JP2022143641A - Redox flow battery system and operation method for redox flow battery system - Google Patents

Redox flow battery system and operation method for redox flow battery system Download PDF

Info

Publication number
JP2022143641A
JP2022143641A JP2021044267A JP2021044267A JP2022143641A JP 2022143641 A JP2022143641 A JP 2022143641A JP 2021044267 A JP2021044267 A JP 2021044267A JP 2021044267 A JP2021044267 A JP 2021044267A JP 2022143641 A JP2022143641 A JP 2022143641A
Authority
JP
Japan
Prior art keywords
electrolyte
open
positive electrode
negative electrode
circuit voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021044267A
Other languages
Japanese (ja)
Inventor
久 伊坂
Hisashi Isaka
武 杉田
Takeshi Sugita
大毅 鶴田
Daiki Tsuruta
智之 永山
Tomoyuki Nagayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LE SYSTEM CO Ltd
Nishimatsu Construction Co Ltd
Original Assignee
LE SYSTEM CO Ltd
Nishimatsu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LE SYSTEM CO Ltd, Nishimatsu Construction Co Ltd filed Critical LE SYSTEM CO Ltd
Priority to JP2021044267A priority Critical patent/JP2022143641A/en
Publication of JP2022143641A publication Critical patent/JP2022143641A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a redox flow battery system and an operation method for the redox flow battery system, capable of implementing stable operation.SOLUTION: A redox flow battery system 10 comprises a battery cell 100, a circulation unit 300, an open voltage measurement unit 500, and a control unit 600. The battery cell 100 includes: a positive electrode chamber 110a in which a positive electrode 105a is disposed; a negative electrode chamber 110c in which a negative electrode 105c is disposed; and a diaphragm 120 that separates the positive electrode chamber 110a and the negative electrode chamber 110c. The circulation unit 300 makes a positive electrode electrolyte PL circulate in the positive electrode chamber 110a and makes a negative electrode electrolyte NL circulate in the negative electrode chamber 110c. The open voltage measurement unit 500 measures open voltage of the battery cell 100. The control unit 600 calculates a moving average value of the open voltage measured by the open voltage measurement unit 500 depending on charge depth of the positive electrode electrolyte PL and the negative electrode electrolyte NL and, on the basis of the calculated moving average value of the open voltage, controls charging/discharging of the positive electrode electrolyte PL and the negative electrode electrolyte NL.SELECTED DRAWING: Figure 1

Description

本開示は、レドックスフロー電池システム及びレドックスフロー電池システムの運転方法に関する。 The present disclosure relates to redox flow battery systems and methods of operating redox flow battery systems.

大容量の蓄電池として、レドックスフロー電池が知られている。レドックスフロー電池は、正極と負極との間にイオン交換膜を設けた電池セルに、正極電解液と負極電解液とを循環させて充放電を行う。酸化還元反応により価数が変化する金属を含有する溶液が、正極電解液と負極電解液として使用され、活物質としてバナジウムを含有する電解液が広く使用されている。 A redox flow battery is known as a large-capacity storage battery. In a redox flow battery, charge and discharge are performed by circulating a positive electrode electrolyte and a negative electrode electrolyte in a battery cell provided with an ion exchange membrane between a positive electrode and a negative electrode. A solution containing a metal whose valence number changes due to an oxidation-reduction reaction is used as a positive electrode electrolyte and a negative electrode electrolyte, and an electrolyte containing vanadium as an active material is widely used.

レドックスフロー電池の運転では、安定した運転を実現するために、電解液の充電深度(充電状態:SOC(State of Charge)ともいう)を把握して、充放電を制御している。例えば、特許文献1では、電解液の充電率測定に用いる補助セルから得られる開路電圧に基づいて、電池の充電の停止及び放電の停止の少なくとも一方を行っている。 In the operation of the redox flow battery, charging and discharging are controlled by grasping the charge depth of the electrolyte (also referred to as SOC (State of Charge)) in order to realize stable operation. For example, in Patent Document 1, at least one of stopping battery charging and discharging is performed based on an open circuit voltage obtained from an auxiliary cell used to measure the charging rate of the electrolyte.

特開2003-317788号公報JP-A-2003-317788

特許文献1では、補助セルの開路電圧の測定値(すなわち瞬時開路電圧)から電解液の充電深度を把握している。補助セルの開路電圧の測定では、補助セルにおける電解液の通過ルート、電解液中の活物質の価数のバラツキ、電解液中に発生する気泡等により、測定値にバラツキが生じ、また、異常な値が測定されることもある。したがって、特許文献1の運転方法では、レドックスフロー電池を十分に安定した状態で運転できない虞がある。 In Patent Document 1, the depth of charge of the electrolytic solution is grasped from the measured value of the open circuit voltage of the auxiliary cell (that is, the instantaneous open circuit voltage). When measuring the open-circuit voltage of the auxiliary cell, the route of the electrolyte passing through the auxiliary cell, variations in the valence of the active material in the electrolyte, air bubbles generated in the electrolyte, etc. may cause variations in the measured value. values are sometimes measured. Therefore, in the operation method of Patent Document 1, there is a possibility that the redox flow battery cannot be operated in a sufficiently stable state.

本開示は、上記の事情に鑑みてなされたものであり、安定した運転を実現できる、レドックスフロー電池システム及びレドックスフロー電池システムの運転方法を提供することを目的とする。 The present disclosure has been made in view of the circumstances described above, and aims to provide a redox flow battery system and a method of operating the redox flow battery system that can achieve stable operation.

上記目的を達成するため、本開示の第1の観点に係るレドックスフロー電池システムは、
正極を配置される正極室と、負極を配置される負極室と、前記正極室と前記負極室を隔てる隔膜とを有する電池セルと、
前記正極室に正極電解液を循環させ、前記負極室に負極電解液を循環させる循環部と、
前記電池セルの開放電圧を測定する開放電圧測定部と、
前記正極電解液と前記負極電解液の充電深度に応じて、前記開放電圧測定部により測定された前記開放電圧の移動平均値を求め、求められた前記開放電圧の移動平均値に基づいて、前記正極電解液と前記負極電解液の充放電を制御する制御部と、を備える。
In order to achieve the above object, the redox flow battery system according to the first aspect of the present disclosure includes
a battery cell having a positive electrode chamber in which a positive electrode is arranged, a negative electrode chamber in which a negative electrode is arranged, and a diaphragm separating the positive electrode chamber and the negative electrode chamber;
a circulation unit that circulates a positive electrode electrolyte in the positive electrode chamber and circulates a negative electrode electrolyte in the negative electrode chamber;
an open-circuit voltage measuring unit that measures the open-circuit voltage of the battery cell;
A moving average value of the open-circuit voltage measured by the open-circuit voltage measuring unit is obtained according to the charge depth of the positive electrode electrolyte and the negative electrode electrolyte, and based on the obtained moving average value of the open-circuit voltage, the and a controller for controlling charging and discharging of the positive electrode electrolyte and the negative electrode electrolyte.

本開示の第2の観点に係るレドックスフロー電池システムの運転方法は、
電池セルの開放電圧を測定する測定工程と、
測定された前記開放電圧から、前記電池セルの正極室に供給される正極電解液と前記電池セルの負極室に供給される負極電解液の充電深度に応じて、前記開放電圧の移動平均値を求める算出工程と、
求められた前記開放電圧の移動平均値に基づいて、前記正極電解液と前記負極電解液の充放電を制御する、制御工程と、を含む。
A method for operating a redox flow battery system according to a second aspect of the present disclosure includes:
a measuring step of measuring the open-circuit voltage of the battery cell;
From the measured open-circuit voltage, a moving average value of the open-circuit voltage is calculated according to the charge depth of the positive electrode electrolyte supplied to the positive electrode chamber of the battery cell and the negative electrode electrolyte supplied to the negative electrode chamber of the battery cell. a desired calculation process;
and a control step of controlling charging and discharging of the positive electrode electrolyte and the negative electrode electrolyte based on the obtained moving average value of the open-circuit voltage.

本開示によれば、正極電解液と負極電解液の充電深度に応じて求められた、開放電圧の移動平均値に基づいて、正極電解液と負極電解液の充放電を制御するので、安定した運転を実現できる。 According to the present disclosure, the charging and discharging of the positive electrode electrolyte and the negative electrode electrolyte are controlled based on the moving average value of the open circuit voltage obtained according to the charge depth of the positive electrode electrolyte and the negative electrode electrolyte. can realize driving.

実施形態1に係るレドックスフロー電池システムの模式図である。1 is a schematic diagram of a redox flow battery system according to Embodiment 1. FIG. 実施形態1に係る電解液の充電深度と開放電圧との関係を示す図である。4 is a diagram showing the relationship between the depth of charge of the electrolytic solution and the open-circuit voltage according to Embodiment 1. FIG. 実施形態1に係る制御部を示すブロック図である。3 is a block diagram showing a control unit according to Embodiment 1; FIG. 実施形態1に係る開放電圧の測定値と開放電圧の移動平均値とを示す図である。4 is a diagram showing measured values of open-circuit voltages and moving average values of open-circuit voltages according to Embodiment 1. FIG. 実施形態1に係る制御部のハードウェアの構成を示す図である。3 is a diagram showing the hardware configuration of a control unit according to the first embodiment; FIG. 実施形態1に係るレドックスフロー電池システムの運転方法を示すフローチャートである。4 is a flow chart showing a method of operating the redox flow battery system according to Embodiment 1. FIG. 実施形態2に係る、ソーラ発電量とレドックスフロー電池システムからの充放電電力と充放電制御後のソーラ発電出力との関係の一例を示す図である。FIG. 10 is a diagram showing an example of the relationship between the amount of solar power generation, the charge/discharge power from the redox flow battery system, and the solar power output after charge/discharge control, according to Embodiment 2;

以下、実施形態に係るレドックスフロー電池システムについて、図面を参照して説明する。 Hereinafter, a redox flow battery system according to an embodiment will be described with reference to the drawings.

<実施形態1>
図1~図6を参照して、本実施形態に係るレドックスフロー電池システム10を説明する。
<Embodiment 1>
A redox flow battery system 10 according to the present embodiment will be described with reference to FIGS. 1 to 6. FIG.

レドックスフロー電池システム10は、図1に示すように、電池セル100と、電池セル100に正極電解液PLと負極電解液NLを循環させる循環部300と、を備える。レドックスフロー電池システム10は、電池セル100の開放電圧(OCV:Open Circuit Voltage)を測定する開放電圧測定部500と、正極電解液PLと負極電解液NLの充放電を制御する制御部600と、を更に備える。本実施形態では、正極電解液PLと負極電解液NLの活物質として、バナジウムイオンを用いたレドックスフロー電池を例として説明する。また、正極電解液PLと負極電解液NLとを総称して、電解液とも記載する。 The redox flow battery system 10 includes, as shown in FIG. The redox flow battery system 10 includes an open circuit voltage measurement unit 500 that measures the open circuit voltage (OCV) of the battery cell 100, a control unit 600 that controls charging and discharging of the positive electrolyte PL and the negative electrolyte NL, Further prepare. In this embodiment, a redox flow battery using vanadium ions as the active materials of the positive electrode electrolyte PL and the negative electrode electrolyte NL will be described as an example. Also, the positive electrode electrolyte PL and the negative electrode electrolyte NL are collectively referred to as electrolyte solutions.

レドックスフロー電池システム10は、制御部600の電力変換器610を介して、発電所と負荷との間に接続される。発電所は、例えば、太陽光発電所、風力発電所等の再生可能エネルギー発電所である。負荷は、電力系統、電力需要家である。レドックスフロー電池システム10は、発電所から供給された電力を充電する。また、レドックスフロー電池システム10は、充電された電力を負荷に供給する。 Redox flow battery system 10 is connected between a power plant and a load via power converter 610 of control unit 600 . A power plant is, for example, a renewable energy power plant such as a solar power plant, a wind power plant, or the like. The load is the power system and power consumers. The redox flow battery system 10 charges power supplied from a power plant. Also, the redox flow battery system 10 supplies the charged power to the load.

まず、レドックスフロー電池システム10の電池セル100の具体的構成を説明する。電池セル100は、正極105aと、正極室110aと、負極105cと、負極室110cと、隔膜120とを有する。 First, a specific configuration of the battery cell 100 of the redox flow battery system 10 will be described. Battery cell 100 has positive electrode 105 a , positive electrode chamber 110 a , negative electrode 105 c , negative electrode chamber 110 c and diaphragm 120 .

電池セル100の正極105aには、例えば、カーボン繊維電極が使用される。正極105aは、電池セル100の正極室110aに配置される。電池セル100の正極室110aは、正極105aを配置され、隔膜120により負極室110cと隔てられる。正極電解液PLが正極室110aを循環する。充電時には、正極電解液PL中の4価バナジウムイオンが5価バナジウムイオンに酸化される。放電時には、正極電解液PL中の5価バナジウムイオンが4価バナジウムイオンに還元される。 A carbon fiber electrode, for example, is used for the positive electrode 105a of the battery cell 100 . The positive electrode 105 a is arranged in the positive electrode chamber 110 a of the battery cell 100 . The positive electrode chamber 110a of the battery cell 100 is provided with the positive electrode 105a and separated from the negative electrode chamber 110c by the diaphragm 120 . A positive electrode electrolyte PL circulates in the positive electrode chamber 110a. During charging, tetravalent vanadium ions in the positive electrode electrolyte PL are oxidized to pentavalent vanadium ions. During discharge, the pentavalent vanadium ions in the positive electrode electrolyte PL are reduced to tetravalent vanadium ions.

電池セル100の負極105cには、例えば、カーボン繊維電極が使用される。負極105cは、電池セル100の負極室110cに配置される。電池セル100の負極室110cは、負極105cを配置され、隔膜120により正極室110aと隔てられる。負極電解液NLが負極室110cを循環する。充電時には、負極電解液NL中の3価バナジウムイオンが2価バナジウムイオンに還元される。放電時には、負極電解液NL中の2価バナジウムイオンが3価バナジウムイオンに酸化される。 For the negative electrode 105c of the battery cell 100, for example, a carbon fiber electrode is used. The negative electrode 105 c is arranged in the negative electrode chamber 110 c of the battery cell 100 . A negative electrode chamber 110 c of the battery cell 100 is provided with a negative electrode 105 c and separated from the positive electrode chamber 110 a by a diaphragm 120 . A negative electrode electrolyte NL circulates in the negative electrode chamber 110c. During charging, trivalent vanadium ions in the negative electrode electrolyte NL are reduced to divalent vanadium ions. During discharge, divalent vanadium ions in the negative electrode electrolyte NL are oxidized to trivalent vanadium ions.

電池セル100の隔膜120はイオン交換膜である。隔膜120は、正極室110aと負極室110cを隔てて、所定のイオンを透過させる。 The diaphragm 120 of the battery cell 100 is an ion exchange membrane. The diaphragm 120 separates the positive electrode chamber 110a and the negative electrode chamber 110c and allows predetermined ions to pass therethrough.

電池セル100は、複数の電池セル100が積層されたセルスタックの形態で用いられる。セルスタックは、例えば、双極板を設けられたセルフレームと正極105aと隔膜120と負極105cとを積層して構成される。正極105aが双極板の一方の面側に配置され、負極105cが双極板の他方の面側に配置されることにより、隣接するセルフレームの間に電池セル100が形成される。正極電解液PLと負極電解液NLは、セルフレームの枠体、正極105aを支持する枠体、負極105cを支持する枠体等に形成されたマニホールドを介して、循環する。なお、電池セル100の構成は、適宜、公知の構成を利用できる。 The battery cell 100 is used in the form of a cell stack in which a plurality of battery cells 100 are stacked. The cell stack is configured by stacking, for example, a cell frame provided with a bipolar plate, a positive electrode 105a, a diaphragm 120, and a negative electrode 105c. The positive electrode 105a is arranged on one side of the bipolar plate and the negative electrode 105c is arranged on the other side of the bipolar plate, thereby forming the battery cell 100 between adjacent cell frames. The positive electrode electrolyte PL and the negative electrode electrolyte NL circulate through manifolds formed in the frame of the cell frame, the frame supporting the positive electrode 105a, the frame supporting the negative electrode 105c, and the like. In addition, the structure of the battery cell 100 can utilize a well-known structure suitably.

レドックスフロー電池システム10の循環部300は、図1に示すように、正極循環部300aと負極循環部300cとを有する。循環部300の正極循環部300aは、正極電解液PLを、電池セル100の正極室110aに循環させる。また、正極循環部300aは、正極電解液PLを、後述する開放電圧測定部500のモニターセル510に循環させる。循環部300の負極循環部300cは、負極電解液NLを、電池セル100の負極室110cに循環させる。また、負極循環部300cは、負極電解液NLをモニターセル510に循環させる。正極電解液PLと負極電解液NLの流量は、制御部600により制御される。 As shown in FIG. 1, the circulation section 300 of the redox flow battery system 10 has a positive electrode circulation section 300a and a negative electrode circulation section 300c. The positive electrode circulation unit 300 a of the circulation unit 300 circulates the positive electrode electrolyte PL to the positive electrode chamber 110 a of the battery cell 100 . Also, the positive electrode circulation unit 300a circulates the positive electrode electrolyte PL to the monitor cell 510 of the open-circuit voltage measurement unit 500, which will be described later. The negative electrode circulation unit 300 c of the circulation unit 300 circulates the negative electrode electrolyte NL to the negative electrode chamber 110 c of the battery cell 100 . Also, the negative electrode circulation unit 300 c circulates the negative electrode electrolyte NL to the monitor cell 510 . The control unit 600 controls the flow rates of the positive electrode electrolyte PL and the negative electrode electrolyte NL.

循環部300の正極循環部300aは、正極電解液貯留槽310aと、正極ポンプ320aと、正極供給管322aと、供給分岐管324aと、第1正極回収管326aと、第2正極回収管328aとを有する。正極循環部300aの正極電解液貯留槽310aは、正極電解液PLを貯留する。正極電解液貯留槽310aは、正極ポンプ320aと第1正極回収管326aと第2正極回収管328aに接続している。 The positive electrode circulation part 300a of the circulation part 300 includes a positive electrode electrolyte reservoir 310a, a positive electrode pump 320a, a positive electrode supply pipe 322a, a supply branch pipe 324a, a first positive electrode recovery pipe 326a, and a second positive electrode recovery pipe 328a. have The positive electrode electrolyte reservoir 310a of the positive electrode circulation unit 300a stores the positive electrode electrolyte PL. The positive electrode electrolyte storage tank 310a is connected to a positive electrode pump 320a, a first positive electrode recovery pipe 326a, and a second positive electrode recovery pipe 328a.

正極循環部300aの正極ポンプ320aは、正極電解液PLを循環させるポンプである。正極ポンプ320aは、正極電解液貯留槽310aと正極供給管322aに接続している。正極ポンプ320aは、制御部600により制御されて、電池セル100の正極室110aとモニターセル510の正極室を循環する正極電解液PLの流量を制御する。 The positive electrode pump 320a of the positive electrode circulation unit 300a is a pump that circulates the positive electrode electrolyte PL. The cathode pump 320a is connected to the cathode electrolyte reservoir 310a and the cathode supply pipe 322a. The positive electrode pump 320 a is controlled by the control unit 600 to control the flow rate of the positive electrode electrolyte PL circulating through the positive electrode chamber 110 a of the battery cell 100 and the positive electrode chamber of the monitor cell 510 .

正極循環部300aの正極供給管322aは、正極ポンプ320aと電池セル100の正極室110aに接続し、正極室110aに正極電解液PLを供給する。正極循環部300aの供給分岐管324aは、正極供給管322aから分岐して、モニターセル510の正極室に正極電解液PLを供給する。 The positive electrode supply pipe 322a of the positive electrode circulation unit 300a is connected to the positive electrode pump 320a and the positive electrode chamber 110a of the battery cell 100 to supply the positive electrode electrolyte PL to the positive electrode chamber 110a. The supply branch pipe 324 a of the positive electrode circulation unit 300 a branches from the positive electrode supply pipe 322 a to supply the positive electrode electrolyte PL to the positive electrode chamber of the monitor cell 510 .

正極循環部300aの第1正極回収管326aは、電池セル100の正極室110aと正極電解液貯留槽310aに接続する。第1正極回収管326aは、正極室110aに供給された正極電解液PLを、正極室110aから正極電解液貯留槽310aに戻す。 The first positive electrode collection pipe 326a of the positive electrode circulation unit 300a is connected to the positive electrode chamber 110a of the battery cell 100 and the positive electrode electrolyte storage tank 310a. The first positive electrode recovery pipe 326a returns the positive electrode electrolyte PL supplied to the positive electrode chamber 110a from the positive electrode chamber 110a to the positive electrode electrolyte storage tank 310a.

正極循環部300aの第2正極回収管328aは、モニターセル510の正極室と正極電解液貯留槽310aに接続する。第2正極回収管328aは、モニターセル510の正極室に供給された正極電解液PLを、モニターセル510の正極室から正極電解液貯留槽310aに戻す。 The second positive electrode recovery pipe 328a of the positive electrode circulation unit 300a is connected to the positive electrode chamber of the monitor cell 510 and the positive electrode electrolyte storage tank 310a. The second positive electrode recovery pipe 328a returns the positive electrode electrolyte PL supplied to the positive electrode chamber of the monitor cell 510 from the positive electrode chamber of the monitor cell 510 to the positive electrode electrolyte storage tank 310a.

循環部300の負極循環部300cは、負極電解液貯留槽310cと、負極ポンプ320cと、負極供給管322cと、供給分岐管324cと、第1負極回収管326cと、第2負極回収管328cとを有する。負極循環部300cの負極電解液貯留槽310cは、負極電解液NLを貯留する。負極電解液貯留槽310cは、負極ポンプ320cと第1負極回収管326cと第2負極回収管328cに接続している。 The negative electrode circulation part 300c of the circulation part 300 includes a negative electrode electrolyte reservoir 310c, a negative electrode pump 320c, a negative electrode supply pipe 322c, a supply branch pipe 324c, a first negative electrode recovery pipe 326c, and a second negative electrode recovery pipe 328c. have The negative electrode electrolyte reservoir 310c of the negative electrode circulation unit 300c stores the negative electrode electrolyte NL. The negative electrode electrolyte reservoir 310c is connected to the negative electrode pump 320c, the first negative electrode recovery pipe 326c, and the second negative electrode recovery pipe 328c.

負極循環部300cの負極ポンプ320cは、負極電解液NLを循環させるポンプである。負極ポンプ320cは、制御部600により制御されて、電池セル100の負極室110cとモニターセル510の負極室を循環する正極電解液PLの流量を制御する。 The negative electrode pump 320c of the negative electrode circulation unit 300c is a pump that circulates the negative electrode electrolyte NL. The negative electrode pump 320 c is controlled by the control unit 600 to control the flow rate of the positive electrode electrolyte PL circulating through the negative electrode chamber 110 c of the battery cell 100 and the negative electrode chamber of the monitor cell 510 .

負極循環部300cの負極供給管322cは、負極ポンプ320cに接続して、電池セル100の負極室110cに負極電解液NLを供給する。負極循環部300cの供給分岐管324cは、負極供給管322cから分岐して、モニターセル510の負極室に負極電解液NLを供給する。 The negative electrode supply pipe 322c of the negative electrode circulation unit 300c is connected to the negative electrode pump 320c to supply the negative electrode electrolyte NL to the negative electrode chamber 110c of the battery cell 100 . A supply branch pipe 324 c of the negative electrode circulation unit 300 c branches from the negative electrode supply pipe 322 c to supply the negative electrode electrolyte NL to the negative electrode chamber of the monitor cell 510 .

負極循環部300cの第1負極回収管326cは、負極室110cに供給された負極電解液NLを、負極室110cから負極電解液貯留槽310cに戻す。負極循環部300cの第2負極回収管328cは、モニターセル510の負極室に供給された負極電解液NLを、モニターセル510の負極室から負極電解液貯留槽310cに戻す。 The first negative electrode recovery pipe 326c of the negative electrode circulation unit 300c returns the negative electrode electrolyte NL supplied to the negative electrode chamber 110c from the negative electrode chamber 110c to the negative electrode electrolyte storage tank 310c. The second negative electrode recovery pipe 328c of the negative electrode circulation unit 300c returns the negative electrode electrolyte NL supplied to the negative electrode chamber of the monitor cell 510 from the negative electrode chamber of the monitor cell 510 to the negative electrode electrolyte storage tank 310c.

レドックスフロー電池システム10の開放電圧測定部500は、電解液の蓄電状態を示す開放電圧を測定する。開放電圧測定部500は、図1に示すように、モニターセル510と測定部520とを有する。 The open-circuit voltage measurement unit 500 of the redox flow battery system 10 measures an open-circuit voltage indicating the state of charge of the electrolyte. The open-circuit voltage measuring section 500 has a monitor cell 510 and a measuring section 520, as shown in FIG.

モニターセル510は、電池セル100と同様の構成を有し、充放電に寄与しない単一のレドックスフロー電池セルである。モニターセル510の正極室には、電池セル100の正極室110aと同様に、正極電解液貯留槽310aに貯留されている正極電解液PLが供給される。また、モニターセル510の負極室には、電池セル100の負極室110cと同様に、負極電解液貯留槽310cに貯留されている負極電解液NLが供給される。 The monitor cell 510 has the same configuration as the battery cell 100 and is a single redox flow battery cell that does not contribute to charging and discharging. Like the positive electrode chamber 110 a of the battery cell 100 , the positive electrode electrolyte PL stored in the positive electrode electrolyte storage tank 310 a is supplied to the positive electrode chamber of the monitor cell 510 . Further, the negative electrode chamber of the monitor cell 510 is supplied with the negative electrode electrolyte NL stored in the negative electrode electrolyte storage tank 310c in the same manner as the negative electrode chamber 110c of the battery cell 100 .

測定部520は、モニターセル510における正極電解液PLと負極電解液NLの電位差(すなわち開放電圧)を測定する電圧計である。モニターセル510の正極室と負極室のそれぞれに、電池セル100に流れる正極室110aと負極室110cのそれぞれと同様に、正極電解液PLと負極電解液NLのそれぞれが供給されるので、モニターセル510の開放電圧を測定することにより、電池セル100の開放電圧を測定できる。本実施形態では、測定部520は正極電解液PLと負極電解液NLの供給側で開放電圧を測定している。また、測定部520は1秒間隔(測定間隔Δt0=1sec)で開放電圧を測定している。 The measurement unit 520 is a voltmeter that measures the potential difference (that is, open-circuit voltage) between the positive electrolyte PL and the negative electrolyte NL in the monitor cell 510 . Since the positive electrode electrolyte PL and the negative electrode electrolyte NL are supplied to the positive electrode chamber and the negative electrode chamber of the monitor cell 510, respectively, in the same way as the positive electrode chamber 110a and the negative electrode chamber 110c, respectively, which flow into the battery cell 100, the monitor cell By measuring the open circuit voltage of 510, the open circuit voltage of battery cell 100 can be measured. In this embodiment, the measuring unit 520 measures the open-circuit voltage on the supply side of the positive electrode electrolyte PL and the negative electrode electrolyte NL. Moreover, the measurement unit 520 measures the open-circuit voltage at intervals of 1 second (measurement interval Δt0=1 sec).

電解液(正極電解液PLと負極電解液NL)の充電深度とモニターセル510の開放電圧との間には、相関関係があり、モニターセル510の開放電圧から電解液の充電深度を得ることができる。例えば、電解液の充電深度とモニターセル510の開放電圧との間には、図2に示すような関係がある。また、電解液の充電深度(SOC)は、簡易的に、モニターセル510の開放電圧(OCV)により下記の式(1)で表される。ここで、Fはファラデー定数を、Rは気体定数を、Tは絶対温度を、OCVeは酸化物と還元物との濃度が等しい状態での開放電圧を表す。 There is a correlation between the depth of charge of the electrolytes (positive electrolyte PL and negative electrolyte NL) and the open-circuit voltage of the monitor cell 510, and the depth of charge of the electrolyte can be obtained from the open-circuit voltage of the monitor cell 510. can. For example, there is a relationship shown in FIG. 2 between the depth of charge of the electrolyte and the open-circuit voltage of the monitor cell 510 . Also, the depth of charge (SOC) of the electrolytic solution is simply represented by the following formula (1) using the open circuit voltage (OCV) of the monitor cell 510 . Here, F is the Faraday constant, R is the gas constant, T is the absolute temperature, and OCVe is the open-circuit voltage when the concentrations of the oxide and the reduced product are equal.

Figure 2022143641000002
Figure 2022143641000002

レドックスフロー電池システム10の制御部600は、正極電解液PLと負極電解液NLの充電深度に応じて、開放電圧の移動平均値を求める。制御部600は、求められた開放電圧の移動平均値に基づいて、正極電解液PLと負極電解液NLの充放電を制御する。制御部600は、図3に示すように、取得部620と、記憶部630と、設定部640と、算出部650と、判定部660と、流量制御部670と、充放電制御部680とを有する。 The control unit 600 of the redox flow battery system 10 obtains a moving average value of the open-circuit voltage according to the charging depth of the positive electrode electrolyte PL and the negative electrode electrolyte NL. The control unit 600 controls charging and discharging of the positive electrode electrolyte PL and the negative electrode electrolyte NL based on the obtained moving average value of the open-circuit voltage. As shown in FIG. 3, the control unit 600 includes an acquisition unit 620, a storage unit 630, a setting unit 640, a calculation unit 650, a determination unit 660, a flow control unit 670, and a charge/discharge control unit 680. have.

制御部600の取得部620は、開放電圧測定部500の測定部520が測定した開放電圧の測定値を取得する。取得部620は、取得した開放電圧の測定値を表す信号を記憶部630と算出部650に送信する。
制御部600の記憶部630は、プログラム、データ、開放電圧の測定値等を記憶する。
Acquisition unit 620 of control unit 600 acquires the measurement value of the open-circuit voltage measured by measurement unit 520 of open-circuit voltage measurement unit 500 . Acquisition unit 620 transmits a signal representing the acquired open-circuit voltage measurement value to storage unit 630 and calculation unit 650 .
Storage unit 630 of control unit 600 stores programs, data, measured values of open-circuit voltage, and the like.

制御部600の設定部640は、算出部650が開放電圧の移動平均値を求める条件を設定する。具体的には、設定部640は、開放電圧の移動平均値を求める間隔Δt1と期間S(S=n×Δt1:nは2以上の自然数)とを設定する。 The setting unit 640 of the control unit 600 sets conditions for the calculation unit 650 to obtain the moving average value of the open-circuit voltage. Specifically, the setting unit 640 sets an interval Δt1 and a period S (S=n×Δt1: n is a natural number of 2 or more) for obtaining the moving average value of the open-circuit voltage.

本実施形態では、開放電圧の移動平均値を求める間隔Δt1を1秒とする(Δt1=1sec)。また、電解液の充電深度が所定の範囲内である場合、設定部640は、開放電圧の移動平均値を求める期間Sを所定の第1期間S1=60秒に設定する(S1=60×Δt1、n=60)。電解液の充電深度の所定の範囲は、開放電圧と電解液の充電深度との相関関係が比例関係と見なせる範囲であることが好ましい。本実施形態では、電解液の充電深度の所定の範囲を、電解液の充電深度が10%以上90%以下とする。 In this embodiment, the interval Δt1 for obtaining the moving average value of the open-circuit voltage is set to 1 second (Δt1=1 sec). Further, when the depth of charge of the electrolytic solution is within the predetermined range, the setting unit 640 sets the period S for obtaining the moving average value of the open-circuit voltage to a predetermined first period S1=60 seconds (S1=60×Δt1 , n=60). The predetermined range of the charging depth of the electrolyte is preferably a range in which the correlation between the open-circuit voltage and the charging depth of the electrolyte can be regarded as a proportional relationship. In the present embodiment, the predetermined range of the charging depth of the electrolytic solution is 10% or more and 90% or less of the charging depth of the electrolytic solution.

さらに、電解液の充電深度が所定の範囲よりも小さい場合(電解液の充電深度が10%未満である場合)と電解液の充電深度が所定の範囲よりも大きい場合(電解液の充電深度が90%よりも大きい場合)、設定部640は、開放電圧の移動平均値を求める期間Sを、所定の第1期間S1よりも短い所定の第2期間S2=5秒に設定する(S2=5×Δt1、n=5)。本実施形態では、開放電圧と電解液の充電深度の相関関係において電解液の充電深度が急激に変化する、電解液の充電深度が所定の範囲よりも小さい場合と所定の範囲よりも大きい場合に、設定部640が開放電圧の移動平均値を求める期間Sを短くするので、制御部600は、電解液の充電深度の変化に迅速に対応でき、レドックスフロー電池システム10の安定した運転が実現できる。
設定部640は、設定した条件を表す信号を算出部650に送信する。
Furthermore, when the charging depth of the electrolyte is less than the predetermined range (when the charging depth of the electrolyte is less than 10%) and when the charging depth of the electrolyte is greater than the predetermined range (when the charging depth of the electrolyte is 90%), the setting unit 640 sets the period S for obtaining the moving average value of the open-circuit voltage to a predetermined second period S2=5 seconds shorter than the predetermined first period S1 (S2=5 x Δt1, n=5). In the present embodiment, in the correlation between the open-circuit voltage and the charging depth of the electrolyte, when the charging depth of the electrolyte changes abruptly, when the charging depth of the electrolyte is smaller than the predetermined range and when it is greater than the predetermined range. Since the setting unit 640 shortens the period S for obtaining the moving average value of the open-circuit voltage, the control unit 600 can quickly respond to changes in the charging depth of the electrolyte, and stable operation of the redox flow battery system 10 can be realized. .
Setting unit 640 transmits a signal representing the set condition to calculation unit 650 .

制御部600の算出部650は、設定部640により設定された条件に基づいて、取得部620により取得された開放電圧の測定値から、時刻tにおける開放電圧の移動平均値OCV(t)を求める。具体的には、時刻tにおける開放電圧の移動平均値OCV(t)は下記の式(2)により、時刻t+Δt1における開放電圧の移動平均値OCV(t+Δt1)は下記の式(3)により求められる。ここで、OCVn+1~OCVは開放電圧の測定値である。 The calculation unit 650 of the control unit 600 calculates the moving average value OCV(t) of the open-circuit voltage at the time t from the measured value of the open-circuit voltage acquired by the acquisition unit 620 based on the conditions set by the setting unit 640. . Specifically, the moving average value OCV(t) of the open-circuit voltage at time t is obtained by the following equation (2), and the moving average value OCV(t+Δt1) of the open-circuit voltage at time t+Δt1 is obtained by the following equation (3). . where OCV n+1 to OCV 1 are measured values of open-circuit voltages.

Figure 2022143641000003
Figure 2022143641000003
Figure 2022143641000004
Figure 2022143641000004

図4は、開放電圧の測定値と第1期間S1での開放電圧の移動平均値OCV(t)とを示す。図4に示すように、開放電圧の移動平均値OCV(t)を求めることにより、開放電圧の測定値のバラツキを補正できる。 FIG. 4 shows the measured value of the open-circuit voltage and the moving average value OCV(t) of the open-circuit voltage in the first period S1. As shown in FIG. 4, by obtaining the moving average value OCV(t) of the open-circuit voltage, it is possible to correct variations in the measured values of the open-circuit voltage.

さらに、算出部650は、開放電圧の移動平均値OCV(t)に基づいて、時刻tにおける電解液の充電深度SOC(t)を求める。時刻tにおける電解液の充電深度SOC(t)は、例えば、式(1)から求められる。また、時刻tにおける電解液の充電深度SOC(t)は、図2に示すような、電解液の充電深度と開放電圧との相関関係から求められてもよい。電解液の充電深度と開放電圧との相関関係は、実験により予め得られることができる。本実施形態では、電解液の充電深度SOC(t)がバラツキのない開放電圧の移動平均値OCV(t)から求められるので、電解液の充電深度を正確に把握できる。
算出部650は、求められた電解液の充電深度SOC(t)を表す信号を、設定部640と判定部660とに送信する。
Further, calculation unit 650 obtains the depth of charge SOC(t) of the electrolytic solution at time t based on the moving average value OCV(t) of the open-circuit voltage. The depth of charge SOC(t) of the electrolytic solution at time t can be obtained, for example, from equation (1). Further, the depth of charge SOC(t) of the electrolyte at time t may be obtained from the correlation between the depth of charge of the electrolyte and the open-circuit voltage as shown in FIG. The correlation between the depth of charge of the electrolytic solution and the open-circuit voltage can be obtained in advance through experiments. In the present embodiment, since the state of charge SOC(t) of the electrolyte is obtained from the moving average value OCV(t) of the open-circuit voltage without variations, the state of charge of the electrolyte can be accurately grasped.
Calculation unit 650 transmits to setting unit 640 and determination unit 660 a signal representing the calculated depth of charge SOC(t) of the electrolytic solution.

制御部600の判定部660は、時刻tにおける電解液の充電深度SOC(t)から、電解液の蓄電状態を判定する。例えば、電解液の充電深度SOC(t)が所定の範囲内(10%以上90%以下)である場合、判定部660は電解液の蓄電状態を通常状態と判定する。また、電解液の充電深度SOC(t)が所定の範囲よりも小さい場合(10%未満)、判定部660は電解液の蓄電状態を高放電状態と判定する。電解液の充電深度SOC(t)が例えば5%以下である場合、判定部660は電解液の蓄電状態を放電末期状態と判定する。一方、電解液の充電深度SOC(t)が所定の範囲よりも大きい場合(90%より大きい)、判定部660は電解液の蓄電状態を高充電状態と判定する。さらに、電解液の充電深度SOC(t)が例えば95%以上である場合、判定部660は電解液の蓄電状態を充電末期状態と判定する。
判定部660は、電解液の蓄電状態を表す信号を、流量制御部670と充放電制御部680に送信する。
Determination unit 660 of control unit 600 determines the state of charge of the electrolyte based on the depth of charge SOC(t) of the electrolyte at time t. For example, when the depth of charge SOC(t) of the electrolyte is within a predetermined range (10% or more and 90% or less), determination unit 660 determines that the state of charge of the electrolyte is the normal state. Further, when the depth of charge SOC(t) of the electrolyte is smaller than the predetermined range (less than 10%), determination unit 660 determines that the state of charge of the electrolyte is the highly discharged state. When the depth of charge SOC(t) of the electrolyte is, for example, 5% or less, determination unit 660 determines that the state of charge of the electrolyte is the end-of-discharge state. On the other hand, when the state of charge SOC(t) of the electrolyte is greater than the predetermined range (greater than 90%), determination unit 660 determines that the state of charge of the electrolyte is the high state of charge. Furthermore, when the depth of charge SOC(t) of the electrolyte is, for example, 95% or more, determination unit 660 determines that the state of charge of the electrolyte is the end-of-charge state.
Determination unit 660 transmits a signal representing the state of charge of the electrolyte to flow control unit 670 and charge/discharge control unit 680 .

制御部600の流量制御部670は、電解液の蓄電状態に基づいて、正極循環部300aの正極ポンプ320aと負極循環部300cの負極ポンプ320cの流量を制御する。電解液の蓄電状態が通常状態と判定された場合、流量制御部670は、正極ポンプ320aと負極ポンプ320cの流量を、所定の第1流量に制御する。また、電解液の蓄電状態が高放電状態と高充電状態のいずれかに判定された場合、流量制御部670は正極ポンプ320aと負極ポンプ320cの流量を第1流量よりも大きい第2流量に制御する。さらに、電解液の蓄電状態が放電末期状態と充電末期状態のいずれかに判定された場合、流量制御部670は正極ポンプ320aと負極ポンプ320cの流量を第2流量よりも更に大きい第3流量に制御する。これらの正極ポンプ320aと負極ポンプ320cの流量の制御により、電解液への過充電と電解液からの過放電とを抑制できる。 The flow control unit 670 of the control unit 600 controls the flow rates of the positive electrode pump 320a of the positive electrode circulation unit 300a and the negative electrode pump 320c of the negative electrode circulation unit 300c based on the state of charge of the electrolyte. When the state of charge of the electrolytic solution is determined to be the normal state, the flow control unit 670 controls the flow rates of the positive electrode pump 320a and the negative electrode pump 320c to a predetermined first flow rate. Further, when the state of charge of the electrolytic solution is determined to be either a high discharge state or a high charge state, the flow control unit 670 controls the flow rates of the positive electrode pump 320a and the negative electrode pump 320c to a second flow rate that is higher than the first flow rate. do. Further, when the state of charge of the electrolyte is determined to be either the end-of-discharge state or the end-of-charge state, the flow control unit 670 sets the flow rates of the positive electrode pump 320a and the negative electrode pump 320c to a third flow rate that is greater than the second flow rate. Control. By controlling the flow rates of the positive electrode pump 320a and the negative electrode pump 320c, overcharging of the electrolyte and overdischarging of the electrolyte can be suppressed.

制御部600の充放電制御部680は、レドックスフロー電池システム10(すなわち、レドックスフロー電池システム10の電解液)と、発電所と負荷との電力の充放電を制御する。例えば、電解液の蓄電状態が放電末期状態と判定された場合、充放電制御部680は、レドックスフロー電池システム10と負荷との接続を切断する。また、電解液の蓄電状態が充電末期状態と判定された場合、充放電制御部680は、レドックスフロー電池システム10と発電所との接続を切断する。これらの制御により、電解液への過充電と電解液からの過放電とを抑制できる。 The charge/discharge control unit 680 of the control unit 600 controls charge/discharge of electric power between the redox flow battery system 10 (that is, the electrolyte of the redox flow battery system 10), the power plant, and the load. For example, when the state of charge of the electrolyte is determined to be the end-of-discharge state, the charge/discharge control unit 680 disconnects the redox flow battery system 10 from the load. Further, when the state of charge of the electrolyte is determined to be the end-of-charge state, the charge/discharge control unit 680 disconnects the redox flow battery system 10 and the power plant. By these controls, overcharging to the electrolyte and overdischarging from the electrolyte can be suppressed.

図5は、制御部600のハードウェアの構成を示す。制御部600は、CPU(Central Processing Unit)602と、ROM(Read Only Memory)604と、RAM(Random Access Memory)606と、入出力インターフェース608と、電力変換器610とから構成される。CPU602はROM604に記憶されているプログラムを実行する。ROM604は、プログラム、データ、信号等を記憶している。RAM606はデータを記憶する。入出力インターフェース608は各部の間の信号を入出力する。電力変換器610は、交流直流変換器、レドックスフロー電池システム10と負荷とを接続するスイッチ、レドックスフロー電池システム10と発電所とを接続するスイッチ等を含む。制御部600の機能は、CPU602のプログラムの実行と電力変換器610の機能により、実現される。 FIG. 5 shows the hardware configuration of the control unit 600. As shown in FIG. The control unit 600 includes a CPU (Central Processing Unit) 602 , a ROM (Read Only Memory) 604 , a RAM (Random Access Memory) 606 , an input/output interface 608 and a power converter 610 . The CPU 602 executes programs stored in the ROM 604 . A ROM 604 stores programs, data, signals, and the like. RAM 606 stores data. An input/output interface 608 inputs and outputs signals between each unit. The power converter 610 includes an AC/DC converter, a switch connecting the redox flow battery system 10 and the load, a switch connecting the redox flow battery system 10 and the power plant, and the like. The functions of control unit 600 are implemented by executing programs of CPU 602 and the functions of power converter 610 .

次に、レドックスフロー電池システム10の運転方法を説明する。図6は、レドックスフロー電池システム10の運転方法を示すフローチャートである。レドックスフロー電池システム10の運転方法は、電池セル100の開放電圧を測定する測定工程(ステップS100)と、測定された開放電圧から開放電圧の移動平均値を求める算出工程(ステップS200)と、求められた開放電圧の移動平均値に基づいて電解液の充放電を制御する制御工程(Sステップ300)と、を含む。ここでは、初期状態として、電解液の蓄電状態が通常状態(すなわち、充電深度SOCが所定の範囲内にある)であり、レドックスフロー電池システム10が発電所と負荷に接続されている場合について説明する。 Next, a method of operating the redox flow battery system 10 will be described. FIG. 6 is a flow chart showing a method of operating the redox flow battery system 10. As shown in FIG. The operating method of the redox flow battery system 10 includes a measurement step (step S100) of measuring the open-circuit voltage of the battery cell 100, a calculation step (step S200) of obtaining a moving average value of the open-circuit voltage from the measured open-circuit voltage, and a calculation step (step S200). and a control step (S step 300) of controlling charging and discharging of the electrolytic solution based on the moving average value of the open-circuit voltage obtained. Here, as an initial state, the case where the state of charge of the electrolyte is normal (that is, the state of charge SOC is within a predetermined range) and the redox flow battery system 10 is connected to the power plant and the load will be described. do.

ステップS100では、開放電圧測定部500の測定部520が開放電圧測定部500のモニターセル510の開放電圧を測定することにより、電解液の蓄電状態を示す電池セル100の開放電圧を測定する。本実施形態では、開放電圧の測定は、1秒間隔(測定間隔Δt1=1sec)で実施されている。 In step S100, measurement unit 520 of open-circuit voltage measurement unit 500 measures the open-circuit voltage of monitor cell 510 of open-circuit voltage measurement unit 500, thereby measuring the open-circuit voltage of battery cell 100 indicating the state of charge of the electrolyte. In this embodiment, the open-circuit voltage is measured at intervals of 1 second (measurement interval Δt1=1 sec).

ステップS200は、開放電圧の測定値を取得する工程(ステップS210)と、開放電圧の測定値から時刻tにおける開放電圧の移動平均値OCV(t)を求める工程(ステップS220)と、求められた開放電圧の移動平均値OCV(t)から時刻tにおける電解液の充電深度SOC(t)を求める工程(ステップS230)と、を含む。 Step S200 includes a step of acquiring a measured value of the open-circuit voltage (step S210), a step of obtaining a moving average value OCV(t) of the open-circuit voltage at time t from the measured value of the open-circuit voltage (step S220), and and a step of determining the depth of charge SOC(t) of the electrolytic solution at time t from the moving average value OCV(t) of the open-circuit voltage (step S230).

ステップS210では、制御部600の取得部620が測定部520から開放電圧の測定値を取得する。そして、取得部620は、開放電圧の測定値を表す信号を、制御部600の記憶部630と算出部650に送信する。 In step S<b>210 , acquisition section 620 of control section 600 acquires the measured value of the open-circuit voltage from measurement section 520 . Acquisition unit 620 then transmits a signal representing the measured value of the open-circuit voltage to storage unit 630 and calculation unit 650 of control unit 600 .

ステップS220では、制御部600の算出部650が、制御部600の設定部640により設定された条件に基づいて、開放電圧の測定値から、時刻tにおける開放電圧の移動平均値OCV(t)を求める。本実施形態では、初期状態として、電解液の蓄電状態が通常状態(充電深度SOCが所定の範囲内)であるので、設定部640は、開放電圧の移動平均値を求める期間Sを第1期間S1に設定している(S1=60×Δt1、Δt1=1sec)。したがって、算出部650は、第1期間S1の条件で、時刻tにおける開放電圧の移動平均値OCV(t)を求める。開放電圧の移動平均値OCV(t)を求めることにより、開放電圧の測定値のバラツキを補正できる。 In step S220, the calculation unit 650 of the control unit 600 calculates the moving average value OCV(t) of the open-circuit voltage at time t based on the conditions set by the setting unit 640 of the control unit 600 from the open-circuit voltage measurement value. Ask. In the present embodiment, as the initial state, the state of charge of the electrolyte is the normal state (the depth of charge SOC is within a predetermined range). It is set to S1 (S1=60×Δt1, Δt1=1 sec). Therefore, the calculator 650 obtains the moving average value OCV(t) of the open-circuit voltage at the time t under the conditions of the first period S1. By obtaining the moving average value OCV(t) of the open-circuit voltage, it is possible to correct variations in the measured values of the open-circuit voltage.

ステップS230では、算出部650が、開放電圧の移動平均値OCV(t)に基づいて、時刻tにおける電解液の充電深度SOC(t)を求める。例えば、電解液の充電深度SOC(t)は、電解液の充電深度と開放電圧との相関関係から求められる。本実施形態では、電解液の充電深度SOC(t)がバラツキのない開放電圧の移動平均値OCV(t)から求められるので、電解液の充電深度を正確に把握できる。
算出部650は、求められた電解液の充電深度SOC(t)を表す信号を、設定部640と判定部660とに送信する。
In step S230, calculation unit 650 obtains the state of charge SOC(t) of the electrolytic solution at time t based on the moving average value OCV(t) of the open-circuit voltage. For example, the electrolyte charging depth SOC(t) is obtained from the correlation between the electrolyte charging depth and the open-circuit voltage. In the present embodiment, since the state of charge SOC(t) of the electrolyte is obtained from the moving average value OCV(t) of the open-circuit voltage without variations, the state of charge of the electrolyte can be accurately grasped.
Calculation unit 650 transmits to setting unit 640 and determination unit 660 a signal representing the calculated depth of charge SOC(t) of the electrolytic solution.

なお、設定部640は、電解液の充電深度SOC(t)を表す信号に基づいて、開放電圧の移動平均値を求める期間Sを設定する。すなわち、受信した電解液の充電深度SOC(t)が所定の範囲内である場合、設定部640は、次に開放電圧の移動平均値OCV(t)を求める条件として、開放電圧の移動平均値OCV(t)を求める期間Sを第1期間S1に設定する。また、電解液の充電深度SOC(t)が所定の範囲よりも小さい場合と受信した電解液の充電深度SOC(t)が所定の範囲よりも大きい場合、例えば、設定部640は開放電圧の移動平均値OCV(t)を求める期間Sを第2期間S2(S2=5×Δt1、Δt1=1sec)に設定する。電解液の充電深度が所定の範囲よりも小さい場合と所定の範囲よりも大きい場合に、設定部640が開放電圧の移動平均値を求める期間Sを短くするので、制御部600は、電解液の充電深度の変化に迅速に対応でき、レドックスフロー電池システム10の安定した運転が実現できる。 Note that setting unit 640 sets period S for obtaining the moving average value of the open-circuit voltage based on the signal representing the state of charge SOC(t) of the electrolytic solution. That is, when the received depth of charge SOC(t) of the electrolytic solution is within a predetermined range, setting unit 640 sets the moving average value of open-circuit voltage A period S for obtaining OCV(t) is set to the first period S1. Further, when the electrolyte charging depth SOC(t) is smaller than the predetermined range and when the received electrolyte charging depth SOC(t) is greater than the predetermined range, for example, the setting unit 640 changes the open-circuit voltage. A period S for obtaining the average value OCV(t) is set to a second period S2 (S2=5×Δt1, Δt1=1 sec). When the depth of charge of the electrolyte is smaller than the predetermined range and when it is greater than the predetermined range, the setting unit 640 shortens the period S for obtaining the moving average value of the open-circuit voltage. It is possible to quickly respond to changes in the depth of charge and realize stable operation of the redox flow battery system 10 .

ステップS300は、電解液の蓄電状態を判定する工程(ステップS310)と、電解液の流量と、発電所と負荷との充放電とを制御する工程(ステップS320)とを含む。 Step S300 includes a step of determining the state of charge of the electrolyte (step S310) and a step of controlling the flow rate of the electrolyte and charging/discharging between the power plant and the load (step S320).

ステップS310では、制御部600の判定部660が、開放電圧の移動平均値OCV(t)に基づいて求められた電解液の充電深度SOC(t)から、電解液の蓄電状態を判定する。本実施形態では、判定部660は、上述のように、電解液の蓄電状態を、通常状態(SOC(t):10%以上90%以下)と、高放電状態(SOC(t):10%未満)と、放電末期状態(SOC(t):5%以下)と、高充電状態(SOC(t):90%よりも大きい)と、充電末期状態(SOC(t):95%以上)のいずれかに判定する。判定部660は、電解液の蓄電状態を表す信号を、制御部600の流量制御部670と充放電制御部680に送信する。 In step S310, the determination unit 660 of the control unit 600 determines the state of charge of the electrolyte from the depth of charge SOC(t) of the electrolyte obtained based on the moving average value OCV(t) of the open-circuit voltage. In the present embodiment, as described above, the determination unit 660 determines whether the state of charge of the electrolytic solution is normal (SOC(t): 10% or more and 90% or less) and the high discharge state (SOC(t): 10%). less than), an end-of-discharge state (SOC(t): 5% or less), a high-charge state (SOC(t): greater than 90%), and an end-of-charge state (SOC(t): 95% or more). Judge either. Determination unit 660 transmits a signal representing the state of charge of the electrolyte to flow control unit 670 and charge/discharge control unit 680 of control unit 600 .

ステップS320では、制御部600の流量制御部670が、電解液の蓄電状態に基づいて、正極ポンプ320aと負極ポンプ320cの流量を制御する。また、制御部600の充放電制御部680が、電解液の蓄電状態に基づいて、レドックスフロー電池システム10と、発電所と負荷との充放電を制御する。 In step S320, the flow control section 670 of the control section 600 controls the flow rates of the positive electrode pump 320a and the negative electrode pump 320c based on the state of charge of the electrolyte. Also, the charge/discharge control unit 680 of the control unit 600 controls charge/discharge of the redox flow battery system 10, the power plant, and the load based on the state of charge of the electrolyte.

具体的には、電解液の蓄電状態が通常状態である場合、流量制御部670は正極ポンプ320aと負極ポンプ320cの流量を所定の第1流量に制御し、接続制御部680は、レドックスフロー電池システム10と、発電所と負荷との運転状態を維持する。電解液の蓄電状態が高放電状態と高充電状態のいずれかである場合、流量制御部670は正極ポンプ320aと負極ポンプ320cの流量を第1流量よりも大きい第2流量に制御し、充放電制御部680は、レドックスフロー電池システム10と、発電所と負荷との運転状態を維持する。また、電解液の蓄電状態が放電末期状態である場合、流量制御部670は正極ポンプ320aと負極ポンプ320cの流量を第2流量よりも更に大きい第3流量に制御し、充放電制御部680はレドックスフロー電池システム10と負荷との接続を切断する。さらに、電解液の蓄電状態が充電末期状態である場合、流量制御部670は正極ポンプ320aと負極ポンプ320cの流量を第2流量よりも大きい第3流量に制御し、充放電制御部680はレドックスフロー電池システム10と発電所との接続を切断する。これらの制御により、電解液への過充電と電解液からの過放電とを抑制できる。 Specifically, when the state of charge of the electrolytic solution is the normal state, the flow rate control unit 670 controls the flow rates of the positive electrode pump 320a and the negative electrode pump 320c to a predetermined first flow rate, and the connection control unit 680 controls the redox flow battery. Maintain the operational status of the system 10 and the plant and loads. When the state of charge of the electrolytic solution is either the high discharge state or the high charge state, the flow control unit 670 controls the flow rates of the positive electrode pump 320a and the negative electrode pump 320c to a second flow rate that is larger than the first flow rate, thereby charging and discharging. The control unit 680 maintains the operational states of the redox flow battery system 10, the power plant, and the load. Further, when the state of charge of the electrolytic solution is in the end-of-discharge state, the flow rate control unit 670 controls the flow rates of the positive electrode pump 320a and the negative electrode pump 320c to a third flow rate that is greater than the second flow rate, and the charge/discharge control unit 680 Disconnect the redox flow battery system 10 from the load. Further, when the state of charge of the electrolytic solution is in the end-of-charge state, the flow rate control unit 670 controls the flow rates of the positive electrode pump 320a and the negative electrode pump 320c to a third flow rate that is larger than the second flow rate, and the charge/discharge control unit 680 controls the redox flow rate. Disconnect the flow battery system 10 from the power plant. By these controls, overcharging to the electrolyte and overdischarging from the electrolyte can be suppressed.

ステップS320の後、制御部600に運転停止指示が入力されない場合(ステップS322:NO)、レドックスフロー電池システム10の運転はステップS100に戻る。制御部600に運転停止指示が入力された場合(ステップS322:YES)、レドックスフロー電池システム10の運転は終了する。 After step S320, if no operation stop instruction is input to the control unit 600 (step S322: NO), the operation of the redox flow battery system 10 returns to step S100. When the operation stop instruction is input to the control unit 600 (step S322: YES), the operation of the redox flow battery system 10 is terminated.

以上のように、開放電圧の移動平均値を求めることにより、開放電圧の測定値のバラツキを補正でき、電解液の充電深度を正確に把握できる。制御部600が電解液の充電深度に応じて開放電圧の移動平均値を求め、求められた開放電圧の移動平均値に基づいて電解液の充放電を制御するので、電解液の充電深度の変化に迅速に対応でき、レドックスフロー電池システム10の安定した運転が実現できる。 As described above, by obtaining the moving average value of the open-circuit voltage, it is possible to correct the variation in the measured value of the open-circuit voltage and accurately grasp the charging depth of the electrolytic solution. Since the control unit 600 obtains the moving average value of the open-circuit voltage according to the charging depth of the electrolytic solution, and controls the charging and discharging of the electrolytic solution based on the obtained moving average value of the open-circuit voltage, the charging depth of the electrolytic solution changes. can be quickly dealt with, and stable operation of the redox flow battery system 10 can be realized.

さらに、電解液の充電深度を正確に把握できるので、再生可能エネルギー発電所における発電出力の変動が平準化できる。電解液の充電深度を正確に把握できるので、電解液容量を増やす場合に最適な容量を容易に見積もることができ、また、災害時には負荷の優先度に応じた電力の配分を容易に制御できる。 Furthermore, since the depth of charge of the electrolyte can be accurately grasped, fluctuations in power generation output at renewable energy power plants can be leveled out. Since the depth of charge of the electrolyte can be accurately grasped, it is possible to easily estimate the optimum capacity when increasing the electrolyte capacity, and to easily control power distribution according to load priority in the event of a disaster.

<実施形態2>
実施形態1では、開放電圧の移動平均値に基づいて電解液の充放電を制御しているが、開放電圧の移動平均値と再生可能エネルギー発電所の発電量の移動平均値に基づいて、電解液の充放電を制御してもよい。本実施形態のレドックスフロー電池システム10の電池セル100と循環部300と開放電圧測定部500の構成は、実施形態1と同様であるので、ここでは、レドックスフロー電池システム10の制御部600について、説明する。
本実施形態の制御部600は、実施形態1の制御部600と同様に、取得部620と、記憶部630と、設定部640と、算出部650と、判定部660と、流量制御部670と、充放電制御部680とを有する。
<Embodiment 2>
In Embodiment 1, the charging and discharging of the electrolytic solution is controlled based on the moving average value of the open-circuit voltage. You may control charge/discharge of a liquid. The configurations of the battery cell 100, the circulation unit 300, and the open-circuit voltage measurement unit 500 of the redox flow battery system 10 of the present embodiment are the same as those of the first embodiment. explain.
As with the control unit 600 of the first embodiment, the control unit 600 of the present embodiment includes an acquisition unit 620, a storage unit 630, a setting unit 640, a calculation unit 650, a determination unit 660, and a flow rate control unit 670. , and a charge/discharge control unit 680 .

本実施形態の取得部620は、実施形態1の取得部620と同様に、開放電圧測定部500の測定部520が測定した開放電圧の測定値を取得する。また、本実施形態の取得部620は、再生可能エネルギー発電所から発電量を取得する。本実施形態の取得部620は、取得した開放電圧の測定値を表す信号と取得した発電量を表す信号を、記憶部630と算出部650に送信する。
本実施形態の記憶部630は、実施形態1の記憶部630と同様に、プログラム、データ、開放電圧の測定値等を記憶する。
The acquiring unit 620 of the present embodiment acquires the measured value of the open-circuit voltage measured by the measuring unit 520 of the open-circuit voltage measuring unit 500, like the acquiring unit 620 of the first embodiment. Also, the acquisition unit 620 of the present embodiment acquires the power generation amount from the renewable energy power plant. The acquisition unit 620 of the present embodiment transmits the acquired signal representing the open-circuit voltage measurement value and the acquired signal representing the power generation amount to the storage unit 630 and the calculation unit 650 .
The storage unit 630 of the present embodiment stores programs, data, open-circuit voltage measurement values, and the like, like the storage unit 630 of the first embodiment.

本実施形態の設定部640は、算出部650が開放電圧の移動平均値と発電量の移動平均値を求める条件を設定する。本実施形態では、実施形態1と同様に、移動平均値を求める間隔Δt1を1秒とする(Δt1=1sec)。また、電解液の充電深度が所定の範囲内である場合、本実施形態の設定部640は、移動平均値を求める期間Sを所定の第1期間S1=60秒に設定する。電解液の充電深度が所定の範囲よりも小さい場合と電解液の充電深度が所定の範囲よりも大きい場合、本実施形態の設定部640は、移動平均値を求める期間Sを、所定の第1期間S1よりも短い所定の第2期間S2=5秒に設定する(S2=5×Δt1、n=5)。本実施形態の設定部640は、設定した条件を表す信号を算出部650に送信する。 The setting unit 640 of the present embodiment sets conditions for the calculation unit 650 to obtain the moving average value of the open-circuit voltage and the moving average value of the power generation amount. In this embodiment, as in the first embodiment, the interval Δt1 for calculating the moving average value is set to 1 second (Δt1=1 sec). Further, when the depth of charge of the electrolytic solution is within the predetermined range, the setting unit 640 of the present embodiment sets the period S for obtaining the moving average value to a predetermined first period S1=60 seconds. When the depth of charge of the electrolyte is smaller than the predetermined range and when the depth of charge of the electrolyte is greater than the predetermined range, the setting unit 640 of the present embodiment sets the period S for obtaining the moving average value to a predetermined first A predetermined second period S2=5 seconds shorter than the period S1 is set (S2=5×Δt1, n=5). The setting unit 640 of this embodiment transmits a signal representing the set conditions to the calculation unit 650 .

本実施形態の算出部650は、設定部640により設定された条件に基づいて、開放電圧の測定値から、時刻tにおける開放電圧の移動平均値OCV(t)と時刻tにおける電解液の充電深度SOC(t)を求める。開放電圧の移動平均値OCV(t)と電解液の充電深度SOC(t)は、実施形態1と同様に求められる。本実施形態の算出部650は、求められた電解液の充電深度SOC(t)を表す信号を、設定部640と判定部660とに送信する。 Based on the conditions set by the setting unit 640, the calculation unit 650 of the present embodiment calculates the moving average value OCV(t) of the open-circuit voltage at time t and the depth of charge of the electrolyte at time t from the measured value of the open-circuit voltage. Obtain SOC(t). The moving average value OCV(t) of the open-circuit voltage and the depth of charge SOC(t) of the electrolyte are obtained in the same manner as in the first embodiment. Calculation unit 650 of the present embodiment transmits a signal representing the calculated depth of charge SOC(t) of the electrolytic solution to setting unit 640 and determination unit 660 .

さらに、本実施形態の算出部650は、設定部640により設定された条件に基づいて、取得された発電量から時刻tにおける発電量の移動平均値REP(t)求め、取得された発電量と求められた発電量の移動平均値REP(t)との差Δpを求める。時刻tにおける発電量の移動平均値REP(t)は、開放電圧の移動平均値OCV(t)と同様に求められる。本実施形態の算出部650は、求められた差Δpを表す信号を充放電制御部680に送信する。 Further, the calculation unit 650 of the present embodiment calculates the moving average value REP(t) of the power generation amount at time t from the acquired power generation amount based on the conditions set by the setting unit 640, and A difference Δp between the calculated power generation amount and the moving average value REP(t) is calculated. The moving average value REP(t) of the power generation amount at time t is obtained in the same manner as the moving average value OCV(t) of the open-circuit voltage. The calculator 650 of the present embodiment transmits a signal representing the obtained difference Δp to the charge/discharge controller 680 .

本実施形態の判定部660は、実施形態1の判定部660と同様に、時刻tにおける電解液の充電深度SOC(t)に基づいて、電解液の蓄電状態を判定する。また、本実施形態の判定部660は、電解液の蓄電状態を表す信号を、流量制御部670と充放電制御部680に送信する。 As with the determination unit 660 of the first embodiment, the determination unit 660 of the present embodiment determines the state of charge of the electrolyte based on the depth of charge SOC(t) of the electrolyte at time t. Further, the determination unit 660 of the present embodiment transmits a signal indicating the state of charge of the electrolyte to the flow control unit 670 and the charge/discharge control unit 680 .

本実施形態の流量制御部670は、実施形態1の流量制御部670と同様に、電解液の蓄電状態に基づいて、正極循環部300aの正極ポンプ320aと負極循環部300cの負極ポンプ320cの流量を制御する。正極ポンプ320aと負極ポンプ320cの流量の制御は、実施形態1の制御と同様である。 Similar to the flow control unit 670 of the first embodiment, the flow control unit 670 of the present embodiment controls the flow rate of the positive electrode pump 320a of the positive electrode circulation unit 300a and the negative electrode pump 320c of the negative electrode circulation unit 300c based on the state of charge of the electrolytic solution. to control. Control of the flow rates of the positive electrode pump 320a and the negative electrode pump 320c is the same as the control of the first embodiment.

本実施形態の充放電制御部680は、実施形態1の充放電制御部680と同様に、レドックスフロー電池システム10と、発電所と負荷との電力の充放電を制御する。電力の充放電の制御は、実施形態1の制御と同様である。 The charge/discharge control unit 680 of the present embodiment controls charge/discharge of electric power between the redox flow battery system 10, the power plant, and the load, similarly to the charge/discharge control unit 680 of the first embodiment. Control of charging and discharging of electric power is the same as the control of the first embodiment.

さらに、本実施形態の充放電制御部680は、求められた発電量の移動平均値REP(t)に基づいて、電解液の充放電を制御する。具体的には、発電量と発電量の移動平均値REP(t)との差Δpが正である場合(すなわち、発電量が発電量の移動平均値REP(t)よりも大きい場合)、本実施形態の充放電制御部680は発電所の発電量のうちの差Δp分を電解液へ充電する。一方、発電量と発電量の移動平均値REP(t)との差Δpが負である場合(すなわち、発電量が発電量の移動平均値REP(t)よりも小さい場合)、本実施形態の充放電制御部680は差Δp分を電解液から放電する。また、発電量と発電量の移動平均値REP(t)との差Δpがゼロである場合、本実施形態の充放電制御部680は充電も放電もしない。これにより、自然に左右される再生可能エネルギー発電の瞬時出力変動を吸収できる。図7は、ソーラ発電量と、レドックスフロー電池システム10からの充放電電力と、充放電制御後のソーラ発電出力との関係(ソーラ発電量の変動吸収結果)の一例を示す。図7では、ソーラ発電量の移動平均値REP(t)を仮に3kWに設定している。図7に示すように、発電量の移動平均値REP(t)に基づいて、レドックスフロー電池システム10(レドックスフロー電池システム10の電解液)の充放電を制御することにより、再生可能エネルギー発電所の発電変動をリアルタイムで平準化できる。 Further, the charging/discharging control unit 680 of the present embodiment controls the charging/discharging of the electrolytic solution based on the obtained moving average value REP(t) of the power generation amount. Specifically, when the difference Δp between the amount of power generation and the moving average value REP(t) of the amount of power generation is positive (that is, when the amount of power generation is greater than the moving average value REP(t) of the amount of power generation), this The charge/discharge control unit 680 of the embodiment charges the electrolytic solution by the difference Δp of the power generation amount of the power plant. On the other hand, if the difference Δp between the amount of power generation and the moving average value REP(t) of the amount of power generation is negative (that is, if the amount of power generation is smaller than the moving average value REP(t) of the amount of power generation), The charge/discharge control unit 680 discharges the electrolyte by the difference Δp. Further, when the difference Δp between the power generation amount and the moving average value REP(t) of the power generation amount is zero, the charge/discharge control unit 680 of the present embodiment neither charges nor discharges. This makes it possible to absorb instantaneous output fluctuations of renewable energy power generation that are influenced by nature. FIG. 7 shows an example of the relationship between the amount of solar power generation, the charge/discharge power from the redox flow battery system 10, and the solar power output after charge/discharge control (result of absorption of fluctuations in the amount of solar power generation). In FIG. 7, the moving average value REP(t) of the amount of solar power generation is temporarily set to 3 kW. As shown in FIG. 7, based on the moving average value REP(t) of the power generation amount, by controlling the charging and discharging of the redox flow battery system 10 (the electrolyte of the redox flow battery system 10), the renewable energy power plant power generation fluctuations can be leveled in real time.

本実施形態では、充放電制御部680が、発電量の移動平均値に基づいて電解液の充放電を制御すると共に、流量制御部670が開放電圧の移動平均値に基づいて正極ポンプ320aと負極ポンプ320cの流量を制御する。再生可能エネルギー発電所の発電量の移動平均値は、再生可能エネルギー発電所における短期又は長期の発電量の傾向を表すので、レドックスフロー電池システム10は、再生可能エネルギー発電所の発電変動をリアルタイムで平準化できる。さらに、実施形態1と同様に、電解液への過充電と電解液からの過放電とを抑制すると共に、電解液の充電深度の変化に迅速に対応でき、レドックスフロー電池システム10の安定した運転を実現できる。 In this embodiment, the charge/discharge control unit 680 controls charge/discharge of the electrolytic solution based on the moving average value of the power generation amount, and the flow rate control unit 670 controls the positive electrode pump 320a and the negative electrode pump 320a based on the moving average value of the open circuit voltage. Controls the flow rate of pump 320c. Since the moving average value of the power generation amount of the renewable energy power plant represents the short-term or long-term trend of the power generation amount of the renewable energy power plant, the redox flow battery system 10 can monitor the power generation fluctuation of the renewable energy power plant in real time. can be leveled. Furthermore, as in Embodiment 1, overcharging of the electrolyte and overdischarging of the electrolyte can be suppressed, changes in the charging depth of the electrolyte can be quickly handled, and the redox flow battery system 10 can be operated stably. can be realized.

<変形例>
以上、実施形態を説明したが、本開示は、本開示の要旨を逸脱しない範囲で種々の変更が可能である。
<Modification>
Although the embodiments have been described above, the present disclosure can be modified in various ways without departing from the gist of the present disclosure.

例えば、正極電解液PLと負極電解液NLの活物質はバナジウムイオンに限られない。正極電解液PLと負極電解液NLの活物質は、それぞれ、鉄イオンとクロムイオンであってもよい。 For example, the active materials of the positive electrode electrolyte PL and the negative electrode electrolyte NL are not limited to vanadium ions. The active materials of the positive electrode electrolyte PL and the negative electrode electrolyte NL may be iron ions and chromium ions, respectively.

実施形態1では、設定部640は、電解液の充電深度が所定の範囲内である場合、開放電圧の移動平均値を求める期間Sを所定の第1期間S1に設定し、電解液の充電深度が所定の範囲外である場合、開放電圧の移動平均値を求める期間Sを、所定の第1期間S1よりも短い所定の第2期間S2に設定している。設定部640は、開放電圧の移動平均値を求める期間Sを所定の第1期間S1よりも長い第3期間S3(例えば、S3=120×Δt1、n=120)に設定してもよい。 In the first embodiment, when the depth of charge of the electrolyte is within a predetermined range, the setting unit 640 sets the period S for obtaining the moving average value of the open-circuit voltage to a predetermined first period S1, and the depth of charge of the electrolyte is outside the predetermined range, the period S for obtaining the moving average value of the open-circuit voltage is set to a predetermined second period S2 shorter than the predetermined first period S1. The setting unit 640 may set the period S for obtaining the moving average value of the open-circuit voltage to a third period S3 (for example, S3=120×Δt1, n=120) longer than the predetermined first period S1.

例えば、設定部640は、電解液の充電深度が所定の範囲内である場合、開放電圧の移動平均値を求める期間Sを所定の第1期間S1と第3期間S3とに設定する。算出部650は、第1期間S1での開放電圧の移動平均値と第3期間S3での開放電圧の移動平均値とを求め、さらに、第1期間S1での電解液の充電深度と第3期間S3での電解液の充電深度とを求める。判定部660は、第1期間S1での電解液の充電深度と第3期間S3での電解液の充電深度との差が所定の範囲内である場合、電解液の蓄電状態は安定状態と判定する。電解液の蓄電状態が安定状態と判定された場合、流量制御部670は、正極ポンプ320aと負極ポンプ320cの流量を、所定の第1流量よりも小さい第3流量に制御する。これにより、レドックスフロー電池システム10を省電力で運転できる。 For example, when the depth of charge of the electrolytic solution is within a predetermined range, the setting unit 640 sets the period S for obtaining the moving average value of the open-circuit voltage to a predetermined first period S1 and a third period S3. The calculation unit 650 obtains the moving average value of the open-circuit voltage in the first period S1 and the moving average value of the open-circuit voltage in the third period S3, and further calculates the depth of charge of the electrolytic solution in the first period S1 and the third period S1. The charging depth of the electrolytic solution in the period S3 is obtained. If the difference between the depth of charge of the electrolyte in the first period S1 and the depth of charge of the electrolyte in the third period S3 is within a predetermined range, determination unit 660 determines that the state of charge of the electrolyte is stable. do. When it is determined that the state of charge of the electrolyte is stable, the flow control unit 670 controls the flow rates of the positive electrode pump 320a and the negative electrode pump 320c to a third flow rate that is smaller than the predetermined first flow rate. Thereby, the redox flow battery system 10 can be operated with power saving.

電池セル100の開放電圧の測定間隔(Δt0)と開放電圧の移動平均値を求める間隔(Δt1)と開放電圧の移動平均値を求める期間S(S1~S3)は、任意である。 The measurement interval (Δt0) of the open-circuit voltage of the battery cell 100, the interval (Δt1) for obtaining the moving average value of the open-circuit voltage, and the period S (S1 to S3) for obtaining the moving average value of the open-circuit voltage are arbitrary.

実施形態1と実施形態2では、判定部640は、開放電圧の移動平均値OCV(t)に基づいて求められた電解液の充電深度SOC(t)から、電解液の蓄電状態を判定している。判定部640は、電解液の充電深度SOC(t)を介さず、開放電圧の移動平均値OCV(t)から電解液の蓄電状態を直接判定してもよい。電解液の充電深度と電池セル100の開放電圧との間には相関関係があるので、判定部640は、予め得た相関関係に基づいて、開放電圧の移動平均値OCV(t)から電解液の蓄電状態を判定してもよい。この場合、算出部650は電解液の充電深度SOC(t)を求めなくともよい。また、設定部640は、求められた開放電圧の移動平均値OCV(t)に基づいて、移動平均値を求める条件を設定する。 In the first and second embodiments, the determination unit 640 determines the state of charge of the electrolyte from the state of charge SOC(t) of the electrolyte obtained based on the moving average value OCV(t) of the open-circuit voltage. there is Determination unit 640 may directly determine the state of charge of the electrolyte from the moving average value OCV(t) of the open-circuit voltage without using the state of charge SOC(t) of the electrolyte. Since there is a correlation between the depth of charge of the electrolyte and the open-circuit voltage of the battery cell 100, the determination unit 640 determines the electrolyte from the moving average value OCV(t) of the open-circuit voltage based on the previously obtained correlation. may be determined. In this case, calculation unit 650 does not have to obtain the depth of charge SOC(t) of the electrolytic solution. Moreover, the setting unit 640 sets conditions for obtaining the moving average value based on the obtained moving average value OCV(t) of the open-circuit voltage.

実施形態2では、開放電圧の移動平均値OCV(t)と発電量の移動平均値REP(t)が求められる。開放電圧の移動平均値OCV(t)と発電量の移動平均値REP(t)を求める期間Sは等しいことが好ましい。 In the second embodiment, the moving average value OCV(t) of the open-circuit voltage and the moving average value REP(t) of the power generation amount are obtained. It is preferable that the period S for obtaining the moving average value OCV(t) of the open-circuit voltage and the moving average value REP(t) of the power generation amount be equal.

制御部600は、例えば、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、制御回路等の専用ハードウェアを備えてもよい。この場合、処理のそれぞれを、個別のハードウェアにより実行してもよい。また、処理のそれぞれをまとめて、単一のハードウェアにより実行してもよい。処理の一部を専用ハードウェアにより実行し、処理の他の一部をソフトウェア又はファームウェアにより実行してもよい。 The control unit 600 may include dedicated hardware such as, for example, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), and a control circuit. In this case, each of the processes may be performed by separate hardware. Also, each of the processes may be collectively executed by a single piece of hardware. Part of the processing may be performed by dedicated hardware, and another part of the processing may be performed by software or firmware.

10 レドックスフロー電池システム、100 電池セル、105a 正極、105c 負極、110a 正極室、110c 負極室、120 隔膜、300 循環部、300a 正極循環部、300c 負極循環部、310a 正極電解液貯留槽、320a 正極ポンプ、322a 正極供給管、324a 供給分岐管、326a 第1正極回収管、328a 第2正極回収管、310c 負極電解液貯留槽、320c 負極ポンプ、322c 負極供給管、324c 供給分岐管、326c 第1負極回収管、328c 第2負極回収管、500 開放電圧測定部、510 モニターセル、520 測定部、600 制御部、602 CPU、604 ROM、606 RAM、608 入出力インターフェース、610 電力変換器、620 取得部、630 記憶部、640 設定部、650 算出部、660 判定部、670 流量制御部、680 充放電制御部、PL 正極電解液、NL 負極電解液 10 redox flow battery system, 100 battery cell, 105a positive electrode, 105c negative electrode, 110a positive electrode chamber, 110c negative electrode chamber, 120 diaphragm, 300 circulation unit, 300a positive electrode circulation unit, 300c negative electrode circulation unit, 310a positive electrode electrolyte storage tank, 320a positive electrode Pump 322a Positive electrode supply pipe 324a Supply branch pipe 326a First positive electrode recovery pipe 328a Second positive electrode recovery pipe 310c Negative electrode electrolyte reservoir 320c Negative electrode pump 322c Negative electrode supply pipe 324c Supply branch pipe 326c First first positive electrode recovery pipe Negative electrode recovery tube 328c Second negative electrode recovery tube 500 Open circuit voltage measurement unit 510 Monitor cell 520 Measurement unit 600 Control unit 602 CPU 604 ROM 606 RAM 608 Input/output interface 610 Power converter 620 Acquisition Part 630 Storage Part 640 Setting Part 650 Calculation Part 660 Determination Part 670 Flow Control Part 680 Charge/Discharge Control Part PL Positive Electrolyte Solution NL Negative Electrolyte Solution

Claims (7)

正極を配置される正極室と、負極を配置される負極室と、前記正極室と前記負極室を隔てる隔膜とを有する電池セルと、
前記正極室に正極電解液を循環させ、前記負極室に負極電解液を循環させる循環部と、
前記電池セルの開放電圧を測定する開放電圧測定部と、
前記正極電解液と前記負極電解液の充電深度に応じて、前記開放電圧測定部により測定された前記開放電圧の移動平均値を求め、求められた前記開放電圧の移動平均値に基づいて、前記正極電解液と前記負極電解液の充放電を制御する制御部と、を備える、
レドックスフロー電池システム。
a battery cell having a positive electrode chamber in which a positive electrode is arranged, a negative electrode chamber in which a negative electrode is arranged, and a diaphragm separating the positive electrode chamber and the negative electrode chamber;
a circulation unit that circulates a positive electrode electrolyte in the positive electrode chamber and circulates a negative electrode electrolyte in the negative electrode chamber;
an open-circuit voltage measuring unit that measures the open-circuit voltage of the battery cell;
A moving average value of the open-circuit voltage measured by the open-circuit voltage measuring unit is obtained according to the charge depth of the positive electrode electrolyte and the negative electrode electrolyte, and based on the obtained moving average value of the open-circuit voltage, the A control unit that controls charging and discharging of the positive electrode electrolyte and the negative electrode electrolyte,
Redox flow battery system.
前記制御部は、所定の第1期間における前記開放電圧の移動平均値と、前記所定の第1期間よりも短い所定の第2期間における前記開放電圧の移動平均値とを求め、
前記正極電解液と前記負極電解液の充電深度が所定の範囲内である場合、前記制御部は、前記所定の第1期間における前記開放電圧の移動平均値に基づいて、前記正極電解液と前記負極電解液の充放電を制御し、
前記正極電解液と前記負極電解液の充電深度が前記所定の範囲よりも小さい場合と前記正極電解液と前記負極電解液の充電深度が前記所定の範囲よりもよりも大きい場合、前記制御部は、前記所定の第2期間における前記開放電圧の移動平均値に基づいて、前記正極電解液と前記負極電解液の充放電を制御する、
請求項1に記載のレドックスフロー電池システム。
The control unit obtains a moving average value of the open-circuit voltage in a predetermined first period and a moving average value of the open-circuit voltage in a predetermined second period shorter than the predetermined first period,
When the depths of charge of the positive electrode electrolyte and the negative electrode electrolyte are within a predetermined range, the controller controls the positive electrode electrolyte and the negative electrode electrolyte based on the moving average value of the open-circuit voltage in the predetermined first period. Control the charging and discharging of the negative electrode electrolyte,
When the depths of charge of the positive electrolyte and the negative electrolyte are smaller than the predetermined range and when the depths of charge of the positive electrolyte and the negative electrolyte are greater than the predetermined range, the control unit , controlling charging and discharging of the positive electrode electrolyte and the negative electrode electrolyte based on the moving average value of the open-circuit voltage in the predetermined second period;
The redox flow battery system of claim 1.
前記制御部は、前記所定の第1期間よりも長い所定の第3期間における前記開放電圧の移動平均値を求め、前記所定の第3期間における前記開放電圧の移動平均値と、前記所定の第1期間における前記開放電圧の移動平均値との差に基づいて、前記正極電解液と前記負極電解液の充放電を制御する、
請求項2に記載のレドックスフロー電池システム。
The control unit obtains a moving average value of the open-circuit voltage in a predetermined third period longer than the predetermined first period, and obtains a moving average value of the open-circuit voltage in the predetermined third period and the predetermined third period. controlling charging and discharging of the positive electrode electrolyte and the negative electrode electrolyte based on the difference between the moving average value of the open circuit voltage in one period;
The redox flow battery system according to claim 2.
前記制御部は、所定の第1期間における前記開放電圧の移動平均値と、前記所定の第1期間よりも長い所定の第3期間における前記開放電圧の移動平均値とを求め、前記所定の第3期間における前記開放電圧の移動平均値と、前記所定の第1期間における前記開放電圧の移動平均値との差に基づいて、前記正極電解液と前記負極電解液の充放電を制御する、
請求項1に記載のレドックスフロー電池システム。
The control unit obtains a moving average value of the open-circuit voltage in a predetermined first period and a moving average value of the open-circuit voltage in a predetermined third period longer than the predetermined first period. controlling charging and discharging of the positive electrode electrolyte and the negative electrode electrolyte based on the difference between the moving average value of the open circuit voltage in the three periods and the moving average value of the open circuit voltage in the predetermined first period;
The redox flow battery system of claim 1.
前記制御部は、前記正極電解液と前記負極電解液の流量を制御することにより、前記正極電解液と前記負極電解液の充放電を制御する、
請求項1から4のいずれか1項に記載のレドックスフロー電池システム。
The control unit controls charging and discharging of the positive electrode electrolyte and the negative electrode electrolyte by controlling the flow rates of the positive electrode electrolyte and the negative electrode electrolyte.
The redox flow battery system according to any one of claims 1-4.
前記制御部は、前記電池セルに接続する再生可能エネルギー発電所の発電量を取得して、前記発電量の移動平均値を求め、求められた前記発電量の移動平均値に基づいて、前記正極電解液と前記負極電解液の充放電を制御する、
請求項1から5のいずれか1項に記載のレドックスフロー電池システム。
The control unit obtains a power generation amount of a renewable energy power plant connected to the battery cell, obtains a moving average value of the power generation amount, and calculates the positive electrode based on the obtained moving average value of the power generation amount. controlling charging and discharging of the electrolyte and the negative electrode electrolyte;
The redox flow battery system according to any one of claims 1-5.
電池セルの開放電圧を測定する測定工程と、
測定された前記開放電圧から、前記電池セルの正極室に供給される正極電解液と前記電池セルの負極室に供給される負極電解液の充電深度に応じて、前記開放電圧の移動平均値を求める算出工程と、
求められた前記開放電圧の移動平均値に基づいて、前記正極電解液と前記負極電解液の充放電を制御する、制御工程と、を含む、
レドックスフロー電池システムの運転方法。
a measuring step of measuring the open-circuit voltage of the battery cell;
From the measured open-circuit voltage, a moving average value of the open-circuit voltage is calculated according to the charge depth of the positive electrode electrolyte supplied to the positive electrode chamber of the battery cell and the negative electrode electrolyte supplied to the negative electrode chamber of the battery cell. a desired calculation process;
a control step of controlling charging and discharging of the positive electrode electrolyte and the negative electrode electrolyte based on the obtained moving average value of the open-circuit voltage;
A method of operating a redox flow battery system.
JP2021044267A 2021-03-18 2021-03-18 Redox flow battery system and operation method for redox flow battery system Pending JP2022143641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021044267A JP2022143641A (en) 2021-03-18 2021-03-18 Redox flow battery system and operation method for redox flow battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021044267A JP2022143641A (en) 2021-03-18 2021-03-18 Redox flow battery system and operation method for redox flow battery system

Publications (1)

Publication Number Publication Date
JP2022143641A true JP2022143641A (en) 2022-10-03

Family

ID=83454440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021044267A Pending JP2022143641A (en) 2021-03-18 2021-03-18 Redox flow battery system and operation method for redox flow battery system

Country Status (1)

Country Link
JP (1) JP2022143641A (en)

Similar Documents

Publication Publication Date Title
JP6403009B2 (en) Redox flow battery system and operating method of redox flow battery
JP6399361B2 (en) Redox flow battery system and operating method of redox flow battery
JP5772366B2 (en) Redox flow battery
JP2016535395A (en) Flow battery for operation, electrochemical stack, electrochemical system and method of using flow battery for operation
JP2015225787A (en) Redox flow battery system and method for controlling redox flow battery system
CN101968532A (en) In-situ monitoring method of state of charge of anode electrolyte of vanadium battery
CN114335648A (en) Control method and control system of all-vanadium redox flow battery system
CN109004706B (en) Megawatt-level flow battery long standby power supply and SOC measurement integrated control method
JP2022143641A (en) Redox flow battery system and operation method for redox flow battery system
CN112470315B (en) Redox flow battery system
KR20160072916A (en) Method and apparatus for controlling pump speed of redox flow battery
JP2020187939A (en) Redox flow battery system and operating method thereof
CN110416648B (en) Method for testing flow of single battery in flow battery module
US20230268533A1 (en) Redox flow battery system and method for operating redox flow battery
US20140170519A1 (en) Flow Battery System and Method Thereof
DK202100200A1 (en) System and Method for Balancing a Vanadium Redox Flow Battery
JP2023050337A (en) Redox flow battery system and operation method of redox flow battery system
KR20170069419A (en) Redox flow battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240318

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20240318

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20240318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240415