JP2022149384A - Coated conducting wire, electric wire with terminal, and wire harness - Google Patents

Coated conducting wire, electric wire with terminal, and wire harness Download PDF

Info

Publication number
JP2022149384A
JP2022149384A JP2021051512A JP2021051512A JP2022149384A JP 2022149384 A JP2022149384 A JP 2022149384A JP 2021051512 A JP2021051512 A JP 2021051512A JP 2021051512 A JP2021051512 A JP 2021051512A JP 2022149384 A JP2022149384 A JP 2022149384A
Authority
JP
Japan
Prior art keywords
stress
terminal
crimping
wire
covering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021051512A
Other languages
Japanese (ja)
Inventor
江 李
Ko Ri
裕文 河中
Hirofumi Kawanaka
宏和 高橋
Hirokazu Takahashi
菖一 浅ヶ谷
Shoichi Asagaya
賢悟 水戸瀬
Kengo Mitose
翔 外池
Sho Sotoike
弘国 村上
Hirokuni Murakami
貴之 樋口
Takayuki Higuchi
康晴 駿河
Yasuharu Suruga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Original Assignee
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Automotive Systems Inc filed Critical Furukawa Electric Co Ltd
Priority to JP2021051512A priority Critical patent/JP2022149384A/en
Publication of JP2022149384A publication Critical patent/JP2022149384A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a coated conducting wire or the like, which can suppress a rupture of a coating part even when the coated conducting wire is bent.SOLUTION: A coated conducting wire 23 is formed of a conducting wire 25 that is coated with an insulative coating part 27. A terminal 1 includes a terminal body 3 and a crimping part 5. The crimping part 5 is a part at which the terminal body is crimped on the coated conducting wire, and includes a conducting wire crimped part 7 at which the terminal body is crimped on a conducting wire part that is exposed from a coating part on a tip side of the coated conducting wire, and a coating crimped part 9 at which the terminal body is crimped on a part of the coating part of the coated conducting wire. In a stress-strain curve of the coating part 27, a stress lowering part which accompanies the increase of strain is not formed between a yield stress and the rupture stress.SELECTED DRAWING: Figure 1

Description

本発明は例えば自動車等に用いられる被覆導線、端子付き電線およびワイヤハーネスに関するものである。 TECHNICAL FIELD The present invention relates to coated conductors, terminal-equipped conductors, and wire harnesses used in, for example, automobiles.

従来、自動車、OA機器、家電製品等の分野では、電力線や信号線として、電気導電性に優れた銅系材料からなる電線が使用されている。特に、自動車分野においては、車両の高性能化、高機能化が急速に進められており、車載される各種電気機器や制御機器が増加している。したがって、これに伴い、使用される端子付き電線も増加する傾向にある。 2. Description of the Related Art Conventionally, in the fields of automobiles, OA equipment, home electric appliances, and the like, electric wires made of copper-based materials with excellent electrical conductivity have been used as power lines and signal lines. In particular, in the field of automobiles, the performance and functionality of vehicles are rapidly advancing, and the number of various electric devices and control devices to be mounted on vehicles is increasing. Therefore, along with this, the number of electric wires with terminals used tends to increase.

一般的に、このような端子付き電線は、絶縁性の確保や内部の導体の保護のために、導体が絶縁性の樹脂で被覆された被覆導線と端子とが接続される。被覆導線は、曲げた際などに被覆部が損傷しない程度の耐久性が必要である。 In general, such a terminal-equipped electric wire is connected to a terminal and a covered conductor whose conductor is covered with an insulating resin in order to ensure insulation and protect the internal conductor. A coated conductor must have durability to the extent that the coated portion is not damaged when it is bent.

このような被覆導線と端子とが接続された端子付き電線としては、例えば、長手方向に沿った一方の端部が封止されているとともに、長手方向に沿った溶接部を有する断面中空筒形状に形成された圧着部を有する圧着端子と被覆導線とが圧着された端子付き電線が提案されている(特許文献1)。 An electric wire with a terminal in which such a coated conductor and a terminal are connected is, for example, one end along the longitudinal direction is sealed, and a cross-sectional hollow cylindrical shape having a welded portion along the longitudinal direction There has been proposed an electric wire with a terminal in which a crimp terminal having a crimp portion formed in a gap and a covered conductor are crimped (Patent Document 1).

特開2018-107149号公報JP 2018-107149 A

特許文献1のような端子付き電線では、導体と共に被覆部が圧着される。この際、被覆部が外周から圧縮されるため、端子との圧着部においては、被覆部が圧縮によって部分的に伸びた状態となる。このような状態で、端子に対して被覆導線を曲げると、被覆部には圧縮による伸びと曲げによる伸びとが重畳し、被覆部が破断するおそれがある。 In an electric wire with a terminal as disclosed in Patent Document 1, the coating is crimped together with the conductor. At this time, since the covering portion is compressed from the outer periphery, the covering portion is partially stretched due to the compression at the crimping portion with the terminal. If the coated conductor is bent with respect to the terminal in such a state, elongation due to compression and elongation due to bending are superimposed on the coated portion, and there is a risk that the coated portion will break.

特に、特許文献1に記載されているように、筒状の圧着部の内面の一部に溶接に伴う凸形状が形成されるような場合には、周方向の一部に局所的に圧縮量の大きな部位が生じる。このため、当該部位では、周囲と比較してより厳しい条件となり、被覆部の損傷が生じやすい。この現象は以下のように説明される。 In particular, as described in Patent Document 1, when a convex shape is formed along with welding on a part of the inner surface of the cylindrical crimping part, the amount of compression is localized in a part of the circumferential direction. A large part of For this reason, the conditions are more severe at the site than at the surroundings, and damage to the coated section is likely to occur. This phenomenon is explained as follows.

図10は、可塑剤等が添加された一般的な塩化ビニル樹脂の応力歪曲線を示す図である。一般的な樹脂は、弾性域においては、応力の増加に伴い歪が略直線状に増加する。この際の傾きがヤング率となる。応力が降伏応力(図中X)まで達すると、塑性変形が開始し、より小さな応力で歪が増加する。すなわち、応力が減少する領域(図中Zであって、以下、応力低下部とする)が生じる。さらに歪が増加すると応力が増加して破断する。この際の応力が破断応力Yである。詳細は後述するが、このように、通常、降伏応力Xと破断応力Yとの間に、応力が一度低下する応力低下部が形成される。 FIG. 10 is a diagram showing a stress-strain curve of a general vinyl chloride resin to which a plasticizer or the like is added. In general resins, strain increases substantially linearly as stress increases in the elastic region. The slope at this time is the Young's modulus. When the stress reaches the yield stress (X in the figure), plastic deformation begins and the strain increases at lower stresses. That is, a region where the stress is reduced (Z in the figure, hereinafter referred to as a stress reduced region) is generated. When the strain further increases, the stress increases and fracture occurs. The stress at this time is the breaking stress Y. Although the details will be described later, in this way, a stress-lowering portion where the stress drops once is usually formed between the yield stress X and the breaking stress Y.

このように、歪(伸び)が増加した際に応力が減少するような応力低下部が存在すると、降伏応力を超えた際に、小さな応力でさらに伸びが増加することとなる。例えば、前述したような溶接に伴う凸部が存在すると、当該部位において、周囲と比較して相対的に圧縮に伴う伸びが大きくなる。このため、この状態で端子に対して被覆導線を曲げると、当該部位は、より小さな応力で伸びが進行しやすいため、周囲と比較してさらに局所的な伸びが増加し、破断が生じやすくなる。 In this way, if there is a stress drop portion where stress decreases when strain (elongation) increases, when the yield stress is exceeded, elongation will further increase with a small stress. For example, if there is a convex portion due to welding as described above, elongation due to compression is relatively large at that portion compared to the surrounding area. Therefore, if the coated conductor is bent with respect to the terminal in this state, the portion in question tends to expand with a smaller stress, so that the portion expands more locally than the surrounding area, and breakage is likely to occur. .

なお、このような現象は、前述したような、端子内面における溶接に伴う凸部等の存在の下で顕著に現れるが、溶接がない場合でも、部分的な圧縮バラツキ等によっても生じうる。このように被覆部が破断すると、絶縁性や止水性を確保することができなくなる。 Such a phenomenon appears conspicuously in the presence of protrusions and the like due to welding on the inner surface of the terminal as described above, but it can also occur due to partial compression variations and the like even when there is no welding. If the covering portion is broken in this way, it becomes impossible to ensure insulation and water stoppage.

これに対し、被覆部の圧縮率を大きくし(圧縮量を小さくする)、被覆部の圧縮により伸び量を低減させると、被覆部と被覆圧着部との密着力が低下し、被覆部の抜け力の低下や、圧着部の止水性が低下することとなる。このため、所定以下の圧縮率で圧着しても、被覆部の破断が生じにくい被覆導線が求められる。 On the other hand, if the compressibility of the covering portion is increased (the amount of compression is reduced) and the elongation amount is reduced by compressing the covering portion, the adhesion between the covering portion and the crimping portion decreases, and the covering portion comes off. This results in a decrease in force and a decrease in the waterproofness of the crimped portion. Therefore, there is a demand for a coated conductor whose coated portion is less likely to break even if it is crimped at a compression ratio of a predetermined value or less.

本発明は、このような問題に鑑みてなされたもので、被覆導線を曲げた際にも被覆部の破断を抑制することが可能な被覆導線等を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of such problems, and an object of the present invention is to provide a coated conductive wire or the like that can suppress breakage of the coated portion even when the coated conductive wire is bent.

前述した目的を達するために第1の発明は、導線が樹脂製の被覆部で被覆された被覆導線であって、前記被覆部の応力歪曲線において、降伏応力から破断応力までの間に歪の増加に伴う応力低下部が形成されないことを特徴とする被覆導線である。 In order to achieve the above-mentioned object, a first invention is a coated conductive wire coated with a resin-made coating, wherein the stress-strain curve of the coating has a strain between the yield stress and the breaking stress. The covered conductor is characterized in that no stress-lowering portion is formed as the stress increases.

前記被覆部の降伏応力が30MPa以上であることが望ましい。 It is desirable that the yield stress of the covering portion is 30 MPa or more.

前記被覆部のヤング率が3.5MPa以上であることが望ましい。 It is desirable that the Young's modulus of the covering portion is 3.5 MPa or more.

第1の発明によれば、被覆部を構成する樹脂の応力歪曲線において、降伏応力と破断応力との間に明確な応力低下部が形成されないため、被覆導線を端子に対して曲げた際に、前述したような局所的な伸びが生じにくく、これによる被覆部の破断を抑制することができる。 According to the first invention, in the stress-strain curve of the resin constituting the covering portion, since a clear stress-lowering portion is not formed between the yield stress and the breaking stress, when the covering conductor is bent with respect to the terminal, , local elongation as described above is less likely to occur, and breakage of the covering portion due to such elongation can be suppressed.

また、降伏応力が30MPa以上であれば、圧縮時等に過剰に被覆部が伸びることを抑制することができる。 Moreover, if the yield stress is 30 MPa or more, it is possible to suppress excessive stretching of the coating during compression or the like.

また、被覆部のヤング率が3.5MPa以上であれば、十分な耐摩耗性を確保することができる。 Moreover, if the Young's modulus of the covering portion is 3.5 MPa or more, sufficient wear resistance can be ensured.

第2の発明は、第1の発明にかかる被覆導線と端子とが接続される端子付き電線であって、前記端子は、端子本体と圧着部とを有し、前記圧着部は、前記導線が圧着される導線圧着部と、前記被覆部が圧着される被覆圧着部と、を具備し、前記圧着部における前記被覆部の最小厚みが、前記圧着部以外の部位における前記被覆部の厚みの50%以下であることを特徴とする端子付き電線である。 A second invention is an electric wire with a terminal to which the coated conductor wire according to the first invention and a terminal are connected, wherein the terminal has a terminal body and a crimping part, and the crimping part has a A conductor crimping portion to be crimped and a covering crimping portion to which the covering portion is crimped, wherein the minimum thickness of the covering portion in the crimping portion is 50 times the thickness of the covering portion in a portion other than the crimping portion. % or less.

前記圧着部以外の部位において、前記導線のサイズは3sq以下であり、前記被覆部の厚みが0.3mm以下であることが望ましい。 In a portion other than the crimping portion, it is preferable that the size of the conducting wire is 3 sq or less, and the thickness of the covering portion is 0.3 mm or less.

前記被覆圧着部における前記被覆部の圧縮率が50%以下であることが望ましい。 It is desirable that the compressibility of the covering portion in the covering crimping portion is 50% or less.

前記圧着部は、平板状の素材の端部が突合わさるように丸められて、突合せ部が溶接されて略管状に形成され、前記被覆導線が挿入される部位を除き、他の部位が封止されていてもよい。 The crimping portion is formed into a substantially tubular shape by rolling the ends of a flat plate-shaped material so that they are butted together, and welding the butt portions to form a substantially tubular shape. may have been

第2の発明によれば、最も圧縮量の大きな部位で、圧縮率が50%以下となるため、十分な圧着を行うことができる。さらに、被覆圧着部における被覆部の圧縮率が50%以下であれば、より確実に圧着を行うことができる。この場合でも、前述したように、被覆導線を端子に対して曲げた際における被覆部の破断を抑制することができる。 According to the second invention, since the compressibility is 50% or less at the portion where the amount of compression is the largest, sufficient crimping can be performed. Furthermore, if the compressibility of the covering portion in the covering crimping portion is 50% or less, crimping can be performed more reliably. Even in this case, as described above, breakage of the coated portion when the coated conductor is bent with respect to the terminal can be suppressed.

また、被覆導線のサイズは3sq以下であり、被覆部の厚みが0.3mm以下である場合に、特に有効である。 Moreover, it is particularly effective when the size of the coated conductor is 3 sq or less and the thickness of the coated portion is 0.3 mm or less.

また、圧着部が、一端が封止された筒状であれば、被覆圧着部によって止水性を確保することができる。また、溶接部が形成されるため、これに伴う凸部が圧着部内面に生成される可能性があるが、このような場合でも、前述したように、被覆導線を端子に対して曲げた際における被覆部の破断を抑制することができる。 Moreover, if the crimped portion is cylindrical with one end sealed, the covering crimped portion can ensure waterproofness. In addition, since the welded portion is formed, there is a possibility that a convex portion will be formed on the inner surface of the crimping portion. It is possible to suppress breakage of the covering portion in.

第3の発明は、第2の発明にかかる端子付き電線が複数本束ねられたことを特徴とするワイヤハーネスである。 A third aspect of the invention is a wire harness comprising a bundle of a plurality of wires with terminals according to the second aspect of the invention.

本発明では、複数本の端子付き電線を束ねて用いることもできる。 In the present invention, a plurality of electric wires with terminals can be bundled and used.

本発明によれば、被覆導線を曲げた際にも被覆部の破断を抑制することが可能な被覆導線等を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the covered conductor etc. which can suppress the breakage of a covering part when bending a covered conductor can be provided.

端子付き電線10を示す斜視図。The perspective view which shows the electric wire 10 with a terminal. 端子付き電線10を示す断面図。Sectional drawing which shows the electric wire 10 with a terminal. (a)は図2のC-C線断面図、(b)は(a)のD部拡大図。(a) is a cross-sectional view taken along the line CC of FIG. 2, and (b) is an enlarged view of part D of (a). 被覆部の樹脂の応力ひずむ曲線を示す図。The figure which shows the stress-strain curve of the resin of a coating part. 圧着前の端子1と被覆導線23を示す図。The figure which shows the terminal 1 and the coated conductor 23 before crimping. 金型31a、31bの間に、圧着部5を配置した状態を示す断面図であり、(a)は圧着前を示す図、(b)は圧着した状態を示す図。FIG. 4 is a cross-sectional view showing a state in which a crimping portion 5 is arranged between molds 31a and 31b, where (a) is a view before crimping, and (b) is a view after crimping. 実施例に使用された各被覆部の応力歪曲線を示す図。The figure which shows the stress-strain curve of each coating part used for the Example. (a)、(b)は、被覆導線の曲げ試験方法を示す図。(a), (b) is a figure which shows the bending test method of a coated conductor. 端子付き電線10の試験方法を示す図。The figure which shows the test method of the electric wire 10 with a terminal. 従来の被覆部の樹脂の応力ひずむ曲線を示す図。The figure which shows the stress-strain curve of the resin of the conventional covering part.

以下、図面を参照しながら、本発明の実施形態について説明する。図1は、端子付き電線10を示す斜視図であり、図2は断面図である。端子付き電線10は、端子1と被覆導線23が接続されて構成される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing an electric wire 10 with a terminal, and FIG. 2 is a cross-sectional view. An electric wire 10 with a terminal is configured by connecting a terminal 1 and a coated conductor 23 .

被覆導線23は、導線25が絶縁樹脂製の被覆部27によって被覆されて構成される。導線25は、例えば銅、銅合金、アルミニウムまたはアルミニウム合金製である。被覆導線23を端子1の圧着部5に挿入する際には、被覆導線23の先端の一部の被覆部27が剥離され、導線25を露出させておく。なお、被覆部27の詳細は後述する。 The covered conducting wire 23 is configured by covering the conducting wire 25 with a covering portion 27 made of insulating resin. Conductor 25 is made of, for example, copper, a copper alloy, aluminum, or an aluminum alloy. When the covered conductor 23 is inserted into the crimping portion 5 of the terminal 1, the covering portion 27 of the tip of the covered conductor 23 is partially peeled off to expose the conductor 25. As shown in FIG. Details of the covering portion 27 will be described later.

端子1は、例えば銅、銅合金、アルミニウムまたはアルミニウム合金製であり、端子本体3と圧着部5とからなる。端子本体3は、所定の形状の板状素材を、断面が矩形の筒体に形成したものである。端子本体3は、内部に、板状素材を矩形の筒体内に折り込んで形成される弾性接触片15を有する。端子本体3は、前端部から雄型端子などが挿入されて接続される。なお、以下の説明では、端子本体3が、雄型端子等の挿入タブ(図示省略)の挿入を許容する雌型端子である例を示すが、本発明において、この端子本体3の細部の形状は特に限定されない。例えば、雌型の端子本体3に代えて例えば雄型端子の挿入タブを設けてもよい。 A terminal 1 is made of, for example, copper, a copper alloy, aluminum, or an aluminum alloy, and comprises a terminal body 3 and a crimp portion 5 . The terminal main body 3 is formed by forming a plate-shaped material having a predetermined shape into a tubular body having a rectangular cross section. The terminal body 3 has an elastic contact piece 15 inside which is formed by folding a plate material into a rectangular cylindrical body. The terminal body 3 is connected by inserting a male terminal or the like from the front end portion. In the following description, an example in which the terminal body 3 is a female terminal that allows insertion of an insertion tab (not shown) of a male terminal or the like will be shown. is not particularly limited. For example, instead of the female terminal main body 3, for example, an insertion tab for a male terminal may be provided.

圧着部5は、被覆導線と圧着される部位であり、被覆導線の先端側に被覆部から露出する導線部を圧着する導線圧着部7と、被覆導線の被覆部の一部を圧着する被覆圧着部9とからなる。導線圧着部7と被覆圧着部9とは、一体で形成される。 The crimping part 5 is a part to be crimped with the covered conductor, and includes a conductor crimping part 7 for crimping the conductor part exposed from the covering part on the tip side of the covered conductor, and a covering crimping part for crimping a part of the covering part of the covered conductor. Part 9. The conductor crimping portion 7 and the covering crimping portion 9 are integrally formed.

なお、導線圧着部7の内面の一部には、周方向にセレーション(図示省略)が設けられてもよい。このようにセレーションを形成することで、導線を圧着した際に、導線の表面の酸化膜を破壊しやすく、また、導線との接触面積を増加させることができる。 A portion of the inner surface of the conductor crimping portion 7 may be provided with serrations (not shown) in the circumferential direction. By forming the serrations in this way, when the conductive wire is crimped, the oxide film on the surface of the conductive wire can be easily destroyed, and the contact area with the conductive wire can be increased.

圧着部5は、断面が円形の筒体となるように平板状素材の端部同士が突き合わさるように丸められ、突合せ部を溶接等で接合して一体化することにより接合部21が形成される。筒状に形成された圧着部5の後端部(端子本体3とは逆側)から、被覆導線23が挿入される。また、圧着部5の前端部(端子本体3側)には封止部11が設けられる。すなわち、圧着部5は、一方が閉じた略筒状で、被覆導線が挿入される後端部を除き、他の部位は封止される。なお、接合部21および封止部11は、例えばレーザ溶接等によって溶接される。 The crimping portion 5 is formed by rolling the ends of a flat material so that the ends thereof are butted against each other so as to form a cylindrical body having a circular cross section, and the butting portions are joined by welding or the like to be integrated, thereby forming the joint portion 21 . be. The coated conductor 23 is inserted from the rear end portion (on the side opposite to the terminal main body 3) of the crimping portion 5 formed in a cylindrical shape. A sealing portion 11 is provided at the front end portion (on the terminal main body 3 side) of the crimping portion 5 . That is, the crimping portion 5 has a substantially tubular shape with one side closed, and the rest of the portion is sealed except for the rear end portion into which the coated conductor is inserted. Note that the joint portion 21 and the sealing portion 11 are welded by, for example, laser welding.

図3(a)は、図2のC-C線断面図であり、図3(b)は、図3(a)のD部拡大図である。前述したように、筒状の被覆圧着部9には、軸方向に沿って接合部21が形成される。接合部21は、レーザ溶接等によって接合されるため、図3(b)に示すように、内面側に突出する凸部22が形成される場合がある。この場合には、凸部22の部位の被覆部27が、周囲の被覆部27と比較して強く圧縮される。 3(a) is a cross-sectional view taken along the line CC of FIG. 2, and FIG. 3(b) is an enlarged view of a portion D of FIG. 3(a). As described above, the joint portion 21 is formed along the axial direction in the tubular covering pressure-bonding portion 9 . Since the joint portion 21 is joined by laser welding or the like, as shown in FIG. In this case, the covering portion 27 at the portion of the convex portion 22 is compressed more strongly than the surrounding covering portion 27 .

次に、本実施形態における被覆部27について詳細に説明する。一般的な被覆導線の被覆部には塩化ビニル樹脂が使用されるため、以下、塩化ビニル樹脂を採用した場合について説明するが、他の樹脂も同様に適用可能である。 Next, the covering portion 27 in this embodiment will be described in detail. Since vinyl chloride resin is used for the covering portion of a general covered conductor, the case where vinyl chloride resin is used will be described below, but other resins are similarly applicable.

塩化ビニル樹脂は本来硬質の樹脂であるが、塩化ビニル樹脂を柔軟にするため、可塑剤が添加剤として広く使われている。塩化ビニル樹脂が常温で硬いのは、塩化ビニルポリマーの分子間力により、分子同士が強く引き合って分子間の距離が短くなっているためである。そこで、可塑剤を加えると可塑剤分子が塩化ビニルポリマーの分子間に割り込み、ポリマー分子同士の相互作用が妨げられ、その結果、常温になっても分子間の距離は広がったままとなり、軟質状態を保持することができる。このように塩ビ樹脂を軟らかくするのが可塑剤の働きで、可塑剤が多く添加されるほど柔らかくなり、この柔らかくなる現象は可塑化と呼ばれている。 Vinyl chloride resin is originally a hard resin, but plasticizers are widely used as additives to make vinyl chloride resin flexible. The reason why the vinyl chloride resin is hard at room temperature is that the intermolecular force of the vinyl chloride polymer strongly attracts the molecules and shortens the distance between the molecules. Therefore, when a plasticizer is added, the plasticizer molecules intervene between the molecules of the vinyl chloride polymer, hindering the interaction between the polymer molecules. can be held. It is the function of the plasticizer to soften the PVC resin in this way, and the more the plasticizer is added, the softer it becomes, and this softening phenomenon is called plasticization.

一方、近年、自動車用電線の細径化が要求されており、被覆部の厚みを薄くして外径を小さくした被覆導線が使用される場合がある。しかし、被覆部として、上記のように可塑剤が多く軟質の塩化ビニルポリマーとした場合には、耐摩耗性が低下するばかりか、近年要求度の高い耐熱性が劣る結果となる。このため、可塑剤量を減少させたり、耐熱性の高い可塑剤(可塑化効果は低下する)へ変更する必要がある。しかし。このようにすると、上記の分子間相互作用が低下するため、被覆材はより硬質になり、耐摩耗性や耐熱性は向上するものの、低温において割れやすくなるなど脆化の問題点がある。 On the other hand, in recent years, there has been a demand for smaller diameter electric wires for automobiles, and in some cases, coated conductor wires having a thinner coating portion and a smaller outer diameter are used. However, when a soft vinyl chloride polymer containing a large amount of plasticizer is used as the covering portion as described above, not only is the abrasion resistance lowered, but also the heat resistance, which has been highly demanded in recent years, is deteriorated. Therefore, it is necessary to reduce the amount of plasticizer or change to a plasticizer with high heat resistance (the plasticizing effect is reduced). However. In this way, the intermolecular interaction is reduced, so that the coating material becomes harder and wear resistance and heat resistance are improved, but there is a problem of embrittlement such as cracking at low temperatures.

これに対し、耐衝撃性向上が必要な用途において、塩化ビニル樹脂にABS、MBS、アクリルゴム、塩素化ポリエチレン、EVA等のゴム特性を有する耐衝撃性改良樹脂(強化剤)を混合する場合がある。例えば、塩化ビニル樹脂100質量部に対し、5~20質量部の強化剤を混合することで塩化ビニル製品に実用上十分な衝撃強度を付与することができる。この強化剤は塩化ビニル樹脂中に微粒子として分散されており、製品に衝撃が加わるとこの微粒子があることで衝撃エネルギーを吸収し、製品の破損を防止するものである。 On the other hand, in applications where improved impact resistance is required, vinyl chloride resin is often mixed with impact-resistant resins (reinforcing agents) having rubber properties, such as ABS, MBS, acrylic rubber, chlorinated polyethylene, and EVA. be. For example, by mixing 5 to 20 parts by mass of reinforcing agent with 100 parts by mass of vinyl chloride resin, practically sufficient impact strength can be imparted to vinyl chloride products. This reinforcing agent is dispersed as fine particles in the vinyl chloride resin, and when the product is impacted, the presence of these fine particles absorbs the impact energy and prevents damage to the product.

本発明は、発明者らの鋭意研究の結果、以上のような瞬間的な耐衝撃性とは異なるものの、端子付き電線として使用される環境下において、特に低温において曲げ応力が因加された際にも、被覆切れ防止効果がある材質の組み合わせを見出したものである。 As a result of the inventors' intensive research, the present invention has found that, although different from the instantaneous impact resistance as described above, when bending stress is applied in an environment where it is used as an electric wire with a terminal, especially at low temperatures, In addition, we have found a combination of materials that has the effect of preventing breakage of the coating.

以下、応力歪曲線を用いて説明する。図10で示したように、一般的なポリ塩化ビニルに引張応力を付与すると、緩んでいた分子鎖が延ばされ、延ばされる過程で応力が立ち上がる。分子鎖が延ばされきり、限界に達した際(降伏応力)には、分子間に存在する可塑剤の影響で、分子間に生じる滑りの影響が大きくなり、降伏応力Xを過ぎてから、一旦応力は低下する(図中Z)。この時の応力の低下の程度は、使用する可塑剤の種類、添加量、ポリ塩化ビニルの分子量により決定される。すなわち、可塑化力の大きい可塑剤や、添加量が多い場合には、この応力の低下度合いは大きくなり、塩化ビニルの分子量が小さい場合にも分子間力が低下するから、応力の下り方は大きくなる。 A description will be given below using a stress-strain curve. As shown in FIG. 10, when a tensile stress is applied to general polyvinyl chloride, loose molecular chains are extended, and the stress rises during the extension process. When the molecular chain is fully extended and reaches the limit (yield stress), the effect of the plasticizer present between the molecules increases the effect of slippage occurring between the molecules, and after passing the yield stress X, Once the stress drops (Z in the figure). The degree of reduction in stress at this time is determined by the type of plasticizer used, the amount added, and the molecular weight of polyvinyl chloride. In other words, if a plasticizer with a large plasticizing power or a large amount is added, the degree of reduction in this stress will be large. growing.

しかし、本実施形態のような筒状の被覆圧着部9においては、抜け止め力や止水性を確保するために、被覆圧着部9と被覆部27の所定以上の押圧力が必要である。このように、所定以上の被覆部27に対する押圧力を確保するためには、ある程度の圧縮量が必要となる。しかし、前述したような応力低下部があると、応力低下部がない場合と比較して、同じ圧縮力であっても歪(伸び)がより大きくなる。また、応力低下部が存在することで、降伏応力と破断応力との差が小さくなる。このため、曲げ力が付与された際に、被覆部27の破断のおそれがある。特に、被覆圧着部9の内面に凸部22が形成されるような場合、局所的な圧縮により、周囲と比較して当該部位の破断の可能性が高くなる。 However, in the tubular covering pressure-bonding portion 9 as in the present embodiment, a predetermined or more pressing force is required between the covering pressure-bonding portion 9 and the covering portion 27 in order to secure the retaining force and the water stoppage. In this manner, a certain amount of compression is required in order to secure a predetermined or more pressing force against the covering portion 27 . However, if there is a stress drop as described above, the strain (elongation) will be greater for the same compressive force than if there is no stress drop. Moreover, the difference between the yield stress and the breaking stress becomes smaller due to the existence of the stress-reduced portion. Therefore, when a bending force is applied, the covering portion 27 may break. In particular, when the convex portion 22 is formed on the inner surface of the covering pressure-bonding portion 9 , the local compression increases the possibility of fracture at that portion compared with the surrounding area.

これに対し、本発明では、被覆部27に使用される樹脂として、図4に示すような応力歪曲線(特性)を有するものを適用する。なお、応力歪曲線を行うための引張試験は、例えば0℃で、25mm/minの引張速度で行われる。 On the other hand, in the present invention, a resin having a stress-strain curve (characteristics) as shown in FIG. In addition, the tensile test for performing the stress-strain curve is performed, for example, at 0° C. and at a tensile speed of 25 mm/min.

この樹脂は、前述したように、降伏応力Aまでは弾性変形であるが、降伏応力Aを超えても、前述した一般的な樹脂の応力歪曲線で見られたような応力低下部が存在しない。すなわち、降伏応力Aから破断応力Bまでの間において、歪の増加に伴い応力が増加する。 As described above, this resin is elastically deformable up to the yield stress A, but even if the yield stress A is exceeded, there is no stress drop portion as seen in the stress-strain curve of the general resin described above. . That is, between the yield stress A and the breaking stress B, the stress increases as the strain increases.

本樹脂では、降伏応力Aを超えてさらに延伸された場合、マトリックスであるポリ塩化ビニルは分子同士の絡み合い点が引っ張られることにより応力は大きくなるが、塩化ビニル樹脂に分散している耐衝撃改良剤のゴム分子に引張応力が伝達され、さらにこのゴム粒子が延ばされ際に、応力歪曲線でいうところの一層の応力の立ち上がり、いわゆる歪み硬化性を増強する。この結果、応力低下部が減少し、降伏応力と破断応力(引張強度)との応力差も大きくすることができる。 In this resin, when it is further stretched beyond the yield stress A, the polyvinyl chloride matrix, which is the matrix, increases the stress due to the entanglement points between the molecules, but the impact resistance improvement that is dispersed in the vinyl chloride resin Tensile stress is transmitted to the rubber molecules of the agent, and when the rubber particles are stretched, the stress rises further in the stress-strain curve, ie, the so-called strain hardening property is enhanced. As a result, the stress-lowering portion is reduced, and the stress difference between the yield stress and the breaking stress (tensile strength) can be increased.

例えば、端子付き電線10が曲げられた場合には、被覆部27の強圧縮部や傷近傍がまず延ばされるが、歪み硬化が発現すると応力が向上し、より延ばされにくくなるよう抵抗となる。従って、より伸びやすい強圧縮部等の周辺の被覆部27へと応力が分散され、結果として破断しにくくなる。このように、歪硬化性を最適に設定することで、被覆部27の破断を抑制することができる。 For example, when the electric wire 10 with a terminal is bent, the strongly compressed portion and the vicinity of the scratch of the covering portion 27 are first stretched. . Therefore, the stress is distributed to the surrounding covering portion 27 such as the highly compressed portion which is more likely to stretch, and as a result, breakage is less likely to occur. By optimally setting the strain hardening property in this way, breakage of the covering portion 27 can be suppressed.

なお、本実施形態の被覆部27に使用される可塑剤としては、例えば、フタル酸系、アジピン酸系、リン酸系、脂肪酸系、トリメリット酸系、エポキシ系、ポリエステル系など数多くの種類があり、20~30種類の可塑剤が一般的に使用されているが、耐熱性の観点から、トリメリット酸系、エポキシ系、ポリエステル系の使用が好ましい。特に、上記引張試験における応力歪曲線における歪み硬化性を発現するには、より好ましくは、トリメリット酸系、ポリエステル系である。 As the plasticizer used for the coating portion 27 of the present embodiment, there are many types such as phthalic acid, adipic acid, phosphoric acid, fatty acid, trimellitic acid, epoxy, and polyester. Although 20 to 30 kinds of plasticizers are generally used, trimellitic acid-based, epoxy-based, and polyester-based plasticizers are preferably used from the viewpoint of heat resistance. In particular, trimellitic acid-based and polyester-based materials are more preferable for exhibiting strain hardening properties in the stress-strain curve in the tensile test.

例えば、トリノルマルオクチルトリメリテート(花王株式会社製品 トリメックスN-08)、トリメリット酸2-エチルへキシルエステル(花王株式会社 トリメックスT-08LP)、トリメリット酸混合直鎖アルキルエステル(株式会社ADEKA製品 アデカイザーC-880)、トリメリット酸イソノニルエステル(株式会社ADEKA製品C-9N)、ジペンタエリスリトールエステル(株式会社ADEKA製品UL-6)、ピロメリット酸2-エチルヘキシルエステル(株式会社ADEKA製品UL-80)、ピロメリット酸混合直鎖アルキルエステル(株式会社ADEKA製品UL-100)などが挙げられる。 For example, tri-normal octyl trimellitate (Kao Corporation product Trimex N-08), trimellitic acid 2-ethylhexyl ester (Kao Corporation Trimex T-08LP), trimellitic acid mixed linear alkyl ester (stock Company ADEKA product Adekaiser C-880), isononyl trimellitate (ADEKA product C-9N), dipentaerythritol ester (ADEKA product UL-6), pyromellitic acid 2-ethylhexyl ester (ADEKA company) product UL-80), pyromellitic acid mixed linear alkyl ester (ADEKA Co., Ltd. product UL-100), and the like.

上記好ましい可塑剤は単独でも組み合わせて使用してもよく、また、耐熱性や耐摩耗性の低下が少ない範囲であれば、従来からのフタル酸系、アジピン酸系、リン酸系、脂肪酸系、などのその他の可塑剤と組み合わせて使用しても良い。 The above preferred plasticizers may be used alone or in combination, and conventional phthalic acid-based, adipic acid-based, phosphoric acid-based, fatty acid-based, You may use it in combination with other plasticizers, such as.

耐衝撃改良剤としては、上記好ましい可塑剤との組み合わせで、応力歪曲線における歪み硬化性の発現に効果のあるものとして、粒子状のゴムの外部にグラフト層を持ったコアシェルタイプの耐衝撃改良剤が好ましく、ブタジエン系ゴム、アクリル系ゴムシリコーン・アクリル複合ゴムをコアに持つものが好ましい。 As an impact modifier, a core-shell type impact modifier having a graft layer on the outside of particulate rubber is used as an impact modifier that is effective in expressing strain hardening in a stress-strain curve in combination with the above-mentioned preferred plasticizer. Among them, those having butadiene-based rubber or acrylic-based silicone/acrylic composite rubber in the core are preferable.

ブタジエン系ゴム(MBS)としては、例えば三菱ケミカル株式会社製品 メタブレンC-223A、C-215A、株式会社カネカ製品 カネエースB-11A、B-22などが挙げられる。アクリルゴム系では、三菱ケミカル株式会社製品 メタブレンW-300A、W-450A、株式会社カネカ製品カネエースFM-21、FM-40、PA-20、PA-40などが挙げられる。シリコーン・アクリル複合ゴムでは、三菱ケミカル株式会社製品 S-2001、S-2006、S-2501、S-2030等が挙げられる。 Examples of butadiene-based rubber (MBS) include METABLEN C-223A and C-215A manufactured by Mitsubishi Chemical Corporation, and Kaneace B-11A and B-22 manufactured by Kaneka Corporation. Examples of acrylic rubber-based rubbers include METABLEN W-300A and W-450A manufactured by Mitsubishi Chemical Corporation, Kaneace FM-21, FM-40, PA-20 and PA-40 manufactured by Kaneka Corporation. Examples of silicone-acrylic composite rubber include S-2001, S-2006, S-2501 and S-2030 manufactured by Mitsubishi Chemical Corporation.

上記耐衝撃改良剤は、塩化ビニルポリマーへ混合された際に、粒子状に分散される。この粒子状に分散された耐衝撃改良剤をゴム粒子と呼ぶ。分散されたゴム粒子の粒子径は10μm以下が好ましくさらに好ましくは、0.8~1.0μmである。上記好ましい耐衝撃改良剤は、単独で使用しても、組み合わせて使用しても良く、歪み硬化性の発現を低下させない範囲であれば、その他の塩素化ポリエチレン、EVA等のゴム特性を持つ耐衝撃改良剤を併用しても良い。 The impact modifier is dispersed in particulate form when mixed into the vinyl chloride polymer. These particulate dispersed impact modifiers are called rubber particles. The particle size of the dispersed rubber particles is preferably 10 μm or less, more preferably 0.8 to 1.0 μm. The above-mentioned preferable impact modifiers may be used alone or in combination. As long as the expression of strain hardening is not deteriorated, other resistant materials such as chlorinated polyethylene, EVA, etc. having rubber properties may be used. An impact modifier may be used in combination.

前述したように、応力歪曲線において、歪み硬化性が発現するためには、上記ゴム粒子に応力が伝わることが必要である。引張による樹脂マトリックス中での歪み発生は、衝撃による歪みよりも相当に遅いために、樹脂マトリックス中の最も弾性率の低い部分が集中的に伸ばされる。その際に、上記好ましい可塑剤を使用し、かつその添加量が好適に制限されるならば、樹脂マトリックスの弾性率よりも、ゴム粒子の弾性率が小さくなるために、引張応力はゴム粒子に集中することとなる。 As described above, in the stress-strain curve, stress must be transmitted to the rubber particles in order for strain hardening to occur. Since strain generation in the resin matrix due to tension is considerably slower than strain due to impact, the portion of the resin matrix with the lowest elastic modulus is intensively stretched. At that time, if the above preferred plasticizer is used and the amount added is suitably limited, the elastic modulus of the rubber particles is smaller than the elastic modulus of the resin matrix, so the tensile stress is applied to the rubber particles. to concentrate.

応力伝達されたゴム粒子は、赤道上にその最大応力がかかり引き延ばされるが、その際に、ゴム粒子近傍のマトリックス樹脂中には、応力方向と垂直な方向にクレーズと呼ばれる微細なクラックが発生する。このクラックは、通常のクラックと異なり、内部に多数のミクロボイドを含んでいて体積膨張することで、かかる応力を吸収すると同時に、ゴム粒子の存在による抵抗とあいまって、歪み硬化性を発現する。 The maximum stress is applied to the rubber particles to which the stress is transmitted and they are stretched on the equator. At this time, fine cracks called crazes occur in the matrix resin near the rubber particles in the direction perpendicular to the stress direction. do. Unlike normal cracks, these cracks contain a large number of microvoids inside and expand in volume to absorb such stress, and at the same time develop strain hardening properties together with the resistance due to the presence of rubber particles.

上記耐衝撃改良剤の添加量としては、例えば、塩化ビニル樹脂100質量部に対し5~20質量部であり、より好ましくは5~15質量部である。5質量部以下では、歪み硬化性発現効果が小さく、被覆切れ改善が十分でなく、20質量部を超えると耐熱性が低下する。好適な可塑剤添加量は、塩化ビニル樹脂100質量部に対し15~35質量部である。添加量が15質量部以下では、柔軟性や耐寒性が低下し、35質量部を超えると、耐摩耗性や歪み硬化発現性が低下する。 The amount of the impact modifier added is, for example, 5 to 20 parts by mass, more preferably 5 to 15 parts by mass, per 100 parts by mass of the vinyl chloride resin. If the amount is less than 5 parts by mass, the effect of developing strain hardening is small and the improvement in coating breakage is not sufficient. If the amount exceeds 20 parts by mass, the heat resistance decreases. A suitable amount of the plasticizer to be added is 15 to 35 parts by mass with respect to 100 parts by mass of the vinyl chloride resin. When the amount added is 15 parts by mass or less, the flexibility and cold resistance are lowered, and when it exceeds 35 parts by mass, the wear resistance and strain hardening development are lowered.

以上、本願は適切な可塑剤種類と耐衝撃改良剤の組み合わせ、またそれらの配合量を適切に設定することで、図4に示すような応力歪極線を有する樹脂を得ることができる。このため、柔軟性、耐寒性、耐摩耗性、歪み硬化発現性に優れ、特に低温での曲げ引張応力に対して、端子圧着部に傷があっても、被覆切れが生じにくい端子付き被覆導線を得ることができる。 As described above, according to the present application, a resin having a stress-strain polar line as shown in FIG. 4 can be obtained by appropriately setting a combination of an appropriate plasticizer type and an impact resistance modifier and their compounding amounts. For this reason, it has excellent flexibility, cold resistance, wear resistance, and strain hardening, and especially against bending tensile stress at low temperatures, even if the terminal crimping part is damaged, the coated conductor with terminal does not easily break. can be obtained.

なお、図4に示す被覆部27の応力歪曲線において、降伏応力Aから破断応力Bまでの間に歪の増加に伴う応力低下部が形成されないというのは、歪の増加に伴って、いずれの部位でも応力の低下量が0である場合には限られない。図10に示すように、降伏応力がピーク状にならなければ、本発明の効果を得ることができる。すなわち、応力低下部とは、応力歪曲線における降伏応力がピーク状となるような応力の低下部を意味し、応力低下部がないとは、バラツキ等を考慮して、降伏応力Aから破断応力Bまでの間に、降伏応力Aに対して1%以上低い応力となる部位がないこととする。 In the stress-strain curve of the covering portion 27 shown in FIG. 4, the fact that a stress-lowering portion is not formed due to an increase in strain between the yield stress A and the breaking stress B means that any It is not limited to the case where the amount of reduction in stress is 0 even at the site. As shown in FIG. 10, the effects of the present invention can be obtained unless the yield stress peaks. That is, the stress drop portion means a stress drop portion where the yield stress in the stress-strain curve becomes a peak shape, and the absence of a stress drop portion means that the yield stress A to the breaking stress It is assumed that there is no part where the stress is lower than the yield stress A by 1% or more during the period up to B.

また、被覆部27の破断を抑制するためには、被覆部27の降伏応力Aは30MPa以上であることが望ましい。また、降伏応力Aが高くなりすぎると、硬くなりすぎて伸びにくくなるため、降伏応力Aは40MPa以下であることが好ましい。また、被覆部27の耐摩耗性を考慮すると、被覆部27のヤング率は3.5MPa以上であることが望ましい。 Moreover, in order to suppress breakage of the covering portion 27, it is desirable that the yield stress A of the covering portion 27 is 30 MPa or more. Also, if the yield stress A is too high, the steel becomes too hard and becomes difficult to stretch, so the yield stress A is preferably 40 MPa or less. Moreover, considering the wear resistance of the covering portion 27, it is desirable that the Young's modulus of the covering portion 27 is 3.5 MPa or more.

また、特に被覆導線23が細径であり、被覆部27の厚みが薄い場合に本実施形態は特に有効である。このため、被覆導線23の導線サイズは3sq(sq:mmの意味)以下であり、被覆部27の厚みは0.3mm以下である場合に特に有効である。なお、被覆部27の最小厚みとしては、例えば0.15mm以上であることが望ましい。 Moreover, this embodiment is particularly effective when the coated conductor wire 23 has a small diameter and the thickness of the coated portion 27 is small. Therefore, it is particularly effective when the wire size of the coated wire 23 is 3 sq (meaning sq: mm 2 ) or less, and the thickness of the coated portion 27 is 0.3 mm or less. The minimum thickness of the covering portion 27 is desirably 0.15 mm or more, for example.

次に、端子付き電線10の製造方法について説明する。図5は、圧着前の端子1と被覆導線23を示す斜視図である。前述したように、端子1は、端子本体3と圧着部5とを有する。まず、被覆導線23の先端部の被覆部27を剥離して、先端部の導線25を露出する。 Next, a method for manufacturing the electric wire with terminal 10 will be described. FIG. 5 is a perspective view showing the terminal 1 and the coated wire 23 before crimping. As described above, the terminal 1 has the terminal body 3 and the crimp portion 5 . First, the covering portion 27 at the tip of the covered conductor 23 is peeled off to expose the conductor 25 at the tip.

次に、このように先端部を処理した被覆導線23を、端子1の管状の圧着部5の後端部側から挿入する。被覆導線23の先端部を圧着部5へ挿入すると、導線圧着部7の内部には導線25の露出部が位置し、被覆圧着部9の内部には被覆部27が位置する。なお、導線圧着部7の内径は、被覆圧着部9の内径よりも小さい。 Next, the covered conductor 23 whose tip is treated in this manner is inserted from the rear end side of the tubular crimping portion 5 of the terminal 1 . When the tip of the covered conductor 23 is inserted into the crimping portion 5 , the exposed portion of the conductor 25 is positioned inside the conductor crimping portion 7 , and the covered portion 27 is positioned inside the covering crimping portion 9 . The inner diameter of the conductor crimping portion 7 is smaller than the inner diameter of the covering crimping portion 9 .

図6(a)は、端子付き電線10を製造するための圧着前における金型31a、金型31b等を示す断面図、図6(b)は、圧着中の圧着部5を示す断面図である。金型31a、金型31bは、長手方向に延びる略半円柱状の空洞を有する。また、金型31aは、被覆圧着部9に対応するとともに被覆圧着部9の半径よりも僅かに小さい径の大径部34と、導線圧着部7に対応するとともに大径部34よりも径の小さい小径部32とを備える。すなわち、大径部34、小径部32は、導線圧着部7と被覆圧着部9に対応するいずれの部位も、端子1を圧着した際に、略円形断面となるように形成される。 FIG. 6(a) is a cross-sectional view showing a die 31a, a die 31b, etc. before crimping for manufacturing the electric wire 10 with a terminal, and FIG. 6(b) is a cross-sectional view showing the crimping part 5 during crimping. be. The mold 31a and the mold 31b have substantially semi-cylindrical cavities extending in the longitudinal direction. The mold 31a also includes a large diameter portion 34 corresponding to the covering crimping portion 9 and having a diameter slightly smaller than the radius of the covering crimping portion 9, and a large diameter portion 34 corresponding to the conductor crimping portion 7 and having a diameter larger than that of the large diameter portion 34. and a small diameter portion 32 . That is, the large-diameter portion 34 and the small-diameter portion 32 are formed to have a substantially circular cross section when the terminal 1 is crimped at both the wire crimping portion 7 and the coating crimping portion 9 .

図6(b)に示すように、金型31aと金型31bを噛み合わせて、圧着部5を圧縮すると、導線圧着部7が導線25に圧着され、被覆圧着部9は、被覆部27に圧着される。以上により、端子付き電線10を得ることができる。さらに、得られた端子付き電線10を含む、複数の端子付き電線が一体化されたワイヤハーネスを得ることができる。 As shown in FIG. 6B, when the mold 31a and the mold 31b are engaged with each other to compress the crimping portion 5, the conductor crimping portion 7 is crimped to the conductor 25, and the covering crimping portion 9 is attached to the covering portion 27. crimped. The electric wire 10 with a terminal can be obtained by the above. Furthermore, it is possible to obtain a wire harness in which a plurality of electric wires with terminals are integrated, including the obtained electric wire with terminals 10 .

ここで、圧着部5における被覆部27の最小厚みが、圧着部5以外の部位における被覆部27の厚み(すなわち、圧着前の被覆導線23の被覆部27の厚み)の50%以下であることが望ましい。例えば、前述した凸部22の部位においては、圧着後の被覆部27の厚みが圧着前の50%以下となることが望ましい。 Here, the minimum thickness of the covering portion 27 in the crimping portion 5 is 50% or less of the thickness of the covering portion 27 in the portion other than the crimping portion 5 (that is, the thickness of the covering portion 27 of the covered conductor 23 before crimping). is desirable. For example, it is desirable that the thickness of the covering portion 27 after crimping is 50% or less of that before crimping at the portion of the convex portion 22 described above.

また、圧着前の被覆部27の断面積をA0とし、金型31a、31bによって圧着された後の被覆圧着部9における被覆部27の断面積をA1とすると、圧縮率=A1/A0は、50%以下とすることが望ましい。このように、本実施形態では、圧縮率が小さい(すなわち、強圧縮)場合に、特に有効である。 Further, if the cross-sectional area of the covering portion 27 before crimping is A0 and the cross-sectional area of the covering portion 27 in the crimping portion 9 after being crimped by the molds 31a and 31b is A1, the compression ratio = A1/A0 is It is desirable to make it 50% or less. Thus, this embodiment is particularly effective when the compression ratio is small (that is, strong compression).

以上、本実施の形態によれば、被覆部27の樹脂が、応力歪曲線において降伏応力から破断応力までの間に歪の増加に伴う応力低下部が形成されない樹脂で構成されるため、圧着した際に被覆部27に歪み硬化が発現し、より延ばされにくくなるよう抵抗となる。従って、より伸びやすい強圧縮部等の周辺の被覆部27へと応力が分散され、被覆部27の破断を抑制することができる。 As described above, according to the present embodiment, since the resin of the covering portion 27 is made of a resin that does not form a stress-lowering portion due to an increase in strain between the yield stress and the breaking stress in the stress-strain curve, pressure bonding is performed. At this time, strain hardening occurs in the covering portion 27, and resistance is provided so that it becomes more difficult to extend. Therefore, the stress is distributed to the surrounding covering portion 27 such as the highly compressed portion which is more likely to stretch, and breakage of the covering portion 27 can be suppressed.

このため、被覆圧着部9の圧縮率が50%以下となるような場合でも被覆部27の破断を抑制することができる。また、強圧縮が可能であるため、高い抜け止め力と止水性を確保することができる。 Therefore, breakage of the covering portion 27 can be suppressed even when the compressibility of the covering pressure-bonding portion 9 is 50% or less. In addition, since it can be strongly compressed, it is possible to secure a high retention force and water stoppage.

また、接合部21を有する圧着部5によって圧着した場合であっても、内面の凸部22による強圧縮部の破断を抑制することができる。また、導線の径が小さく、被覆部27の厚みが薄い場合や、圧縮率が小さい場合には、特に効果的である。 Moreover, even when crimping is performed by the crimping portion 5 having the joint portion 21, breakage of the strongly compressed portion due to the convex portion 22 on the inner surface can be suppressed. Moreover, it is particularly effective when the diameter of the conductive wire is small and the thickness of the covering portion 27 is thin, or when the compressibility is small.

また、被覆部27の降伏応力が30MPa以上であれば、十分な樹脂の強度を確保することができる。また、被覆部27のヤング率が3.5MPa以上であれば、耐摩耗性にも優れる。 Moreover, if the yield stress of the covering portion 27 is 30 MPa or more, sufficient strength of the resin can be secured. Moreover, if the Young's modulus of the covering portion 27 is 3.5 MPa or more, the abrasion resistance is also excellent.

被覆部の樹脂の材質を変更した被覆導線を用いて端子付き電線を試作し、それぞれ、曲げ試験、耐摩耗試験、止水性試験を行い評価した。図7は、試験に供した樹脂の応力歪曲線である。なお、図中Eが実施例1、図中Fが実施例2、図中Gが実施例3、図中Hが比較例である。なお、図示した応力歪曲線は、0℃で25mm/分の速度で引張試験を行った結果である。それぞれの樹脂の成分と特性を表1に示す。 An electric wire with a terminal was experimentally manufactured using a covered conductor with a different material for the resin of the covering portion, and evaluated by conducting a bending test, an abrasion resistance test, and a water stopping test. FIG. 7 is a stress-strain curve of the resin subjected to the test. In the figure, E is Example 1, F is Example 2, G is Example 3, and H is Comparative Example. The stress-strain curve shown is the result of a tensile test performed at 0° C. and a rate of 25 mm/min. Table 1 shows the components and properties of each resin.

Figure 2022149384000002
Figure 2022149384000002

それぞれの樹脂を用いて、線径1.5sq~2.5sqの電線に対して、0.15~0.3mmの厚みで被覆部を形成して被覆導線を作成した。得られた被覆導線を端子に圧着して、端子付き電線を作成した。なお、被覆圧着部における被覆圧縮率としては48%とした。 Each resin was used to form a covering portion with a thickness of 0.15 to 0.3 mm on an electric wire having a wire diameter of 1.5 sq to 2.5 sq to prepare a covered conductor wire. An electric wire with a terminal was produced by crimping the obtained coated conductor wire to a terminal. In addition, the covering compressibility at the covering crimping portion was set to 48%.

まず、曲げ試験を評価した。図8は、端子付き電線を用いた曲げ試験方法を示す図である。図8(a)に示すように、端子付き電線10の幅方向(図中I方向)にそれぞれ90°の方向に張力をかけて曲げる。また、図8(b)に示すように、端子付き電線10の高さ方向(図中J方向)にそれぞれ90°の方向に張力をかけて曲げる。なお、温度は0℃とした。それぞれの方向に曲げた際に、被覆部27の破断の有無を目視で確認した。結果を表2に示す。 First, the bend test was evaluated. FIG. 8 is a diagram showing a bending test method using an electric wire with a terminal. As shown in FIG. 8(a), the electric wire 10 with a terminal is bent in the width direction (I direction in the drawing) by applying tension in the direction of 90°. Further, as shown in FIG. 8(b), tension is applied in the height direction (direction J in the drawing) of the terminal-equipped wire 10 in a direction of 90° and bent. The temperature was set at 0°C. Whether or not the covering portion 27 was broken when bent in each direction was visually confirmed. Table 2 shows the results.

Figure 2022149384000003
Figure 2022149384000003

結果より、応力低下部のない樹脂を用いた実施例1~3は、いずれのサイズの被覆導線であっても、被覆部の破断は見られなかった。一方、従来の被覆部の被覆導線では、細径(1.5sq)の電線であって、被覆部の厚みが厚い(0.25mm以上)場合を除き、全て被覆部が破断した。 From the results, in Examples 1 to 3 using a resin having no stress-lowering portion, breakage of the coated portion was not observed regardless of the size of the coated conductor wire. On the other hand, all of the conventional covered conductors with covered parts were broken except for wires with a small diameter (1.5 sq) and a thick covered part (0.25 mm or more).

次に、さらに耐摩耗試験を行った。耐摩耗試験は、ISO6722に準拠するブレード往復法で、ブレードに7Nの荷重をかけて、被覆導線の上を往復運動させた。ブレードは直径0.45mmの金属ワイヤである。ブレードが往復スクレープし、内部の導体が露出するまでの回数をカウントし、往復回数が750回以上を合格とした。結果を表3に示す。 Next, an abrasion resistance test was further conducted. In the abrasion resistance test, a reciprocating blade method conforming to ISO 6722 was used, and a load of 7 N was applied to the blade to reciprocate the coated conductor. The braid is a metal wire with a diameter of 0.45 mm. The number of reciprocating scrapes by the blade until the internal conductor was exposed was counted, and 750 or more reciprocating times were regarded as acceptable. Table 3 shows the results.

Figure 2022149384000004
Figure 2022149384000004

結果より、ヤング率が3.5MPa以上の実施例1、2は、合格となった。すなわち、耐曲げ試験のみであれば実施例1~3が合格であるが、さらに耐摩耗性も考慮すると、実施例1、2が合格となる。 From the results, Examples 1 and 2 with a Young's modulus of 3.5 MPa or more passed the test. In other words, Examples 1 to 3 pass the bending resistance test alone, but Examples 1 and 2 pass when abrasion resistance is also taken into consideration.

次に、実施例1と比較例1を用いて、圧縮率を変えて止水性を評価した。図9は、止水性試験方法を示す図である。止水性評価は、3%塩水を入れた水槽41中に被覆導線23を圧着した端子1を100~300mmの深さに入れ、被覆導線23の端部を容器45内に挿入し、容器45内をポンプ47によって-30kPaの負圧にして1分間保持した。試験中に端子の反対側から塩水が出た場合や、試験後に被覆部を開き、内部に塩水の浸入が見られたものを不合格として、被覆導線に塩水が浸入していないものを合格とした。結果を表4に示す。 Next, using Example 1 and Comparative Example 1, the water stoppage was evaluated by changing the compressibility. FIG. 9 is a diagram showing a water stopping test method. The waterproof evaluation is performed by inserting the terminal 1 crimped with the coated conductor 23 into a water tank 41 containing 3% salt water to a depth of 100 to 300 mm, inserting the end of the coated conductor 23 into the container 45, was set to a negative pressure of -30 kPa by the pump 47 and held for 1 minute. If salt water comes out from the opposite side of the terminal during the test, or if salt water seeps inside when the covering is opened after the test, it will be rejected. did. Table 4 shows the results.

Figure 2022149384000005
Figure 2022149384000005

結果より、被覆圧縮率が48%の場合には、止水性試験は合格となった。すなわち、実施例1は、圧縮率を50%以下とすることで、止水試験も曲げ試験も合格となった。 As a result, when the coating compressibility was 48%, the waterproof test was passed. That is, in Example 1, by setting the compressibility to 50% or less, both the water stopping test and the bending test were passed.

以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although the embodiments of the present invention have been described above with reference to the accompanying drawings, the technical scope of the present invention is not influenced by the above-described embodiments. It is obvious that a person skilled in the art can conceive various modifications or modifications within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. be understood to belong to

1………端子
3………端子本体
5………圧着部
7………導線圧着部
9………被覆圧着部
10………端子付き電線
11………封止部
15………弾性接触片
21………接合部
22………凸部
23………被覆導線
25………導線
27………被覆部
31a、31b………金型
32………小径部
34………大径部
41………水槽
45………容器
47………ポンプ
Reference Signs List 1 Terminal 3 Terminal main body 5 Crimping portion 7 Lead wire crimping portion 9 Insulated crimping portion 10 Wire with terminal 11 Sealing portion 15 Elasticity Contact piece 21 Joint portion 22 Convex portion 23 Covered wire 25 Conduct wire 27 Covered portions 31a, 31b Mold 32 Small diameter portion 34 Large Diaphragm 41 Water tank 45 Container 47 Pump

Claims (8)

導線が樹脂製の被覆部で被覆された被覆導線であって、
前記被覆部の応力歪曲線において、降伏応力から破断応力までの間に歪の増加に伴う応力低下部が形成されないことを特徴とする被覆導線。
A coated conductive wire in which the conductive wire is coated with a resin-made coating,
A coated conductor, wherein a stress-strain curve of the coated portion does not include a stress-lowering portion that accompanies an increase in strain between a yield stress and a breaking stress.
前記被覆部の降伏応力が30MPa以上であることを特徴とする請求項1記載の被覆導線。 2. The covered lead wire according to claim 1, wherein the covering portion has a yield stress of 30 MPa or more. 前記被覆部のヤング率が3.5MPa以上であることを特徴とする請求項1又は請求項2に記載の被覆導線。 3. The coated lead wire according to claim 1, wherein the Young's modulus of the coated portion is 3.5 MPa or more. 請求項1から請求項3のいずれかに記載の被覆導線と端子とが接続される端子付き電線であって、
前記端子は、端子本体と圧着部とを有し、
前記圧着部は、前記導線が圧着される導線圧着部と、前記被覆部が圧着される被覆圧着部と、を具備し、
前記圧着部における前記被覆部の最小厚みが、前記圧着部以外の部位における前記被覆部の厚みの50%以下であることを特徴とする端子付き電線。
An electric wire with a terminal to which the coated conductor wire according to any one of claims 1 to 3 and a terminal are connected,
The terminal has a terminal body and a crimping portion,
The crimping section includes a conductor crimping section to which the conductor is crimped, and a covering crimping section to which the covering section is crimped,
An electric wire with a terminal, wherein the minimum thickness of the covering portion in the crimping portion is 50% or less of the thickness of the covering portion in a portion other than the crimping portion.
前記圧着部以外の部位において、前記導線のサイズは3sq以下であり、前記被覆部の厚みが0.3mm以下であることを特徴等する請求項4記載の端子付き電線。 5. The electric wire with a terminal according to claim 4, wherein the size of the conducting wire is 3 sq or less, and the thickness of the covering portion is 0.3 mm or less in the portion other than the crimping portion. 前記被覆圧着部における前記被覆部の圧縮率が50%以下であることを特徴とする請求項4または請求項5に記載の端子付き電線。 6. The electric wire with a terminal according to claim 4, wherein the compressibility of the covering portion in the covering crimping portion is 50% or less. 前記圧着部は、平板状の素材の端部が突合わさるように丸められて、突合せ部が溶接されて略管状に形成され、前記被覆導線が挿入される部位を除き、他の部位が封止されていることを特徴とする請求項4から請求項6のいずれかに記載の端子付き電線。 The crimping portion is formed into a substantially tubular shape by rolling the ends of a flat plate-shaped material so that they are butted together, and welding the butt portions to form a substantially tubular shape. The electric wire with a terminal according to any one of claims 4 to 6, characterized in that the terminal is provided. 請求項1から請求項7のいずれかに記載の端子付き電線を含む、複数の端子付き電線が一体化されたことを特徴とするワイヤハーネス。 A wire harness in which a plurality of electric wires with terminals including the electric wire with terminals according to any one of claims 1 to 7 are integrated.
JP2021051512A 2021-03-25 2021-03-25 Coated conducting wire, electric wire with terminal, and wire harness Pending JP2022149384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021051512A JP2022149384A (en) 2021-03-25 2021-03-25 Coated conducting wire, electric wire with terminal, and wire harness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021051512A JP2022149384A (en) 2021-03-25 2021-03-25 Coated conducting wire, electric wire with terminal, and wire harness

Publications (1)

Publication Number Publication Date
JP2022149384A true JP2022149384A (en) 2022-10-06

Family

ID=83463402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021051512A Pending JP2022149384A (en) 2021-03-25 2021-03-25 Coated conducting wire, electric wire with terminal, and wire harness

Country Status (1)

Country Link
JP (1) JP2022149384A (en)

Similar Documents

Publication Publication Date Title
KR101833659B1 (en) Wire harness, connection method between covered conducting wire and terminal, and wire harness structure body
JP6056584B2 (en) Covered wire with terminal, wire harness, and anticorrosive
JP2013054835A (en) Terminal fitting, wire with terminal fitting, and connection method of terminal fitting and wire
JP2010244895A (en) Compression connection terminal for aluminum conductors, and connection method thereof
WO2006008981A1 (en) Electric wire for automobile
JP6131888B2 (en) Covered wire and wire harness with terminal
CN110323625B (en) Electric wire with terminal and wire harness
WO2009096461A1 (en) Insulated wire and wire harness
JP2022149384A (en) Coated conducting wire, electric wire with terminal, and wire harness
JP6156185B2 (en) Electric wire with terminal
JP6825495B2 (en) Wires with terminals and wire harnesses
JP2013069613A (en) Electric wire, electric wire with terminal fitting, and method of connecting terminal fitting and electric wire
JP5787919B2 (en) Terminal and wire connection structure
JP2018170160A (en) Terminal-attached wire and wire harness
JP6167952B2 (en) Covered wire with terminal and wire harness
JP4182850B2 (en) Automotive wire
JP2014220095A (en) Wire connection structure
JP7251991B2 (en) TERMINAL, ELECTRIC WIRE WITH TERMINAL AND MANUFACTURING METHOD THEREOF
JP7327903B2 (en) Electric wire with terminal and manufacturing method thereof
JP6023450B2 (en) Electric wire with terminal
JP5290812B2 (en) Crimp terminal for high strength thin wire
WO2021065358A1 (en) Connection terminal, terminal-attached wire, and wiring harness
JP2016110774A (en) Insulator composition and highly flexible electric wire
JP6935310B2 (en) Manufacturing method of electric wire with terminal
JP2008258172A (en) Coaxial cable strand, coaxial cable, and coaxial cable bundle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231221