JP2022147238A - Resin composition, sheet molding compound, and molded article - Google Patents

Resin composition, sheet molding compound, and molded article Download PDF

Info

Publication number
JP2022147238A
JP2022147238A JP2021048407A JP2021048407A JP2022147238A JP 2022147238 A JP2022147238 A JP 2022147238A JP 2021048407 A JP2021048407 A JP 2021048407A JP 2021048407 A JP2021048407 A JP 2021048407A JP 2022147238 A JP2022147238 A JP 2022147238A
Authority
JP
Japan
Prior art keywords
mass
parts
resin composition
resin
changed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021048407A
Other languages
Japanese (ja)
Inventor
勝也 船ヶ山
Katsuya FUNAGAYAMA
修平 山本
Shuhei Yamamoto
英樹 塩根
Hideki Shione
欧 柴田
O Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2021048407A priority Critical patent/JP2022147238A/en
Priority to CN202210182383.3A priority patent/CN115109378A/en
Publication of JP2022147238A publication Critical patent/JP2022147238A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/08Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/02Homopolymers or copolymers of hydrocarbons
    • C08J2425/04Homopolymers or copolymers of styrene
    • C08J2425/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Abstract

To provide a resin composition from which a molded article having viscosity and flame retardancy with excellent production suitability and excellent weight saving can be obtained.SOLUTION: A resin composition contains a resin component (A) containing an unsaturated polyester resin (a1) and styrene (a2), and contains 1-6 pts.mass of a wetting dispersant (B), 15-40 pts.mass of a glass balloon (C) and 10-30 pts.mass of a flame retardant (D) with respect to 100 pts.mass of the resin component (A). There are provided a sheet molding compound containing the resin composition and a reinforcement fiber (F), and a molded article molded from the sheet molding compound.SELECTED DRAWING: None

Description

本発明は、樹脂組成物、シートモールディングコンパウンド、及び、成形品に関するものである。 The present invention relates to resin compositions, sheet molding compounds, and molded articles.

シートモールディングコンパウンド(以下、「SMC」と略記する場合がある。)は主に不飽和ポリエステル樹脂、ビニルエステル樹脂からなる熱硬化性樹脂、無機充填剤、増粘剤、硬化剤等を混錬したペースト(コンパウンド)に繊維を含浸させ、熟成過程を経てBステージ化したシート状の成形材料である。このSMCを加熱・加圧成形することで、成形品が得られる。このような成形品には、優れた耐久性や耐水性、機械的強度等の特性があり、浴槽等の住設部材や貯水槽、浄化槽、管ライニング材、電気部品、車両用材料、航空機材料等として幅広く用いられている。特に、車輛用材料や航空機材料等においては、軽量化が求められており、更に、外装以外の部品については高い難燃性が求められる。 Sheet molding compound (hereafter sometimes abbreviated as "SMC") is made by kneading a thermosetting resin consisting mainly of unsaturated polyester resin and vinyl ester resin, an inorganic filler, a thickener, a curing agent, etc. It is a sheet-like molding material made by impregnating a paste (compound) with fibers and undergoing an aging process to B-stage. A molded article is obtained by subjecting this SMC to heat and pressure molding. Such molded products have characteristics such as excellent durability, water resistance, and mechanical strength. etc. is widely used. In particular, vehicle materials, aircraft materials, and the like are required to be lightweight, and parts other than exterior parts are required to have high flame retardancy.

成型品を軽量化する方法としては、例えば中空ガラスビーズ、ガラスマイクロバルーンに代表される中空充填剤を添加する方法が古くから知られている。また、成型品を難燃化する手法については、水酸化アルミニウムや、リン系・臭素系の難燃剤を添加する方法が知られている。 As a method for reducing the weight of molded articles, a method of adding hollow fillers such as hollow glass beads and glass microballoons has been known for a long time. Also, as a technique for making a molded product flame-retardant, a method of adding aluminum hydroxide or a phosphorus-based or bromine-based flame retardant is known.

成型品の軽量化としては、例えば、比重1.20のバルクモールディングコンパウンド(BMC)が報告されている(例えば、特許文献1を参照。)が、シートモールディングコンパウンドでは、難燃かつ比重1.2台の例は報告がない。この理由としては、SMCはコンパウンドを長繊維のガラス繊維に含浸させる工程があるために、コンパウンド粘度をBMCより低く設定する必要があるためである。このように、SMCの分野で、軽量化および難燃化の手法はいずれもコンパウンド粘度が高くなる課題があり、実用上使用可能レベルの軽量化、難燃化の両立は困難とされてきた。 For example, a bulk molding compound (BMC) with a specific gravity of 1.20 has been reported as a method for reducing the weight of molded products (see, for example, Patent Document 1). There are no reports of pedestal cases. The reason for this is that SMC has a step of impregnating long glass fibers with a compound, so the compound viscosity must be set lower than that of BMC. As described above, in the field of SMC, both methods for weight reduction and flame retardancy have the problem of increasing compound viscosity, and it has been difficult to achieve both weight reduction and flame retardancy at a practically usable level.

特開2006-206690号公報JP-A-2006-206690

本発明が解決しようとする課題は、製造適性に優れた粘度、難燃性、及び、軽量化に優れる成形品が得られる樹脂組成物を提供することである。 The problem to be solved by the present invention is to provide a resin composition from which a molded article having excellent viscosity and flame retardancy with excellent manufacturability and excellent weight reduction can be obtained.

本発明は、不飽和ポリエステル樹脂(a1)及びスチレン(a2)を含む樹脂成分(A)を含む樹脂組成物であって、前記樹脂成分(A)100質量部に対し、湿潤分散剤(B)を1~6質量部、ガラスバルーン(C)を15~40質量部、難燃剤(D)を10~30質量部の範囲で含有することを特徴とする樹脂組成物を提供するものである。 The present invention is a resin composition containing a resin component (A) containing an unsaturated polyester resin (a1) and styrene (a2), wherein 100 parts by mass of the resin component (A) is mixed with a wetting and dispersing agent (B) 1 to 6 parts by mass, 15 to 40 parts by mass of the glass balloon (C), and 10 to 30 parts by mass of the flame retardant (D).

また、本発明は、前記樹脂組成物、及び、強化繊維(F)を含有することを特徴とするシートモールディングコンパウンド、並びに、前記シートモールディングコンパウンドにより成形された成形品を提供するものである。 The present invention also provides a sheet molding compound containing the resin composition and reinforcing fibers (F), and a molded article molded from the sheet molding compound.

本発明の樹脂組成物は、製造適性に優れた粘度、難燃性、及び、軽量化に優れる成形品を得ることが出来る。よって、本発明の樹脂組成物は、車輛用材料や航空機材料等の軽量化および難燃化が求められる用途において、特に好適に用いることが出来る。 INDUSTRIAL APPLICABILITY The resin composition of the present invention can give a molded article with excellent viscosity, flame retardancy, and weight reduction, which are excellent in manufacturing aptitude. Therefore, the resin composition of the present invention can be particularly suitably used in applications requiring weight reduction and flame retardancy, such as vehicle materials and aircraft materials.

本発明の樹脂組成物は、不飽和ポリエステル樹脂(a1)及びスチレン(a2)を含む樹脂成分(A)を含む樹脂組成物であり、前記樹脂成分(A)100質量部に対し、湿潤分散剤(B)を1~6質量部、ガラスバルーン(C)を15~40質量部、難燃剤(D)を10~30質量部の範囲で含有するものである。 The resin composition of the present invention is a resin composition containing a resin component (A) containing an unsaturated polyester resin (a1) and styrene (a2). It contains 1 to 6 parts by mass of (B), 15 to 40 parts by mass of glass balloon (C), and 10 to 30 parts by mass of flame retardant (D).

前記樹脂成分(A)は、不飽和ポリエステル樹脂(a1)及びスチレン(a2)を必須成分として含有するものであるが、前記不飽和ポリエステル樹脂(a1)以外のその他の熱硬化性樹脂(a3)、前記スチレン(a2)以外のその他の重合性不飽和単量体(a4)、及び低収縮化剤(a5)等を含有することができる。 The resin component (A) contains an unsaturated polyester resin (a1) and styrene (a2) as essential components, but other thermosetting resins (a3) than the unsaturated polyester resin (a1) , a polymerizable unsaturated monomer (a4) other than the styrene (a2), and a low shrinkage agent (a5).

前記樹脂成分(A)中の前記不飽和ポリエステル樹脂(a1)は、高粘度であることから、他の成分と混合する前にスチレン(a2)で希釈しておくことが好ましく、不揮発分30~80質量%のスチレン溶液として使用することが好ましい。なお、不飽和ポリエステル樹脂(a1)は、単独で用いることも2種以上併用することもできる。 Since the unsaturated polyester resin (a1) in the resin component (A) has a high viscosity, it is preferably diluted with styrene (a2) before mixing with other components. It is preferably used as an 80% by weight styrene solution. The unsaturated polyester resin (a1) can be used alone or in combination of two or more.

前記湿潤分散剤(B)としては、酸基を有する高分子湿潤分散剤が好ましく、その具体例としては、ビックケミー・ジャパン株式会社製の高分子湿潤分散剤;BYK-W940、BYK-W972、BYK-W974、BYK-W996、BYK-W9010、BYK-W9011、Disper-BYK110、Disper-BYK111、Disper-BYK180等が挙げられる。これらの湿潤分散剤(B)は、単独で用いることも、2種類以上を併用することもできる。 The wetting and dispersing agent (B) is preferably a polymeric wetting and dispersing agent having an acid group, and specific examples thereof include polymeric wetting and dispersing agents manufactured by BYK-Chemie Japan Co., Ltd.; BYK-W940, BYK-W972, and BYK. -W974, BYK-W996, BYK-W9010, BYK-W9011, Disper-BYK110, Disper-BYK111, Disper-BYK180 and the like. These wetting and dispersing agents (B) can be used alone or in combination of two or more.

前記ガラスバルーン(C)としては、例えば、化学的に安定な不溶性ガラスでつくられたガラス微小中空球粉体で、粒子径が16~65μm程度(メジアン径)、真密度が0.13~0.60g/cm程度の真球状のものが挙げられる。ここでは、ガラスバルーンとしてスリーエムジャパン株式会社製のガラスバルーン;グラスバブルズS32HS、グラスバブルズiM16K、グラスバブルズK46等を市販品として入手することが出来る。 The glass balloon (C) is, for example, glass micro hollow sphere powder made of chemically stable insoluble glass, having a particle diameter of about 16 to 65 μm (median diameter) and a true density of 0.13 to 0. .60 g/cm 3 or so is spherical. Here, glass balloons manufactured by 3M Japan Co., Ltd.; Glass Bubbles S32HS, Glass Bubbles iM16K, Glass Bubbles K46, etc. can be obtained as commercial products.

前記難燃剤(D)としては、例えば、臭素系難燃剤;三酸化アンチモン、五酸化アンチモン等の無機塩;赤リン系難燃剤;メラミンシアヌレート、ポリリン酸メラミン等の窒素系難燃剤;フェノール系等のフェノール系難燃剤などを用いることができる。これらの難燃剤は単独で用いても2種以上を併用してもよい。これらの中でも、難燃性、製造適性、及び軽量性を高いレベルで維持できる点から、臭素系難燃剤、三酸化アンチモン、及び、赤リン系難燃剤からなる群より選ばれる1種以上が好ましい。 Examples of the flame retardant (D) include brominated flame retardants; inorganic salts such as antimony trioxide and antimony pentoxide; red phosphorus flame retardants; nitrogen-based flame retardants such as melamine cyanurate and melamine polyphosphate; A phenol-based flame retardant such as can be used. These flame retardants may be used alone or in combination of two or more. Among these, one or more selected from the group consisting of brominated flame retardants, antimony trioxide, and red phosphorus flame retardants is preferable from the viewpoint of maintaining high levels of flame retardancy, manufacturability, and lightness. .

前記臭素系難燃剤としては、例えば、ヘキサブロモシクロドデカンなどの脂肪族あるいは脂環式炭化水素の臭素化物、ヘキサブロモベンゼン、エチレンビスペンタブロモジフェニル、デカブロモジフェニルエタン、デカブロモジフェニルエーテル、オクタブロモジフェニルエーテル、2,3-ジブロモプロピルペンタブロモフェニルエーテルなどの芳香族化合物の臭素化物、テトラブロモビスフェノールA、テトラブロモビスフェノールAビス(2,3-ジブロモプロピルエーテル)、テトラブロモビスフェノールA(2-ブロモエチルエーテル)、テトラブロモビスフェノールAジグリシジルエーテル、テトラブロモビスフェノールAジグリシジルエーテルとトリブロモフェノールとの付加物などの臭素化ビスフェノール類及びその誘導体、テトラブロモビスフェノールAポリカーボネートオリゴマー、テトラブロモビスフェノールAジグリシジルエーテルとブロモ化ビスフェノールとの付加物のエポキシオリゴマーなどの臭素化ビスフェノール類誘導体オリゴマー、エチレンビステトラブロモフタルイミド、ビス(2,4,6-トリブロモフェノキシ)エタンなどの臭素系芳香族化合物、臭素化アクリル系樹脂、エチレンビスジブロモノルボルナンジカルボキシイミド臭素系難燃剤などを用いることができる。これらの難燃剤は単独で用いても2種以上を併用してもよい。 Examples of the brominated flame retardants include bromides of aliphatic or alicyclic hydrocarbons such as hexabromocyclododecane, hexabromobenzene, ethylenebispentabromodiphenyl, decabromodiphenylethane, decabromodiphenyl ether, and octabromodiphenyl ether. , bromides of aromatic compounds such as 2,3-dibromopropyl pentabromophenyl ether, tetrabromobisphenol A, tetrabromobisphenol A bis(2,3-dibromopropyl ether), tetrabromobisphenol A (2-bromoethyl ether ), brominated bisphenols and their derivatives such as tetrabromobisphenol A diglycidyl ether, adducts of tetrabromobisphenol A diglycidyl ether and tribromophenol, tetrabromobisphenol A polycarbonate oligomers, tetrabromobisphenol A diglycidyl ether and Brominated bisphenol derivative oligomers such as epoxy oligomers of adducts with brominated bisphenol, brominated aromatic compounds such as ethylenebistetrabromophthalimide and bis(2,4,6-tribromophenoxy)ethane, brominated acrylics Resins, ethylenebisdibromonorbornanedicarboximide brominated flame retardants, and the like can be used. These flame retardants may be used alone or in combination of two or more.

前記赤リン系難燃剤としては、例えば、赤リン、赤リンの粒子表面がフェノール樹脂などの樹脂で被覆されたものなどを用いることができる。これらの中でも、安全性及び樹脂成分と混合した際の分散性がより向上することから、粒子表面が樹脂で被覆されたものが好ましい。 As the red phosphorus-based flame retardant, for example, red phosphorus, or a red phosphorus particle surface coated with a resin such as a phenolic resin can be used. Among these, those whose particle surfaces are coated with a resin are preferable because they are more improved in terms of safety and dispersibility when mixed with a resin component.

本発明の樹脂組成物は、前記樹脂(A)、湿潤分散剤(B)、ガラスバルーン(C)、及び、難燃剤(D)を必須成分として含有するが、それぞれの使用量が極めて重要である。具体的には、前記樹脂成分(A)100質量部に対し、前記湿潤分散剤(B)を1~6質量部、前記ガラスバルーン(C)を15~40質量部、前記難燃剤(D)を10~30質量部の範囲で含有することが、優れた製造適性、難燃性、及び軽量性を得る上で必須であり、より好ましくは、前記樹脂成分(A)100質量部に対し、前記湿潤分散剤(B)を2~6質量部、前記ガラスバルーン(C)を15~34質量部、前記難燃剤(D)を10~20質量部の範囲である。係る範囲であれば、コンパウンドの粘度の上昇を抑制しながら、優れた難燃性および軽量性を得ることが出来る。 The resin composition of the present invention contains the resin (A), the wetting and dispersing agent (B), the glass balloon (C), and the flame retardant (D) as essential components. be. Specifically, with respect to 100 parts by mass of the resin component (A), 1 to 6 parts by mass of the wetting and dispersing agent (B), 15 to 40 parts by mass of the glass balloon (C), and the flame retardant (D) It is essential to obtain excellent manufacturability, flame retardancy, and light weight in the range of 10 to 30 parts by mass, and more preferably, the resin component (A) 100 parts by mass, The wetting and dispersing agent (B) is in the range of 2 to 6 parts by mass, the glass balloon (C) is in the range of 15 to 34 parts by mass, and the flame retardant (D) is in the range of 10 to 20 parts by mass. Within such a range, it is possible to obtain excellent flame retardancy and lightness while suppressing an increase in the viscosity of the compound.

本発明の樹脂組成物は、前記(A)~(D)以外にも、必要に応じてその他の添加剤を含有することができる。 The resin composition of the present invention may optionally contain other additives in addition to the above (A) to (D).

前記その他の添加剤としては、例えば、無機充填剤(E)、強化繊維(F)、重合開始剤、増粘剤、重合禁止剤、硬化促進剤、低収縮剤、離型剤、減粘剤、顔料、酸化防止剤、可塑剤、難燃剤、抗菌剤、紫外線安定剤、補強材、光硬化剤等を用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。これらの中でも、本発明の樹脂組成物がシートモールディングコンパウンドとして用いられる場合には、無機充填剤(E)及び強化繊維(F)を含有することが好ましい。 Examples of other additives include inorganic fillers (E), reinforcing fibers (F), polymerization initiators, thickeners, polymerization inhibitors, curing accelerators, low shrinkage agents, release agents, and viscosity reducers. , pigments, antioxidants, plasticizers, flame retardants, antibacterial agents, UV stabilizers, reinforcing agents, photocuring agents, and the like can be used. These compounds may be used alone or in combination of two or more. Among these, when the resin composition of the present invention is used as a sheet molding compound, it preferably contains an inorganic filler (E) and reinforcing fibers (F).

前記無機充填剤(E)としては、例えば、炭酸カルシウム、水酸化ナトリウム、クレー、タルク、カオリン、シリカ等が挙げられる。これらの化合物は、単独で用いても2種以上を併用してもよい。 Examples of the inorganic filler (E) include calcium carbonate, sodium hydroxide, clay, talc, kaolin and silica. These compounds may be used alone or in combination of two or more.

前記無機充填剤(E)の使用量としては、前記樹脂成分(A)100質量部に対し、20~80質量部の範囲が好ましい。 The amount of the inorganic filler (E) used is preferably in the range of 20 to 80 parts by mass with respect to 100 parts by mass of the resin component (A).

前記強化繊維(F)としては、例えば、ガラス繊維、炭素繊維、炭化ケイ素繊維、アルミナ繊維、ボロン繊維、金属繊維、アラミド繊維、ビニロン繊維、テトロン繊維等の有機繊維などが挙げられるが、より高強度、高弾性の成形品が得られることから、ガラス繊維又は炭素繊維が好ましい。これらの強化繊維(F)は単独で用いることも、2種以上併用することもできる。 Examples of the reinforcing fiber (F) include organic fibers such as glass fiber, carbon fiber, silicon carbide fiber, alumina fiber, boron fiber, metal fiber, aramid fiber, vinylon fiber, and tetron fiber. Glass fiber or carbon fiber is preferable because a molded product with high strength and high elasticity can be obtained. These reinforcing fibers (F) can be used alone or in combination of two or more.

前記強化繊維(F)の長さとしては、繊維自体のカット性や樹脂成分(A)との含浸性の観点から、3~60mm長さの範囲が好ましい。また、異なる長さの強化繊維を混合させても良い。 The length of the reinforcing fiber (F) is preferably in the range of 3 to 60 mm, from the viewpoint of the cuttability of the fiber itself and the impregnating property with the resin component (A). Also, reinforcing fibers of different lengths may be mixed.

本発明の成形材料中の前記強化繊維(F)の含有率は、得られる成形品の機械強度がより向上することから、10~50質量%の範囲が好ましく、15~35質量%の範囲がより好ましい。 The content of the reinforcing fiber (F) in the molding material of the present invention is preferably in the range of 10 to 50% by mass, and more preferably in the range of 15 to 35% by mass, because the mechanical strength of the resulting molded product is further improved. more preferred.

本発明の樹脂組成物は、シートモールディングコンパウンド(SMC)として有用である。前記SMCの製造方法としては、例えば、通常のミキサー、インターミキサー、プラネタリーミキサー、ロール、ニーダー、押し出し機などの混合機を用いて、前記成分(A)~(E)等の各成分を混合・分散し、得られた樹脂組成物を上下に設置されたキャリアフィルムに均一な厚さになるように塗布し、強化繊維(F)を前記上下に設置されたキャリアフィルム上の樹脂組成物で挟み込み、次いで、全体を含浸ロールの間に通して、圧力を加えて強化繊維(F)に樹脂組成物を含浸させた後、ロール状に巻き取る又はつづら折りに畳む方法等が挙げられる。さらに、この後に25~55℃の温度で熟成を行うことが好ましい。キャリアフィルムとしては、ポリエチレンフィルム、ポリプロピレンフィルム、ポリエチレンとポリプロピレンのラミネートフィルム、ポリエチレンテレフタレート、ナイロン等を用いることができる。 The resin composition of the present invention is useful as a sheet molding compound (SMC). As a method for producing the SMC, for example, each component such as the components (A) to (E) is mixed using a mixer such as an ordinary mixer, intermixer, planetary mixer, roll, kneader, and extruder.・The resin composition obtained by dispersing is applied to the carrier films placed above and below so as to have a uniform thickness, and the reinforcing fibers (F) are coated with the resin composition on the carrier films placed above and below. A method of sandwiching, then passing the whole between impregnated rolls, applying pressure to impregnate the reinforcing fibers (F) with the resin composition, and then winding them into a roll or folding them in a zigzag shape can be used. Furthermore, it is preferable to perform aging at a temperature of 25 to 55° C. after this. As the carrier film, a polyethylene film, a polypropylene film, a laminate film of polyethylene and polypropylene, polyethylene terephthalate, nylon, or the like can be used.

本発明の成形品は、前記SMCより得られるが、生産性に優れる点とデザイン多様性に優れる観点からその成形方法としては、SMCの加熱圧縮成形が好ましい。 The molded article of the present invention can be obtained from the above SMC, but from the viewpoint of excellent productivity and excellent design diversity, the hot compression molding of SMC is preferable as the molding method.

前記加熱圧縮成形としては、例えば、SMC等の成形材料を所定量計量し、予め80~180℃に加熱した金型に投入し、圧縮成形機にて型締めを行い、成形材料を賦型させ、0.1~30MPaの成形圧力を保持することによって、成形材料を硬化させ、その後成形品を取り出し成形品を得る製造方法が用いられる。具体的な成形条件としては、金型内で金型温度100~160℃にて、成形品の厚さ1mm当たり1~2分間、1~10MPaの成形圧力を保持する成形条件が好ましく、生産性がより向上することから、金型温度120~160℃にて、成形品の厚さ1mm当たり30~150秒間、1~10MPaの成形圧力を保持する成形条件がより好ましい。 As the heat compression molding, for example, a predetermined amount of molding material such as SMC is weighed, put into a mold preheated to 80 to 180 ° C., the mold is clamped with a compression molding machine, and the molding material is shaped. , by holding a molding pressure of 0.1 to 30 MPa, the molding material is cured, and then the molded article is removed to obtain a molded article. As a specific molding condition, a mold temperature of 100 to 160 ° C. in the mold and a molding pressure of 1 to 10 MPa for 1 to 2 minutes per 1 mm of the thickness of the molded product are preferable. is more improved, the molding conditions are more preferably a mold temperature of 120 to 160° C. and a molding pressure of 1 to 10 MPa for 30 to 150 seconds per 1 mm of the thickness of the molded product.

以上、本発明の樹脂組成物は、製造適性に優れた粘度、難燃性、及び、軽量化に優れる成形品を得ることが出来る。よって、本発明の樹脂組成物は、車輛用材料や航空機材料等の軽量化および難燃化が求められる用途において、特に好適に用いることが出来る。 As described above, the resin composition of the present invention can provide a molded product with excellent viscosity and flame retardancy, which is excellent in manufacturability, and excellent in weight reduction. Therefore, the resin composition of the present invention can be particularly suitably used in applications requiring weight reduction and flame retardancy, such as vehicle materials and aircraft materials.

以下に本発明を具体的な実施例を挙げてより詳細に説明する。 The present invention will be described in more detail below with specific examples.

[実施例1]樹脂組成物(1)の調製
不飽和ポリエステル樹脂溶液(DICマテリアル株式会社製「サンドーマPS-281」;不飽和ポリエステル樹脂60質量%とスチレン40質量%との混合物)80質量部、ポリスチレン樹脂溶液(DIC株式会社製「サンド―マ PS-954」;ポリスチレン30質量%とスチレン70質量%との混合物)15質量部、スチレン5質量部、重合禁止剤(精工化学株式会社製「パラベンゾキノン」)0.1質量部、湿潤分散剤(ビックケミー株式会社製「BYK-W9010」)5質量部、ステアリン酸亜鉛4質量部、水酸化アルミニウム70質量部、ガラスバルーン(スリーエムジャパン株式会社製「グラスバブルズS32HS」)18質量部、デカブロモジフェニルエタン9質量部、三酸化アンチモン3質量部、酸化マグネシウム1質量部、重合開始剤(化薬ヌーリオン株式会社製「トリゴノックス22-70E」)1.5質量部をディゾルバーにより混合し、樹脂組成物(1)を得た。
[Example 1] Preparation of resin composition (1) Unsaturated polyester resin solution (“Sandoma PS-281” manufactured by DIC Materials Co., Ltd.; mixture of 60% by mass of unsaturated polyester resin and 40% by mass of styrene) 80 parts by mass , polystyrene resin solution (manufactured by DIC Corporation "Sandoma PS-954"; a mixture of 30% by mass of polystyrene and 70% by mass of styrene) 15 parts by mass, 5 parts by mass of styrene, polymerization inhibitor (manufactured by Seiko Kagaku Co., Ltd. " parabenzoquinone”) 0.1 parts by mass, wetting and dispersing agent (BYK-W9010 manufactured by BYK-Chemie Co., Ltd.) 5 parts by mass, zinc stearate 4 parts by mass, aluminum hydroxide 70 parts by mass, glass balloon (manufactured by 3M Japan Co., Ltd. "Glass Bubbles S32HS") 18 parts by mass, decabromodiphenylethane 9 parts by mass, antimony trioxide 3 parts by mass, magnesium oxide 1 part by mass, polymerization initiator (manufactured by Kayaku Nourion Co., Ltd. "Trigonox 22-70E") 1 .5 parts by mass were mixed with a dissolver to obtain a resin composition (1).

[SMCの製造]
上記で得た樹脂組成物(1)を、上下に設置された2枚のポリプロピレン製キャリアフィルム上に均一に塗布し、25.4mmにカットしたガラス繊維(日東紡績株式会社製「PB-549」)70.5質量部を前記上下に設置されたキャリアフィルム上の樹脂組成物の間に挟み込み、全体を含浸ロールの間に通して圧力を加えて樹脂組成物をガラス繊維に含浸させた後、45℃で24時間養生し、ガラス繊維含有率が25質量%のSMC(1)を得た。
[Manufacture of SMC]
The resin composition (1) obtained above was uniformly applied on two polypropylene carrier films placed one above the other, and glass fibers cut to 25.4 mm ("PB-549" manufactured by Nitto Boseki Co., Ltd. ) 70.5 parts by mass is sandwiched between the resin composition on the carrier films provided above and below, and the whole is passed between impregnation rolls and pressure is applied to impregnate the glass fiber with the resin composition, After curing at 45° C. for 24 hours, SMC (1) having a glass fiber content of 25% by mass was obtained.

[実施例2]樹脂組成物(2)の調製、SMC(2)の製造
実施例1において、水酸化アルミニウムの使用量を70質量部から45質量部に変え、ガラスバルーンの使用量を18質量部から20質量部に代え、デカブロモジフェニルエタンの使用量を9質量部から12質量部に代え、三酸化アンチモンの使用量を3質量部から4質量部に代えた以外は実施例1と同様にして樹脂組成物(2)を得、ガラス繊維の使用量を70.5質量部から64.2質量部に代えた以外は実施例1と同様にしてSMC(2)を得た。
[Example 2] Preparation of resin composition (2) and production of SMC (2) Same as Example 1 except that the amount of decabromodiphenylethane used was changed from 9 parts by mass to 12 parts by mass, and the amount of antimony trioxide used was changed from 3 parts by mass to 4 parts by mass. SMC (2) was obtained in the same manner as in Example 1 except that the amount of glass fiber used was changed from 70.5 parts by mass to 64.2 parts by mass.

[実施例3]樹脂組成物(3)の調製、SMC(3)の製造
実施例1において、湿潤分散剤の使用量を5質量部から6質量部に代え、水酸化アルミニウムの使用量を70質量部から30質量部に変え、ガラスバルーンの使用量を18質量部から24質量部に代え、デカブロモジフェニルエタンの使用量を9質量部から12質量部に代え、三酸化アンチモンの使用量を3質量部から4質量部に代えた以外は実施例1と同様にして樹脂組成物(3)を得、ガラス繊維の使用量を70.5質量部から60.9質量部に代えた以外は実施例1と同様にしてSMC(3)を得た。
[Example 3] Preparation of resin composition (3), production of SMC (3) The amount of glass balloon used was changed from 18 parts by mass to 24 parts by mass, the amount of decabromodiphenylethane was changed from 9 parts by mass to 12 parts by mass, and the amount of antimony trioxide used was changed from 18 parts by mass to 24 parts by mass. A resin composition (3) was obtained in the same manner as in Example 1 except that 3 parts by mass was changed to 4 parts by mass, and the amount of glass fiber used was changed from 70.5 parts by mass to 60.9 parts by mass. SMC (3) was obtained in the same manner as in Example 1.

[実施例4]樹脂組成物(4)の調製、SMC(4)の製造
実施例1において、湿潤分散剤の使用量を5質量部から6質量部に代え、水酸化アルミニウムの使用量を70質量部から30質量部に変え、ガラスバルーンの使用量を18質量部から24質量部に代え、デカブロモジフェニルエタンの使用量を9質量部から16質量部に代え、三酸化アンチモンの使用量を3質量部から0質量部に代えた以外は実施例1と同様にして樹脂組成物(4)を得、ガラス繊維の使用量を70.5質量部から60.9質量部に代えた以外は実施例1と同様にしてSMC(4)を得た。
[Example 4] Preparation of resin composition (4), production of SMC (4) The amount of glass balloon used was changed from 18 parts by mass to 24 parts by mass, the amount of decabromodiphenylethane was changed from 9 parts by mass to 16 parts by mass, and the amount of antimony trioxide used was changed from 18 parts by mass to 24 parts by mass. A resin composition (4) was obtained in the same manner as in Example 1 except that 3 parts by mass was changed to 0 parts by mass, and the amount of glass fiber used was changed from 70.5 parts by mass to 60.9 parts by mass. SMC (4) was obtained in the same manner as in Example 1.

[実施例5]樹脂組成物(5)の調製、SMC(5)の製造
実施例1において、湿潤分散剤の使用量を5質量部から6質量部に代え、水酸化アルミニウムの使用量を70質量部から30質量部に変え、ガラスバルーンの使用量を18質量部から24質量部に代え、デカブロモジフェニルエタンの使用量を9質量部から0質量部に代え、三酸化アンチモンの使用量を3質量部から0質量部に代え、新たに赤リン(燐化学工業株式会社製「ノーバレッド120」)16質量部を加えた以外は実施例1と同様にして樹脂組成物(5)を得、ガラス繊維の使用量を70.5質量部から60.9質量部に代えた以外は実施例1と同様にしてSMC(5)を得た。
[Example 5] Preparation of resin composition (5), production of SMC (5) The amount of glass balloon used was changed from 18 parts by mass to 24 parts by mass, the amount of decabromodiphenylethane was changed from 9 parts by mass to 0 parts by mass, and the amount of antimony trioxide used was changed from 18 parts by mass to 24 parts by mass. A resin composition (5) was obtained in the same manner as in Example 1, except that 16 parts by mass of red phosphorus ("Novared 120" manufactured by Rin Kagaku Kogyo Co., Ltd.) was newly added instead of 3 parts by mass to 0 parts by mass. SMC (5) was obtained in the same manner as in Example 1, except that the amount of glass fiber used was changed from 70.5 parts by mass to 60.9 parts by mass.

[実施例6]樹脂組成物(6)の調製、SMC(6)の製造
実施例1において、湿潤分散剤の使用量を5質量部から6質量部に代え、水酸化アルミニウムの使用量を70質量部から30質量部に変え、ガラスバルーンの使用量を18質量部から30質量部に代え、デカブロモジフェニルエタンの使用量を9質量部から12質量部に代え、三酸化アンチモンの使用量を3質量部から4質量部に代えた以外は実施例1と同様にして樹脂組成物(6)を得、ガラス繊維の使用量を70.5質量部から62.9質量部に代えた以外は実施例1と同様にしてSMC(6)を得た。
[Example 6] Preparation of resin composition (6), production of SMC (6) The amount of glass balloon used was changed from 18 parts by mass to 30 parts by mass, the amount of decabromodiphenylethane was changed from 9 parts by mass to 12 parts by mass, and the amount of antimony trioxide used was changed from 18 parts by mass to 30 parts by mass. A resin composition (6) was obtained in the same manner as in Example 1 except that 3 parts by mass was changed to 4 parts by mass, and the amount of glass fiber used was changed from 70.5 parts by mass to 62.9 parts by mass. SMC (6) was obtained in the same manner as in Example 1.

[比較例1]樹脂組成物(R1)の調製、SMC(R1)の製造
実施例1において、湿潤分散剤の使用量を5質量部から10質量部に代え、水酸化アルミニウムの使用量を70質量部から30質量部に変え、ガラスバルーンの使用量を18質量部から35質量部に代え、デカブロモジフェニルエタンの使用量を9質量部から12質量部に代え、三酸化アンチモンの使用量を3質量部から4質量部に代えた以外は実施例1と同様にして樹脂組成物(R1)を得、ガラス繊維の使用量を70.5質量部から65.9質量部に代えた以外は実施例1と同様にしてSMC(R1)を得た。
[Comparative Example 1] Preparation of resin composition (R1), production of SMC (R1) The amount of glass balloon used was changed from 18 parts by mass to 35 parts by mass, the amount of decabromodiphenylethane was changed from 9 parts by mass to 12 parts by mass, and the amount of antimony trioxide used was changed from 18 parts by mass to 35 parts by mass. A resin composition (R1) was obtained in the same manner as in Example 1 except that 3 parts by mass was changed to 4 parts by mass, and the amount of glass fiber used was changed from 70.5 parts by mass to 65.9 parts by mass. SMC (R1) was obtained in the same manner as in Example 1.

[比較例2]樹脂組成物(R2)の調製、SMC(R2)の製造
実施例1において、湿潤分散剤の使用量を5質量部から6質量部に代え、水酸化アルミニウムの使用量を70質量部から30質量部に変え、ガラスバルーンの使用量を18質量部から24質量部に代え、デカブロモジフェニルエタンの使用量を9質量部から6質量部に代え、三酸化アンチモンの使用量を3質量部から2質量部に代えた以外は実施例1と同様にして樹脂組成物(R2)を得、ガラス繊維の使用量を70.5質量部から58.2質量部に代えた以外は実施例1と同様にしてSMC(R2)を得た。
[Comparative Example 2] Preparation of resin composition (R2), production of SMC (R2) The amount of glass balloon used was changed from 18 parts by mass to 24 parts by mass, the amount of decabromodiphenylethane was changed from 9 parts by mass to 6 parts by mass, and the amount of antimony trioxide used was changed from 18 parts by mass to 24 parts by mass. A resin composition (R2) was obtained in the same manner as in Example 1 except that 3 parts by mass was changed to 2 parts by mass, and the amount of glass fiber used was changed from 70.5 parts by mass to 58.2 parts by mass. SMC (R2) was obtained in the same manner as in Example 1.

[軽量性の評価方法]
実施例及び比較例で得られたSMCを剥離し、265mm×265mmにカットしたものを3枚重ね、30×30cmの平板金型の中央部にセットし、プレス金型温度150℃、プレス時間5分間、プレス圧力12MPaで成形し、厚さ3mmの平板状の成形品を得た。この成形品を40mm×40mmにカットし、電子比重計にて成形品比重を測定し、以下のように評価した。
「〇」;成形品比重が1.3以下である。
「×」;成形品比重が1.3を超える。
[Evaluation method for lightness]
The SMC obtained in Examples and Comparative Examples was peeled off, cut to 265 mm × 265 mm, stacked three times, set in the center of a flat plate mold of 30 × 30 cm 2 , press mold temperature 150 ° C., press time Molding was carried out for 5 minutes at a press pressure of 12 MPa to obtain a flat molded product with a thickness of 3 mm. This molded article was cut into a size of 40 mm×40 mm, and the specific gravity of the molded article was measured with an electronic hydrometer and evaluated as follows.
"◯"; the specific gravity of the molded product is 1.3 or less.
"x"; molded article specific gravity exceeds 1.3.

[製造適性の評価方法]
実施例及び比較例において、ガラス繊維を混合した樹脂組成物を30℃に調製し、1mlをサンプリングし、コーンプレート粘度計(40Pコーン、ローター回転数;50rpm)にて粘度を測定し、以下の様に評価した。
「〇」;粘度が26Pa・s以下である。
「×」;粘度が26Pa・sを超える。
[Manufacturing suitability evaluation method]
In the examples and comparative examples, a resin composition mixed with glass fibers was prepared at 30° C., 1 ml was sampled, and the viscosity was measured with a cone plate viscometer (40P cone, rotor speed: 50 rpm). was evaluated as
"◯"; Viscosity is 26 Pa·s or less.
"x"; viscosity exceeds 26 Pa·s.

[難燃性の評価方法]
実施例及び比較例で得られたSMCを剥離し、265mm×265mmにカットしたものを3枚重ね、30×30cmの平板金型の中央部にセットし、プレス金型温度150℃、プレス時間5分間、プレス圧力12MPaで成形し、厚さ3mmの平板状の成形品を得た。これを燃焼試験;UL-94V試験を実施し、以下のように評価した。
「〇」;V-0
「×」;V-1以下
[Method for evaluating flame retardancy]
The SMC obtained in Examples and Comparative Examples was peeled off, cut to 265 mm × 265 mm, stacked three times, set in the center of a flat plate mold of 30 × 30 cm 2 , press mold temperature 150 ° C., press time Molding was carried out for 5 minutes at a press pressure of 12 MPa to obtain a flat molded product with a thickness of 3 mm. This was subjected to a combustion test; UL-94V test, and evaluated as follows.
"〇"; V-0
"×"; V-1 or less

Figure 2022147238000001
Figure 2022147238000001

Figure 2022147238000002
Figure 2022147238000002

実施例1~6の通り、本発明の樹脂組成物は、製造適性に優れた粘度、難燃性、及び、軽量化に優れることが分かった。 As shown in Examples 1 to 6, the resin composition of the present invention was found to be excellent in viscosity, flame retardancy, and weight reduction with excellent manufacturability.

一方、比較例1は湿潤分散剤(B)の使用量が、本発明で規定する範囲を超える態様であるが、難燃性及び製造適性が不良であった。 On the other hand, Comparative Example 1, in which the amount of the wetting and dispersing agent (B) used exceeds the range specified in the present invention, was poor in flame retardancy and manufacturability.

比較例2は、難燃剤(D)の使用量が、本発明で規定する範囲を下回る態様であるが、難燃性が不良であった。 Comparative Example 2 is an embodiment in which the amount of the flame retardant (D) used is below the range specified in the present invention, but the flame retardancy was poor.

Claims (5)

不飽和ポリエステル樹脂(a1)及びスチレン(a2)を含む樹脂成分(A)を含む樹脂組成物であって、
前記樹脂成分(A)100質量部に対し、
湿潤分散剤(B)を1~6質量部、
ガラスバルーン(C)を15~40質量部、
難燃剤(D)を10~30質量部の範囲で含有することを特徴とする樹脂組成物。
A resin composition containing a resin component (A) containing an unsaturated polyester resin (a1) and styrene (a2),
For 100 parts by mass of the resin component (A),
1 to 6 parts by mass of a wetting and dispersing agent (B),
15 to 40 parts by mass of the glass balloon (C),
A resin composition characterized by containing 10 to 30 parts by mass of a flame retardant (D).
前記難燃剤(D)が、臭素系難燃剤、三酸化アンチモン、及び、赤リン系難燃剤からなる群より選ばれる1種以上である請求項1記載の樹脂組成物。 2. The resin composition according to claim 1, wherein the flame retardant (D) is one or more selected from the group consisting of brominated flame retardants, antimony trioxide, and red phosphorus flame retardants. 更に、無機充填剤(E)を、前記樹脂成分(A)100質量部に対し、20~80質量部の範囲で含有する請求項1又は2記載の樹脂組成物。 3. The resin composition according to claim 1, further comprising an inorganic filler (E) in a range of 20 to 80 parts by mass with respect to 100 parts by mass of the resin component (A). 請求項1~3のいずれか1項記載の樹脂組成物、及び、強化繊維(F)を含有することを特徴とするシートモールディングコンパウンド。 A sheet molding compound comprising the resin composition according to any one of claims 1 to 3 and reinforcing fibers (F). 請求項4記載のシートモールディングコンパウンドにより成形された成形品。 A molded article molded from the sheet molding compound according to claim 4.
JP2021048407A 2021-03-23 2021-03-23 Resin composition, sheet molding compound, and molded article Pending JP2022147238A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021048407A JP2022147238A (en) 2021-03-23 2021-03-23 Resin composition, sheet molding compound, and molded article
CN202210182383.3A CN115109378A (en) 2021-03-23 2022-02-25 Resin composition, sheet molding compound, and molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021048407A JP2022147238A (en) 2021-03-23 2021-03-23 Resin composition, sheet molding compound, and molded article

Publications (1)

Publication Number Publication Date
JP2022147238A true JP2022147238A (en) 2022-10-06

Family

ID=83324534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021048407A Pending JP2022147238A (en) 2021-03-23 2021-03-23 Resin composition, sheet molding compound, and molded article

Country Status (2)

Country Link
JP (1) JP2022147238A (en)
CN (1) CN115109378A (en)

Also Published As

Publication number Publication date
CN115109378A (en) 2022-09-27

Similar Documents

Publication Publication Date Title
JP5250972B2 (en) Epoxy resin composition for carbon fiber reinforced composite material, prepreg, integrated molded product, fiber reinforced composite material plate, and casing for electric / electronic device
EP1838776B1 (en) Fire-retardant low-density epoxy composition
US20180105690A1 (en) Epoxy resin composition, prepreg, carbon fiber-reinforced composite material, and manufacturing methods therefor
JP6240483B2 (en) Foamed resin sheet, fiber-reinforced thermosetting resin composite molded body using the foamed resin sheet, and method for producing the same
US11091629B2 (en) Hot/wet resistant low density epoxy compositions
CN113330045B (en) Unsaturated polyester resin composition, molding material, molded article, and battery pack case for electric vehicle
US6156825A (en) Flame-retardant, unsaturated polyester resins
JP6772460B2 (en) Sheet molding compound and its molded products
JP2022147238A (en) Resin composition, sheet molding compound, and molded article
JP2007231073A (en) Flame-retardant carbon fiber-reinforced composite material and method for producing the same
JP2019099609A (en) Fiber-reinforced molding material and molded article using the same
CA2925392A1 (en) Varnishes and prepregs and laminates made therefrom
JP7238626B2 (en) Fiber-reinforced molding material and molded article using the same
EP3487932A1 (en) Improved sma resin formulation
KR20060115545A (en) Composite for bulk mold compound
JP7028389B2 (en) Manufacturing method of sheet molding compound and molded products
JP2006077202A (en) Flame-retardant prepreg
WO2021111885A1 (en) Sheet molding compound and molded article thereof
US20220017684A1 (en) Room temperature stable one-part void filler
JPH10237185A (en) Production of molded product of fiber-reinforced phenolic resin
JP2021138791A (en) Molding resin composition, fiber-reinforced molding material and molding including the same
US20240051281A1 (en) Laminate, method for producing same and prepreg
JP2009179716A (en) Prepreg containing conjugated diene-based polymer, and fiber reinforced composite material and fiber reinforced composite material stacked body using prepreg

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231212