JP2022140403A - 熱勾配補償のための仮想センシングを有する加熱バンドル - Google Patents

熱勾配補償のための仮想センシングを有する加熱バンドル Download PDF

Info

Publication number
JP2022140403A
JP2022140403A JP2022037256A JP2022037256A JP2022140403A JP 2022140403 A JP2022140403 A JP 2022140403A JP 2022037256 A JP2022037256 A JP 2022037256A JP 2022037256 A JP2022037256 A JP 2022037256A JP 2022140403 A JP2022140403 A JP 2022140403A
Authority
JP
Japan
Prior art keywords
heating
power
voltage
current
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022037256A
Other languages
English (en)
Inventor
エヴァリー、マーク
EVERLY Mark
クアント、ジェレミー
QUANDT Jeremy
ジェイスタッド、スチーブン・ティー
T Jystad Steven
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Watlow Electric Manufacturing Co
Original Assignee
Watlow Electric Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/197,556 external-priority patent/US20210190380A1/en
Application filed by Watlow Electric Manufacturing Co filed Critical Watlow Electric Manufacturing Co
Publication of JP2022140403A publication Critical patent/JP2022140403A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/78Heating arrangements specially adapted for immersion heating
    • H05B3/82Fixedly-mounted immersion heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • F24H9/1818Arrangement or mounting of electric heating means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0244Heating of fluids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/0252Domestic applications
    • H05B1/0275Heating of spaces, e.g. rooms, wardrobes
    • H05B1/0283For heating of fluids, e.g. water heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/04Waterproof or air-tight seals for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/18Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor the conductor being embedded in an insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/101Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
    • F24H1/102Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance
    • F24H1/103Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance with bare resistances in direct contact with the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
    • F24H9/2028Continuous-flow heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/037Heaters with zones of different power density

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Resistance Heating (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

【課題】加熱バンドルを含む加熱システムを提供する。【解決手段】システムは、複数の加熱ユニットを有する少なくとも1つの加熱アセンブリを有する加熱バンドルを含む。加熱ユニットのうち少なくとも1つは、少なくとも1つの独立して制御される加熱領域を画定し、複数の電源導体は加熱ユニットに電気的に接続されている。電源装置は、電源導体を介して少なくとも1つの独立して制御される加熱領域への電力を変調するように構成され、コントローラは、所定のモデルおよび少なくとも1つの入力に基づいて少なくとも1つの加熱ユニット内の温度を計算するように構成され、コントローラは、計算された温度に基づいて、少なくとも1つの加熱ユニットへの電力を変調する。【選択図】 図1

Description

関連出願の相互参照
本出願は、2016年3月2日に出願され、現在は米国特許第10,247,445号である米国特許出願第15/058,838号の継続出願である、2019年2月11日出願の、「適応制御のための加熱バンドル(Heater Bundle for Adaptive Control)」と題された米国特許第16/272,668号明細書の一部継続出願である。上記の開示の内容は、その全体が参照により本明細書に組み込まれる。
本開示は、電気加熱器に関し、より詳細には、熱交換器内の流体などの流体を加熱するための加熱器に関する。
このセクションの記述は、本開示に関連する背景情報を提供するにすぎず、先行技術を構成し得ない。
流体加熱器は、カートリッジ加熱器の外面に沿って、またはカートリッジ加熱器の外面を通過して流れる流体を加熱するためのロッド構成を有するカートリッジ加熱器の形態であってもよい。カートリッジ加熱器は、熱交換器を通って流れる流体を加熱するための熱交換器の内部に配置されてもよい。カートリッジ加熱器が適切に密封されていない場合、カートリッジ加熱器の金属シースから抵抗加熱素子を電気的に絶縁する絶縁材料を汚染するために、水分および流体がカートリッジ加熱器に入る可能性があり、絶縁破壊をもたらし、その結果、加熱器の故障をもたらす。水分はまた、電源導体と外側金属シースとの間の短絡を引き起こす可能性がある。カートリッジ加熱器の故障は、カートリッジ加熱器を使用する装置の費用のかかるダウンタイムを引き起こす可能性がある。
このセクションは、本開示の一般的な概要を提供し、その全範囲またはその特徴のすべての包括的な開示ではない。
本開示は、複数の加熱ユニットを有する少なくとも1つの加熱アセンブリを有する加熱バンドルを含む加熱システムを提供し、加熱ユニットのうち少なくとも1つは、少なくとも1つの独立して制御される加熱領域を画定している。複数の電源導体は電気的に加熱ユニットに接続され、電源装置は、電源導体を介して少なくとも1つの独立して制御される加熱領域への電力を変調するように構成されたコントローラを含む。コントローラは、所定のモデルおよび少なくとも1つの入力に基づいて少なくとも1つの加熱ユニット内の温度を計算するように構成され、コントローラは、計算された温度に基づいて少なくとも1つの加熱ユニットへの電力を変調する。
個別にまたは任意の組み合わせで実施することができるこの加熱システムの変形例では、少なくとも1つの加熱ユニットは、端部加熱ユニットであり、少なくとも1つの入力は、加熱バンドル内の別の位置の温度を含み、少なくとも1つの入力は、複数の加熱ユニットのうち少なくとも1つの少なくとも1つの温度を含み、少なくとも1つの入力は、加熱バンドルの消費電力を含み、少なくとも1つの入力は、所定の期間にわたる加熱バンドルの平均消費電力を含み、少なくとも1つの入力は、加熱バンドルの電圧および/または加熱ユニットの少なくとも1つの電圧を含み、少なくとも1つの入力は、加熱バンドルおよび/または加熱ユニットの少なくとも1つの電流を含み、少なくとも1つの入力は、加熱バンドルの電流漏れを含み、少なくとも1つの入力は、加熱バンドルの絶縁抵抗を含み、少なくとも1つの入力は流体温度、流体速さ、流体速度、および流体質量流量のうち少なくとも1つを含み、コントローラは、複数の加熱ユニットに既知の電流を供給し、少なくとも1つの独立して制御される加熱領域の電圧を測定し、計測された電圧を既知の電流に関連する公称電圧と比較して、電圧偏差および/または対応する抵抗偏差を識別することによって温度を計算し、コントローラは、複数の加熱ユニットに既知の電圧を供給し、少なくとも1つの独立して制御される加熱領域の電流を測定し、計測された電流を既知の電圧に関連する公称電流と比較して、電流偏差および/または対応する抵抗偏差を識別することによって温度を計算する。
この加熱システムの変形例では、流体を加熱するための装置は、内部チャンバを画定し、流体入口および流体出口を有する密閉されたハウジングを備え、少なくとも1つの加熱アセンブリは、ハウジングの内部チャンバ内に配置される。少なくとも1つの加熱アセンブリは、ハウジング内の流体に応答性の熱分布を提供するように適合されている。熱分布は、本明細書に記載されるような仮想センシングの実施に基づく「応答性」である。
本開示の別の形態では、加熱システムは、複数の加熱ユニットを含む加熱アセンブリを備え、少なくとも1つの加熱ユニットは、少なくとも1つの独立して制御される加熱領域を画定している。複数の電源導体が加熱ユニットに電気的に接続され、電源装置は、電源導体を介して少なくとも1つの独立して制御される加熱領域への電力を変調するように構成されたコントローラを含む。コントローラは、所定のモデルおよび少なくとも1つの入力に基づいて少なくとも1つの加熱ユニット内の温度を計算するように構成され、コントローラは、計算された温度に基づいて少なくとも1つの加熱ユニットへの電力を変調する。
個別にまたは任意の組み合わせで実施することができるこの加熱システムの変形例では、少なくとも1つの加熱ユニットは、端部加熱ユニットであり、コントローラは、複数の加熱ユニットに既知の電流を供給し、少なくとも1つの独立して制御される加熱領域の電圧を測定し、測定された電圧を既知の電流に関連する公称電圧と比較して、電圧偏差および/または対応する抵抗偏差を識別することによって温度を計算し、コントローラは、複数の加熱ユニットに既知の電圧を供給し、少なくとも1つの独立して制御される加熱領域の電流を測定し、測定された電流を既知の電圧に関連する公称電流と比較して、電流偏差および/または対応する抵抗偏差を識別することによって温度を計算する。さらに、加熱システムのこれらの変形例を有する装置は、内部チャンバを画定し、流体入口および流体出口を有する密閉されたハウジングを含む。加熱アセンブリは、ハウジングの内部チャンバ内に配置され、ハウジング内の流体に応答性の熱分布を提供するように適合されている。
さらに別の形態では、加熱システムは、複数の加熱ユニットを含む加熱アセンブリを含み、複数の加熱ユニットのうち2つ以上が、少なくとも1つの独立して制御される加熱領域を画定する。複数の電源導体は、加熱ユニットに電気的に接続され、電源装置は、電源導体を介して独立して制御される加熱領域への電力を変調するように構成されたコントローラを含む。コントローラは、所定のモデルおよび少なくとも1つの入力に基づいて、2つ以上の加熱ユニット内の温度を計算するように構成され、コントローラは、計算された温度に基づいて、2つ以上の加熱ユニットへの電力を変調する。
個別にまたは任意の組み合わせで実施することができるこの加熱システムの変形例では、少なくとも1つの加熱ユニットは、端部加熱ユニットであり、コントローラは、複数の加熱ユニットへの既知の電流を供給し、少なくとも1つの独立して制御される加熱領域の電圧を測定し、測定された電圧を既知の電流と関連する公称電圧と比較して、電圧偏差および/または対応する抵抗偏差を識別することによって温度を計算し、コントローラは、複数の加熱ユニットへの既知の電圧を供給し、少なくとも1つの独立して制御される加熱領域の電流を測定し、測定された電流を既知の電圧と関連する公称電流と比較して、電流偏および/または対応する抵抗偏差を識別することによって温度を計算する。
さらなる適用領域は、本明細書で提供される説明から明らかになるであろう。説明および特定の例は、例示のみを目的とするものであり、本開示の範囲を限定するものではないことを理解されたい。
本開示が十分に理解され得るように、添付の図面を参照して、例として与えられるその様々な形態がここで説明される。
本開示の教示に従って構成された加熱バンドルの斜視図である。 本開示の教示による図1の加熱バンドルの加熱アセンブリの斜視図である。 本開示の教示による図1の加熱バンドルの加熱アセンブリの変形例の斜視図である。 本開示の教示による図3の加熱アセンブリの斜視図であり、明確にするために加熱アセンブリの外側シースが除去されている。 本開示の教示による図3の加熱アセンブリの芯体の斜視図である。 本開示の教示による図1の加熱バンドルを含む熱交換器の斜視図であり、加熱バンドルは、例示目的のために加熱バンドルを露出させるために熱交換器から部分的に分解されている。 本開示の教示に従って構成された加熱バンドルを含む加熱システムを動作させる方法のブロック図である。 本開示の教示による熱供給部を含む加熱アセンブリの斜視図である。 本開示の教示による、図8の線9-9に沿った加熱アセンブリの断面図である。 本開示の教示による、図8の線10-10に沿った加熱アセンブリの断面図である。 本開示の教示による別の熱供給部を含む加熱アセンブリの斜視図である。 本開示の教示による、図11の線12-12に沿った加熱アセンブリの断面図である。 本開示の教示による、図11の線13-13に沿った加熱アセンブリの断面図である。 本開示の教示による別の熱供給部を含む加熱アセンブリの斜視図である。 本開示の教示による図14の加熱アセンブリの熱供給部の側面図である。 本開示の教示による熱供給部を含む加熱アセンブリの斜視図である。 本開示の教示による熱供給部を含む加熱アセンブリの斜視図である。 本開示の教示による、図17の線18-18に沿った加熱アセンブリの断面図である。 本開示の教示による、図17の線19-19に沿った加熱アセンブリの断面図である。 本開示の教示による熱供給部を含む加熱アセンブリの斜視図である。
本明細書に記載の図面は、例示のみを目的としており、決して本開示の範囲を限定することを意図するものではない。
以下の説明は、本質的に単なる例示であり、本開示、用途、または使用を限定することを意図するものではない。
図1を参照すると、本開示の教示に従って構成された加熱システムが全体的に参照番号10で示されている。加熱システム10は、加熱バンドル12と、加熱バンドル12に電気的に接続された電源装置14とを含む。電源装置14は、加熱バンドル12への電力供給を制御するためのコントローラ15を含む。本開示で使用される「加熱バンドル」は、独立して制御することができる2つ以上の物理的に別個の加熱装置を含む加熱装置を指す。したがって、加熱バンドル内の加熱装置のうちの1つが故障または劣化した場合、加熱バンドル12内の残りの加熱装置は動作し続けることができる。
一形態では、加熱バンドル12は、取り付けフランジ16と、取り付けフランジ16に固定された複数の加熱アセンブリ18とを含む。取り付けフランジ16は、加熱アセンブリ18が貫通して延在する複数の開口部20を含む。加熱アセンブリ18は、この形態では平行になるように配置されているが、加熱アセンブリ18の代替の位置/配置は、本開示の範囲内であることを理解されたい。
さらに示すように、取り付けフランジ16は、複数の取り付け穴22を含む。取り付け穴22を通るねじまたはボルト(図示せず)を使用することによって、取り付けフランジ16は、加熱される流体を運ぶ容器またはパイプ(図示せず)の壁に組み付けることができる。加熱アセンブリ18の少なくとも一部は、本開示のこの形態の流体を加熱するために容器または管の内部の流体に浸漬される。
図2を参照すると、一形態による加熱アセンブリ18は、カートリッジ加熱器30の形態であってもよい。カートリッジ加熱器30は、一般に、芯体32と、芯体32の周りに巻き付けられた抵抗発熱配線34と、芯体32および抵抗発熱配線34を内部に包囲する金属シース36と、金属シース36内の空間に充填され、抵抗発熱配線34を金属シース36から電気的に絶縁し、抵抗発熱配線34からの熱を金属シース36に熱伝導させる絶縁材料38とを含む管状加熱器である。芯体32は、セラミック製であってもよい。絶縁材料38は、圧縮された酸化マグネシウム(MgO)であってもよい。複数の電源導体42は、芯体32を長手方向に沿って貫通し、抵抗発熱配線34に電気的に接続されている。電源導体42はまた、金属シース36を封止するエンドピース44を通って延在する。電源導体42は、電源装置14(図1に示す)に接続され、電源装置14から抵抗発熱配線34に電力を供給する。図2は、エンドピース44を通って延在する2つの電源導体42のみを示しているが、3つ以上の電源導体42がエンドピース44を通って延在し得る。電源導体42は、導電性ピンの形態であってもよい。カートリッジ加熱器の様々な構造ならびにさらなる構造的および電気的詳細は、本出願と共通して譲渡され、その内容全体が参照により本明細書に組み込まれる米国特許第2,831,951号および第3,970,822号により詳細に記載されている。したがって、本明細書に示される形態は単なる例示であり、本開示の範囲を限定するものとして解釈されるべきではないことを理解されたい。
あるいは、複数の抵抗発熱配線34および電源導体42の複数の対を使用して、カートリッジ加熱器30の信頼性を高めるために独立して制御することができる複数の加熱回路を形成することができる。したがって、抵抗発熱配線34のうちの1つが故障した場合、残りの抵抗発熱配線34は、カートリッジ加熱器30全体を故障させることなく、かつ高価な機械のダウンタイムを引き起こすことなく、熱を生成し続けることができる。
図3~図5を参照すると、加熱アセンブリ50は、使用される芯体の数および電源導体の数を除いて、図2と同様の構成を有するカートリッジ加熱器の形態であってもよい。より具体的には、加熱アセンブリ50はそれぞれ、複数の電源導体56と共に、複数の加熱ユニット52と、複数の加熱ユニット52を内部に封入する外側金属シース54とを含む。複数の加熱ユニット52と外側金属シース54との間には、加熱ユニット52と外側金属シース54とを電気的に絶縁する絶縁材料(図3~図5には示されていない)が設けられている。複数の加熱ユニット52は、それぞれ、芯体58と、芯体58を取り囲む抵抗加熱素子60とを含む。各加熱ユニット52の抵抗加熱素子60は、1つまたは複数の加熱領域62を画定するための1つまたは複数の加熱回路を画定することができる。
本形態では、各加熱ユニット52は、1つの加熱領域62を画定し、各加熱アセンブリ50内の複数の加熱ユニット52は、長手方向Xに沿って整列している。したがって、各加熱アセンブリ50は、長手方向Xに沿って整列した複数の加熱領域62を画定する。各加熱ユニット52の芯体58は、電源導体56が貫通することを可能にするために複数の貫通孔/開口部64を画定する。加熱ユニット52の抵抗加熱素子60は電源導体56に接続され、電源導体56は電源装置14に接続される。電源導体56は、電源装置14からの電力を複数の加熱ユニット52に供給する。電源導体56を抵抗加熱素子60に適切に接続することにより、複数の加熱ユニット52の抵抗加熱素子60は、電源装置14のコントローラ15によって独立して制御することができる。したがって、特定の加熱領域62に対する一方の抵抗加熱素子60の故障は、残りの加熱領域62に対する残りの抵抗加熱素子60の適切な機能に影響を及ぼさない。さらに、加熱ユニット52および加熱アセンブリ50は、修理または組み立てを容易にするために交換可能であってもよい。
本形態では、各加熱アセンブリ50に対して6つの電源導体56が使用されて、5つの加熱ユニット52上の5つの独立した電気加熱回路に電力を供給する。あるいは、6つの電源導体56は、5つの加熱ユニット52上に3つの完全に独立した回路を画定するように抵抗加熱素子60に接続されてもよい。任意の数の独立して制御される加熱回路および独立して制御される加熱領域62を形成するために、任意の数の電源導体56を有することが可能である。例えば、7つの電源導体56を使用して、6つの加熱領域62を提供することができる。8つの電源導体56を使用して、7つの加熱領域62を提供することができる。
電源導体56は、複数の電源および電源リターン導体、複数の電源リターン導体および単一の電源導体、または複数の電源導体および単一の電源リターン導体を含んでもよい。加熱領域の数がnである場合、電源導体およびリターン導体の数はn+1である。
あるいは、電源装置14のコントローラ15による多重化(multiplexing)、極性感知スイッチング(polarity sensitive switching)、および他の回路トポロジ(circuit topologies)によって、より多数の電気的に別個の加熱領域62を作成することができる。所与の数の電源導体(例えば、15または30領域用の6つの電源導体を有するカートリッジ加熱器)についてカートリッジ加熱器30内の加熱領域の数を増加させるための熱アレイの多重化または様々な配置の使用は、米国特許第9,123,755号、第9,123,756号、第9,177,840号、第9,196,513号、およびそれらの関連出願に開示されており、これらは本出願と共通に譲渡され、その内容は参照によりその全体が本明細書に組み込まれる。
この構造により、各加熱アセンブリ50は、加熱アセンブリ50の長さに沿って電力出力または熱分布を変化させるように独立して制御することができる複数の加熱領域62を含む。加熱バンドル12は、複数のこのような加熱アセンブリ50を含む。したがって、加熱バンドル12は、複数の加熱領域62と、特定の用途に適合するように加熱バンドル12を通って流れる流体を加熱するための調整された熱分布とを提供する。電源装置14は、独立して制御される加熱領域62の各々への電力を変調するように構成することができる。
例えば、加熱アセンブリ50は、「m」個の加熱領域を画定することができ、加熱バンドルは、「k」個の加熱アセンブリ50を含み得る。したがって、加熱バンドル12は、m×k個の加熱領域を画定することができる。加熱バンドル12内の複数の加熱領域62は、個々の加熱ユニット52の寿命および信頼性、加熱ユニット52のサイズおよびコスト、局所的な加熱器の流束(flux)、加熱ユニット52の特性および動作、ならびに全電力出力を含むがこれらに限定されない加熱条件および/または加熱要件に応じて個別に動的に制御することができる。
各回路は、温度および/または電力の分布がシステムパラメータ(例えば、製造のばらつき/公差、環境条件の変更、入口温度、入口温度分布、流速、速度分布、流体組成、流体熱容量などの入口流れ条件の変更)の変動に適合するように、所望の温度または所望の電力レベルで個別に制御される。より具体的には、加熱ユニット52は、製造ばらつきならびに経時的な加熱劣化の程度の変化に起因して、同じ電力レベルで動作するときに同じ熱出力を生成しない場合がある。加熱ユニット52は、所望の熱分布に応じて熱出力を調整するように独立して制御されてもよい。加熱システムの構成要素の個々の製造公差および加熱システムの組み立て公差は、電源の変調された電力の関数として増大され、言い換えれば、加熱制御の忠実度が高いため、個々の構成要素の製造公差は、それほど厳しく/狭い必要はない。
加熱ユニット52は各々、加熱ユニット52の温度を測定するための温度センサ(図示せず)を含むことができる。加熱ユニット52内のホットスポットが検出された場合、電源装置14は、特定の加熱ユニット52の過熱または故障を回避するために、ホットスポットが検出された特定の加熱ユニット52への電力を低減またはオフにすることができる。電源装置14は、特定の加熱ユニット52からの減少した熱出力を補償するために、無効にされた加熱ユニット52に隣接する加熱ユニット52への電力を変調することができる。
電源装置14は、任意の特定の領域に供給される電力レベルをオフまたは低減し、無効にされて熱出力が低減された特定の加熱領域に隣接する加熱領域への電力を増加させるためのマルチ領域アルゴリズムを含むことができる。各加熱領域への電力を慎重に変調することにより、システムの全体的な信頼性を向上させることができる。ホットスポットを検出し、それに応じて電源を制御することにより、加熱システム10の安全性が向上する。
複数の独立して制御された加熱領域62を有する加熱バンドル12は、改善された加熱を達成することができる。例えば、加熱ユニット52上のいくつかの回路は、100%未満の公称(または「典型的な」)デューティサイクルで(または線電圧が印加された加熱器によって生成される電力の一部である平均電力レベルで)動作することができる。より低いデューティサイクルは、より大きな直径を有する抵抗発熱配線の使用を可能にし、それによって信頼性を向上させる。
通常、より小さい領域は、所与の抵抗を達成するためにより微細なワイヤサイズを使用する。可変電力制御は、より大きなワイヤサイズを使用することを可能にし、より低い抵抗値を収容することができる一方で、加熱器の電力散逸能力に結び付けられたデューティサイクル制限によって加熱器を過負荷から保護することができる。
スケーリングファクタの使用は、加熱ユニット52または加熱領域62の容量に関連してもよい。複数の加熱領域62は、加熱バンドル12のより正確な決定および制御を可能にする。特定の加熱回路/領域に特定のスケーリング係数を使用することにより、ほぼすべての領域でより積極的な(すなわち、より高い)温度(または電力レベル)が可能になり、ひいては加熱バンドル12のより小型で低コストの設計がもたらされる。そのようなスケーリング係数および方法は、本出願と共通に譲渡され、その内容全体が参照により本明細書に組み込まれる米国特許第7,257,464号に開示されている。
個々の回路によって制御される加熱領域のサイズは、温度または電力の分布を所望の精度に制御するために必要な領域の総数を減らすために、等しくまたは異なってもよい。
図1に戻って参照すると、加熱アセンブリ18は、シングル端部加熱器であるように示されており、すなわち、導電性ピンは、加熱アセンブリ18の長手方向一端のみを通って延在する。加熱アセンブリ18は、取り付けフランジ16または隔壁(図示せず)を通って延び、フランジ16または隔壁に封止されてもよい。したがって、加熱アセンブリ18は、取り付けフランジ16を容器またはチューブから取り外すことなく、個別に取り外して交換することができる。
あるいは、加熱アセンブリ18は、「両端」加熱器であってもよい。両端加熱器では、金属シースはヘアピン形状に曲げられ、電源導体は金属シースの長手方向両端を通過し、それにより金属シースの長手方向両端はフランジまたはバルクヘッドを通過して封止される。この構造では、個々の加熱アセンブリ18を交換することができる前に、フランジまたは隔壁をハウジングまたは容器から取り外す必要がある。
図6を参照すると、加熱バンドル12が熱交換器70に組み込まれている。熱交換器70は、内部チャンバ(図示せず)を画定する密閉されたハウジング72と、ハウジング72の内部チャンバ内に配置された加熱バンドル12とを含む。密閉されたハウジング72は、流体が密閉されたハウジング72の内部チャンバの内外に導かれる流体入口76と流体出口78とを含む。流体は、密閉されたハウジング72内に配置された加熱バンドル12によって加熱される。加熱バンドル12は、クロスフローまたはそれらの長さに平行な流れのいずれかのために配置されてもよい。
加熱バンドル12は、個別の領域に供給される電力を変調するために、スイッチング手段または可変トランスなどの電力を変調する手段を含むことができる電源装置14に接続される。電力変調は、時間の関数として、または各加熱領域の検出された温度に基づいて実行されてもよい。
抵抗発熱配線はまた、抵抗配線の抵抗を使用して抵抗配線の温度を測定し、同じ電源導体を使用して温度測定情報を電源装置14に送信するセンサとして機能することができる。各領域の温度を検知する手段は、加熱バンドル12内の各加熱アセンブリ18の長さに沿って(個々の領域の分解能まで)温度を制御することを可能にする。したがって、追加の温度検知回路および検知手段を省くことができ、それによって製造コストを低減することができる。加熱回路温度の直接測定は、別個のセンサの使用に関連する測定誤差の多くを排除または最小化するので、システムの所望の信頼性レベルを維持しながら所与の回路内の熱流束を最大化しようとする場合に明確な利点である。発熱体温度は、加熱信頼性に最も強い影響を与える特性である。加熱器およびセンサの両方として機能するために抵抗素子を使用することは、本出願と共通に譲渡され、その内容全体が参照により本明細書に組み込まれる米国特許第7,196,295号に開示されている。
あるいは、電源導体56は、異種金属の電源導体56が抵抗加熱素子の温度を測定するための熱電対を形成することができるように、異種金属で作られてもよい。例えば、電源および電力リターン導体の少なくとも1つのセットは、異なる材料と加熱ユニットの抵抗加熱素子との間に接合部が形成され、1つまたは複数の領域の温度を決定するために使用されるように、異なる材料を含むことができる。加熱器に異なる金属を使用するなど、「統合された」および「高度に熱的に結合された」感知を使用すると、熱電対のような信号が生成される。温度測定のための一体化され結合された電源導体の使用は、本出願と共通に譲渡され、その内容全体が参照により本明細書に組み込まれる米国特許出願第14/725,537号に開示されている。
各領域に供給される電力を変調するためのコントローラ15は、閉ループ自動制御システムであってもよい。閉ループ自動制御システムは、各領域から温度フィードバックを受け取り、各領域への電力の供給を自動的かつ動的に制御し、それにより、連続的または頻繁な人間の監視および調整なしに、加熱バンドル12内の各加熱アセンブリ18の長さに沿って電力分布および温度を自動的かつ動的に制御する。
本明細書に開示される加熱ユニット52はまた、各加熱ユニット52を通電してサンプリングしてその抵抗を計算することを含むがこれに限定されない様々な方法を使用して較正されてもよい。次いで、計算された抵抗を較正された抵抗と比較して抵抗比を決定するか、または実際の加熱ユニット温度を決定する値を決定することができる。例示的な方法は、本出願と共通に譲渡され、その内容全体が参照により本明細書に組み込まれる米国特許第5,280,422号および第5,552,998号に開示されている。
較正の一形態は、加熱システム10を少なくとも1つの動作モードで動作させることと、独立して制御される加熱領域62の少なくとも一方に対して所望の温度を生成するように加熱システム10を制御することと、動作モードに対して少なくとも1つの独立して制御される加熱領域62のデータを収集および記録することと、その後、記録されたデータにアクセスして、独立して制御される加熱領域の数が減少した加熱システムの動作仕様を決定することと、その後、独立して制御される加熱領域の数が減少した加熱システムを使用することとを含む。データは、例として、収集および記録されたデータを有する加熱システム10からの他の動作データの中でも、電力レベルおよび/または温度情報を含むことができる。
本開示の変形例では、加熱システムは、加熱バンドル12内の複数の加熱アセンブリではなく、単一の加熱アセンブリ18を含むことができる。単一の加熱アセンブリ18は、複数の加熱ユニット52を備え、各加熱ユニット52は、少なくとも1つの独立して制御される加熱領域を画定する。同様に、電源導体56は、各加熱ユニット52内の独立して制御される加熱領域62の各々に電気的に接続され、電源装置は、電源導体56を介して加熱ユニットの独立して制御される加熱領域62の各々への電力を変調するように構成される。
図7を参照すると、加熱システムを制御する方法100は、ステップ102において、複数の加熱アセンブリを含む加熱バンドルを提供することを含む。各加熱アセンブリは、複数の加熱ユニットを含む。各加熱ユニットは、少なくとも1つの独立して制御される加熱回路(ひいては加熱領域)を画定する。ステップ104において、各加熱ユニットへの電力は、各加熱ユニット内の独立して制御された加熱領域の各々に電気的に接続された電源導体を介して供給される。各領域内の温度は、ステップ106において検出される。温度は、少なくとも1つの加熱ユニットの抵抗加熱素子の抵抗の変化を使用して決定されてもよい。領域温度は、領域抵抗(または、適切な材料が使用されている場合は、回路電圧の測定により)を測定することによって最初に決定することができる。
温度値はデジタル化されてもよい。信号は、マイクロプロセッサに通信されてもよい。測定された(検出された)温度値は、ステップ108において各領域の目標(所望の)温度と比較することができる。ステップ110において、目標温度を達成するために、測定された温度に基づいて各加熱ユニットに供給される電力を変調することができる。
任意選択的に、本方法は、スケーリング係数を使用して変調電力を調整することをさらに含むことができる。スケーリング係数は、各加熱領域の加熱能力の関数であってもよい。コントローラ15は、次の更新までに各領域に供給(デューティサイクル、位相角発射、電圧変調、または類似の技術を介して)されるべき電力量を決定するために、システムの動的挙動のスケーリングファクタおよび/または数学的モデル(システムの更新時間の知識を含む)を潜在的に含むアルゴリズムを含むことができる。所望の電力は、個々の加熱領域への電力出力を制御するためのスイッチまたは他の電力変調装置に送信される信号に変換されてもよい。
本形態では、少なくとも1つの加熱領域が異常状態のためにオフにされると、残りの領域は、故障することなく所望のワット数を提供し続ける。異常状態が少なくとも1つの加熱領域内で検出されたときに所望のワット数を提供するために、電力が機能加熱領域に変調される。少なくとも1つの加熱領域が決定された温度に基づいてオフにされると、残りの領域は所望のワット数を提供し続ける。電力は、受信信号、モデル、および時間の関数のうちの少なくとも1つの関数として加熱領域の各々に変調される。
安全上またはプロセス制御上の理由から、典型的な加熱器は、一般に、燃焼/発火/酸化、コークス沸騰などの特定の位置での望ましくない化学反応または物理反応に起因して加熱器の特定の位置が所与の温度を超えるのを防止するために、最大許容温度未満になるように動作される。したがって、これは通常、控えめな加熱設計(例えば、電力密度が低く、表面積の大部分が可能であるよりもはるかに低い熱流束で負荷された大型加熱器)によって対応される。
しかしながら、本開示の加熱バンドルを用いて、個々の加熱領域のサイズ程度の分解能まで、加熱器内の任意の位置の温度を測定し、制限することが可能である。個々の回路の温度に影響を及ぼすのに十分な大きさのホットスポットを検出することができる。
個々の加熱領域の温度を自動的に調整し、その結果制限することができるので、各領域の温度の動的かつ自動的な制限は、任意の領域の所望の温度制限を超える恐れなく、この領域および他のすべての領域を最適な電力/熱流束レベルで動作するように維持する。これは、バンドル内の要素のうちの1つのシースに別個の熱電対をクランプする現在の実施よりも高い限界温度測定精度において利点をもたらす。マージンの減少および個々の領域への電力を変調する能力は、加熱アセンブリ全体に適用するのではなく、選択的かつ個別に加熱領域に選択的に適用することができ、それによって所定の温度限界を超えるリスクを低減する。
カートリッジ加熱器の特性は、時間と共に変化し得る。この時変特性は、そうでなければ、カートリッジ加熱器が単一の選択された(最悪の場合)流れ様式のために設計されることを必要とし、したがって、カートリッジ加熱器は、他の流れの状態に対して準最適な状態で動作する。
しかしながら、加熱アセンブリに設けられた複数の加熱ユニットによるコアサイズの分解能までのバンドル全体にわたる電力分布の動的制御により、典型的なカートリッジ加熱器におけるただ1つの流れ状態に対応するただ1つの電力分布とは対照的に、様々な流れ状態のための最適化された電力分布を達成することができる。したがって、本出願の加熱バンドルは、他のすべての流れの状態に対する総熱流束の増加を可能にする。
さらに、可変電力制御は、加熱設計の柔軟性を高めることができる。電圧は、加熱設計において抵抗から(かなりの程度まで)分離することができ、加熱器は、加熱器に嵌合することができる最大線径で設計することができる。これは、所与の加熱サイズおよび信頼性レベル(または加熱器の寿命)のための電力散逸の容量を増加させることを可能にし、所与の全体的な電力レベルのためにバンドルのサイズを減少させることを可能にする。この構成における電力は、現在利用可能または開発中の可変ワット数コントローラの一部である可変デューティサイクルによって変調することができる。加熱バンドルは、加熱バンドルへの「過負荷」を防止するために、所与の領域のデューティサイクルに対するプログラム可能な(または必要に応じて予めプログラムされた)制限によって保護することができる。
図8を参照すると、熱供給部を備えた加熱アセンブリ50の斜視図が示されている。一般に、熱供給部は、少なくとも1つの加熱ユニット内の不均一な温度を補償するために、少なくとも1つの加熱アセンブリの長さに沿って熱コンダクタンスを変更するように構成される。この熱供給部は、以下でより詳細に説明するように様々な形態をとることができる。
このように、加熱アセンブリ50はそれぞれ、複数の加熱ユニット52を備えている。各加熱ユニット52は、端部加熱ユニット52-1および隣接する加熱ユニット52-2の一方を画定する。図9~図10に示すように、端部加熱ユニット52-1および隣接する加熱ユニット52-2のそれぞれは、芯体58と、芯体58を取り囲む抵抗加熱素子60とを含む。各端部加熱ユニット52-1の抵抗加熱素子60は、1つまたは複数の端部加熱領域62-1を画定し、各隣接する加熱ユニット52-2の抵抗加熱素子60は、1つまたは複数の隣接する加熱領域62-2を画定する。
端部加熱ユニット52-1および隣接する加熱ユニット52-2の抵抗加熱素子60は、電源導体56に接続され、電源導体は、電源装置14に接続される。電源導体56は、電源装置14からの電力を、端部加熱ユニット52-1および隣接する加熱ユニット52-2に供給する。電源導体56を抵抗加熱素子60に選択的に接続することにより、端部加熱ユニット52-1および隣接する加熱ユニット52-2の抵抗加熱素子60は、電源装置14のコントローラ15によって独立して制御することができる。
一形態では、加熱アセンブリ50の熱供給部は、導電性スリーブ120によって実施される。一例として、図10を参照すると、導電性スリーブ120は、端部加熱ユニット52-1の抵抗加熱素子60に近接して配置される。一形態では、導電性スリーブ120は、抵抗加熱素子60および芯体58を取り囲み、導電性スリーブ120は、外側金属シース54と抵抗加熱素子60との間に配置される。導電性スリーブ120は、他の形態では抵抗加熱素子60および芯体58を完全に囲まなくてもよいことを理解されたい。導電性スリーブ120は、他の形態では外側金属シース54と抵抗加熱素子60との間に配置されなくてもよいことも理解されたい。
一形態では、導電性スリーブ120は、外側金属シース54の熱伝導率よりも大きい熱伝導率を有する。したがって、導電性スリーブ120は、隣接する加熱ユニット52-2に対する端部加熱ユニット52-1のコンダクタンスを増加させ、それによって加熱アセンブリ50に沿った望ましくない温度勾配を抑制するように構成される。
図11を参照すると、別の例示的な熱供給部を有する加熱アセンブリ50の斜視図が示されている。一形態では、加熱アセンブリ50の熱供給部は、外側シース熱供給部130によって実施される。より詳細には、図12~図13を参照すると、加熱アセンブリ50は、端部外側金属シース54-1および隣接する外側金属シース54-2をそれぞれ含む。端部外側金属シース54-1および隣接する外側金属シース54-2は、外側金属シース54を集合的に形成し、外側シース熱供給部130は、端部外側端部金属シース54-2によって実装される。
一形態では、端部外側金属シース54-1および隣接する外側金属シース54-2は、異なる厚さおよび/または熱伝導率を有する。一例として、端部外側金属シース54-1は、隣接する外側金属シース54-2に対してより大きな厚さおよびより高い熱伝導率を有する。したがって、端部外側金属シース54-1は、隣接する加熱ユニット52-2に対する端部加熱ユニット52-1のコンダクタンスを増加させ、それによって加熱アセンブリ50に沿った望ましくない温度勾配を抑制するように構成される。端部外側金属シース54-1および隣接する外側金属シース54-2は、加熱アセンブリ50に沿った温度勾配を選択的に制御するために、他の変形形態において様々な厚さおよび/または熱伝導率を有することができることを理解されたい。
図14を参照すると、別の例示的な熱供給部を有する加熱アセンブリ50の斜視図が示されている。この形態では、加熱アセンブリ50の熱供給部は、電力導体熱供給部140によって実施される。電力導体熱供給部140は、端部電源導体56-1および隣接する電源導体56-2によって実装される。一形態では、端部電源導体56-1および隣接する電源導体56-2は、複数の電源導体56を集合的に形成する。端部電源導体56-1は、端部加熱ユニット52-1の抵抗加熱素子60に接続され、隣接する電源導体56-2は、隣接する加熱ユニット52-2の抵抗加熱素子60に接続されている。
いくつかの形態では、図14~図15を参照すると、端部電源導体56-1および隣接する電源導体56-2は、異なる厚さ、断面積、および/または熱伝導率を有する。一例として、端部電源導体56-1は、隣接する電源導体56-2の厚さ(T2)および断面積(この形態では厚さT2に比例する)よりも大きい厚さ(T1)および断面積(この形態では厚さT1に比例する)を有する。したがって、端部電源導体56-1は、隣接する加熱ユニット52-2に対する端部加熱ユニット52-1のコンダクタンスを増加させ、それによって加熱アセンブリ50に沿った望ましくない温度勾配を抑制するように構成される。端部電源導体56-1および隣接する電源導体56-2は、加熱アセンブリ50に沿った温度勾配を選択的に制御するために、他の形態で様々な厚さ、断面積、および/または熱伝導率を有することができることを理解されたい。
図16を参照すると、別の例示的な熱供給部を有する加熱アセンブリ50の斜視図が示されている。一形態では、加熱アセンブリ50は、端部間隔150および隣接する間隔152を含み、加熱アセンブリ50の熱供給部は、端部間隔150によって画定される。本明細書で使用される場合、「間隔」は、連続する加熱ユニット52間のギャップを指す。一例として、端部間隔150は、端部加熱ユニット52-1と隣接する加熱ユニット52-2との間の隙間を指し、隣接する間隔152は、隣接する加熱ユニット52-2間の隙間を指す。一形態では、端部間隔150(W1)の長手方向Xの幅は、隣接する間隔152(W2)の長手方向Xの幅よりも大きい。
図16に示す端部間隔150(W1)の幅は等しいが、他の形態では端部間隔150(W1)の幅は等しくなくてもよいことを理解されたい。同様に、図15に示す隣接する間隔152(W2)の幅は等しいが、他の形態では隣接する間隔152(W2)の幅は等しくなくてもよいことを理解されたい。一形態では、端部間隔150の幅(W1)は、隣接する間隔152の幅(W2)以下である。端部間隔150(W1)の幅および隣接する間隔152(W2)の幅を選択的に指定することにより、隣接する加熱ユニット52-2に対する端部加熱ユニット52-1のコンダクタンスを増加させて、加熱アセンブリ50の長さに沿った望ましくない温度勾配を抑制することができる。
図17を参照すると、別の例示的な熱供給部を有する加熱アセンブリ50の斜視図が示されている。いくつかの形態では、加熱アセンブリ50は、端部スペーサ160および隣接するスペーサ162を含み、加熱アセンブリ50の熱供給部は端部スペーサ160によって実施される。端部スペーサ160は、端部加熱ユニット52-1と隣接する加熱ユニット52-2との間に配置され、隣接するスペーサ162は、隣接する加熱ユニット52-2の間に配置されている。端部スペーサ160および隣接するスペーサ162は、セラミック材(例えば、窒化アルミニウム、窒化ホウ素、ポリウレタン、およびとりわけホウケイ酸ガラス、アクリルガラス、ガラス繊維などのガラス系材料)などのより低い熱伝導率を有する様々な材料によって実施することができる。
いくつかの形態では、端部スペーサ160(W3)の長手方向Xの幅は、隣接するスペーサ162(W4)の長手方向Xの幅よりも大きい。図17に示す端部スペーサ160(W3)の幅は等しいが、端部スペーサ160(W3)の幅は他の形態では等しくない可能性があることを理解されたい。同様に、図17に示す隣接スペーサ162(W4)の幅は等しいが、他の形態では隣接スペーサ162(W4)の幅は等しくない場合があることを理解されたい。一形態では、端部スペーサ160の幅(W3)は、隣接するスペーサ162の幅(W4)以下である。端部スペーサ160の幅(W3)および隣接するスペーサ162の幅(W4)を選択的に指定することによって、隣接する加熱ユニット52-2に対する端部加熱ユニット52-1のコンダクタンスを増加させて、加熱アセンブリ50に沿った望ましくない温度勾配を抑制することができる。
一形態では、図14~図17を参照して上述した電力導体熱供給部140および端部スペーサ160は、まとめて熱供給部を形成するように組み合わされる。一例として、図18~図19に示すように、端部電源導体56-1は、端部電源導体56-1が対応する端部スペーサ160内および対応する端部加熱ユニット52-1(図示せず)内に配置されるように、加熱アセンブリ50に沿って長手方向Xに延在する。同様に、隣接する電源導体56-2は、隣接する電源導体56-2が対応する隣接するスペーサ162内および対応する隣接する加熱ユニット52-2(図示せず)内に配置されるように、加熱アセンブリ50に沿って長手方向Xに延在する。いくつかの形態では、端部スペーサ160内に配置された端部電源導体56-1は、隣接するスペーサ162内に配置された隣接する電源導体56-2よりも大きい断面積を有する。端部スペーサ160内に配置された端部電源導体56-1は、他の形態で隣接するスペーサ162内に配置された隣接する電源導体56-2の断面積以下の断面積を有することができることを理解されたい。
図20を参照すると、別の例示的な熱供給部を有する加熱アセンブリ50の斜視図が示されている。一形態では、加熱アセンブリ50の熱供給部は、可変幅熱供給部170によって実施される。可変幅熱供給部170は、端部加熱ユニット52-1のうちの少なくとも1つを含む。いくつかの形態では、端部加熱ユニット52-1(W5)の長手方向Xの幅は、隣接する加熱ユニット52-2(W6)の長手方向Xの幅よりも大きい。端部加熱ユニット52-1(W5)の幅は、他の形態では、隣接する加熱ユニット52-2(W6)の幅以下であってもよいことを理解されたい。端部加熱ユニット52-1の幅(W5)および隣接する加熱ユニット52-2の幅(W6)を選択的に指定することにより、隣接する加熱ユニット52-2に対する端部加熱ユニット52-1のコンダクタンスを増加させて、加熱アセンブリ50に沿った望ましくない温度勾配を抑制することができる。図示されていないが、加熱ユニット52用の電源導体は、隣接する加熱ユニット52-2を通って端部加熱ユニット52-1の間に延在することが容易に理解されるべきである。
図8~図20を参照すると、コントローラ15は、所定のモデル(例えば、とりわけ、加熱システム10の様々な構成要素および/または動的挙動を表す数学的モデル)および少なくとも1つの入力に基づいて、端部加熱ユニット52-1などの加熱ユニット52の少なくとも1つ内の温度を計算するように構成される。(この一般的なアプローチは、温度が測定されるのではなく計算されるので、「仮想センシング(virtual sensing)」とも呼ばれ得る。)一形態では、少なくとも1つの入力は、加熱バンドル12内の別の位置の温度、別の加熱ユニット52の温度、加熱アセンブリ18上に位置する独立して制御される加熱領域62のいずれかの温度、加熱バンドル12および/もしくは加熱ユニット52のいずれかの消費電力、ならびに/または加熱バンドル12および/もしくは加熱ユニット52のいずれかの所定の期間にわたる平均消費電力を含むが、これらに限定されない。一形態では、少なくとも1つの入力は、限定はしないが、加熱バンドル12および/または加熱ユニット52のいずれかの電圧、加熱バンドル12および/または加熱ユニット52のいずれかの電流、加熱バンドル12および/または加熱ユニット52のいずれかの電流漏れ、および/または加熱バンドル12の絶縁抵抗を含む。本明細書に記載の機能を実行するために、コントローラ15は、少なくとも1つの入力(例えば、加熱ユニット52の電力を測定するための1つまたは複数の感知回路)を取得するための1つまたは複数の電気回路/構成要素を含む。
一例として、コントローラ15は、加熱ユニット52に既知の電流を最初に供給し、端部加熱ユニット52-1の電圧を測定することによって、端部加熱ユニット52-1内の温度を計算するように構成される。次いで、コントローラ15は、測定された電圧を既知の電流に関連する公称電圧と比較して、電圧偏差および/または対応する抵抗偏差を識別する。続いて、コントローラ15は、所定のモデルを使用して、電圧偏差および/または対応する抵抗偏差に基づいて端部加熱ユニット52-1の温度を計算する。上述したように、次に、コントローラ15は、端部加熱ユニット52-1の温度に基づいて、電源導体56を介して独立して制御された加熱領域62への電力を変調する。本明細書に記載の機能を実行するために、コントローラ15は、ランダムアクセスメモリ(RAM)および/または読み出し専用メモリ(ROM)などの非一時的コンピュータ可読媒体に記憶された命令を実行するように構成された1つまたは複数のプロセッサを含む。あるいは、コントローラ15は、複数の加熱ユニット52に既知の電圧を供給し、少なくとも1つの独立して制御される加熱領域62の電流を測定し、測定された電流を既知の電圧に関する公称電流と比較して、電流偏差および/または対応する抵抗偏差を識別することによって温度を計算する。
本明細書で特に明示的に示されない限り、機械的/熱的特性、組成百分率、寸法および/または公差、または他の特性を示すすべての数値は、本開示の範囲を説明する際に「約」または「およそ」という語によって修飾されると理解されるべきである。この変更は、工業的実施、材料、製造、および組み立ての公差、ならびに試験能力を含む様々な理由で望まれる。
要素間の空間的および機能的関係は、「接続された」、「係合された」、「結合された」、「隣接する」、「隣に」、「上に」、「上に」、「上に」、「下に」、および「配置された」を含む様々な用語を使用して説明される。明示的に「直接的」であると記載されていない限り、第1の要素と第2の要素との間の関係が本開示に記載されている場合、その関係は、第1の要素と第2の要素との間に他の介在要素が存在しない直接的な関係とすることができ、第1の要素と第2の要素との間に(空間的または機能的に)1つまたは複数の介在要素が存在する間接的な関係とすることもできる。本明細書で使用される場合、A、B、およびCのうちの少なくとも1つという語句は、非排他的論理ORを使用して論理(A OR B OR C)を意味すると解釈されるべきであり、「Aの少なくとも1つ、Bの少なくとも1つ、およびCの少なくとも1つ」を意味すると解釈されるべきではない。
本開示の説明は、本質的に単なる例示であり、したがって、本開示の内容から逸脱しない変形例は、本開示の範囲内であることが意図される。そのような変形は、本開示の精神および範囲からの逸脱と見なされるべきではない。さらに、本明細書に記載のシステム、装置、および方法の形態の様々な省略、置換、組み合わせ、および変更は、それらの省略、置換、組み合わせ、および変更が本開示の図に明示的に記載または例示されていなくても、本開示の精神および範囲から逸脱することなく行うことができる。

Claims (23)

  1. 加熱システムであって、
    加熱バンドルであって、
    複数の加熱ユニットを備える少なくとも1つの加熱アセンブリであって、前記複数の加熱ユニットのうち少なくとも1つが、少なくとも1つの独立して制御される加熱領域を画定する、少なくとも1つの加熱アセンブリと、
    前記加熱ユニットに電気的に接続された複数の電源導体と、を含む加熱バンドルと、
    前記電源導体を介して、前記少なくとも1つの独立して制御される加熱領域への電力を変調するように構成されたコントローラを含む電源装置と、を備え、
    前記コントローラは、所定のモデルおよび少なくとも1つの入力に基づいて前記少なくとも1つの加熱ユニット内の温度を計算するように構成され、前記コントローラは、前記計算された温度に基づいて前記少なくとも1つの加熱ユニットへの電力を変調する、加熱システム。
  2. 前記少なくとも1つの加熱ユニットは、端部加熱ユニットである、請求項1に記載の加熱システム。
  3. 前記少なくとも1つの入力は、前記加熱バンドル内の別の位置の温度を含む、請求項1に記載の加熱システム。
  4. 前記少なくとも1つの入力は、前記複数の加熱ユニットのうち少なくとも1つの少なくとも1つの温度を含む、請求項1に記載の加熱システム。
  5. 前記少なくとも1つの入力は、前記加熱バンドルの消費電力を含む、請求項1に記載の加熱システム。
  6. 前記少なくとも1つの入力は、所定の期間にわたる前記加熱バンドルの平均消費電力を含む、請求項1に記載の加熱システム。
  7. 前記少なくとも1つの入力は、前記加熱バンドルの電圧および/または前記加熱ユニットのうち少なくとも1つの電圧を含む、請求項1に記載の加熱システム。
  8. 前記少なくとも1つの入力は、前記加熱バンドルの電流および/または前記加熱ユニットのうち少なくとも1つの電流を含む、請求項1に記載の加熱システム。
  9. 前記少なくとも1つの入力は、前記加熱バンドルの電流漏れを含む、請求項1に記載の加熱システム。
  10. 前記少なくとも1つの入力は、前記加熱バンドルの絶縁抵抗を含む、請求項1に記載の加熱システム。
  11. 前記少なくとも1つの入力は、流体速度、流体速さ、流体速度、および流体質量流量のうち少なくとも1つを含む、請求項1に記載の加熱システム。
  12. 前記コントローラは、前記複数の加熱ユニットへの既知の電流を供給し、前記少なくとも1つの独立して制御される加熱領域の電圧を測定し、前記測定された電圧を前記既知の電流に関連する公称電圧と比較して、電圧偏差および/または対応する抵抗偏差を識別することによって、温度を計算する、請求項1に記載の加熱システム。
  13. 前記コントローラは、前記複数の加熱ユニットへの既知の電圧を供給し、前記少なくとも1つの独立して制御される加熱領域の電流を測定し、前記測定された電流を前記既知の電圧に関連する公称電流と比較して、電流偏差および/または対応する抵抗偏差を識別することによって、温度を計算する、請求項1に記載の加熱システム。
  14. 流体を加熱するための装置であって、
    内部チャンバを画定し、流体入口および流体出口を有する密閉されたハウジングと、
    前記少なくとも1つの加熱アセンブリが、前記ハウジングの前記内部チャンバ内に配置された、請求項1に記載の加熱システムと、を備え、
    前記少なくとも1つの加熱アセンブリは、前記ハウジング内の流体に応答性の熱分布を提供するように適合されている、装置。
  15. 加熱システムであって、
    複数の加熱ユニットを備える加熱アセンブリであって、少なくとも1つの加熱ユニットが、少なくとも1つの独立して制御される加熱領域を画定する、加熱アセンブリと、
    前記加熱ユニットに電気的に接続された複数の電源導体と、
    前記電源導体を介して、前記少なくとも1つの独立して制御される加熱領域への電力を変調するように構成されたコントローラを含む電源装置と、を備え、
    前記コントローラは、所定のモデルおよび少なくとも1つの入力に基づいて前記少なくとも1つの加熱ユニット内の温度を計算するように構成され、前記コントローラは、前記計算された温度に基づいて前記少なくとも1つの加熱ユニットへの電力を変調する、加熱システム。
  16. 前記少なくとも1つの加熱ユニットは、端部加熱ユニットである、請求項15に記載の加熱システム。
  17. 流体を加熱するための装置であって、
    内部チャンバを画定し、流体入口および流体出口を有する密閉されたハウジングと、
    前記加熱アセンブリが、前記ハウジングの前記内部チャンバ内に配置された、請求項115に記載の加熱システムと、を備え、
    前記加熱アセンブリは、前記ハウジング内の流体に応答性の熱分布を提供するように適合されている、装置。
  18. 前記コントローラは、前記複数の加熱ユニットへの既知の電流を供給し、前記少なくとも1つの独立して制御される加熱領域の電圧を測定し、前記測定された電圧を前記既知の電流に関連する公称電圧と比較して、電圧偏差および/または対応する抵抗偏差を識別することによって、温度を計算する、請求項15に記載の加熱システム。
  19. 前記コントローラは、前記複数の加熱ユニットへの既知の電圧を供給し、前記少なくとも1つの独立して制御される加熱領域の電流を測定し、前記測定された電流を前記既知の電圧に関連する公称電流と比較して、電流偏差および/または対応する抵抗偏差を識別することによって、温度を計算する、請求項15に記載の加熱システム。
  20. 加熱システムであって、
    複数の加熱ユニットを備える加熱アセンブリであって、前記複数の加熱ユニットのうち2つ以上が、少なくとも1つの独立して制御される加熱領域を画定する、加熱アセンブリと、
    前記加熱ユニットに電気的に接続された複数の電源導体と、
    前記電源導体を介して、前記独立して制御される加熱領域への電力を変調するように構成されたコントローラを含む電源装置と、を備え、
    前記コントローラは、所定のモデルおよび少なくとも1つの入力に基づいて前記2つ以上の加熱ユニット内の温度を計算するように構成され、前記コントローラは、前記計算された温度に基づいて前記2つ以上の加熱ユニットへの電力を変調する、加熱システム。
  21. 前記少なくとも1つの加熱ユニットは、端部加熱ユニットである、請求項20に記載の加熱システム。
  22. 前記コントローラは、前記複数の加熱ユニットへの既知の電流を供給し、前記少なくとも1つの独立して制御される加熱領域の電圧を測定し、前記測定された電圧を前記既知の電流に関連する公称電圧と比較して、電圧偏差および/または対応する抵抗偏差を識別することによって、温度を計算する、請求項20に記載の加熱システム。
  23. 前記コントローラは、前記複数の加熱ユニットへの既知の電圧を供給し、前記少なくとも1つの独立して制御される加熱領域の電流を測定し、前記測定された電流を前記既知の電圧に関連する公称電流と比較して、電流偏差および/または対応する抵抗偏差を識別することによって、温度を計算する、請求項20に記載の加熱システム。
JP2022037256A 2021-03-10 2022-03-10 熱勾配補償のための仮想センシングを有する加熱バンドル Pending JP2022140403A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/197,556 2021-03-10
US17/197,556 US20210190380A1 (en) 2016-03-02 2021-03-10 Heater bundles having virtual sensing for thermal gradient compensation

Publications (1)

Publication Number Publication Date
JP2022140403A true JP2022140403A (ja) 2022-09-26

Family

ID=80735557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022037256A Pending JP2022140403A (ja) 2021-03-10 2022-03-10 熱勾配補償のための仮想センシングを有する加熱バンドル

Country Status (6)

Country Link
EP (1) EP4057776A3 (ja)
JP (1) JP2022140403A (ja)
KR (1) KR20220127174A (ja)
CN (1) CN115087158A (ja)
CA (1) CA3151374A1 (ja)
MX (1) MX2022002934A (ja)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2831951A (en) 1954-07-06 1958-04-22 Watlow Electric Mfg Cartridge heater and method of making same
US3970822A (en) 1975-03-17 1976-07-20 Watlow Electric Manufacturing Company Electric cartridge heater
US5552998A (en) 1990-11-05 1996-09-03 Watlow/Winona, Inc. Method and apparatus for calibration and controlling multiple heaters
US5280422A (en) 1990-11-05 1994-01-18 Watlow/Winona, Inc. Method and apparatus for calibrating and controlling multiple heaters
MXPA05002039A (es) 2002-08-21 2005-06-17 Watlow Electric Mfg Sistema de control de wattaje variable.
US7196295B2 (en) 2003-11-21 2007-03-27 Watlow Electric Manufacturing Company Two-wire layered heater system
US9553006B2 (en) 2011-08-30 2017-01-24 Watlow Electric Manufacturing Company High definition heater system having a fluid medium
US10619888B2 (en) * 2016-03-02 2020-04-14 Watlow Electric Manufacturing Company Heater bundle for adaptive control and method of reducing current leakage
US10247445B2 (en) * 2016-03-02 2019-04-02 Watlow Electric Manufacturing Company Heater bundle for adaptive control
TWI664873B (zh) * 2016-07-07 2019-07-01 美商瓦特洛威電子製造公司 用於適應性控制之加熱器束及減少電流洩漏之方法

Also Published As

Publication number Publication date
CN115087158A (zh) 2022-09-20
EP4057776A2 (en) 2022-09-14
EP4057776A3 (en) 2022-12-21
CA3151374A1 (en) 2022-09-10
KR20220127174A (ko) 2022-09-19
MX2022002934A (es) 2022-09-12

Similar Documents

Publication Publication Date Title
US11781784B2 (en) Heater bundle for adaptive control
US11867430B2 (en) Heater bundle for adaptive control and method of reducing current leakage
JP7379566B2 (ja) 適応制御用ヒータバンドル及び電流漏れ低減方法
US20210190380A1 (en) Heater bundles having virtual sensing for thermal gradient compensation
US20210199345A1 (en) Heater bundles for thermal gradient compensation
JP2022140401A (ja) 領域内の可変電力出力を有する加熱バンドル
JP2022140403A (ja) 熱勾配補償のための仮想センシングを有する加熱バンドル
JP2022140400A (ja) 熱勾配補償のための加熱バンドル
US20210190378A1 (en) Heater bundles having variable power output within zones