JP2022143093A - Separator for solid electrolytic capacitor and solid electrolytic capacitor - Google Patents

Separator for solid electrolytic capacitor and solid electrolytic capacitor Download PDF

Info

Publication number
JP2022143093A
JP2022143093A JP2021043432A JP2021043432A JP2022143093A JP 2022143093 A JP2022143093 A JP 2022143093A JP 2021043432 A JP2021043432 A JP 2021043432A JP 2021043432 A JP2021043432 A JP 2021043432A JP 2022143093 A JP2022143093 A JP 2022143093A
Authority
JP
Japan
Prior art keywords
separator
solid electrolytic
electrolytic capacitor
fibers
fibrillated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021043432A
Other languages
Japanese (ja)
Other versions
JP7554143B2 (en
Inventor
友洋 佐藤
Tomohiro Sato
敬生 増田
Takao Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2021043432A priority Critical patent/JP7554143B2/en
Publication of JP2022143093A publication Critical patent/JP2022143093A/en
Application granted granted Critical
Publication of JP7554143B2 publication Critical patent/JP7554143B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

To provide a separator for a solid electrolytic capacitor, which is superior in heat resistance, and a solid electrolytic capacitor which is low in ESR and hard to change in ESR even after a reflow process.SOLUTION: A separator for a solid electrolytic capacitor and a solid electrolytic capacitor including the separator for a solid electrolytic capacitor are disclosed. The separator for a solid electrolytic capacitor comprises a wet-type nonwoven fabric, in which the wet-type nonwoven fabric includes 10-30 mass% of fibrillated heat-resistant fibers, 60-85 mass% of non-fibrillated synthetic short fibers, and 1-10 mass% of fibrillated natural cellulose fibers. The separator has an average pore size of 2.8-17.0 μm, in which the frequency of pore sizes in a range of 2.0-20.0 μm is 80% or more to a total frequency of all the pore sizes, and the frequency of pore sizes of over 20.0 μm is 20% or less.SELECTED DRAWING: None

Description

本発明は、固体電解コンデンサ用セパレータ及び固体電解コンデンサに関する。以下、「固体電解コンデンサ用セパレータ」を「セパレータ」と略記する場合がある。また、「固体電解コンデンサ」を「コンデンサ」と略記する場合がある。 The present invention relates to a solid electrolytic capacitor separator and a solid electrolytic capacitor. Hereinafter, "separator for solid electrolytic capacitor" may be abbreviated as "separator". Also, "solid electrolytic capacitor" may be abbreviated as "capacitor".

固体電解質として、ポリピロールやポリチオフェンなどの導電性高分子を用いる固体電解コンデンサ(固体電解キャパシタ)では、箔状の陽極電極及び陰極電極を、セパレータを介して巻き取り、巻回素子を形成し、この巻回素子中のセパレータに導電性高分子の重合液を含浸させて重合させたり、導電性高分子分散液を含浸させたりすることによって、セパレータを覆う導電性高分子膜が形成される。 In a solid electrolytic capacitor (solid electrolytic capacitor) using a conductive polymer such as polypyrrole or polythiophene as a solid electrolyte, a foil-shaped anode electrode and a cathode electrode are wound up with a separator interposed therebetween to form a wound element. A conductive polymer film covering the separators is formed by impregnating the separators in the wound element with a polymerized liquid of the conductive polymer for polymerization or by impregnating the separators with a conductive polymer dispersion.

従来、コンデンサのセパレータとしては、エスパルトや麻パルプなどの天然セルロース繊維、溶剤紡糸セルロース繊維、再生セルロース繊維等のセルロース繊維の叩解物を主体とする紙製セパレータが使用されている(特許文献1及び2)。これら紙セパレータ中のセルロース繊維は、導電性高分子を重合する際に用いる酸化剤と反応して導電性高分子の重合を阻害することから、重合を阻害しないように、予め炭化処理が施される。炭化処理によって紙製セパレータの強度は著しく低下するため、強度が低下した紙製セパレータに形成した導電性高分子膜は破れやすく、ショートや漏れ電流不良率が高くなる問題があった。近年、電子機器の高機能化、小型・軽量化による利用分野の拡大に伴い、コンデンサの使用環境、条件が厳しくなっており、コンデンサのリフロー耐熱性の要求温度も高くなってきている。 Conventionally, as separators for capacitors, paper separators mainly composed of beating of cellulose fibers such as natural cellulose fibers such as esparto and hemp pulp, solvent-spun cellulose fibers, and regenerated cellulose fibers have been used (Patent Document 1 and 2). The cellulose fibers in these paper separators react with the oxidizing agent used in polymerizing the conductive polymer and inhibit the polymerization of the conductive polymer. be. Since the strength of paper separators is significantly reduced by carbonization, the conductive polymer film formed on the paper separators with reduced strength is easily broken, resulting in problems such as short circuits and high leakage current defect rates. In recent years, with the expansion of fields of application due to the increasing sophistication and miniaturization and weight reduction of electronic devices, the environment and conditions in which capacitors are used have become more severe, and the required temperature for reflow heat resistance of capacitors has also increased.

そのため、リフロー耐熱性を有するセパレータとして、フィブリル化耐熱性繊維を含む不織布を用いたセパレータが検討されている(特許文献3~13)。しかし、原料に用いるフィブリル化耐熱性繊維がセパレータの空隙を埋めることによって、導電性高分子の重合液又は導電性高分子分散液の含浸性が不均一となり、コンデンサのESR(等価直列抵抗)が高くなる場合があった。また、リフロー処理後のESRが悪化する場合があった。 Therefore, as a separator having reflow heat resistance, a separator using a nonwoven fabric containing fibrillated heat-resistant fibers has been studied (Patent Documents 3 to 13). However, since fibrillated heat-resistant fibers used as a raw material fill the voids of the separator, the impregnation of the conductive polymer polymerization liquid or conductive polymer dispersion liquid becomes uneven, and the ESR (equivalent series resistance) of the capacitor decreases. It was sometimes higher. In addition, the ESR after reflow treatment may deteriorate.

特開平5-267103号公報JP-A-5-267103 特開2017-69229号公報JP 2017-69229 A 特開2007-242584号公報JP 2007-242584 A 特開2001-332451号公報JP-A-2001-332451 特開2004-235293号公報JP-A-2004-235293 国際公開第2005/101432号パンフレットWO 2005/101432 pamphlet 特開2016-204798号公報JP 2016-204798 A 特開2020-53425号公報Japanese Patent Application Laid-Open No. 2020-53425 特開2020-88024号公報JP 2020-88024 A 特開2020-88049号公報Japanese Patent Application Laid-Open No. 2020-88049 特開2020-88089号公報Japanese Patent Application Laid-Open No. 2020-88089 特開2020-102500号公報Japanese Patent Application Laid-Open No. 2020-102500 特開2020-141047号公報JP 2020-141047 A

本発明の課題は、耐熱性に優れた固体電解コンデンサ用セパレータと、ESRが低く、リフロー処理後もESRが変化し難い固体電解コンデンサを提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a separator for a solid electrolytic capacitor with excellent heat resistance, and a solid electrolytic capacitor with a low ESR that does not easily change even after reflow treatment.

上記課題は、下記手段によって解決された。 The above problems have been solved by the following means.

(1)湿式不織布からなる固体電解コンデンサ用セパレータにおいて、湿式不織布が、10~30質量%のフィブリル化耐熱性繊維、60~85質量%の非フィブリル化合成短繊維、1~10質量%のフィブリル化天然セルロース繊維を含有し、かつ、平均孔径が2.8~17.0μmであり、2.0~20.0μmの範囲の孔径頻度が全孔径の80%以上であり、20.0μm超の孔径頻度が20%以下であることを特徴とする固体電解コンデンサ用セパレータ。
(2)上記(1)記載の固体電解コンデンサ用セパレータを含有する固体電解コンデンサ。
(1) A solid electrolytic capacitor separator made of a wet-laid nonwoven fabric, wherein the wet-laid nonwoven fabric contains 10 to 30% by mass of fibrillated heat-resistant fibers, 60 to 85% by mass of non-fibrillated synthetic short fibers, and 1 to 10% by mass of fibrils. It contains modified natural cellulose fibers, has an average pore size of 2.8 to 17.0 μm, has a pore size frequency in the range of 2.0 to 20.0 μm that is 80% or more of the total pore size, and has a pore size of more than 20.0 μm. A separator for a solid electrolytic capacitor, characterized by having a pore size frequency of 20% or less.
(2) A solid electrolytic capacitor containing the separator for a solid electrolytic capacitor according to (1) above.

本発明によれば、耐熱性に優れた固体電解コンデンサ用セパレータと、ESRが低く、リフロー処理後もESRが変化し難い固体電解コンデンサを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the separator for solid electrolytic capacitors excellent in heat resistance and the solid electrolytic capacitor whose ESR is low and ESR does not change easily even after reflow processing can be provided.

<固体電解コンデンサ>
本発明において、固体電解コンデンサは、電解質として、導電性を有する機能性高分子(導電性高分子)を用いる固体電解コンデンサを指す。導電性を有する機能性高分子としては、ポリピロール、ポリチオフェン、ポリアニリン、ポリアセチレン、ポリアセン、これらの誘導体などが挙げられる。本発明において、固体電解コンデンサは、これらの機能性高分子と電解液を併用した、ハイブリッド電解コンデンサであっても良い。電解液としては、イオン解離性の塩を溶解させた水溶液、イオン解離性の塩を溶解させた有機溶媒、イオン性液体(固体溶融塩)などが挙げられるが、これらに限定されるものではない。有機溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、アセトニトリル(AN)、γ-ブチロラクトン(BL)、ジメチルホルムアミド(DMF)、テトラヒドロフラン(THF)、ジメトキシエタン(DME)、ジメトキシメタン(DMM)、スルホラン(SL)、ジメチルスルホキシド(DMSO)、エチレングリコール、プロピレングリコールなどが挙げられる。
<Solid electrolytic capacitor>
In the present invention, a solid electrolytic capacitor refers to a solid electrolytic capacitor using a conductive functional polymer (conductive polymer) as an electrolyte. Examples of conductive functional polymers include polypyrrole, polythiophene, polyaniline, polyacetylene, polyacene, and derivatives thereof. In the present invention, the solid electrolytic capacitor may be a hybrid electrolytic capacitor in which these functional polymers and an electrolytic solution are used together. Examples of the electrolytic solution include, but are not limited to, an aqueous solution in which an ionically dissociative salt is dissolved, an organic solvent in which an ionically dissociative salt is dissolved, an ionic liquid (solid molten salt), and the like. . Examples of organic solvents include propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), acetonitrile (AN), γ-butyrolactone (BL), dimethylformamide (DMF), tetrahydrofuran (THF). ), dimethoxyethane (DME), dimethoxymethane (DMM), sulfolane (SL), dimethylsulfoxide (DMSO), ethylene glycol, propylene glycol and the like.

<フィブリル化耐熱性繊維>
本発明において、フィブリル化耐熱性繊維とは、融点又は熱分解温度が250℃以上であり、高圧ホモジナイザー、リファイナー、ビーター、ミル、摩砕装置などを用いて微細化処理され、フィルム状でなく、主に繊維軸と平行な方向に非常に細かく分割された部分を有する繊維状で、少なくとも一部の繊維径が1μm以下になっている繊維である。
<Fibrillated heat-resistant fiber>
In the present invention, fibrillated heat-resistant fibers have a melting point or thermal decomposition temperature of 250° C. or higher, are finely processed using a high-pressure homogenizer, refiner, beater, mill, grinding device, etc., are not film-like, It is a fibrous fiber having very finely divided portions mainly in the direction parallel to the fiber axis, and at least a portion of which has a fiber diameter of 1 μm or less.

融点又は熱分解温度が250℃以上の耐熱性繊維としては、例えば、全芳香族ポリアミド、全芳香族ポリエステル、ポリフェニレンスルフィド、ポリ-p-フェニレンベンゾビスチアゾール、ポリ-p-フェニレンベンゾビスオキサゾール、ポリベンゾイミダゾール、ポリエーテルエーテルケトン、ポリアミドイミド、ポリイミド、ポリテトラフルオロエチレン、アクリル類からなる単繊維又は複合繊維が挙げられる。これらの中でも全芳香族ポリアミドが電解液との親和性に優れるため好ましい。 Heat-resistant fibers having a melting point or thermal decomposition temperature of 250° C. or higher include, for example, wholly aromatic polyamide, wholly aromatic polyester, polyphenylene sulfide, poly-p-phenylenebenzobisthiazole, poly-p-phenylenebenzobisoxazole, poly Benzimidazole, polyetheretherketone, polyamide-imide, polyimide, polytetrafluoroethylene, and acrylics may be used as single or composite fibers. Among these, the wholly aromatic polyamide is preferable because of its excellent affinity with the electrolytic solution.

フィブリル化耐熱性繊維の変法濾水度は0~700mlであることが好ましく、より好ましくは30~600mlであり、さらに好ましくは100~500mlであり、特に好ましくは200~450mlである。フィブリル化耐熱性繊維の変法濾水度が700ml超である場合、フィブリル化があまり進んでいないため、太い幹繊維が多く存在して、繊維径分布が広くなり、地合斑や厚み斑が生じる場合がある。また、フィブリル化耐熱性繊維の変法濾水度が0ml未満である場合、ESRが高くなる場合がある。フィブリル化耐熱性繊維のフィブリル化が進むと、変法濾水度は下がり続ける。そして、変法濾水度が0mlに達した後も、さらにフィブリル化すると、繊維がメッシュを通りすぎるようになり、変法濾水度が逆に上昇し始める。本発明では、このように、変法濾水度が逆上昇し始めた状態を「変法濾水度が0ml未満」と称している。 The modified freeness of the fibrillated heat-resistant fiber is preferably 0-700 ml, more preferably 30-600 ml, still more preferably 100-500 ml, and particularly preferably 200-450 ml. When the modified freeness of the fibrillated heat-resistant fiber is more than 700 ml, the fibrillation is not so advanced, so many thick trunk fibers are present, the fiber diameter distribution is widened, and texture unevenness and thickness unevenness occur. may occur. Moreover, when the modified freeness of the fibrillated heat-resistant fiber is less than 0 ml, the ESR may become high. As the fibrillation of the fibrillated heat-resistant fiber progresses, the modified freeness continues to decrease. Even after the modified freeness reaches 0 ml, if the fibers are further fibrillated, the fibers will pass through the mesh, and the modified freeness will start to rise. In the present invention, the state in which the modified freeness starts to reversely rise is called "the modified freeness is less than 0 ml".

なお、「変法濾水度」とは、「ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度を0.1質量%にした以外はJIS P8121-2:2012に準拠して測定した値」である。 In addition, "modified freeness" refers to "using an 80-mesh wire mesh with a wire diameter of 0.14 mm and an opening of 0.18 mm as a sieve plate, and a sample concentration of 0.1% by mass, except that JIS P8121-2 : 2012".

フィブリル化耐熱性繊維において、質量加重平均繊維長は、0.10mm以上2.00mm以下であることが好ましく、0.20mm以上1.50mm以下であることがより好ましい。また、長さ加重平均繊維長は、0.10mm以上2.00mm以下であることが好ましく、0.30~1.00mmであることがより好ましく、0.40~0.75mmであることがさらに好ましく、0.50~0.70mmであることが特に好ましい。平均繊維長が好ましい範囲よりも短い場合、セパレータから脱落する場合やセパレータが毛羽立つ場合があり、平均繊維長が好ましい範囲よりも長い場合、ダマになる場合がある。 The fibrillated heat-resistant fiber preferably has a mass-weighted average fiber length of 0.10 mm or more and 2.00 mm or less, more preferably 0.20 mm or more and 1.50 mm or less. In addition, the length-weighted average fiber length is preferably 0.10 mm or more and 2.00 mm or less, more preferably 0.30 to 1.00 mm, and further preferably 0.40 to 0.75 mm. Preferably, it is particularly preferably between 0.50 and 0.70 mm. If the average fiber length is shorter than the preferred range, the separator may fall off or become fuzzy, and if the average fiber length is longer than the preferred range, lumps may occur.

本発明において、質量加重平均繊維長と長さ加重平均繊維長は、KajaaniFiberLabV3.5(Metso Automation社製)を使用して、投影繊維長(Proj)モードにおいて測定した質量加重平均繊維長(L(w))と長さ加重平均繊維長(L(l))である。 In the present invention, the mass-weighted average fiber length and the length-weighted average fiber length are the mass-weighted average fiber length (L ( w)) and the length-weighted average fiber length (L(l)).

フィブリル化耐熱性繊維の平均繊維幅は、0.5μm以上40.0μm以下が好ましく、3.0μm以上35.0μm以下がより好ましく、5.0μm以上30.0μm以下がさらに好ましい。平均繊維幅が40.0μmを超えた場合、セパレータの厚みを薄くし難くなる場合があり、平均繊維幅が0.5μm未満の場合、地合斑や厚み斑が生じる場合がある。 The average fiber width of the fibrillated heat-resistant fibers is preferably 0.5 μm or more and 40.0 μm or less, more preferably 3.0 μm or more and 35.0 μm or less, and even more preferably 5.0 μm or more and 30.0 μm or less. If the average fiber width exceeds 40.0 μm, it may be difficult to reduce the thickness of the separator, and if the average fiber width is less than 0.5 μm, uneven texture and uneven thickness may occur.

本発明において、フィブリル化耐熱性繊維の平均繊維幅は、KajaaniFiberLabV3.5(Metso Automation社製)を使用して測定した繊維幅(Fiber Width)である。 In the present invention, the average fiber width of fibrillated heat-resistant fibers is the fiber width measured using Kajaani FiberLab V3.5 (manufactured by Metso Automation).

フィブリル化耐熱性繊維の含有率は、セパレータに含まれる繊維全体に対して、10~30質量%であり、12~28質量%がより好ましく、15~25質量%がさらに好ましい。該含有率が10質量%未満である場合、耐熱性が低くなる。該含有率が30質量%を超えると、セパレータが緻密になり過ぎ、ESRが高くなる。 The content of fibrillated heat-resistant fibers is 10 to 30% by mass, more preferably 12 to 28% by mass, even more preferably 15 to 25% by mass, based on the total fibers contained in the separator. If the content is less than 10% by mass, the heat resistance will be low. If the content exceeds 30% by mass, the separator becomes too dense and the ESR increases.

<非フィブリル化合成短繊維>
非フィブリル化合成短繊維は、ポリオレフィン、ポリエステル、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリアミド、アクリル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルエーテル、ポリビニルケトン、ポリエーテル、ポリビニルアルコール、ジエン、ポリウレタン、フェノール、メラミン、フラン、尿素、アニリン、不飽和ポリエステル、フッ素、シリコーン、これらの誘導体などの樹脂からなる短繊維、上記した耐熱性繊維が挙げられる。非フィブリル化合成短繊維は、セパレータの引張強度や突刺強度を強くする。
<Non-fibrillated synthetic short fibers>
Non-fibrillated synthetic staple fibers include polyolefins, polyesters, polyvinyl acetates, ethylene-vinyl acetate copolymers, polyamides, acrylics, polyvinyl chlorides, polyvinylidene chlorides, polyvinyl ethers, polyvinyl ketones, polyethers, polyvinyl alcohols, dienes, Short fibers made of resins such as polyurethane, phenol, melamine, furan, urea, aniline, unsaturated polyester, fluorine, silicone, and derivatives thereof, and the heat-resistant fibers described above can be used. The non-fibrillated synthetic short fibers increase the tensile strength and puncture strength of the separator.

非フィブリル化合成短繊維は、単一の樹脂からなる繊維(単繊維)であっても良いし、2種以上の樹脂からなる複合繊維であっても良い。また、本発明のセパレータに含まれる非フィブリル化合成短繊維は、1種でも良いし、2種類以上を組み合わせて使用しても良い。複合繊維は、芯鞘型、偏芯型、サイドバイサイド型、海島型、オレンジ型、多重バイメタル型が挙げられる。 The non-fibrillated synthetic short fibers may be fibers (single fibers) made of a single resin, or composite fibers made of two or more resins. In addition, the non-fibrillated synthetic short fibers contained in the separator of the present invention may be of one kind, or two or more kinds thereof may be used in combination. Composite fibers include core-sheath type, eccentric type, side-by-side type, sea-island type, orange type, and multi-bimetal type.

非フィブリル化合成短繊維の繊度は、0.007~2.5dtexが好ましく、0.02~2.0dtexがより好ましく、0.1~1.1dtexがさらに好ましく、0.1~0.6dtexが特に好ましい。繊度が2.5dtexを超えた場合、厚さ方向における繊維本数が少なくなるため、厚みを薄くしにくくなる。繊度が0.007dtex未満の場合、繊維の安定製造が困難になる。 The fineness of the non-fibrillated synthetic staple fibers is preferably 0.007 to 2.5 dtex, more preferably 0.02 to 2.0 dtex, still more preferably 0.1 to 1.1 dtex, and 0.1 to 0.6 dtex. Especially preferred. If the fineness exceeds 2.5 dtex, the number of fibers in the thickness direction decreases, making it difficult to reduce the thickness. If the fineness is less than 0.007 dtex, stable production of fibers becomes difficult.

非フィブリル化合成短繊維の繊維長としては、1mm以上10mm以下が好ましく、1mm以上6mm以下がより好ましい。繊維長が10mmを超えた場合、地合不良となることがある。一方、繊維長が1mm未満の場合には、セパレータの機械的強度が弱くなる場合がある。 The fiber length of the non-fibrillated synthetic short fibers is preferably 1 mm or more and 10 mm or less, more preferably 1 mm or more and 6 mm or less. If the fiber length exceeds 10 mm, poor formation may occur. On the other hand, if the fiber length is less than 1 mm, the mechanical strength of the separator may become weak.

非フィブリル化合成短繊維の含有率は、セパレータに含まれる繊維全体に対して、60~85質量%であり、62~80質量%がより好ましく、65~75質量%がさらに好ましい。該含有率が60質量%未満である場合、セパレータの機械的強度が弱くなる。該含有率が85質量%を超えた場合、耐熱性が低くなる。 The content of non-fibrillated synthetic short fibers is 60 to 85% by mass, more preferably 62 to 80% by mass, and even more preferably 65 to 75% by mass, based on the total fibers contained in the separator. If the content is less than 60% by mass, the mechanical strength of the separator will be weak. If the content exceeds 85% by mass, the heat resistance becomes low.

<フィブリル化天然セルロース繊維>
フィブリル化天然セルロース繊維は、溶剤紡糸セルロース繊維等のフィブリル化再生セルロース繊維に比べ、繊維1本の太さの均一性が劣る傾向にあるが、繊維間の物理的な絡みと水素結合力が強いという特徴を有する。フィブリル化天然セルロース繊維の変法濾水度は0~400mlであることが好ましく、50~350mlがより好ましく、70~300mlがさらに好ましく、90~250mlが特に好ましい。該変法濾水度が400mlを超えると、繊維径分布が広くなり、地合斑や厚み斑になる場合がある。フィブリル化天然セルロース繊維のフィブリル化が進むと、変法濾水度は下がり続ける。そして、変法濾水度が0mlに達した後もフィブリル化した状態を「変法濾水度が0ml未満」と称している。該変法濾水度が0ml未満の場合、セパレータから脱落する場合やセパレータが毛羽立つ場合がある。
<Fibrillated natural cellulose fiber>
Compared to fibrillated regenerated cellulose fibers such as solvent-spun cellulose fibers, fibrillated natural cellulose fibers tend to be inferior in uniformity in the thickness of each fiber, but have strong physical entanglement and hydrogen bonding between fibers. It has the characteristics of The modified freeness of fibrillated natural cellulose fibers is preferably 0 to 400 ml, more preferably 50 to 350 ml, still more preferably 70 to 300 ml, and particularly preferably 90 to 250 ml. When the modified freeness exceeds 400 ml, the fiber diameter distribution becomes wide, and uneven texture and uneven thickness may occur. As fibrillated natural cellulose fibers become more fibrillated, the modified freeness continues to decrease. The state of fibrillation even after the modified freeness reaches 0 ml is called "modified freeness less than 0 ml". If the modified freeness is less than 0 ml, the liquid may drop from the separator or the separator may become fuzzy.

フィブリル化天然セルロース繊維の長さ加重平均繊維長は、0.10~2.00mmであることが好ましく、0.10~1.00mmであることがより好ましく、0.10~0.50mmであることがさらに好ましく、0.10~0.40mmであることが特に好ましい。該長さ加重平均繊維長が0.10mm未満である場合、セパレータから脱落する場合やセパレータが毛羽立つ場合があり、2.00mmより長い場合、ダマになる場合がある。 The length-weighted average fiber length of fibrillated natural cellulose fibers is preferably 0.10 to 2.00 mm, more preferably 0.10 to 1.00 mm, and 0.10 to 0.50 mm. is more preferable, and 0.10 to 0.40 mm is particularly preferable. When the length-weighted average fiber length is less than 0.10 mm, the fibers may fall off from the separator or the separator may become fuzzy.

フィブリル化天然セルロース繊維の原料としては、針葉樹パルプや広葉樹パルプ等の木材パルプ;コットンリンターパルプ、コットンパルプ、麻、バガス、ケナフ、竹、藁等を由来とする非木材パルプ;等を使用することができる。中でも、フィブリル化後の繊維強度や品質の安定性やセルロース純度の観点から、コットン由来の原料が好ましい。 As raw materials for fibrillated natural cellulose fibers, wood pulp such as softwood pulp and hardwood pulp; non-wood pulp derived from cotton linter pulp, cotton pulp, hemp, bagasse, kenaf, bamboo, straw, etc.; can be done. Among them, raw materials derived from cotton are preferable from the viewpoint of fiber strength after fibrillation, quality stability, and cellulose purity.

フィブリル化天然セルロース繊維は、リファイナー、ビーター、ミル、摩砕装置、高速の回転刃により剪断力を与える回転刃式ホモジナイザー、高速で回転する円筒形の内刃と固定された外刃との間で剪断力を生じる二重円筒式の高速ホモジナイザー、超音波による衝撃で微細化する超音波破砕器、繊維懸濁液に少なくとも20MPaの圧力差を与えて小径のオリフィスを通過させて高速度とし、これを衝突させて急減速することにより繊維に剪断力、切断力を加える高圧ホモジナイザー等で処理されたもので、この中でも、特に高圧ホモジナイザーで処理されたものが好ましい。 Fibrillated natural cellulose fibers are processed by refiners, beaters, mills, grinders, rotary blade homogenizers that apply shear force with high-speed rotating blades, and between cylindrical inner blades rotating at high speed and fixed outer blades. A double-cylinder high-speed homogenizer that produces a shearing force, an ultrasonic crusher that micronizes by ultrasonic impact, and a pressure difference of at least 20 MPa to the fiber suspension to pass through a small diameter orifice to a high speed, which are treated with a high-pressure homogenizer or the like that applies a shearing force and a cutting force to the fibers by colliding the fibers and rapidly decelerating them.

フィブリル化天然セルロース繊維の含有率は、セパレータに含まれる繊維全体に対して、1~10質量%であり、1~9質量%がより好ましく、1~8質量%がさらに好ましい。該含有率が1質量%未満である場合、セパレータの機械的強度が弱くなり、また、コンデンサのショート不良が起きやすくなる。該含有率が10質量%を超えると、セパレータが緻密になり過ぎ、ESRが高くなる。 The content of fibrillated natural cellulose fibers is 1 to 10% by mass, more preferably 1 to 9% by mass, even more preferably 1 to 8% by mass, based on the total fibers contained in the separator. If the content is less than 1% by mass, the mechanical strength of the separator is weakened, and short-circuit failure of the capacitor is likely to occur. If the content exceeds 10% by mass, the separator becomes too dense and the ESR increases.

<固体電解コンデンサ用セパレータ>
本発明のセパレータは、湿式不織布からなるセパレータであり、湿式不織布が、10~30質量%のフィブリル化耐熱性繊維、60~85質量%の非フィブリル化合成短繊維、1~10質量%のフィブリル化天然セルロース繊維を含有し、かつ、平均孔径が2.8~17.0μmであり、2.0~20.0μmの範囲の孔径頻度が全孔径の80%以上であり、20.0μm超の孔径頻度が20%以下であることを特徴とする。本発明によれば、セパレータの空隙を過度に塞ぐことなく、均一な細孔分布とすることができることから、導電性高分子の重合液の含浸性が均一となり、コンデンサのESRを低くすることができる。また、リフロー処理後もESRが変化し難いという効果を達成できる。さらに、セパレータが微細で耐熱性の高いフィブリル化耐熱性繊維を含むことにより、セパレータの熱寸法安定性が向上し、耐熱性に優れたセパレータを得ることができる。
<Separator for Solid Electrolytic Capacitor>
The separator of the present invention is a separator made of a wet-laid nonwoven fabric, and the wet-laid nonwoven fabric contains 10 to 30% by mass of fibrillated heat-resistant fibers, 60 to 85% by mass of nonfibrillated synthetic short fibers, and 1 to 10% by mass of fibrils. It contains modified natural cellulose fibers, has an average pore size of 2.8 to 17.0 μm, has a pore size frequency in the range of 2.0 to 20.0 μm that is 80% or more of the total pore size, and has a pore size of more than 20.0 μm. It is characterized by having a pore diameter frequency of 20% or less. According to the present invention, since a uniform pore distribution can be obtained without excessively clogging the voids of the separator, the impregnation of the conductive polymer with the polymerization liquid becomes uniform, and the ESR of the capacitor can be lowered. can. In addition, it is possible to achieve the effect that the ESR is difficult to change even after the reflow treatment. Furthermore, since the separator contains fine fibrillated heat-resistant fibers with high heat resistance, the thermal dimensional stability of the separator is improved, and a separator excellent in heat resistance can be obtained.

セパレータの平均孔径は、2.8~17.0μmであり、3.0~15.0μmがより好ましく、3.2~13.0μmがさらに好ましい。平均孔径が2.8μm未満である場合、セパレータが緻密になり過ぎ、ESRが高くなる。平均孔径が17.0μmを超える場合、セパレータの緻密性が不足し、コンデンサのショート不良が起きやすくなる。 The separator has an average pore size of 2.8 to 17.0 μm, more preferably 3.0 to 15.0 μm, even more preferably 3.2 to 13.0 μm. If the average pore size is less than 2.8 μm, the separator will be too dense and the ESR will be high. If the average pore size exceeds 17.0 μm, the denseness of the separator is insufficient, and short circuits tend to occur in the capacitor.

本発明のセパレータは、2.0~20.0μmの範囲の孔径頻度が全孔径の80%以上であり、20.0μm超の孔径頻度が20%以下である。セパレータの孔径頻度がこの範囲であることによって、孔の分布がなだらかに広く分布することがないため、セパレータの均一性が高くなり、導電性高分子の重合液の含浸性が均一となり、ESRを低くすることができる。セパレータの孔径頻度がこの範囲を外れると、セパレータの均一性が下がり、ESRが高くなり、また、リフロー処理後にESRが変化する。 In the separator of the present invention, the frequency of pore diameters in the range of 2.0 to 20.0 μm is 80% or more of the total pore diameter, and the frequency of pore diameters exceeding 20.0 μm is 20% or less. When the pore diameter frequency of the separator is within this range, the pore distribution is not smooth and wide, so that the uniformity of the separator becomes high, the impregnation of the conductive polymer with the polymerization liquid becomes uniform, and the ESR is reduced. can be lowered. If the pore size frequency of the separator is out of this range, the uniformity of the separator decreases, the ESR increases, and the ESR changes after the reflow treatment.

セパレータの孔径頻度は、2.0~20.0μmの範囲の孔径頻度が全孔径の85%以上であり、20.0μm超の孔径頻度が15%以下であることがより好ましく、2.0~20.0μmの範囲の孔径頻度が全孔径の90%以上であり、20.0μm超の孔径頻度が10%以下であることがさらに好ましい。 Regarding the pore size frequency of the separator, the pore size frequency in the range of 2.0 to 20.0 μm is 85% or more of the total pore size, and the pore size frequency of more than 20.0 μm is more preferably 15% or less. More preferably, the frequency of pore diameters in the range of 20.0 μm is 90% or more of the total pore diameter, and the frequency of pore diameters greater than 20.0 μm is 10% or less.

本発明において、平均孔径が2.8~17.0μmであり、2.0~20.0μmの範囲の孔径頻度が全孔径の80%以上であり、20.0μm超の孔径頻度が20%以下であるセパレータとする方法としては、繊維の繊維径、繊維の含有率、セパレータの坪量、セパレータの厚み等の調整、湿式抄紙法における抄紙網の選定、抄紙スラリー濃度、抄紙スラリーの温度の調整、抄紙スラリーへの増粘剤添加量、分散剤添加量の調整、脱水強度の調整などが挙げられる。抄紙スラリーの分散が均一となり、セパレータの細孔分布を均一とすることができることから、抄紙スラリーへ増粘剤や分散剤を添加することが好ましい。 In the present invention, the average pore diameter is 2.8 to 17.0 μm, the frequency of pore diameters in the range of 2.0 to 20.0 μm is 80% or more of the total pore diameter, and the frequency of pore diameters exceeding 20.0 μm is 20% or less. As a method for making a separator, the fiber diameter of the fiber, the content of the fiber, the basis weight of the separator, the thickness of the separator, etc. are adjusted, the selection of the papermaking net in the wet papermaking method, the papermaking slurry concentration, and the temperature of the papermaking slurry are adjusted. , adjustment of the amount of thickener added to the papermaking slurry, adjustment of the amount of dispersant added, adjustment of dewatering strength, and the like. It is preferable to add a thickener or a dispersant to the papermaking slurry because the dispersion of the papermaking slurry becomes uniform and the pore distribution of the separator can be made uniform.

増粘剤としては、カルボキシメチルセルロース、デンプン、ポリ酢酸ビニル、ポリ乳酸、ポリグリコール酸、ポリアクリルアミド、ポリエチレンオキシド等が挙げられる。これらの中でもポリアクリルアミド、ポリエチレンオキシドが好ましい。 Examples of thickening agents include carboxymethylcellulose, starch, polyvinyl acetate, polylactic acid, polyglycolic acid, polyacrylamide, polyethylene oxide and the like. Among these, polyacrylamide and polyethylene oxide are preferred.

本発明において、平均孔径・孔径頻度は、PMI社製、商品名:パームポロメーターCFP-1500Aを用いて、ハーフドライ試験法(ASTM E1294-89)に準じて測定した孔径分布から求めた、セパレータの平均孔径、孔径頻度である。区間幅0.1μmとした孔径分布から全区間のうち、区間2.0~20.0μmの比率(%)及び20.0μm超の比率(%)を求め、孔径頻度とした。 In the present invention, the average pore size and pore size frequency are obtained from the pore size distribution measured according to the half-dry test method (ASTM E1294-89) using PMI Co., Ltd., trade name: Perm Porometer CFP-1500A. is the average pore size and pore size frequency. From the pore size distribution with a section width of 0.1 μm, the ratio (%) of the section of 2.0 to 20.0 μm and the ratio (%) of the section exceeding 20.0 μm were obtained and used as the pore size frequency.

本発明において、セパレータの坪量は、8~22g/mが好ましく、9~20g/mがより好ましく、10~18g/mがさらに好ましい。坪量が22g/mを超える場合、ESRが高くなり過ぎる場合がある。坪量が8g/m未満である場合、十分な強度を得ることが難しい場合や耐熱性が劣る場合がある。なお、坪量は、JIS P8124:2011(紙及び板紙-坪量測定法)に規定された方法に基づき測定される。 In the present invention, the basis weight of the separator is preferably 8-22 g/m 2 , more preferably 9-20 g/m 2 , and even more preferably 10-18 g/m 2 . If the basis weight exceeds 22 g/m 2 , the ESR may become too high. If the basis weight is less than 8 g/m 2 , it may be difficult to obtain sufficient strength or the heat resistance may be poor. The basis weight is measured according to the method specified in JIS P8124:2011 (Paper and paperboard—Method for measuring basis weight).

本発明において、セパレータの厚みは、15~70μmが好ましく、20~67μmがより好ましく、25~65μmがさらに好ましい。厚みが70μmを超える場合、ESRが高くなり過ぎる場合がある。厚みが15μm未満である場合、十分な強度を得ることが難しい場合や耐熱性が劣る場合がある。なお、厚みは、JIS C2300-2:2010に規定された方法に基づき、5N荷重時の外側マイクロメーターにより測定されたセパレータ1枚の値である。 In the present invention, the thickness of the separator is preferably 15 to 70 μm, more preferably 20 to 67 μm, even more preferably 25 to 65 μm. If the thickness exceeds 70 μm, the ESR may become too high. If the thickness is less than 15 μm, it may be difficult to obtain sufficient strength or the heat resistance may be poor. The thickness is the value of one sheet of separator measured with an outer micrometer under a load of 5N based on the method specified in JIS C2300-2:2010.

本発明において、セパレータは、湿式抄紙法で製造された湿式不織布である。湿式抄紙法は、繊維を水に分散して均一な抄紙スラリーとし、この抄紙スラリーを抄紙機で漉きあげて湿潤ウェブを得、湿潤ウェブを乾燥させて湿式不織布を作製する。抄紙機としては、円網、長網、傾斜型、傾斜短網等の抄紙網を単独で使用する抄紙機や、これらの抄紙網を複数組み合わせた複合抄紙機が挙げられる。湿式不織布を製造する工程においては、必要に応じて、水流交絡処理を施しても良い。抄紙スラリーには、繊維原料の他に、必要に応じて、分散剤、増粘剤、消泡剤などを適宜添加することができる。湿式不織布に対して、熱処理、カレンダー処理、熱カレンダー処理などの加工処理を施しても良い。 In the present invention, the separator is a wet-laid nonwoven fabric produced by a wet-laid papermaking method. In the wet papermaking method, fibers are dispersed in water to form a uniform papermaking slurry, the papermaking slurry is drawn up by a paper machine to obtain a wet web, and the wet web is dried to produce a wet nonwoven fabric. Examples of the paper machine include a paper machine that uses a paper machine such as a cylinder machine, a fourdrinier, an inclined type, or an inclined short machine, and a composite paper machine that combines a plurality of these paper machines. In the process of producing the wet-laid nonwoven fabric, a hydroentangling treatment may be applied, if necessary. To the papermaking slurry, a dispersant, a thickener, an antifoaming agent, and the like can be appropriately added in addition to the fiber raw material, if necessary. The wet-laid nonwoven fabric may be subjected to processing such as heat treatment, calendering, and heat calendering.

以下、本発明を実施例によりさらに詳細に説明するが、本発明は本実施例に限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

Figure 2022143093000001
Figure 2022143093000001

A1:変法濾水度250mlのフィブリル化全芳香族ポリアミド
A2:変法濾水度350mlのフィブリル化ポリイミド
B1:繊度0.1dtex、繊維長3mmのポリエステル短繊維
B2:繊度0.3dtex、繊維長3mmのポリエステル短繊維
B3:繊度1.1dtex、繊維長5mmの熱融着性芯鞘ポリエステル短繊維
B4:繊度0.1dtex、繊維長3mmのアクリル短繊維
C1:変法濾水度270ml、長さ加重平均繊維長0.22mmのフィブリル化天然セルロース繊維
C2:変法濾水度500mlの麻パルプ
A1: Fibrillated wholly aromatic polyamide with a modified freeness of 250 ml A2: Fibrillated polyimide with a modified freeness of 350 ml B1: Polyester short fibers with a fineness of 0.1 dtex and a fiber length of 3 mm B2: A fineness of 0.3 dtex and a fiber length 3 mm polyester staple fiber B3: Heat-fusible core-sheath polyester staple fiber with a fineness of 1.1 dtex and a fiber length of 5 mm B4: Acrylic staple fiber with a fineness of 0.1 dtex and a fiber length of 3 mm C1: Modified freeness of 270 ml, length Fibrillated natural cellulose fiber C2 with a weighted average fiber length of 0.22 mm: hemp pulp with a modified freeness of 500 ml

<セパレータ>
(実施例1)
表1に示した原料と配合量に従って調成した抄紙用スラリーに、分子量1400万のアニオン性ポリアクリルアミド系増粘剤を全繊維に対して0.6質量%になるように添加し、5分間均一になるまで撹拌した後、円網・円網コンビネーション抄紙機を用いて湿潤ウェブを得て、表面温度140℃のシリンダードライヤーによって乾燥して、湿式不織布を得た。その後、200℃に加熱した金属ロールに、湿式不織布の両面を接触させて熱処理し、さらにカレンダー処理して厚み調整し、表2に示す実施例1のセパレータを作製した。
<Separator>
(Example 1)
An anionic polyacrylamide thickener having a molecular weight of 14,000,000 was added to the papermaking slurry prepared according to the raw materials and blending amounts shown in Table 1 so as to be 0.6% by mass based on the total fibers, and the mixture was allowed to stand for 5 minutes. After stirring until uniform, a wet web was obtained using a cylinder/cylinder combination paper machine and dried with a cylinder dryer at a surface temperature of 140°C to obtain a wet-laid nonwoven fabric. Thereafter, both sides of the wet nonwoven fabric were brought into contact with metal rolls heated to 200° C. for heat treatment, and the thickness was adjusted by calendering to prepare the separator of Example 1 shown in Table 2.

(実施例2、3)
表1に示した原料と配合量に従って調成した抄紙用スラリーに、分子量1400万のアニオン性ポリアクリルアミド系増粘剤を全繊維に対して0.6質量%になるように添加し、5分間均一になるまで撹拌した後、円網・傾斜コンビネーション抄紙機を用いて湿潤ウェブを得て、表面温度140℃のシリンダードライヤーによって乾燥して、湿式不織布を得た。その後、200℃に加熱した金属ロールに、湿式不織布の両面を接触させて熱処理し、さらにカレンダー処理して厚み調整し、表2に示す実施例2、3のセパレータを作製した。
(Examples 2 and 3)
An anionic polyacrylamide thickener having a molecular weight of 14,000,000 was added to the papermaking slurry prepared according to the raw materials and blending amounts shown in Table 1 so as to be 0.6% by mass based on the total fibers, and the mixture was allowed to stand for 5 minutes. After stirring until uniform, a wet web was obtained using a cylinder/inclined combination paper machine and dried with a cylinder dryer at a surface temperature of 140°C to obtain a wet-laid nonwoven fabric. After that, both sides of the wet nonwoven fabric were brought into contact with metal rolls heated to 200° C. for heat treatment, and the thickness was adjusted by calendering.

(実施例4)
表1に示した原料と配合量に従って調成した抄紙用スラリーに、分子量1400万のアニオン性ポリアクリルアミド系増粘剤を全繊維に対して0.6質量%になるように添加し、5分間均一になるまで撹拌した後、円網・円網コンビネーション抄紙機を用いて湿潤ウェブを得て、表面温度140℃のシリンダードライヤーによって乾燥して、湿式不織布を得た。その後、200℃に加熱した金属ロールに、湿式不織布の両面を接触させて熱処理し、さらにカレンダー処理して厚み調整し、表2に示す実施例4のセパレータを作製した。
(Example 4)
An anionic polyacrylamide thickener having a molecular weight of 14,000,000 was added to the papermaking slurry prepared according to the raw materials and blending amounts shown in Table 1 so as to be 0.6% by mass based on the total fibers, and the mixture was allowed to stand for 5 minutes. After stirring until uniform, a wet web was obtained using a cylinder/cylinder combination paper machine and dried with a cylinder dryer at a surface temperature of 140°C to obtain a wet-laid nonwoven fabric. After that, both sides of the wet nonwoven fabric were brought into contact with metal rolls heated to 200° C. for heat treatment, and the thickness was adjusted by calendering.

(実施例5)
表1に示した原料と配合量に従って調成した抄紙用スラリーに、分子量1400万のアニオン性ポリアクリルアミド系増粘剤を全繊維に対して0.6質量%になるように添加し、5分間均一になるまで撹拌した後、円網抄紙機を用いて湿潤ウェブを得て、表面温度140℃のシリンダードライヤーによって乾燥して、湿式不織布を得た。その後、200℃に加熱した金属ロールに、湿式不織布の両面を接触させて熱処理し、さらにカレンダー処理して厚み調整し、表2に示す実施例5のセパレータを作製した。
(Example 5)
An anionic polyacrylamide thickener having a molecular weight of 14,000,000 was added to the papermaking slurry prepared according to the raw materials and blending amounts shown in Table 1 so as to be 0.6% by mass based on the total fibers, and the mixture was allowed to stand for 5 minutes. After stirring until uniform, a wet web was obtained using a cylinder paper machine and dried with a cylinder dryer at a surface temperature of 140°C to obtain a wet-laid nonwoven fabric. After that, both sides of the wet nonwoven fabric were brought into contact with metal rolls heated to 200° C. for heat treatment, and the thickness was adjusted by calendering.

(実施例6)
表1に示した原料と配合量に従って調成した抄紙用スラリーに、分子量1400万のアニオン性ポリアクリルアミド系増粘剤を全繊維に対して0.6質量%になるように添加し、5分間均一になるまで撹拌した後、傾斜抄紙機を用いて湿潤ウェブを得て、表面温度140℃のシリンダードライヤーによって乾燥して、湿式不織布を得た。その後、200℃に加熱した金属ロールに、湿式不織布の両面を接触させて熱処理し、さらにカレンダー処理して厚み調整し、表2に示す実施例6のセパレータを作製した。
(Example 6)
An anionic polyacrylamide thickener having a molecular weight of 14,000,000 was added to the papermaking slurry prepared according to the raw materials and blending amounts shown in Table 1 so as to be 0.6% by mass based on the total fibers, and the mixture was allowed to stand for 5 minutes. After stirring until uniform, a wet web was obtained using an inclined paper machine and dried with a cylinder dryer at a surface temperature of 140°C to obtain a wet-laid nonwoven fabric. Thereafter, both sides of the wet nonwoven fabric were brought into contact with metal rolls heated to 200° C. for heat treatment, and the thickness was adjusted by calendering to prepare the separator of Example 6 shown in Table 2.

(比較例1)
表1に示した原料と配合量に従って調成した抄紙用スラリーから、円網・円網コンビネーション抄紙機を用いて湿潤ウェブを得て、表面温度140℃のシリンダードライヤーによって乾燥して、湿式不織布を得た。その後、200℃に加熱した金属ロールに、湿式不織布の両面を接触させて熱処理し、さらにカレンダー処理して厚み調整し、表2に示す比較例1のセパレータを作製した。
(Comparative example 1)
A wet web is obtained from the slurry for papermaking prepared according to the raw materials and blending amounts shown in Table 1 using a cylinder/cylinder combination paper machine, and dried with a cylinder dryer at a surface temperature of 140°C to form a wet nonwoven fabric. Obtained. Thereafter, both sides of the wet nonwoven fabric were brought into contact with metal rolls heated to 200° C. for heat treatment, and the thickness was adjusted by calendering to prepare a separator of Comparative Example 1 shown in Table 2.

(比較例2)
表1に示した原料と配合量に従って調成した抄紙用スラリーから、円網・傾斜コンビネーション抄紙機を用いて湿潤ウェブを得て、表面温度140℃のシリンダードライヤーによって乾燥して、湿式不織布を得た。その後、200℃に加熱した金属ロールに、湿式不織布の両面を接触させて熱処理し、さらにカレンダー処理して厚み調整し、表2に示す比較例2のセパレータを作製した。
(Comparative example 2)
A wet web is obtained from a papermaking slurry prepared according to the raw materials and blending amounts shown in Table 1 using a combination cylinder/inclined paper machine, and dried with a cylinder dryer at a surface temperature of 140°C to obtain a wet nonwoven fabric. rice field. Thereafter, both surfaces of the wet nonwoven fabric were brought into contact with metal rolls heated to 200° C. for heat treatment, and the thickness was adjusted by calendering to prepare a separator of Comparative Example 2 shown in Table 2.

(比較例3~6)
表1に示した原料と配合量に従って調成した抄紙用スラリーから、円網抄紙機を用いて湿潤ウェブを得て、表面温度140℃のシリンダードライヤーによって乾燥して、湿式不織布を得た。その後、200℃に加熱した金属ロールに、湿式不織布の両面を接触させて熱処理し、さらにカレンダー処理して厚み調整し、表2に示す比較例3~6のセパレータを作製した。
(Comparative Examples 3-6)
A wet web was obtained from a papermaking slurry prepared according to the raw materials and blending amounts shown in Table 1 using a cylinder paper machine, and dried with a cylinder dryer at a surface temperature of 140°C to obtain a wet nonwoven fabric. Thereafter, both sides of the wet nonwoven fabric were brought into contact with metal rolls heated to 200° C. for heat treatment, and the thickness was adjusted by calendering to prepare separators of Comparative Examples 3 to 6 shown in Table 2.

Figure 2022143093000002
Figure 2022143093000002

<実施例1~6及び比較例1~5の評価用固体電解コンデンサの作製>
厚み50μm、エッチング孔1~5μmのアルミニウム箔の表面を酸化処理して、酸化アルミニウム誘電体を形成させ、これを陽極として用いた。酸化処理する前のアルミニウム箔を陰極として用いた。実施例1~6及び比較例1~5の固体電解コンデンサ用セパレータを陽極の誘電体上に配置し、陰極と合わせて巻き取り、固体電解コンデンサ素子を作製した。この素子を3,4-エチレンジオキシチオフェン:p-トルエンスルホン酸第二鉄の50質量%ブタノール溶液を質量比で1:20になるように混合した溶液(導電性高分子モノマー液)に浸漬し、引き上げて200℃で30分加熱してポリエチレンジオキシチオフェンを重合した。この素子をメタノールで洗浄してセパレータに残留している未反応の3,4-エチレンジオキシチオフェンとp-トルエンスルホン酸第二鉄を除去した後、120℃で乾燥させた。同様に、ポリエチレンジオキシチオフェンの重合作業をもう1回繰り返した後、素子をアルミニウム製外装缶に収納して封口し、定格電圧25V、定格静電容量33μFの固体電解コンデンサを作製した。
<Production of solid electrolytic capacitors for evaluation of Examples 1 to 6 and Comparative Examples 1 to 5>
An aluminum foil having a thickness of 50 μm and an etching hole of 1 to 5 μm was oxidized on its surface to form an aluminum oxide dielectric, which was used as an anode. An aluminum foil before oxidation treatment was used as a cathode. The separators for solid electrolytic capacitors of Examples 1 to 6 and Comparative Examples 1 to 5 were arranged on the dielectric of the anode, combined with the cathode, and rolled up to produce a solid electrolytic capacitor element. This element was immersed in a solution (conductive polymer monomer solution) in which 3,4-ethylenedioxythiophene:ferric p-toluenesulfonate in 50 mass% butanol solution was mixed in a mass ratio of 1:20. Then, it was pulled up and heated at 200° C. for 30 minutes to polymerize polyethylenedioxythiophene. This element was washed with methanol to remove unreacted 3,4-ethylenedioxythiophene and ferric p-toluenesulfonate remaining on the separator, and then dried at 120.degree. Similarly, after repeating the polymerization of polyethylenedioxythiophene one more time, the element was housed in an aluminum outer can and sealed to produce a solid electrolytic capacitor with a rated voltage of 25 V and a rated capacitance of 33 μF.

<比較例6の評価用固体電解コンデンサの作製>
厚み50μm、エッチング孔1~5μmのアルミニウム箔の表面を酸化処理して、酸化アルミニウム誘電体を形成させ、これを陽極として用いた。酸化処理する前のアルミニウム箔を陰極として用いた。比較例6の固体電解コンデンサ用セパレータを陽極の誘電体上に配置し、陰極と合わせて巻き取り、固体電解コンデンサ素子を作製した。この素子を230℃で2時間加熱してセパレータを炭化処理した後、3,4-エチレンジオキシチオフェン:p-トルエンスルホン酸第二鉄の50質量%ブタノール溶液を質量比で1:20になるように混合した溶液(導電性高分子モノマー液)に浸漬し、引き上げて200℃で30分加熱してポリエチレンジオキシチオフェンを重合した。この素子をメタノールで洗浄してセパレータに残留している未反応の3,4-エチレンジオキシチオフェンとp-トルエンスルホン酸第二鉄を除去した後、120℃で乾燥させた。同様に、ポリエチレンジオキシチオフェンの重合作業をもう1回繰り返した後、素子をアルミニウム製外装缶に収納して封口し、定格電圧25V、定格静電容量33μFの固体電解コンデンサを作製した。
<Preparation of Solid Electrolytic Capacitor for Evaluation of Comparative Example 6>
An aluminum foil having a thickness of 50 μm and an etching hole of 1 to 5 μm was oxidized on its surface to form an aluminum oxide dielectric, which was used as an anode. An aluminum foil before oxidation treatment was used as a cathode. The separator for a solid electrolytic capacitor of Comparative Example 6 was arranged on the dielectric of the anode, combined with the cathode, and wound up to produce a solid electrolytic capacitor element. After heating this device at 230° C. for 2 hours to carbonize the separator, a 50% by mass butanol solution of 3,4-ethylenedioxythiophene:ferric p-toluenesulfonate was added at a mass ratio of 1:20. It was immersed in the solution (conducting polymer monomer solution) mixed in the manner described above, pulled out, and heated at 200° C. for 30 minutes to polymerize polyethylenedioxythiophene. This element was washed with methanol to remove unreacted 3,4-ethylenedioxythiophene and ferric p-toluenesulfonate remaining on the separator, and then dried at 120.degree. Similarly, after repeating the polymerization of polyethylenedioxythiophene once more, the device was housed in an aluminum outer can and sealed to produce a solid electrolytic capacitor with a rated voltage of 25 V and a rated capacitance of 33 μF.

[耐熱性]
セパレータを100mm巾×100mm長さに切り、耐熱ガラス板に挟んで、180℃の恒温乾燥機に1時間静置し、長さ方向及び巾方向の収縮率を算出した。長さ方向及び巾方向の収縮率の平均値が2.7%未満であれば「○」、2.7%以上3.0%未満であれば「△」、3.0%以上であれば「×」で表し、表3に示した。
[Heat-resistant]
The separator was cut into 100 mm wide×100 mm long pieces, sandwiched between heat-resistant glass plates, left to stand in a constant temperature dryer at 180° C. for 1 hour, and the shrinkage ratios in the length direction and width direction were calculated. If the average value of the shrinkage rate in the length direction and the width direction is less than 2.7%, it is "○". If it is 2.7% or more and less than 3.0%, it is "△". It is represented by “x” and shown in Table 3.

[ESR]
実施例及び比較例の固体電解コンデンサのESRを、20℃、100kHzの条件で測定し、20個の平均値が30mΩ未満であれば「○」、30mΩ以上35mΩ未満であれば「△」、35mΩ以上であれば「×」で表し、表3に示した。
[ESR]
The ESR of the solid electrolytic capacitors of Examples and Comparative Examples was measured under conditions of 20°C and 100 kHz. If the average value of 20 capacitors was less than 30 mΩ, the result was "○". If it is more than that, it is indicated by "x" and shown in Table 3.

[リフロー後ESR変化]
実施例及び比較例の固体電解コンデンサを260℃の半田浴に10秒間浸漬して取り出し、20℃まで冷却する。これを1サイクルとして、2サイクル繰り返した後の固体電解コンデンサのESRを、20℃、100kHzの条件で測定し、20個の平均値をリフロー後ESRとした。リフロー後ESRがリフロー前ESRに比べ、1.05倍未満であれば「○」、1.05倍以上1.10倍未満であれば「△」、1.10倍以上であれば「×」で表し、表3に示した。
[Change in ESR after reflow]
The solid electrolytic capacitors of Examples and Comparative Examples are immersed in a solder bath at 260°C for 10 seconds, taken out, and cooled to 20°C. This was regarded as one cycle, and the ESR of the solid electrolytic capacitor after repeating two cycles was measured under conditions of 20° C. and 100 kHz, and the average value of 20 samples was taken as the post-reflow ESR. If the ESR after reflow is less than 1.05 times the ESR before reflow, it is marked "○"; and shown in Table 3.

Figure 2022143093000003
Figure 2022143093000003

実施例1~6の固体電解コンデンサ用セパレータは、10~30質量%のフィブリル化耐熱性繊維、60~85質量%の非フィブリル化合成短繊維、1~10質量%のフィブリル化天然セルロース繊維を含有し、かつ、平均孔径が2.8~17.0μmであり、2.0~20.0μmの範囲の孔径頻度が全孔径の80%以上であり、20.0μm超の孔径頻度が20%以下である湿式不織布であるため、セパレータの耐熱性、コンデンサのESRに優れていた。また、リフロー後ESR変化の悪化も少なかった。 The solid electrolytic capacitor separators of Examples 1 to 6 contain 10 to 30% by mass of fibrillated heat-resistant fibers, 60 to 85% by mass of non-fibrillated synthetic short fibers, and 1 to 10% by mass of fibrillated natural cellulose fibers. and the average pore size is 2.8 to 17.0 μm, the frequency of pore sizes in the range of 2.0 to 20.0 μm is 80% or more of the total pore size, and the frequency of pore sizes exceeding 20.0 μm is 20% Since the wet-laid nonwoven fabric has the following properties, the heat resistance of the separator and the ESR of the capacitor were excellent. In addition, deterioration in ESR change after reflow was small.

一方、比較例1の固体電解コンデンサ用セパレータは、フィブリル化耐熱性繊維の含有量が少ないため、耐熱性が劣っていた。また、平均孔径が大きく、2.0~20.0μmの範囲の孔径頻度が低く、20.0μm超の孔径頻度が高いことから、リフロー後ESR変化が大きかった。 On the other hand, the solid electrolytic capacitor separator of Comparative Example 1 was inferior in heat resistance because the content of fibrillated heat-resistant fibers was small. In addition, the average pore size was large, the frequency of pore diameters in the range of 2.0 to 20.0 μm was low, and the frequency of pore diameters exceeding 20.0 μm was high, resulting in a large change in ESR after reflow.

比較例2の固体電解コンデンサ用セパレータは、フィブリル化耐熱性繊維の含有量が多く、平均孔径が小さいため、コンデンサのESRが劣っていた。 The solid electrolytic capacitor separator of Comparative Example 2 contained a large amount of fibrillated heat-resistant fibers and had a small average pore size, so the ESR of the capacitor was inferior.

比較例3の固体電解コンデンサ用セパレータは、フィブリル化天然セルロース繊維の含有量が多いため、コンデンサのESRが劣っていた。 The solid electrolytic capacitor separator of Comparative Example 3 had a large content of fibrillated natural cellulose fibers, so the ESR of the capacitor was inferior.

比較例4の固体電解コンデンサ用セパレータは、フィブリル化天然セルロース繊維を含有量が少なく、2.0~20.0μmの範囲の孔径頻度が低く、20.0μm超の孔径頻度が高いことから、リフロー後ESR変化が大きかった。 The solid electrolytic capacitor separator of Comparative Example 4 has a low content of fibrillated natural cellulose fibers, a low frequency of pore diameters in the range of 2.0 to 20.0 μm, and a high frequency of pore diameters exceeding 20.0 μm. The post-ESR change was large.

比較例5の固体電解コンデンサ用セパレータは、2.0~20.0μmの範囲の孔径頻度が低く、20.0μm超の孔径頻度が高いことから、リフロー後ESR変化が大きかった。 The separator for a solid electrolytic capacitor of Comparative Example 5 had a low frequency of pore diameters in the range of 2.0 to 20.0 μm and a high frequency of pore diameters exceeding 20.0 μm, resulting in a large change in ESR after reflow.

比較例6の固体電解コンデンサ用セパレータは、フィブリル化耐熱性繊維を含有しないため、耐熱性が劣っていた。また、2.0~20.0μmの範囲の孔径頻度が低く、20.0μm超の孔径頻度が高いことから、リフロー後ESR変化が大きかった。 The solid electrolytic capacitor separator of Comparative Example 6 did not contain fibrillated heat-resistant fibers, and thus was inferior in heat resistance. In addition, since the frequency of pore diameters in the range of 2.0 to 20.0 μm was low and the frequency of pore diameters exceeding 20.0 μm was high, the ESR change after reflow was large.

実施例1~5の比較から、実施例1の固体電解コンデンサ用セパレータと比較して、フィブリル化耐熱性繊維の含有量が多いことから、実施例2~5の固体電解コンデンサ用セパレータの耐熱性は優れていた。また、実施例1~6の比較から、実施例1の固体電解コンデンサ用セパレータと比較して、平均孔径が小さく、2.0~20.0μmの範囲の孔径頻度が高く、20.0μm超の孔径頻度が低いことから、実施例2~6の固体電解コンデンサ用セパレータでは、リフロー後ESR変化が小さく、優れていた。 From the comparison of Examples 1 to 5, the content of fibrillated heat-resistant fibers is higher than that of the solid electrolytic capacitor separator of Example 1, so the heat resistance of the solid electrolytic capacitor separators of Examples 2 to 5 is high. was excellent. Further, from a comparison of Examples 1 to 6, compared to the solid electrolytic capacitor separator of Example 1, the average pore size is smaller, the pore size frequency in the range of 2.0 to 20.0 μm is higher, and the pore size of more than 20.0 μm is high. Since the frequency of pore diameters is low, the separators for solid electrolytic capacitors of Examples 2 to 6 were excellent with small changes in ESR after reflow.

実施例1~4及び6の比較から、実施例2の固体電解コンデンサ用セパレータと比較して、坪量が小さく、厚みが薄く、平均孔径が大きいことから、実施例1、3、4及び6の固体電解コンデンサ用セパレータでは、コンデンサのESRが優れていた。 From the comparison of Examples 1 to 4 and 6, compared with the solid electrolytic capacitor separator of Example 2, the basis weight is smaller, the thickness is smaller, and the average pore size is larger. The ESR of the capacitor was excellent in the separator for the solid electrolytic capacitor of No.

実施例1、3~6の比較から、実施例5の固体電解コンデンサ用セパレータと比較して、フィブリル化耐熱性繊維の含有量が少ないことから、実施例1、3、4及び6の固体電解コンデンサ用セパレータでは、コンデンサのESRが優れていた。 From the comparison of Examples 1, 3 to 6, compared to the solid electrolytic capacitor separator of Example 5, the content of the fibrillated heat-resistant fiber is small, so the solid electrolytes of Examples 1, 3, 4 and 6 The capacitor ESR was excellent for the capacitor separator.

実施例2~6の比較から、実施例6の固体電解コンデンサ用セパレータと比較して、坪量が大きく、厚いことから、実施例2~5の固体電解コンデンサ用セパレータでは、コンデンサの耐熱性が優れていた。 From the comparison of Examples 2 to 6, the solid electrolytic capacitor separator of Example 6 has a larger basis weight and is thicker than the solid electrolytic capacitor separator of Example 6. Therefore, the solid electrolytic capacitor separator of Examples 2 to 5 has a heat resistance of the capacitor. was excellent.

本発明は、固体電解コンデンサ用セパレータ又はハイブリッド電解コンデンサ用セパレータとして好適に利用できる。 INDUSTRIAL APPLICABILITY The present invention can be suitably used as a separator for solid electrolytic capacitors or a separator for hybrid electrolytic capacitors.

Claims (2)

湿式不織布からなる固体電解コンデンサ用セパレータにおいて、湿式不織布が、10~30質量%のフィブリル化耐熱性繊維、60~85質量%の非フィブリル化合成短繊維、1~10質量%のフィブリル化天然セルロース繊維を含有し、かつ、平均孔径が2.8~17.0μmであり、2.0~20.0μmの範囲の孔径頻度が全孔径の80%以上であり、20.0μm超の孔径頻度が20%以下であることを特徴とする固体電解コンデンサ用セパレータ。 In a separator for a solid electrolytic capacitor made of a wet-laid nonwoven fabric, the wet-laid nonwoven fabric contains 10 to 30% by mass of fibrillated heat-resistant fibers, 60 to 85% by mass of non-fibrillated synthetic short fibers, and 1 to 10% by mass of fibrillated natural cellulose. It contains fibers and has an average pore size of 2.8 to 17.0 μm, a pore size frequency in the range of 2.0 to 20.0 μm is 80% or more of the total pore size, and a pore size frequency greater than 20.0 μm A separator for a solid electrolytic capacitor, characterized in that it is 20% or less. 請求項1記載の固体電解コンデンサ用セパレータを含有する固体電解コンデンサ。 A solid electrolytic capacitor comprising the separator for solid electrolytic capacitors according to claim 1 .
JP2021043432A 2021-03-17 2021-03-17 SEPARATOR FOR SOLID ELECTROLYTIC CAPACITOR, ... AND METHOD FOR MANUFACTURING SAME Active JP7554143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021043432A JP7554143B2 (en) 2021-03-17 2021-03-17 SEPARATOR FOR SOLID ELECTROLYTIC CAPACITOR, ... AND METHOD FOR MANUFACTURING SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021043432A JP7554143B2 (en) 2021-03-17 2021-03-17 SEPARATOR FOR SOLID ELECTROLYTIC CAPACITOR, ... AND METHOD FOR MANUFACTURING SAME

Publications (2)

Publication Number Publication Date
JP2022143093A true JP2022143093A (en) 2022-10-03
JP7554143B2 JP7554143B2 (en) 2024-09-19

Family

ID=83453813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021043432A Active JP7554143B2 (en) 2021-03-17 2021-03-17 SEPARATOR FOR SOLID ELECTROLYTIC CAPACITOR, ... AND METHOD FOR MANUFACTURING SAME

Country Status (1)

Country Link
JP (1) JP7554143B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7442882B1 (en) 2023-02-16 2024-03-05 大福製紙株式会社 Separator for electrochemical device and method for manufacturing separator for electrochemical device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6442097B1 (en) 2018-03-29 2018-12-19 ニッポン高度紙工業株式会社 Aluminum electrolytic capacitor separator and aluminum electrolytic capacitor using the separator
JP6821071B2 (en) 2019-03-26 2021-01-27 三菱製紙株式会社 Separator for solid electrolytic capacitors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7442882B1 (en) 2023-02-16 2024-03-05 大福製紙株式会社 Separator for electrochemical device and method for manufacturing separator for electrochemical device

Also Published As

Publication number Publication date
JP7554143B2 (en) 2024-09-19

Similar Documents

Publication Publication Date Title
US9653717B2 (en) Separator for electrochemical element, process for producing separator and electrochemical element using separator
JP5695477B2 (en) Electrochemical element separator and electrochemical element using the same
US10964986B2 (en) Separator for electrochemical elements, and electrochemical element comprising same
JP4938640B2 (en) separator
JP2014056953A (en) Separator for capacitor and capacitor
JP7554143B2 (en) SEPARATOR FOR SOLID ELECTROLYTIC CAPACITOR, ... AND METHOD FOR MANUFACTURING SAME
JP2017174928A (en) Separator for solid electrolytic capacitor
US11721492B2 (en) Capacitor block having a spacer
CN113316830B (en) Spacer for solid electrolytic capacitor
JP5695474B2 (en) Separator for solid electrolytic capacitor and solid electrolytic capacitor using the same
JP2022143094A (en) Separator for electrolytic capacitor and electrolytic capacitor
JP7309650B2 (en) Separator for electrochemical device
JP2020088024A (en) Solid electrolytic capacitor or hybrid separator for electrolytic capacitor, and solid electrolytic or hybrid electrolytic capacitor which is arranged by use thereof
JP2023149090A (en) Separator for solid electrolytic capacitor and solid electrolytic capacitor
JP2013191780A (en) Separator for solid electrolytic capacitor, and solid electrolytic capacitor including the same
JP2021158357A (en) Separator for solid electrolytic capacitor and solid electrolytic capacitor
JP2003168629A (en) Separator for capacitor
JP7273497B2 (en) Separator for solid electrolytic capacitor or hybrid electrolytic capacitor and solid electrolytic capacitor or hybrid electrolytic capacitor using the same
JP2020088089A (en) Solid electrolytic capacitor or hybrid separator for electrolytic capacitor, and solid electrolytic or hybrid electrolytic capacitor which is arranged by use thereof
JP2004207333A (en) Separator and wound type electric double-layered capacitor using the same
JP2020088049A (en) Solid electrolytic capacitor or hybrid separator for electrolytic capacitor, and solid electrolytic or hybrid electrolytic capacitor which is arranged by use thereof
JP2020053425A (en) Separator for solid electrolytic capacitor or hybrid electrolytic capacitor and solid electrolytic capacitor or hybrid electrolytic capacitor including the same
JP2021158223A (en) Separator for electrolytic capacitor and electrolytic capacitor
JP4999609B2 (en) Solid electrolytic capacitor separator
JP2016025105A (en) Method for manufacturing separator for solid electrolytic capacitor, and separator for solid electrolytic capacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230425

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20231031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240906