JP2022145710A - Heat energy control system - Google Patents

Heat energy control system Download PDF

Info

Publication number
JP2022145710A
JP2022145710A JP2022115759A JP2022115759A JP2022145710A JP 2022145710 A JP2022145710 A JP 2022145710A JP 2022115759 A JP2022115759 A JP 2022115759A JP 2022115759 A JP2022115759 A JP 2022115759A JP 2022145710 A JP2022145710 A JP 2022145710A
Authority
JP
Japan
Prior art keywords
heat
amount
distributor
drive
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022115759A
Other languages
Japanese (ja)
Other versions
JP7331999B2 (en
Inventor
隆仁 吉浦
Takahito Yoshiura
大介 小林
Daisuke Kobayashi
陽一郎 樋口
Yoichiro Higuchi
康 日下
Yasushi Kusaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018020271A external-priority patent/JP7114920B2/en
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2022115759A priority Critical patent/JP7331999B2/en
Publication of JP2022145710A publication Critical patent/JP2022145710A/en
Application granted granted Critical
Publication of JP7331999B2 publication Critical patent/JP7331999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat energy control system capable of realizing improved heat management throughout a vehicle.
SOLUTION: A heat energy control system mounted on a vehicle, comprises a plurality of heat sources, and a heat distributor that allocates a heat quantity calculated from a heat demand generated in the entire vehicle to the plurality of heat sources, where the heat demands generated in the entire vehicle are prioritized, and the heat distributor allocates a required heat quantity to the plurality of heat sources based on the suppliable heat quantity and priority of the plurality of heat sources.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2023,JPO&INPIT

Description

本開示は、車両で発生する複数の熱要求に基づき、熱源に要求熱量を割り当てる車両熱エネルギー制御システムに関する。 The present disclosure relates to a vehicle thermal energy control system that allocates a requested amount of heat to a heat source based on multiple heat demands generated by the vehicle.

特許文献1には、エンジンの冷却水及びヒートポンプを車室内の暖房用の熱源として使用する熱源制御装置が記載されている。特許文献1に記載の熱源制御装置では、エンジンの冷却水からヒーターコアを介して車室内の空気に供給する熱量と、ヒートポンプシステムの室内熱交換器から車室内の空気に供給する熱量の配分を、消費される熱費(燃料量)が最小となるように決定している。 Patent Literature 1 describes a heat source control device that uses engine cooling water and a heat pump as heat sources for heating the interior of the vehicle. In the heat source control device described in Patent Document 1, the amount of heat supplied from the cooling water of the engine to the air in the passenger compartment through the heater core and the amount of heat supplied to the air in the passenger compartment from the indoor heat exchanger of the heat pump system are distributed. , is determined so that the heat cost (amount of fuel) consumed is minimized.

特開2011-201488号公報Japanese Unexamined Patent Application Publication No. 2011-201488

近年の車両は、熱を利用する様々な装置が搭載されているため、従来の車両と比べて熱管理が複雑化している。しかしながら、現状では、車両全体での熱管理が十分に最適化されているとは言えない。 Vehicles in recent years are equipped with various devices that utilize heat, so heat management is more complicated than in conventional vehicles. However, at present, it cannot be said that the heat management in the entire vehicle is sufficiently optimized.

それ故に、本開示は、車両全体での改善された熱管理を実現できる車両熱エネルギー制御システムを提供することを目的とする。 It is therefore an object of the present disclosure to provide a vehicle thermal energy control system that can provide improved thermal management throughout the vehicle.

本開示に係る熱エネルギー制御システムは、複数の熱源と、車両全体で発生する熱要求から算出される要求熱量を複数の熱源に割り当てる熱量分配器と、を備え、車両全体で発生する熱要求には、優先度が設定されており、熱量分配器は、複数の熱源の供給可能熱量および優先度に基づいて、要求熱量を複数の熱源に割り当てる。 A thermal energy control system according to the present disclosure includes a plurality of heat sources and a heat quantity distributor that allocates the required heat quantity calculated from the heat demand generated in the entire vehicle to the plurality of heat sources, and are set with priorities, and the heat distributor allocates the required heat amounts to the plurality of heat sources based on the suppliable heat amounts and the priorities of the plurality of heat sources.

本開示によれば、車両全体での改善された熱管理を実現できる車両熱エネルギー制御システムを提供できる。 According to the present disclosure, a vehicle thermal energy control system can be provided that can provide improved thermal management throughout the vehicle.

第1の実施形態に係る熱エネルギー制御システムの概略構成を示す機能ブロック図1 is a functional block diagram showing a schematic configuration of a thermal energy control system according to a first embodiment; FIG. 図1に示した熱エネルギー制御システムが実行する制御処理を説明するシーケンス図FIG. 2 is a sequence diagram illustrating control processing executed by the thermal energy control system shown in FIG. 1; 第2の実施形態に係る熱エネルギー制御システムの概略構成を示す機能ブロック図A functional block diagram showing a schematic configuration of a thermal energy control system according to a second embodiment.

(概要)
本開示に係る熱エネルギー制御システムでは、車両が備える熱発生器や熱交換器等の熱源の供給可能熱量を考慮して、各熱源に要求熱量を分配する。したがって、熱発生器の発熱量や熱交換器からの放熱量、熱交換器が有する熱媒体への蓄熱量等を考慮して、車両全体での改善された熱管理を実現できる。
(Overview)
The thermal energy control system according to the present disclosure distributes the required amount of heat to each heat source in consideration of the suppliable amount of heat from heat sources such as heat generators and heat exchangers provided in the vehicle. Therefore, it is possible to realize improved heat management for the entire vehicle by taking into consideration the amount of heat generated by the heat generator, the amount of heat released from the heat exchanger, the amount of heat stored in the heat medium of the heat exchanger, and the like.

(第1の実施形態)
<構成>
図1は、第1の実施形態に係る熱エネルギー制御システムの概略構成を示す機能ブロック図である。
(First embodiment)
<Configuration>
FIG. 1 is a functional block diagram showing a schematic configuration of a thermal energy control system according to the first embodiment.

熱エネルギー制御システム10は、複数の熱源1と、熱量分配器2と、複数のアクチュエータ3とを備える。 A thermal energy control system 10 includes multiple heat sources 1 , a heat distributor 2 , and multiple actuators 3 .

熱源1としては、熱発生器や熱交換器等を例示できる。熱発生器は、動作することにより熱を発生する装置である。熱発生器としては、エンジン、ヒートポンプ、ハイブリッド自動車や電気自動車等の走行用モータ、走行用モータのパワーコントロールユニット、走行用モータの駆動バッテリー等を例示できる。熱交換器は、2つの異なる熱媒体の間で熱エネルギーを交換するための装置である。熱交換器としては、ラジエータ、インタークーラー、オイルクーラー、ヒーターコア、廃熱回収器、ヒートポンプの室外熱交換器等を例示できる。各熱源1は、自身の動作状態と、後述するアクチュエータ3の動作状態とに基づき、最大限供給できる熱量である供給可能熱量と、実際に供給している熱量である実供給熱量とを算出し、算出した供給可能熱量及び実供給熱量を後述する熱量分配器2に出力する。ここで、熱源1が熱発生器である場合、熱源1の供給熱量は発熱量に該当し、熱源が熱交換器である場合、熱源の供給熱量は放熱量に該当する。熱源1は、図示しないECU等のコンピュータを備えており、このコンピュータにより後述する各処理が実行される。本実施形態では、複数の熱源1が設けられているが、熱エネルギー制御システム10が備える熱源1の数は1つでも良い。 Examples of the heat source 1 include a heat generator and a heat exchanger. A heat generator is a device that generates heat by operating. Examples of the heat generator include an engine, a heat pump, a driving motor for a hybrid vehicle or an electric vehicle, a power control unit for the driving motor, a driving battery for the driving motor, and the like. A heat exchanger is a device for exchanging thermal energy between two different heat carriers. Examples of heat exchangers include radiators, intercoolers, oil coolers, heater cores, waste heat recovery devices, and outdoor heat exchangers for heat pumps. Each heat source 1 calculates the maximum amount of heat that can be supplied, and the actual amount of heat that is actually supplied, based on its own operating state and the operating state of an actuator 3, which will be described later. , the calculated suppliable heat quantity and the actual supply heat quantity are output to the heat quantity distributor 2, which will be described later. Here, when the heat source 1 is a heat generator, the amount of heat supplied by the heat source 1 corresponds to the amount of heat generated, and when the heat source is a heat exchanger, the amount of heat supplied by the heat source corresponds to the amount of heat released. The heat source 1 includes a computer such as an ECU (not shown), and the computer executes each process described later. Although a plurality of heat sources 1 are provided in this embodiment, the number of heat sources 1 provided in the thermal energy control system 10 may be one.

熱量分配器2は、車両全体で発生する複数の熱要求を取得し、取得した複数の熱要求から算出される要求熱量と、各熱源1から取得する供給可能熱量とに基づいて、各熱源1に要求熱量を分配する。車両全体で発生する熱要求とは、車両に搭載された各種装置において必要とされる熱量の要求であって、必要とされる熱量は正負両方の値を取り得る。車両において発生する熱要求としては、エンジンや走行用モータ、走行用バッテリー等を適温まで暖めるために必要な正の熱量または適温まで冷却するために必要な負の熱量の要求、車室内の気温をエアコンの設定温度まで上昇させるために必要な正の熱量または設定温度まで冷却するために必要な負の熱量の要求、各種冷却系が有する熱媒体に蓄熱するために必要な正の熱量または熱媒体を所定温度まで冷却するために必要な負の熱量の要求等を例示できる。 The heat distributor 2 obtains a plurality of heat demands generated in the entire vehicle, and based on the required heat quantity calculated from the obtained plurality of heat demands and the suppliable heat quantity obtained from each heat source 1, each heat source 1 Distribute the required heat to The heat demand generated in the entire vehicle is a demand for the amount of heat required by various devices mounted on the vehicle, and the required amount of heat can take both positive and negative values. The heat demand generated in a vehicle includes the positive heat quantity required to warm the engine, driving motor, driving battery, etc. to the appropriate temperature, the negative heat quantity required to cool it to the appropriate temperature, and the temperature inside the vehicle. Positive heat quantity required to raise the air conditioner to the set temperature or negative heat quantity required to cool to the set temperature, positive heat quantity or heat medium required to store heat in the heat medium of various cooling systems can be exemplified by a request for a negative amount of heat necessary for cooling to a predetermined temperature.

熱量分配器2は、取得した熱要求のそれぞれを充足できるように、各熱源1に熱エネルギーの供給を要求する。例えば、エアコンから車室内の気温を所定温度まで上昇させるための熱量が要求された場合、エアコンから要求される熱量をエンジンまたはヒートポンプに分配する。各熱源1に要求熱量を分配する際、熱量分配器2は、各熱源1の供給可能熱量を考慮する。例えば、エンジンの供給可能熱量がエアコンから要求される熱量を下回る場合には、エアコンから要求される熱量の全てをエンジン以外の熱源1に分配するか、あるいは、エアコンから要求される熱量の一部をエンジンに分配し、エアコンから要求される熱量の残りをエンジン以外の熱源1に分配する。各熱源1の供給可能熱量を加味せずに要求熱量を各熱源1に分配した場合、ある特定の熱源1では供給可能熱量が分配された熱量を下回って熱エネルギー供給が不足する一方、他の熱源1では熱エネルギーが余るという状況が発生し得る。余剰の熱エネルギーは廃棄されるため、エネルギーの無駄が生じてしまう。 The heat distributor 2 requests each heat source 1 to supply heat energy so as to satisfy each heat request obtained. For example, when the air conditioner requests the amount of heat to raise the air temperature in the passenger compartment to a predetermined temperature, the amount of heat requested from the air conditioner is distributed to the engine or the heat pump. When distributing the required amount of heat to each heat source 1 , the heat amount distributor 2 considers the amount of heat that each heat source 1 can supply. For example, if the amount of heat that the engine can supply is less than the amount of heat required by the air conditioner, all of the heat amount required by the air conditioner is distributed to the heat source 1 other than the engine, or a portion of the amount of heat required by the air conditioner is distributed. is distributed to the engine, and the rest of the heat quantity required from the air conditioner is distributed to the heat source 1 other than the engine. When the required amount of heat is distributed to each heat source 1 without taking into account the amount of heat that can be supplied from each heat source 1, the amount of heat that can be supplied by a certain heat source 1 is less than the amount of heat that can be distributed, and the supply of thermal energy is insufficient. A situation may occur in which the heat source 1 has excess thermal energy. Since the excess heat energy is discarded, energy is wasted.

これに対して、本実施形態に係る熱エネルギー制御システム10では、熱量分配器2は、各熱源1から取得した供給可能熱量を参照することにより、各熱源1における供給可能
熱量にどの程度余裕があるのかを把握できる。したがって、ある特定の熱源1の供給可能熱量に余裕がない場合であっても、他の熱源1の供給可能熱量に余裕がある場合には、当該他の熱源1の熱エネルギーを熱要求元に分配することで、発生している熱エネルギーを効率的に使用することができる。このように、熱量分配器2を設け、熱量分配器2で各熱源1の供給熱量を統合的に管理することにより、車両全体で改善された熱管理を行うことができる。仮に、熱量分配器2のような、各熱源1の供給熱量を統合的に管理できる構成がない場合、車両で発生した熱要求を満たすように各熱源1で個別に熱エネルギーを生成し供給することとなるため、いずれかの熱源1で余った熱エネルギーが有効活用されず、車両全体での熱エネルギーの分配が非効率化する可能性がある。
On the other hand, in the thermal energy control system 10 according to the present embodiment, the heat quantity distributor 2 refers to the suppliable heat quantity acquired from each heat source 1 to determine how much margin there is in the suppliable heat quantity in each heat source 1. You can figure out if there is. Therefore, even if there is no margin in the suppliable heat amount of a specific heat source 1, if there is a margin in the suppliable heat amount of another heat source 1, the thermal energy of the other heat source 1 is used as the heat request source. By distributing, the heat energy being generated can be used efficiently. Thus, by providing the heat distributor 2 and integrally managing the amount of heat supplied from each heat source 1 by the heat distributor 2, it is possible to perform improved heat management for the entire vehicle. If there is no configuration that can integrally manage the amount of heat supplied from each heat source 1, such as the heat distributor 2, each heat source 1 individually generates and supplies heat energy so as to meet the heat demand generated by the vehicle. As a result, there is a possibility that the thermal energy left over from any of the heat sources 1 will not be effectively utilized, resulting in inefficient distribution of thermal energy over the entire vehicle.

アクチュエータ3は、熱源1に設けられたECU等の制御装置の指示によって動作する駆動装置であり、熱源1からの熱出力の制御、熱源1の冷却の制御、熱媒体間の熱交換の制御等を行う。アクチュエータ3としては、各種冷却水の流量を制御するためのポンプ、各種冷却水の流路を変更するためのバルブ、ラジエータや室外熱交換器を冷却するためのファン、コンプレッサー、膨張弁等を例示できる。また、エンジンやヒートポンプは、熱源1であるが、それら自体がアクチュエータ3としても機能することができる。 The actuator 3 is a driving device that operates according to instructions from a control device such as an ECU provided in the heat source 1, and controls the heat output from the heat source 1, controls the cooling of the heat source 1, controls heat exchange between heat media, and the like. I do. Examples of the actuator 3 include pumps for controlling the flow rate of various cooling water, valves for changing the flow paths of various cooling water, fans for cooling radiators and outdoor heat exchangers, compressors, expansion valves, and the like. can. Also, although the engine and the heat pump are heat sources 1 , they themselves can also function as actuators 3 .

1つのアクチュエータ3に対して、複数の熱源1が駆動指示を出力する場合がある。そこで、各アクチュエータ3では、複数の熱源1から駆動指示を受信した場合、調停処理を行い、いずれか1つの熱源1から受信した駆動指示に従って動作する。具体的には、各熱源1は、アクチュエータ3に出力する駆動指示に自由度を設定する。アクチュエータ3は、受信した複数の駆動指示のうち、最も低い自由度が設定された駆動指示に従って動作し、他の駆動指示を棄却する。駆動指示に設定される自由度は、各熱源1が熱量分配器2から分配された熱量を実現するために使用できるアクチュエータ3の数が多いほど高くなるように設定される。つまり、熱量分配器2から分配された熱量を実現するための代替方法が多いほど、アクチュエータ3に対する駆動指示の自由度を高くする。 A plurality of heat sources 1 may output drive instructions to one actuator 3 . Therefore, when each actuator 3 receives drive instructions from a plurality of heat sources 1 , it performs arbitration processing and operates according to the drive instructions received from any one of the heat sources 1 . Specifically, each heat source 1 sets the degree of freedom in the drive instruction output to the actuator 3 . The actuator 3 operates in accordance with the driving instruction for which the lowest degree of freedom is set among the plurality of received driving instructions, and rejects the other driving instructions. The degree of freedom set in the drive instruction is set to increase as the number of actuators 3 that can be used by each heat source 1 to realize the amount of heat distributed from the heat distributor 2 increases. In other words, the greater the number of alternative methods for realizing the amount of heat distributed from the heat distributor 2, the higher the degree of freedom of the drive instruction to the actuator 3.

アクチュエータ3は、採用した駆動指示を出力した熱源1に対しては、自身の駆動量を出力する(図1の破線の矢印参照)。尚、図1では、アクチュエータ3から熱源1へのフィードバック経路の一部を破線の矢印で示し、他のフィードバック経路の記載を省略している。アクチュエータ3からの駆動量としては、電圧値、電流値、冷却水の流速、流量、バルブの回転位置、ファンの回転数等を例示できる。このアクチュエータ3の駆動量は、熱源1において、実際の供給熱量を算出するために用いられる。一方、アクチュエータ3は、棄却した駆動指示を出力した熱源1に対しては、駆動指示を棄却したことを示す棄却通知を出力する。棄却通知は、熱源1が駆動指示を修正して他のアクチュエータ3に駆動指示を再出力する契機として用いられる。 The actuator 3 outputs its own driving amount to the heat source 1 that outputs the adopted driving instruction (see the dashed arrow in FIG. 1). In FIG. 1, part of the feedback path from the actuator 3 to the heat source 1 is indicated by a dashed arrow, and other feedback paths are omitted. Examples of the drive amount from the actuator 3 include a voltage value, a current value, the flow velocity and flow rate of the cooling water, the rotational position of the valve, the rotational speed of the fan, and the like. The drive amount of the actuator 3 is used in the heat source 1 to calculate the actual amount of heat supplied. On the other hand, the actuator 3 outputs a rejection notification indicating that the drive instruction has been rejected to the heat source 1 that has output the rejected drive instruction. The rejection notification is used as an opportunity for the heat source 1 to correct the driving instruction and re-output the driving instruction to another actuator 3 .

具体例を挙げると、車両においては、ファン、エンジンのラジエータ及びヒートポンプの室外熱交換器をこの順に直列に配置し、同一のファンを用いて、エンジンのラジエータ及びヒートポンプの室外熱交換器の両方に対して空気を送り込む構成が採用される場合がある。一例として、このようなファン、ラジエータ及び室外熱交換器の配置を有する車両を寒冷地で使用し、エンジンと車室内の暖房とを同時に始動した場合を考える。この場合、エンジンは暖機を必要とするため、エンジンからファンのアクチュエータへと駆動を停止させる駆動指示が出力される一方、エアコンのヒートポンプでは外気とこれより低温の冷媒との間で熱交換を行う必要があるため、ヒートポンプからファンのアクチュエータへと回転数を上昇させる駆動指示が出力され得る。ただし、エアコンのヒートポンプは、ファンが停止している場合でも、コンプレッサーや膨張弁の調整によってエアコンに必要な熱を発生することが可能である。 As a specific example, in a vehicle, a fan, an engine radiator, and a heat pump outdoor heat exchanger are arranged in series in this order, and the same fan is used for both the engine radiator and the heat pump outdoor heat exchanger. In some cases, a configuration in which air is sent in is adopted. As an example, consider a case where a vehicle having such an arrangement of fans, radiators and outdoor heat exchangers is used in cold climates and the engine and the heating of the vehicle interior are started at the same time. In this case, since the engine needs to be warmed up, the engine outputs a drive instruction to the fan actuator to stop driving, while the heat pump of the air conditioner exchanges heat between the outside air and the cooler refrigerant. As it needs to be done, a drive command can be output from the heat pump to the fan actuator to increase the rpm. However, even when the fan is stopped, the heat pump of the air conditioner can generate the necessary heat for the air conditioner by adjusting the compressor and expansion valve.

そこで、エアコンのヒートポンプからファンへの回転数を上昇させる駆動指示には、エ
ンジンの暖機時にファンを停止させる駆動指示よりも高い自由度を設定しておく。このように構成すれば、ファンのアクチュエータは、エンジンとヒートポンプから矛盾する駆動指示を受信した場合でも、設定された自由度に基づいて、どの駆動指示を採用するかを決定する調停処理を行い、最も自由度の低い駆動指示に基づいて動作することができる。この例では、ファンのアクチュエータは、最も低い自由度が設定されたエンジンから出力された駆動指示を採用し、ヒートポンプから出力された駆動指示を棄却する。ヒートポンプは、棄却通知を受信すると、駆動指示を修正し、他のアクチュエータ(例えば、コンプレッサーや膨張弁)に対して駆動指示を再出力することにより、熱量分配器2から指示された供給熱量の実現を試みることができる。
Therefore, a higher degree of freedom is set for the driving instruction to increase the rotational speed from the heat pump of the air conditioner to the fan than the driving instruction to stop the fan when the engine is warmed up. With this configuration, even if the fan actuator receives contradictory driving instructions from the engine and the heat pump, it performs arbitration processing to determine which driving instruction to adopt based on the set degrees of freedom, It can operate based on the drive instruction with the lowest degree of freedom. In this example, the fan actuator adopts the drive command output from the engine with the lowest degrees of freedom and rejects the drive command output from the heat pump. When the heat pump receives the rejection notification, it corrects the drive instruction and re-outputs the drive instruction to other actuators (for example, compressors and expansion valves), thereby realizing the amount of heat supplied as instructed by the heat distributor 2. you can try

熱量分配器2が各熱源1に要求熱量を分配する際、車両全体の要求熱量(総量)に対して、全ての熱源1の供給可能熱量の総量が不足する場合が考えられる。そこで、車両において発生する熱要求に優先度を関連付けておき、熱量分配器2は、取得した熱要求の優先度に応じて、どの熱要求に対して優先的に熱量を供給するかを決定することが好ましい。熱要求に設定される優先度は、熱要求の属性(例えば、車両の走行に必要な熱要求であるのか、車室内の快適性向上のために必要な熱要求であるのか等)に基づいて予め設定することができる。熱要求に設定される優先度は、快適性向上のために必要な熱要求よりも、車両の走行に必要な熱要求を高くすることが好ましい。熱量分配器2は、車両全体の要求熱量よりも、全ての熱源1の供給可能熱量の総量が小さい場合には、相対的に低い優先度が設定された熱要求を破棄することができる。 When the heat distributor 2 distributes the required amount of heat to each heat source 1, the total amount of heat that can be supplied by all the heat sources 1 may be insufficient with respect to the required amount of heat (total amount) of the entire vehicle. Therefore, a priority is associated with the heat request generated in the vehicle, and the heat distributor 2 determines which heat request is preferentially supplied with heat according to the obtained priority of the heat request. is preferred. The priority set for the heat demand is based on the attributes of the heat demand (for example, is the heat demand required for running the vehicle, is the heat demand necessary for improving the comfort in the passenger compartment, etc.). Can be set in advance. It is preferable that the priority to be set for the heat request is higher for the heat required for running the vehicle than for the heat required for improving comfort. The heat distributor 2 can discard a heat request with a relatively low priority when the total amount of heat that can be supplied from all the heat sources 1 is smaller than the amount of heat required for the entire vehicle.

ここで、一例として、寒冷地においてエンジンと暖房とを同時に始動し、エンジンを暖機するための熱要求と、エアコンで車室内を設定温度まで暖めるための熱要求とが、熱量分配器2に入力された場合を考える。熱量分配器2は、車両全体の要求熱量よりも、全ての熱源1の供給可能熱量の総量が小さく、かつ、エンジンの供給可能熱量がエンジンの暖機に必要な熱量より少ないと判定した場合、エアコンが要求した相対的に優先度の低い熱要求を破棄し、エアコンを駆動するためのヒートポンプの供給可能熱量をエンジンの暖機のために割り当てる。 Here, as an example, the heat demand for starting the engine and heating at the same time in a cold region and the heat demand for warming up the engine and the heat demand for warming the vehicle interior to the set temperature with the air conditioner are sent to the calorific value distributor 2. Consider the case of input. When the heat distributor 2 determines that the total amount of heat that can be supplied by all the heat sources 1 is smaller than the amount of heat required for the entire vehicle, and that the amount of heat that can be supplied by the engine is smaller than the amount of heat required to warm up the engine, A relatively low-priority heat request requested by the air conditioner is discarded, and the suppliable heat amount of the heat pump for driving the air conditioner is allocated for warming up the engine.

このように、熱要求のそれぞれに優先度を設定しておくことにより、各時点で全ての熱源1が供給可能な熱量を、熱エネルギーの必要性が相対的に高い熱要求から順に割り当てることができ、熱分配の効率化を図ることができる。 In this way, by setting priorities for each of the heat requests, it is possible to allocate the amount of heat that can be supplied by all the heat sources 1 at each time point in descending order of the need for heat energy. It is possible to improve the efficiency of heat distribution.

また、熱量分配器2は、各熱源1が実際に供給している実供給熱量を取得する。この実供給熱量は、アクチュエータ3の駆動量に基づいて熱源1が算出したものである。熱量分配器2は、各熱源1に分配した熱量と各熱源1から取得した実供給熱量とに基づいて、各熱源1に分配した熱量を修正する。修正が必要なケースとしては、熱源1に対して熱量分配器2が分配した熱量を熱源1が供給できなかったケース、誤差要因により熱源1に対して熱量分配器2が分配した熱量と実供給熱量とに所定以上の乖離が生じたケース、いずれかの熱源1が使用できなくなったケース等が考えられる。熱量分配器2は、必要に応じて、各熱源1に要求熱量を再分配し、各熱源1に熱供給を再度指示する。本実施形態では、アクチュエータ3の駆動量を熱量分配器2ではなく、熱源1にフィードバックし、熱源1がアクチュエータ3の駆動量に基づいて算出した実供給熱量を熱量分配器2に出力する。実供給熱量を算出するには、アクチュエータ3の駆動量に加えて、熱源1の動作状態を特定する情報が必要となる。したがって、熱量分配器2において実供給熱量を算出する目的でアクチュエータ3の駆動量をフィードバックする構成とすると、熱源1の動作状態を特定する情報も熱量分配器2にフィードバックする必要が生じ、熱量分配器2の入出力インタフェース及び制御処理が煩雑となる。本実施形態では、熱源1において実供給熱量を算出して熱量分配器2に出力する構成としているため、熱量分配器2の入出力インタフェース及び制御処理を簡略化することができる。また、熱源1またはアクチュエータ3の一部
が変更された場合でも、熱量分配器2の入出力インタフェース及び制御処理の変更が不要となるので、車両のシステム構成に依存することなく、車両全体の熱管理を統合的に行うことができる。
Also, the heat distributor 2 acquires the actual amount of heat actually supplied by each heat source 1 . This actual amount of heat supplied is calculated by the heat source 1 based on the drive amount of the actuator 3 . The heat distributor 2 corrects the amount of heat distributed to each heat source 1 based on the amount of heat distributed to each heat source 1 and the actual amount of heat supplied from each heat source 1 . Cases that need to be corrected include the case where the heat source 1 could not supply the heat quantity distributed by the heat distributor 2 to the heat source 1, and the heat quantity distributed by the heat distributor 2 to the heat source 1 due to an error factor and the actual supply. There may be a case where there is a deviation of a predetermined amount or more from the amount of heat, a case where one of the heat sources 1 cannot be used, or the like. The heat quantity distributor 2 redistributes the required heat quantity to each heat source 1 as needed, and instructs each heat source 1 to supply heat again. In this embodiment, the drive amount of the actuator 3 is fed back to the heat source 1 instead of the heat distributor 2, and the heat source 1 outputs to the heat distributor 2 the actual supply heat amount calculated based on the drive amount of the actuator 3. In order to calculate the actual amount of heat supplied, in addition to the drive amount of the actuator 3, information specifying the operating state of the heat source 1 is required. Therefore, if the drive amount of the actuator 3 is fed back to the heat distributor 2 for the purpose of calculating the actual amount of heat supplied, it becomes necessary to also feed back information specifying the operating state of the heat source 1 to the heat distributor 2. The input/output interface and control processing of the device 2 become complicated. In this embodiment, since the heat source 1 calculates the actual amount of heat supplied and outputs it to the heat distributor 2, the input/output interface and control processing of the heat distributor 2 can be simplified. Further, even if part of the heat source 1 or the actuator 3 is changed, there is no need to change the input/output interface of the heat quantity distributor 2 and the control processing. Management can be performed in an integrated manner.

尚、熱量分配器2は、上述した熱要求により要求とされる熱量、供給可能熱量及び実供給熱量をいずれも熱量単位で管理することが好ましい。この場合、熱量分配器2における熱分配処理や修正処理(再分配処理)を容易に行うことができる。ただし、熱量分配器2が車両の各装置からの熱要求により要求される熱量を取得する代わりに、温度等の他のパラメータを取得して、当該他のパラメータに基づいて分配処理や修正処理を行っても良い。 It is preferable that the heat distributor 2 manages the amount of heat required by the above-described heat requirement, the amount of heat that can be supplied, and the amount of heat actually supplied, in units of heat amount. In this case, heat distribution processing and correction processing (redistribution processing) in the heat quantity distributor 2 can be easily performed. However, instead of the heat quantity distributor 2 acquiring the heat quantity required by the heat request from each device of the vehicle, other parameters such as temperature are acquired, and distribution processing and correction processing are performed based on the other parameters. you can go

<制御処理>
図2は、図1に示した熱エネルギー制御システムが実行する制御処理を説明するシーケンス図である。
<Control processing>
FIG. 2 is a sequence diagram illustrating control processing executed by the thermal energy control system shown in FIG.

ステップS1:熱量分配器2は、車両全体で発生した熱要求を取得する。その後、処理はステップS2に移る。 Step S1: The heat distributor 2 acquires the heat demand generated in the entire vehicle. After that, the process moves to step S2.

ステップS2:複数の熱源1のそれぞれは、供給可能熱量を熱量分配器2に出力する。熱源1の供給可能熱量は、例えば、熱源1の動作状態及びアクチュエータ3の動作状態に基づいて算出することができる。その後、処理はステップS3に移る。 Step S<b>2 : Each of the heat sources 1 outputs the suppliable heat quantity to the heat quantity distributor 2 . The amount of heat that can be supplied from the heat source 1 can be calculated based on the operating state of the heat source 1 and the operating state of the actuator 3, for example. After that, the process moves to step S3.

ステップS3:熱量分配器2は、熱量の分配処理を実行する。具体的には、熱量分配器2は、ステップS1で取得した全ての熱要求から算出される要求熱量と、ステップS2で各熱源1から出力された供給可能熱量に基づき、各熱源1に分配する要求熱量を決定する。ステップS3の分配処理においては、上述した通り、車両全体での要求熱量(総量)と各熱源1の供給可能熱量の総量との大小関係や、各熱源1の供給可能熱量に基づく熱供給余力、熱要求に設定された優先度が用いられる。その後、処理はステップS4に移る。 Step S3: The heat distributor 2 executes heat distribution processing. Specifically, the heat distributor 2 distributes to each heat source 1 based on the required heat amount calculated from all the heat requests acquired in step S1 and the suppliable heat amount output from each heat source 1 in step S2. Determine the amount of heat required. In the distribution process of step S3, as described above, the magnitude relationship between the required heat amount (total amount) of the entire vehicle and the total amount of heat that can be supplied by each heat source 1, the heat supply surplus capacity based on the heat amount that can be supplied by each heat source 1, The priority set for the heat request is used. After that, the process moves to step S4.

ステップS4:熱量分配器2は、各熱源1に対して、ステップS3で分配した熱量の供給を指示する。その後、処理はステップS5に移る。 Step S4: The heat distributor 2 instructs each heat source 1 to supply the heat distributed in step S3. After that, the process moves to step S5.

ステップS5:各熱源1は、熱量分配器2により分配された熱量を実現できるよう、アクチュエータ3に駆動指示を出力する。尚、エンジンやヒートポンプのように、アクチュエータ3としても機能する熱源1は、自ら出力を制御する。その後、処理はステップS6に移る。 Step S5: Each heat source 1 outputs a drive instruction to the actuator 3 so that the heat quantity distributed by the heat quantity distributor 2 can be realized. Note that the heat source 1 that also functions as an actuator 3, such as an engine or a heat pump, controls its own output. After that, the process moves to step S6.

ステップS6:アクチュエータ3は、複数の駆動指示を受信し、かつ、受信した複数の駆動指示が同時に成立し得ない場合は、調停処理を実行する。上述したように、アクチュエータ3は、受信した駆動指示のそれぞれに設定された自由度を参照し、最も低い自由度が設定された駆動指示を採用し、それ以外の駆動指示を棄却する。アクチュエータ3が1つの駆動指示を受信した場合は、アクチュエータ3は、調停処理を行わず、当該1つの駆動指示を採用する。また、受信した複数の駆動指示の間で矛盾が生じていない場合は、アクチュエータ3は、複数の駆動指示のいずれかを採用する。その後、処理はステップS7に移る。 Step S6: When the actuator 3 receives a plurality of drive instructions and the received plurality of drive instructions cannot be established at the same time, the actuator 3 executes arbitration processing. As described above, the actuator 3 refers to the degree of freedom set for each of the received drive instructions, adopts the drive instruction with the lowest degree of freedom, and rejects the other drive instructions. When the actuator 3 receives one drive instruction, the actuator 3 adopts the one drive instruction without performing arbitration processing. Further, when there is no contradiction among the received drive instructions, the actuator 3 adopts any one of the drive instructions. After that, the process moves to step S7.

ステップS7:アクチュエータ3は、ステップS6で採用した駆動指示に基づいて動作を制御する。具体的には、冷却水の流量や流路、ファンの回転数等を制御する。その後、処理はステップS8またはS9に移る。より詳細には、アクチュエータ3は、ステップS6で採用した駆動指示を出力した熱源1に対しては、ステップS8の処理を実行し、ステ
ップS6で棄却した駆動指示を出力した熱源1に対しては、ステップS9の処理を実行する。
Step S7: Actuator 3 controls the operation based on the drive instruction adopted in step S6. Specifically, it controls the flow rate and flow path of the cooling water, the rotation speed of the fan, and the like. After that, the process moves to step S8 or S9. More specifically, the actuator 3 executes the process of step S8 for the heat source 1 that outputs the drive instruction adopted in step S6, and performs the process of step S8 for the heat source 1 that outputs the drive instruction rejected in step S6. , the process of step S9 is executed.

ステップS8:アクチュエータ3は、ステップS6で採用した駆動指示を出力した熱源1に対して、駆動指示に従って動作制御を行った後のアクチュエータ3の駆動量を出力する。その後、処理はステップS12に移る。 Step S8: The actuator 3 outputs the drive amount of the actuator 3 after the operation control is performed according to the drive instruction to the heat source 1 that outputs the drive instruction adopted in step S6. After that, the process moves to step S12.

ステップS9:アクチュエータ3は、ステップS6で棄却した駆動指示を出力した熱源1に対して、駆動指示を棄却したことを示す棄却通知を出力する。その後、処理はステップS10に移る。 Step S9: The actuator 3 outputs a rejection notice indicating rejection of the drive instruction to the heat source 1 that output the drive instruction rejected in step S6. After that, the process moves to step S10.

ステップS10:熱源1は、アクチュエータ3から棄却通知を受信すると、駆動指示を修正する。より詳細には、熱源1は、熱量分配器2により分配された熱量を他のアクチュエータ3の駆動により実現できるか否かを判定し、分配された熱量を他のアクチュエータ3の駆動により実現できると判定した場合には、他のアクチュエータ3に対する駆動指示を生成する。その後、処理はステップS11に移る。 Step S10: When the heat source 1 receives the rejection notification from the actuator 3, it modifies the drive instruction. More specifically, the heat source 1 determines whether or not the amount of heat distributed by the heat distributor 2 can be realized by driving the other actuator 3, and determines that the distributed amount of heat can be realized by driving the other actuator 3. When determined, a drive instruction for another actuator 3 is generated. After that, the process moves to step S11.

ステップS11:熱源1は、再作成した駆動指示を、ステップS5における出力先とは異なるアクチュエータ3に出力する。その後、処理はステップS6に移り、ステップS6~S11の処理を繰り返し実行する。 Step S11: The heat source 1 outputs the recreated drive instruction to the actuator 3 different from the output destination in step S5. After that, the process moves to step S6, and the processes of steps S6 to S11 are repeatedly executed.

ステップS12:熱源1は、アクチュエータ3から取得した駆動量に基づいて実供給熱量を算出する。実供給熱量は、アクチュエータ3の駆動量に加え、熱源1が検出した値または保持する値を用いて算出することができる。例えば、熱源1がエンジンであり、アクチュエータ3がウォーターポンプである場合、熱源1が検出した冷却水の温度変化と、アクチュエータ3から取得した冷却水の流量とに基づいて、実供給熱量を算出できる。その後、処理はステップS13に移る。 Step S<b>12 : The heat source 1 calculates the actual amount of heat supplied based on the drive amount acquired from the actuator 3 . The actual amount of heat supplied can be calculated using the value detected or held by the heat source 1 in addition to the drive amount of the actuator 3 . For example, when the heat source 1 is an engine and the actuator 3 is a water pump, the actual amount of heat supplied can be calculated based on the temperature change of the cooling water detected by the heat source 1 and the flow rate of the cooling water obtained from the actuator 3. . After that, the process moves to step S13.

ステップS13:熱源1は、算出した実供給熱量を熱量分配器2に出力する。その後、処理はステップS14に移る。 Step S<b>13 : The heat source 1 outputs the calculated actual supply heat quantity to the heat quantity distributor 2 . After that, the process moves to step S14.

ステップS14:熱量分配器2は、各熱源1に対してステップS4で指示した供給熱量と、各熱源1から取得した実供給熱量とに基づき、各熱源1に分配した熱量を修正(再分配)する。その後、処理はステップS15に移る。 Step S14: The heat distributor 2 corrects (redistributes) the amount of heat distributed to each heat source 1 based on the amount of heat supplied to each heat source 1 in step S4 and the actual amount of heat supplied obtained from each heat source 1. do. After that, the process moves to step S15.

ステップS15:熱量分配器2は、ステップS14で修正した熱量の供給を各熱源1に指示する。 Step S15: The heat distributor 2 instructs each heat source 1 to supply the heat amount corrected in step S14.

以降、ステップS1~S15の処理を所定の時間間隔で繰り返し実行することにより、車両における熱エネルギーの分配処理を継続する。 Thereafter, the processes of steps S1 to S15 are repeatedly executed at predetermined time intervals to continue the process of distributing thermal energy in the vehicle.

尚、上述した熱量分配器は、図2に示した熱量分配器の制御処理を実行する専用の回路によって実現しても良い。また、上述した熱量分配器2は、例えば、プロセッサ、ROM、RAM、ハードディスクを有するECU等のコンピュータに、図2に示したステップS1、S3、S4及びS13~S15の処理を実行させることにより実現しても良い。また、図2に示した熱源1の制御処理は、熱源1を制御するためのECU等のコンピュータに、図2に示したステップS5及びS8~S12の処理を実行させることにより実現することができる。同様に、図2に示したアクチュエータ3の制御処理は、アクチュエータ3を制御するためのECUまたは制御基板のコンピュータに、図2に示したステップS6及びS7の処理を実行させることにより実現することができる。図2の制御処理をコンピュー
タに実行させる場合、図2に示した制御処理のプログラムを予めROMやハーディスク等の記憶装置に格納しておき、コンピュータが備えるプロセッサに記憶装置からプログラムを読み出させて実行させることにより、熱量分配器2、熱源1及びアクチュエータ3のそれぞれの制御処理を実行できる。
Incidentally, the heat distributor described above may be realized by a dedicated circuit for executing the control processing of the heat distributor shown in FIG. Further, the heat quantity distributor 2 described above is realized by causing a computer such as an ECU having a processor, a ROM, a RAM, and a hard disk to execute the processes of steps S1, S3, S4, and S13 to S15 shown in FIG. You can Further, the control processing of the heat source 1 shown in FIG. 2 can be realized by causing a computer such as an ECU for controlling the heat source 1 to execute the processing of steps S5 and S8 to S12 shown in FIG. . Similarly, the control processing of the actuator 3 shown in FIG. 2 can be realized by causing the ECU for controlling the actuator 3 or the computer of the control board to execute the processing of steps S6 and S7 shown in FIG. can. When a computer is caused to execute the control processing of FIG. 2, the program of the control processing shown in FIG. Each control process of the heat quantity distributor 2, the heat source 1, and the actuator 3 can be executed by executing the control process.

<効果等>
本実施形態に係る熱エネルギー制御システム10では、熱量分配器2が、熱源1の供給可能熱量に基づいて、車両全体で発生する熱要求から算出される要求熱量を熱源1に割り当てる。熱量分配器2で要求熱量と熱源1の供給熱量を統合的に管理することにより、車両全体で改善された熱管理を行うことができる。
<Effects, etc.>
In the thermal energy control system 10 according to the present embodiment, the heat distributor 2 allocates to the heat source 1 the required heat amount calculated from the heat request generated in the entire vehicle based on the suppliable heat amount of the heat source 1 . By integrally managing the amount of heat required and the amount of heat supplied from the heat source 1 by the heat distributor 2, improved heat management can be performed for the entire vehicle.

また、車両全体で発生する熱要求は、エンジン、走行用モータ、走行用モータのパワーコントロールユニット、車室内の冷暖房装置、走行用モータの駆動バッテリーの動作に伴って発生する熱要求などを含む。したがって、熱量分配器2は、様々な熱要求を統合的に管理することができる。 Further, the heat demand generated in the entire vehicle includes the heat demand generated by the operation of the engine, the driving motor, the power control unit of the driving motor, the cooling and heating device in the vehicle interior, and the drive battery of the driving motor. Therefore, the heat distributor 2 can integrally manage various heat requirements.

また、車両全体で発生する熱要求に優先度を設定し、要求熱量に対して、各熱源1の供給可能熱量の総量が小さい場合には、熱量分配器2は、相対的に低い優先度が設定された熱要求を破棄することができる。熱要求に対して優先度を設定することにより、供給可能熱量の総量と熱エネルギーの必要性の高さとに応じて、熱エネルギーを分配することができる。 Further, priority is set for the heat demand generated in the entire vehicle, and when the total amount of heat that can be supplied from each heat source 1 is small with respect to the amount of heat required, the heat quantity distributor 2 gives a relatively low priority. A set heat request can be discarded. By prioritizing heat requirements, heat energy can be distributed according to the total amount of heat that can be supplied and the level of need for heat energy.

また、各熱源1が出力するアクチュエータ3への駆動指示には自由度が設定されており、アクチュエータ3は、2以上の熱源から駆動指示を受信し、かつ、受信した駆動指示のそれぞれが同時に成立し得ない場合、最も低い自由度が設定された駆動指示に基づいて動作し、他の駆動指示を棄却することができる。熱源1からアクチュエータ3への駆動指示に自由度を設定することにより、複数の駆動指示間で矛盾が生じる場合でも、合理的にアクチュエータ3を駆動することができる。 In addition, the degree of freedom is set for the drive instruction to the actuator 3 output by each heat source 1, and the actuator 3 receives drive instructions from two or more heat sources, and each of the received drive instructions is established at the same time. If it is not possible, it can operate based on the driving instruction with the lowest degree of freedom and reject the other driving instructions. By setting the degree of freedom in the drive instructions from the heat source 1 to the actuator 3, the actuator 3 can be driven rationally even when a contradiction occurs between a plurality of drive instructions.

また、アクチュエータ3は、棄却した駆動指示を出力した熱源1に対して、駆動指示を棄却したこと示す棄却通知を出力し、熱源1は、棄却通知を受信すると、棄却通知を出力したアクチュエータ3とは異なるアクチュエータ3に対して駆動指示を出力することができる。アクチュエータ3から熱源1へと駆動指示の棄却を通知することにより、熱源1では、熱量分配器2から分配された熱量を実現する代替方法を実行することができる。 Further, the actuator 3 outputs a rejection notification indicating that the drive instruction has been rejected to the heat source 1 that has output the rejected drive instruction. can output drive instructions to different actuators 3 . By notifying the heat source 1 of the rejection of the drive instruction from the actuator 3 , the heat source 1 can execute an alternative method of realizing the heat quantity distributed from the heat quantity distributor 2 .

また、アクチュエータ3は、駆動指示を出力した熱源1に対して駆動量を出力し、熱源1は、アクチュエータ3から取得した駆動量に基づいて算出した実供給熱量を熱量分配器2に出力することができる。アクチュエータ3から熱量分配器2に実際の供給熱量をフィードバックすることにより、熱量分配器2は、各熱源1に対して当初分配した熱量が実現されているか否かを管理することができる。 Further, the actuator 3 outputs a drive amount to the heat source 1 that has output the drive instruction, and the heat source 1 outputs the actual supply heat amount calculated based on the drive amount acquired from the actuator 3 to the heat quantity distributor 2. can be done. By feeding back the actual heat quantity supplied from the actuator 3 to the heat quantity distributor 2, the heat quantity distributor 2 can manage whether or not the heat quantity initially distributed to each heat source 1 is achieved.

また、熱量分配器2は、熱源1の各々から受信した実供給熱量に基づいて、熱源1の各々に分配した熱量を修正することができる。熱源1の実際の供給熱量に基づいて、各熱源1に分配した熱量を修正することにより、各熱源1が熱量分配器2から要求された熱量を何らかの要因で供給できなかった場合でも、各熱源1に要求熱量を再分配することが可能となる。 Also, the heat distributor 2 can correct the amount of heat distributed to each of the heat sources 1 based on the actual amount of heat supplied from each of the heat sources 1 . By correcting the amount of heat distributed to each heat source 1 based on the actual amount of heat supplied by the heat source 1, even if each heat source 1 cannot supply the amount of heat requested from the heat amount distributor 2 for some reason, each heat source It becomes possible to redistribute the required amount of heat to 1.

(第2の実施形態)
<構成>
図3は、第2の実施形態に係る熱エネルギー制御システムの概略構成を示す機能ブロッ
ク図である。以下、本実施形態と第1の実施形態との相異点を中心に説明する。
(Second embodiment)
<Configuration>
FIG. 3 is a functional block diagram showing a schematic configuration of a thermal energy control system according to the second embodiment. The following description focuses on differences between the present embodiment and the first embodiment.

本実施形態に係る熱エネルギー制御システム20は、第1の実施形態に係る熱エネルギー制御システム10に更に状態管理部4を追加したものである。 A thermal energy control system 20 according to the present embodiment is obtained by adding a state management section 4 to the thermal energy control system 10 according to the first embodiment.

状態管理部4は、車両の状態または外部環境の状態(以下、これらを併せて「システム状態」という)を取得して管理し、取得したシステム状態に基づいて、車両におけるより好ましい熱経路を選択することができる。例えば、状態管理部4がエンジン暖機中というシステム状態を取得した場合、エンジンの暖機を促進するために、エンジンの冷却水の経路として非暖機中より短絡した経路を選択する。状態管理部4は、選択したより好ましい熱経路をシステム状態情報として熱量分配器2に出力する。 The state management unit 4 acquires and manages the state of the vehicle or the state of the external environment (hereinafter collectively referred to as "system state"), and selects a more favorable heat path in the vehicle based on the acquired system state. can do. For example, when the state management unit 4 acquires a system state indicating that the engine is warming up, it selects a short-circuited route as the route of cooling water for the engine, rather than during non-warming up, in order to promote warming up of the engine. The state management unit 4 outputs the selected more preferable heat path to the heat distributor 2 as system state information.

ここで、車両の状態とは、車両がどのように動作しているかを表す状態をいい、外部環境の状態とは、車両がどのような外部環境に置かれているかを表す状態をいう。システム状態に含まれる車両の状態には、エンジンの暖機中である状態、車両が走行している状態、車両が停止している状態、ハイブリッド車両がエンジン走行している状態、ハイブリッド車両が走行用モータでEV走行している状態、省エネモードで走行している状態等が含まれる。また、外部環境の状態には、車両が特定の季節に使用されている状態、車両が寒冷地で使用されている状態等が含まれる。 Here, the state of the vehicle indicates how the vehicle operates, and the state of the external environment indicates the external environment in which the vehicle is placed. The vehicle statuses included in the system status include the engine warming-up status, vehicle running status, vehicle stopped status, hybrid vehicle engine running status, and hybrid vehicle running status. This includes the state of EV running with the original motor, the state of running in energy-saving mode, and so on. In addition, the state of the external environment includes a state in which the vehicle is used in a specific season, a state in which the vehicle is used in a cold region, and the like.

熱量分配器2は、状態管理部4から出力されたシステム状態情報に基づき、各熱源1に供給熱量を分配し、また、分配した熱量を修正する。例えば、エンジンが暖機中であって、エンジンの暖機を促進する冷却水の経路が選択されているときに、エアコンから車室内を暖めるための熱要求があった場合を想定する。この場合、熱量分配器2は、システム状態情報に基づいてエンジンの暖機を促進している状態にあると判定し、エアコンからの要求された熱量を他の熱源1に分配することができる。 The heat distributor 2 distributes the amount of heat supplied to each heat source 1 and corrects the distributed amount of heat based on the system state information output from the state management unit 4 . For example, it is assumed that the air conditioner requests heat to warm the interior of the vehicle while the engine is warming up and a cooling water route that promotes warming up of the engine is selected. In this case, the heat distributor 2 determines that the warm-up of the engine is being accelerated based on the system state information, and can distribute the heat requested from the air conditioner to the other heat source 1.

尚、本実施形態に係る制御処理は、図2に示した制御シーケンスに、更に、状態管理部4がシステム状態を取得するステップと、状態管理部4が熱量分配器2にシステム状態情報を出力するステップとを追加することによって実現できる。熱量分配器2は、図2のステップS3の分配処理及びステップS14の修正処理において、状態管理部4から取得したシステム状態情報を反映させる。 The control process according to the present embodiment includes the control sequence shown in FIG. It can be realized by adding a step to The heat distributor 2 reflects the system state information acquired from the state management unit 4 in the distribution process of step S3 and the correction process of step S14 in FIG.

<効果等>
以上説明したように、本実施形態に係る熱エネルギー制御システム20は、システム状態(車両の状態または外部環境の状態)を取得して管理する状態管理部4を備え、熱量分配器2は、状態管理部4が取得したシステム状態に基づいて、熱源1の各々に分配した熱量を修正することができる。この構成によれば、システム状態を加味して、車両全体でより効率的な熱管理を行うことができる。
<Effects, etc.>
As described above, the thermal energy control system 20 according to the present embodiment includes the state management unit 4 that acquires and manages the system state (state of the vehicle or state of the external environment). The amount of heat distributed to each heat source 1 can be corrected based on the system status acquired by the management unit 4 . According to this configuration, it is possible to perform more efficient heat management in the entire vehicle by considering the system state.

(変形例)
尚、上記の第1の実施形態において、熱経路の選択は、熱量分配器2が行っても良い。この場合、車両が備える熱源1の間で熱エネルギーを伝達可能な1以上の熱経路を表す情報を、車両が備える熱源1及びアクチュエータ3の構成に応じて予め用意しておき、熱量分配器2が、この熱経路の情報を参照することによってより好ましい熱経路(熱エネルギーの伝達経路)を選択することができる。熱量分配器2が熱経路を選択可能な場合、熱要求と各熱源1の実現可能熱量と実発熱量に加えて、選択または切り替えられた熱経路の情報に基づいて、熱源への要求熱量の割り当てを行うことができる。例えば、エンジンの暖機のために要求される熱要求をエンジンの駆動だけでまかなうことができず、かつ、ヒートポンプ等の他の熱源1において供給熱量に余裕がある場合には、熱量分配器2は、熱経
路情報に基づいて、ヒートポンプ等の他の熱源1からエンジンへと熱エネルギーを伝達する熱経路を選択し、エンジンの暖機に不足している熱量を当該他の熱源1に割り当てることができる。この場合、更に、熱量分配器2は、熱経路の切り替えを実行しても良い。この場合、上述した熱経路情報に含まれる熱経路を実現するための各アクチュエータ3の動作状態を表す情報を、車両が備える熱源1及びアクチュエータ3の構成に応じて予め用意し、このアクチュエータ3の動作状態情報を参照することによって、アクチュエータ3を直接または間接に切り替えることより、現在の熱経路から好ましい熱経路(熱エネルギーの伝達経路)へと切り替えることができる。上記の第2の実施形態においては、この熱経路の切り替え処理を状態管理部4が実行しても良い。
(Modification)
In the above-described first embodiment, the heat distribution device 2 may select the heat path. In this case, information indicating one or more heat paths through which thermal energy can be transferred between the heat sources 1 provided in the vehicle is prepared in advance according to the configurations of the heat sources 1 and the actuators 3 provided in the vehicle. However, by referring to this heat path information, a more preferable heat path (thermal energy transfer path) can be selected. When the heat quantity distributor 2 can select a heat route, in addition to the heat request, the realizable heat quantity and the actual heat generation quantity of each heat source 1, based on the information of the selected or switched heat route, the required heat quantity to the heat source Assignments can be made. For example, if the heat demand required for warming up the engine cannot be met only by driving the engine, and there is a surplus in the amount of heat supplied from another heat source 1 such as a heat pump, the heat distributor 2 selects a heat path for transferring heat energy from another heat source 1 such as a heat pump to the engine based on the heat path information, and allocates the amount of heat insufficient for warming up the engine to the other heat source 1. can be done. In this case, the heat distributor 2 may also switch heat paths. In this case, information representing the operation state of each actuator 3 for realizing the heat path included in the heat path information described above is prepared in advance according to the configuration of the heat source 1 and the actuator 3 provided in the vehicle. By referring to the operating state information, the current heat path can be switched to the preferred heat path (thermal energy transfer path) by directly or indirectly switching the actuator 3 . In the above-described second embodiment, the state management unit 4 may execute this heat path switching process.

また、熱経路の選択または切り替え(アクチュエータ3の制御)は、上記の各実施形態に係る熱エネルギー制御システム10及び20以外の構成で実行しても良い。 Selection or switching of the heat path (control of the actuator 3) may be performed by a configuration other than the thermal energy control systems 10 and 20 according to the above embodiments.

本開示は、車両が備える複数の熱源から発せられる熱エネルギーの分配を車両全体で最適化するシステムに利用できる。 INDUSTRIAL APPLICABILITY The present disclosure can be used for a system that optimizes the distribution of thermal energy generated by multiple heat sources provided in the vehicle throughout the vehicle.

1 熱源
2 熱量分配器
3 アクチュエータ
4 状態管理部
10、20 熱エネルギー制御システム
REFERENCE SIGNS LIST 1 heat source 2 heat distributor 3 actuator 4 state management unit 10, 20 thermal energy control system

Claims (8)

車両に搭載される熱エネルギー制御システムであって、
複数の熱源と、
前記車両全体で発生する熱要求から算出される要求熱量を前記複数の熱源に割り当てる熱量分配器と、を備え、
前記車両全体で発生する熱要求には、優先度が設定されており、
前記熱量分配器は、前記複数の熱源の供給可能熱量および前記優先度に基づいて、前記要求熱量を前記複数の熱源に割り当てる、熱エネルギー制御システム。
A thermal energy control system mounted on a vehicle, comprising:
a plurality of heat sources;
a heat quantity distributor allocating a required heat quantity calculated from a heat request generated in the entire vehicle to the plurality of heat sources;
Priorities are set for the heat demands generated by the entire vehicle,
The heat energy distributor allocates the required heat amount to the plurality of heat sources based on the suppliable heat amount of the plurality of heat sources and the priority.
前記車両全体で発生する熱要求は、エンジン、走行用モータ、走行用モータのパワーコントロールユニット、車室内の冷暖房装置、走行用モータの駆動バッテリーの動作に伴って発生する熱要求を含む、請求項1に記載の熱エネルギー制御システム。 3. The heat demand generated in the entire vehicle includes a heat demand generated due to the operation of an engine, a driving motor, a power control unit of the driving motor, an air-conditioning device in the passenger compartment, and a drive battery of the driving motor. 2. The thermal energy control system according to claim 1. 前記熱量分配器は、前記要求熱量に対して前記複数の熱源の供給可能熱量の総量が小さい場合、相対的に優先度が低く設定された熱要求を破棄する、請求項1または2に記載の熱エネルギー制御システム。 3. The heat distributor according to claim 1 or 2, wherein when the total amount of heat that can be supplied from said plurality of heat sources is smaller than the requested amount of heat, said heat amount distributor discards a heat request set with a relatively low priority. Thermal energy control system. 少なくとも1つの前記熱源から出力された駆動指示に基づいて駆動され、当該駆動指示を出力した、前記少なくとも1つの熱源が供給する熱量を制御可能な複数の駆動装置を含んでおり、
前記熱源が出力する前記駆動装置への駆動指示には自由度が設定されており、
前記駆動装置は、2以上の前記熱源から駆動指示を受信し、かつ、受信した駆動指示のそれぞれが同時に成立し得ない場合、最も低い自由度が設定された駆動指示に基づいて動作し、他の駆動指示を棄却する、請求項1~3のいずれかに記載の熱エネルギー制御システム。
a plurality of drive devices driven based on a drive instruction output from at least one of the heat sources and capable of controlling an amount of heat supplied by the at least one heat source that outputs the drive instruction;
A degree of freedom is set for the driving instruction to the driving device output by the heat source,
When the driving device receives driving instructions from two or more of the heat sources and the received driving instructions cannot be simultaneously established, the driving device operates based on the driving instruction with the lowest degree of freedom. 4. The thermal energy control system according to any one of claims 1 to 3, which rejects the drive instruction of the .
前記駆動装置は、棄却した前記駆動指示を出力した熱源に対して、前記駆動指示を棄却したこと示す棄却通知を出力し、
前記熱源は、前記棄却通知を受信すると、棄却通知を出力した駆動装置とは異なる駆動装置に対して駆動指示を出力する、請求項4に記載の熱エネルギー制御システム。
The drive device outputs a rejection notification indicating that the drive instruction has been rejected to the heat source that output the rejected drive instruction,
5. The thermal energy control system according to claim 4, wherein said heat source, upon receiving said rejection notice, outputs a drive instruction to a drive device different from the drive device that output said rejection notice.
前記駆動装置は、前記駆動指示を出力した熱源に対して駆動量を出力し、
前記熱源は、前記駆動装置から取得した駆動量に基づいて算出した実供給熱量を前記熱量分配器に出力する、請求項4または5に記載の熱エネルギー制御システム。
The driving device outputs a driving amount to the heat source that outputs the driving instruction,
6. The thermal energy control system according to claim 4, wherein said heat source outputs to said heat quantity distributor an actual supply heat quantity calculated based on the drive quantity obtained from said drive device.
前記熱量分配器は、前記複数の熱源の各々から受信した実供給熱量に基づいて、前記熱源の各々に割り当てた熱量を修正する、請求項6に記載の熱エネルギー制御システム。 7. The thermal energy control system according to claim 6, wherein said heat distributor modifies the heat quantity allocated to each of said heat sources based on the actual heat quantity received from each of said plurality of heat sources. 車両の状態または外部環境の状態を取得して管理する状態管理部を更に備え、
前記熱量分配器は、前記状態管理部が取得した車両の状態または外部環境の状態に基づいて、前記複数の熱源の各々に割り当てた熱量を修正する、請求項1~7のいずれかに記載の熱エネルギー制御システム。
further comprising a state management unit that acquires and manages the state of the vehicle or the state of the external environment;
8. The heat quantity distributor according to any one of claims 1 to 7, wherein said heat quantity distributor corrects the quantity of heat allocated to each of said plurality of heat sources based on the state of the vehicle or the state of the external environment acquired by said state management unit. Thermal energy control system.
JP2022115759A 2018-02-07 2022-07-20 Thermal energy control system Active JP7331999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022115759A JP7331999B2 (en) 2018-02-07 2022-07-20 Thermal energy control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018020271A JP7114920B2 (en) 2018-02-07 2018-02-07 HEAT ENERGY CONTROL SYSTEM, HEAT DISTRIBUTOR, HEAT ENERGY CONTROL METHOD OF VEHICLE
JP2022115759A JP7331999B2 (en) 2018-02-07 2022-07-20 Thermal energy control system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018020271A Division JP7114920B2 (en) 2018-02-07 2018-02-07 HEAT ENERGY CONTROL SYSTEM, HEAT DISTRIBUTOR, HEAT ENERGY CONTROL METHOD OF VEHICLE

Publications (2)

Publication Number Publication Date
JP2022145710A true JP2022145710A (en) 2022-10-04
JP7331999B2 JP7331999B2 (en) 2023-08-23

Family

ID=87576945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022115759A Active JP7331999B2 (en) 2018-02-07 2022-07-20 Thermal energy control system

Country Status (1)

Country Link
JP (1) JP7331999B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090729A (en) * 2008-10-03 2010-04-22 Denso Corp Cooling system for vehicle
JP2010525981A (en) * 2007-04-30 2010-07-29 キャタピラー インコーポレイテッド System for controlling a composite energy system
JP2010280335A (en) * 2009-06-05 2010-12-16 Denso Corp Energy management device
JP2011201488A (en) * 2010-03-26 2011-10-13 Denso Corp Heat source control device of vehicle
JP2012140111A (en) * 2011-01-06 2012-07-26 Denso Corp Vehicle heat source control device
JP2015131597A (en) * 2014-01-15 2015-07-23 株式会社デンソー Vehicle thermal management system
JP2017071283A (en) * 2015-10-06 2017-04-13 株式会社デンソー Heat management system for vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525981A (en) * 2007-04-30 2010-07-29 キャタピラー インコーポレイテッド System for controlling a composite energy system
JP2010090729A (en) * 2008-10-03 2010-04-22 Denso Corp Cooling system for vehicle
JP2010280335A (en) * 2009-06-05 2010-12-16 Denso Corp Energy management device
JP2011201488A (en) * 2010-03-26 2011-10-13 Denso Corp Heat source control device of vehicle
JP2012140111A (en) * 2011-01-06 2012-07-26 Denso Corp Vehicle heat source control device
JP2015131597A (en) * 2014-01-15 2015-07-23 株式会社デンソー Vehicle thermal management system
JP2017071283A (en) * 2015-10-06 2017-04-13 株式会社デンソー Heat management system for vehicle

Also Published As

Publication number Publication date
JP7331999B2 (en) 2023-08-23

Similar Documents

Publication Publication Date Title
US11214117B2 (en) Temperature control system for electric vehicle and method of controlling temperature of electric vehicle
CN205273101U (en) Electronic vehicle multi -mode thermal management system
JP5337793B2 (en) System for controlling a composite energy system
JP7151575B2 (en) Heat demand arbitrator
JP2001018635A (en) Independent type air conditioner for automobile
US10189369B2 (en) Method and system for controlling motors
JP7114920B2 (en) HEAT ENERGY CONTROL SYSTEM, HEAT DISTRIBUTOR, HEAT ENERGY CONTROL METHOD OF VEHICLE
JP7152340B2 (en) Calorie control device and calorie control method
JP7331999B2 (en) Thermal energy control system
US11707966B2 (en) Heat request arbitration device, heat request arbitration method, non-transitory storage medium, and vehicle
JP7367573B2 (en) Heat demand mediation device, method, program, and vehicle
JP2017114179A (en) Vehicle air-conditioning device
JP7176987B2 (en) Heat demand arbitrator
JP2024524455A (en) Vehicle heating control method, device, equipment, medium and program product
US11207940B2 (en) Integrated thermal management system for vehicle
JP6964041B2 (en) Control method of turbo chiller and heat recovery heat source system using it
CN117774605A (en) Vehicle thermal management system, vehicle, and control method for vehicle thermal management system
BR102019002164B1 (en) VEHICLE THERMAL POWER CONTROL SYSTEM
CN118560226A (en) Thermal management system and method suitable for electric engineering machinery and engineering machinery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230724

R151 Written notification of patent or utility model registration

Ref document number: 7331999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151