program, image processing method, image processing device and model generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021052013A JP2022149735A (en) 2021-03-25 2021-03-25 Program, image processing method, image processing device and model generation method

Publications (1)

Publication Number Publication Date
JP2022149735A true JP2022149735A (en) 2022-10-07

Family

ID=83464823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021052013A Pending JP2022149735A (en) 2021-03-25 2021-03-25 Program, image processing method, image processing device and model generation method

Country Status (1)

Country Link
JP (1) JP2022149735A (en)

Similar Documents

Publication Publication Date Title
US11883149B2 (en) Apparatus and methods for mapping a sequence of images to a roadmap image
US20220346885A1 (en) Artificial intelligence coregistration and marker detection, including machine learning and using results thereof
US8855744B2 (en) Displaying a device within an endoluminal image stack
US9144394B2 (en) Apparatus and methods for determining a plurality of local calibration factors for an image
US9101286B2 (en) Apparatus and methods for determining a dimension of a portion of a stack of endoluminal data points
US9095313B2 (en) Accounting for non-uniform longitudinal motion during movement of an endoluminal imaging probe
US10362962B2 (en) Accounting for skipped imaging locations during movement of an endoluminal imaging probe
US20220061670A1 (en) Systems and methods for oct-guided treatment of a patient
US20240013385A1 (en) Medical system, method for processing medical image, and medical image processing apparatus
WO2021193019A1 (en) Program, information processing method, information processing device, and model generation method
CN116669634A (en) Wire adhesion estimation
WO2023133355A1 (en) Imaging system for calculating fluid dynamics
JP2022149735A (en) Program, image processing method, image processing device and model generation method
WO2021193024A1 (en) Program, information processing method, information processing device and model generating method
WO2023023248A1 (en) Systems and methods of identifying vessel attributes using extravascular images
WO2018177692A1 (en) Interaction monitoring of non-invasive imaging based ffr
WO2023100838A1 (en) Computer program, information processing device, information processing method, and training model generation method
US20240013386A1 (en) Medical system, method for processing medical image, and medical image processing apparatus
US20240008849A1 (en) Medical system, method for processing medical image, and medical image processing apparatus
US20220028079A1 (en) Diagnosis support device, diagnosis support system, and diagnosis support method
WO2021193018A1 (en) Program, information processing method, information processing device, and model generation method
WO2022209652A1 (en) Computer program, information processing method, and information processing device
US20240013434A1 (en) Program, information processing method, and information processing device
WO2023145281A1 (en) Program, information processing method, and information processing device
WO2024071322A1 (en) Information processing method, learning model generation method, computer program, and information processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240527