JP2022140222A - Scintillator material, radiation detection device, and method of manufacturing scintillator material - Google Patents

Scintillator material, radiation detection device, and method of manufacturing scintillator material Download PDF

Info

Publication number
JP2022140222A
JP2022140222A JP2021116025A JP2021116025A JP2022140222A JP 2022140222 A JP2022140222 A JP 2022140222A JP 2021116025 A JP2021116025 A JP 2021116025A JP 2021116025 A JP2021116025 A JP 2021116025A JP 2022140222 A JP2022140222 A JP 2022140222A
Authority
JP
Japan
Prior art keywords
scintillator material
scintillator
alkali metal
mol
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021116025A
Other languages
Japanese (ja)
Inventor
公典 榎本
Kiminori Enomoto
久芳 大長
Hisayoshi Daicho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Original Assignee
Koito Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd filed Critical Koito Manufacturing Co Ltd
Priority to PCT/JP2022/008851 priority Critical patent/WO2022190991A1/en
Publication of JP2022140222A publication Critical patent/JP2022140222A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Silicon Compounds (AREA)
  • Luminescent Compositions (AREA)

Abstract

To provide a scintillator material which has superior moisture resistance and is capable of emitting visible light well in the presence of radiation, and to provide a radiation detection device and a method of manufacturing the scintillator material.SOLUTION: A scintillator material that emits visible light when excited by radiation is provided. The scintillator material has a cristobalite structure with partially crystallized silica. SrI2:Eu2+, a phosphor material, is entrapped in the cristobalite structure to form a nanocomposite. The cristobalite structure contains an alkali metal ion.SELECTED DRAWING: Figure 1

Description

本発明は、シンチレータ材、放射線検出装置およびシンチレータ材の製造方法に関する。 The present invention relates to a scintillator material, a radiation detection device, and a method for manufacturing a scintillator material.

従来から放射線検出装置には、放射線によって励起され可視光を発光するシンチレータ材として、NaI:TlやCaI:Tlなどのヨウ化物が用いられていた。ヨウ化物系のシンチレータ材は、空気中の水分を取り込んで水和する潮解性を有しており、気密性の高い容器に封入して用いる必要がある。そこで従来の放射線検出装置では、ヨウ化物系のシンチレータ材と光検出部をアルミニウム製の缶である容器に封緘して、光取り出し口にガラス製の窓部材を接着し、容器内に配置した光検出部で可視光を検出していた。 Iodides such as NaI:Tl and CaI:Tl have been conventionally used in radiation detectors as scintillator materials that emit visible light when excited by radiation. The iodide-based scintillator material has deliquescent property to take in moisture in the air and hydrate, and must be sealed in a highly airtight container for use. Therefore, in a conventional radiation detection device, an iodide-based scintillator material and a light detection unit are sealed in a container, which is an aluminum can. Visible light was detected by the detector.

しかし、外気中の水蒸気が微量ずつ容器と窓部材の接着部分から容器内に侵入するため、ヨウ化物系シンチレータが水和することによって劣化し、長期間にわたって使用するためには放射線検出装置の管理とメンテナンスを適切に行う必要があった。また、容器内への水分の侵入を抑制するためには、気密性の高い封止をする必要があり、製造工程において工数が増加し作業性が低下するという問題があった。 However, since a very small amount of water vapor in the outside air enters the container through the joint between the container and the window member, the iodide-based scintillator hydrates and deteriorates. and proper maintenance. In addition, in order to suppress the intrusion of moisture into the container, it is necessary to seal the container with a high degree of airtightness.

そこで特許文献1では、クリストバライト構造に蛍光体材料であるSrI:Eu2+を取り込ませて、ナノコンポジット化したシンチレータ材を用いることで耐湿性を向上させることが提案されている。 Therefore, in Patent Document 1, it is proposed to incorporate SrI 2 :Eu 2+ , which is a phosphor material, into the cristobalite structure and use a nanocomposite scintillator material to improve moisture resistance.

特開2019-074358号公報JP 2019-074358 A

しかし、特許文献1の技術では、クリストバライト構造にSrI:Eu2+を取り込ませてナノコンポジット化する必要があり、SiOに取り込まれるSrI:Eu2+の量を多くして、放射線吸収率を高めて発光量を大きくすることが困難であった。 However, in the technique of Patent Document 1 , it is necessary to incorporate SrI 2 :Eu 2+ into the cristobalite structure to form a nanocomposite . It was difficult to increase the amount of emitted light by increasing it.

そこで本発明は、上記従来の問題点に鑑みなされたものであり、耐湿性に優れ、放射線によって良好に可視光を発光するシンチレータ材、放射線検出装置およびシンチレータ材の製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, the present invention has been made in view of the conventional problems described above, and an object of the present invention is to provide a scintillator material, a radiation detection device, and a method for manufacturing the scintillator material which are excellent in moisture resistance and emit visible light favorably when exposed to radiation. and

上記課題を解決するために、本発明のシンチレータ材は、放射線により励起されて可視光を発光するシンチレータ材であって、シリカの一部が結晶化したクリストバライト構造を有し、蛍光体材料であるSrI:Eu2+が前記クリストバライト構造中に取り込まれてナノコンポジット化しており、前記クリストバライト構造にアルカリ金属イオンを含むことを特徴とする。 In order to solve the above problems, the scintillator material of the present invention is a scintillator material that emits visible light when excited by radiation, has a cristobalite structure in which silica is partially crystallized, and is a phosphor material. SrI 2 :Eu 2+ is incorporated into the cristobalite structure to form a nanocomposite, and the cristobalite structure contains alkali metal ions.

このような本発明のシンチレータ材では、クリストバライト構造にSrI:Eu2+が取り込まれ、アルカリ金属イオンを含んでいることで、蛍光体材料の耐湿性を向上させて、放射線によって良好に可視光を発光することができる。 In such a scintillator material of the present invention, SrI 2 :Eu 2+ is incorporated in the cristobalite structure and alkali metal ions are included, thereby improving the moisture resistance of the phosphor material and favorably transmitting visible light to radiation. Can emit light.

また、本発明の一態様では、前記アルカリ金属イオンは、Li,Na,K,RbまたはCsの何れかである。 Further, in one aspect of the present invention, the alkali metal ion is Li, Na, K, Rb or Cs.

また、本発明の一態様では、前記クリストバライト構造に含まれるSiに対して、前記アルカリ金属イオンが0.1~10mol%の比率で含まれる。 Further, in one aspect of the present invention, the alkali metal ion is contained at a ratio of 0.1 to 10 mol % with respect to Si contained in the cristobalite structure.

また、本発明の一態様では、前記蛍光体材料を単結晶または多結晶で含む。 In one aspect of the present invention, the phosphor material is a single crystal or a polycrystal.

また、本発明の一態様では、前記シリカは、表面から内部にわたって空隙が分布する多孔質体である。 Moreover, in one aspect of the present invention, the silica is a porous body in which voids are distributed from the surface to the inside.

また、本発明の一態様では、前記多孔質体は、平均粒径(D50)が2~50μmのSiO粒子の集合体である。 Further, in one aspect of the present invention, the porous body is an aggregate of SiO 2 particles having an average particle size (D50) of 2 to 50 μm.

また、本発明の一態様では、前記SiO粒子は、アルカリ金属成分を含有している。 Moreover, in one aspect of the present invention, the SiO 2 particles contain an alkali metal component.

また、本発明の一態様では、前記クリストバライト構造に含まれるSiに対して、Srイオンが0.9~15mol%、Iイオンが2.0~40mol%、Euイオンが0.1~5.0mol%の比率で含まれる。 In one aspect of the present invention, Sr ions are 0.9 to 15 mol %, I ions are 2.0 to 40 mol %, and Eu ions are 0.1 to 5.0 mol %, relative to Si contained in the cristobalite structure. % included.

また、本発明の放射線検出装置は、上記何れか一つに記載のシンチレータ材と、400nm以上500nm以下の波長を検出する光検知部を備えることを特徴とする。 A radiation detection apparatus according to the present invention includes any one of the scintillator materials described above and a photodetector that detects a wavelength of 400 nm or more and 500 nm or less.

また、本発明のシンチレータ材の製造方法は、蛍光体材料であるSrI:Eu2+およびアルカリ金属材料を含む原料粉末を形成する粉末調整工程と、表面から内部にわたって空隙が分布する多孔質体のシリカを形成する多孔質体形成工程と、前記多孔質体と前記原料粉末を接触させて加熱処理する熱処理工程とを備えることを特徴とする。 Further, the method for producing a scintillator material of the present invention includes a powder preparation step of forming a raw material powder containing SrI 2 :Eu 2+ which is a phosphor material and an alkali metal material; The method is characterized by comprising a porous body forming step of forming silica, and a heat treatment step of bringing the porous body and the raw material powder into contact with each other and heat-treating them.

本発明では、耐湿性に優れ、放射線によって良好に可視光を発光するシンチレータ材、放射線検出装置およびシンチレータ材の製造方法を提供することができる。 INDUSTRIAL APPLICABILITY The present invention can provide a scintillator material, a radiation detection device, and a method for producing a scintillator material that are excellent in moisture resistance and can emit visible light favorably when exposed to radiation.

第1実施形態に係るシンチレータ材を用いた放射線検出装置10の構造を示す模式図である。1 is a schematic diagram showing the structure of a radiation detection device 10 using a scintillator material according to a first embodiment; FIG. 第3実施形態に係るシンチレータ材を用いた放射線検出装置20の構造を示す模式図である。FIG. 11 is a schematic diagram showing the structure of a radiation detection device 20 using a scintillator material according to a third embodiment; シンチレータ材のガンマ線吸収率の測定装置30を示す模式図である。FIG. 2 is a schematic diagram showing a measuring device 30 for gamma ray absorption of scintillator material.

(第1実施形態)
以下、本発明の実施の形態について、図面を参照して詳細に説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付すものとし、適宜重複した説明は省略する。図1は、本実施形態に係るシンチレータ材を用いた放射線検出装置10の構造を示す模式図である。図1に示すように放射線検出装置10は、容器11と、窓部材12と、シンチレータ材13と、光電子増倍管14(PMT:PhotoMultiplier Tube)と、ブリーダ回路15を備えている。
(First embodiment)
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same or equivalent constituent elements, members, and processes shown in each drawing are denoted by the same reference numerals, and duplication of description will be omitted as appropriate. FIG. 1 is a schematic diagram showing the structure of a radiation detection device 10 using a scintillator material according to this embodiment. As shown in FIG. 1 , the radiation detection apparatus 10 includes a container 11 , a window member 12 , a scintillator material 13 , a photomultiplier tube 14 (PMT: PhotoMultiplier Tube), and a bleeder circuit 15 .

容器11は、開口部を有する略円筒形状の部材であり、内部にシンチレータ材13、光電子増倍管14、ブリーダ回路15を収容する。開口部には窓部材12が接着剤等で気密に固定されている。容器11を構成する材料は限定されないが、一例としてはアルミニウムを用いることができる。また、容器11の形状は円筒形状に限定されず、内部に収容する各部材の形状や大きさに合わせて適宜設計することができる。また容器11には、図示しない配線孔が形成されており、外部から配線孔を介してブリーダ回路15に配線が接続されている。 The container 11 is a substantially cylindrical member having an opening, and accommodates a scintillator material 13 , a photomultiplier tube 14 and a bleeder circuit 15 inside. A window member 12 is airtightly fixed to the opening with an adhesive or the like. Although the material constituting the container 11 is not limited, aluminum can be used as an example. Further, the shape of the container 11 is not limited to a cylindrical shape, and can be appropriately designed according to the shape and size of each member accommodated therein. A wiring hole (not shown) is formed in the container 11, and wiring is connected to the bleeder circuit 15 from the outside through the wiring hole.

窓部材12は、放射線を透過する材料で構成された板状の部材であり、容器11の開口部に配置されて容器11の内部を気密に封止している。窓部材12を構成する材料は限定されず、公知のガラス材料を用いることができる。窓部材12の外周と容器11の開口部の間は接着剤等が塗布されており、隙間からの水蒸気の侵入を抑制するために気密封止されている。 The window member 12 is a plate-like member made of a radiation-transmitting material, and is arranged at the opening of the container 11 to hermetically seal the inside of the container 11 . A material for forming the window member 12 is not limited, and a known glass material can be used. Adhesive or the like is applied between the outer periphery of the window member 12 and the opening of the container 11, and is airtightly sealed to prevent water vapor from entering through the gap.

シンチレータ材13は、窓部材12と光電子増倍管14の間に配置され、放射線が照射されることで可視光を発光する蛍光材料を含有する部材である。本実施形態では、蛍光材料として、マトリックス相であるシリカの一部が結晶化したクリストバライト構造に、単結晶または多結晶のSrI:Eu2+が取り込まれてナノコンポジット化されたものを用いている。また、クリストバライト構造中には、アルカリ金属イオンが含まれている。 The scintillator material 13 is arranged between the window member 12 and the photomultiplier tube 14 and is a member containing a fluorescent material that emits visible light when irradiated with radiation. In this embodiment, as the fluorescent material, a nanocomposite is used in which single-crystal or polycrystalline SrI 2 :Eu 2+ is incorporated into a cristobalite structure in which silica, which is a matrix phase, is partially crystallized. . Also, the cristobalite structure contains alkali metal ions.

光電子増倍管14は、微量の光子を検出して電気信号を出力する部材である。光電子増倍管14の構造は公知のものを用いることができ、一例としては、高真空のガラス容器中に光電陰極、複数の二次電子増倍電極(ダイノード)、陽極、およびその他の電極を封入した構造を有するものを用いることができる。光電子増倍管14の入射窓側にはシンチレータ材13が配置されており、出力側にはブリーダ回路15が接続されている。 The photomultiplier tube 14 is a member that detects a minute amount of photons and outputs an electrical signal. A known structure can be used for the photomultiplier tube 14. As an example, a photocathode, a plurality of secondary electron multiplying electrodes (dynodes), an anode, and other electrodes are placed in a high-vacuum glass container. Those with encapsulated structures can be used. A scintillator material 13 is arranged on the entrance window side of the photomultiplier tube 14, and a bleeder circuit 15 is connected to the output side.

ブリーダ回路15は、高電圧電源からの電圧を複数の分割抵抗を介して光電子増倍管14に供給するとともに、光電子増倍管14からの電流を出力する部材である。高電圧電源からの複数の電圧は、光電子増倍管14の各ダイノードに供給されている。ブリーダ回路15の出力は、図示しない配線を介して検出信号として外部の信号処理部に伝達される。 The bleeder circuit 15 is a member that supplies voltage from the high-voltage power supply to the photomultiplier tube 14 through a plurality of dividing resistors and outputs current from the photomultiplier tube 14 . A plurality of voltages from a high voltage power supply are supplied to each dynode of photomultiplier tube 14 . The output of the bleeder circuit 15 is transmitted as a detection signal to an external signal processing section via wiring (not shown).

図1に示した放射線検出装置10では、ガンマ線などの放射線が窓部材12を介してシンチレータ材13に入射すると、シンチレータ材13中の蛍光体材料が励起され、波長範囲が400nm以上500nm以下の青色光で発光する。シンチレータ材13で発光した青色光の光子は、光電子増倍管14の入射窓から光電陰極に到達し、光電陰極で電子に変換される。光電陰極で生じた電子がダイノードに衝突すると、ダイノードに印加されている電圧によって多数の電子が放出され、複数のダイノードの間で電子放出が連鎖的に生じることで、1つの光子で生じた電子が雪崩のように増幅される。光電子増倍管14で増幅された電子による電流は、検出信号としてブリーダ回路15を介して外部の信号処理部に伝達され、信号処理部が光子と電流と検出信号の関係から光子数を算出する。また、信号処理部では、算出された光子数から放射線の強度を算出する。 In the radiation detection apparatus 10 shown in FIG. 1, when radiation such as gamma rays is incident on the scintillator material 13 through the window member 12, the phosphor material in the scintillator material 13 is excited, and blue light with a wavelength range of 400 nm to 500 nm is emitted. Glow with light. Photons of blue light emitted by the scintillator material 13 reach the photocathode through the incident window of the photomultiplier tube 14 and are converted into electrons by the photocathode. When the electrons generated by the photocathode collide with the dynode, a large number of electrons are emitted by the voltage applied to the dynode. is amplified like an avalanche. The current generated by the electrons amplified by the photomultiplier tube 14 is transmitted as a detection signal to an external signal processing section via the bleeder circuit 15, and the signal processing section calculates the number of photons from the relationship between the photons, the current, and the detection signal. . Further, the signal processing unit calculates the intensity of radiation from the calculated number of photons.

次に、本実施形態のシンチレータ材13に用いる蛍光体材料についてさらに詳細に説明する。 シリカは、SiO四面体がSi-O-Si結合で連結された基本骨格を有するアモルファス構造である。Si-O-Siの結合角度は、145°±10°の角度を有している。シリカを加熱すると、1000℃あたりまでは熱膨張率が小さいが、1000℃を超えたあたりから熱膨張率がなだらかに上昇する。これは、シリカ表面のOH基から活性水素が発生し、シリカの一部にSi-O-Si結合の切断、再配列が起こるためである。この時、Si-O-Siの結合角は180°になり、SiO連結網の中に大きな空隙が生じる。この空隙は、Sr2+,Cs,Ca2+,Eu2+,Tl等の金属の陽イオンおよびハロゲン等の陰イオンにとってポケットとなり、これらイオンがSiO連結網の中に取り込まれる。 Next, the phosphor material used for the scintillator material 13 of this embodiment will be described in further detail. Silica has an amorphous structure with a basic skeleton in which SiO 4 tetrahedra are linked by Si—O—Si bonds. The bond angle of Si—O—Si has an angle of 145°±10°. When silica is heated, the coefficient of thermal expansion is small up to around 1000°C, but the coefficient of thermal expansion rises gently after around 1000°C. This is because active hydrogen is generated from OH groups on the surface of silica, and Si--O--Si bonds are broken and rearranged in a part of silica. At this time, the bond angle of Si--O--Si becomes 180°, and large voids are generated in the SiO 4 connecting network. The voids become pockets for metal cations such as Sr 2+ , Cs + , Ca 2+ , Eu 2+ , Tl + , and anions such as halogens, and these ions are incorporated into the SiO 4 connecting network.

取り込まれたイオンは熱拡散により、陽イオンと陰イオンとが結合を起こし、イオン結晶核が生成する。イオン結晶核が生成されたことに触発され、マトリックス相のシリカも結晶化しクリストバライトが生成すると考えられる。このようにして、発光ハロゲン化金属塩の取り込みとSiOの結晶化が並行して起こり、ナノコンポジット型のシンチレー
タ材料が生成されたものと推察される。
By thermal diffusion of the taken ions, cations and anions combine to form ion crystal nuclei. Triggered by the generation of ion crystal nuclei, it is thought that silica in the matrix phase also crystallizes to form cristobalite. In this way, it is inferred that the incorporation of the luminescent metal halide salt and the crystallization of SiO 2 occurred in parallel to produce a nanocomposite scintillator material.

SiOのナノコンポジット化が進行する温度では、温度が高過ぎるため原料中のIが
昇華し、十分な量のSrI:Eu2+結晶を取り込むことが困難である。そこで、Iの
昇華を抑制して低温で合成し、クリストバライト構造にSrI:Eu2+を多く含有す
ることが重要となる。
At the temperature at which nanocompositing of SiO 2 proceeds, the temperature is too high to sublimate I in the raw material, making it difficult to incorporate a sufficient amount of SrI 2 :Eu 2+ crystals. Therefore, it is important to synthesize I at a low temperature while suppressing the sublimation of I and to contain a large amount of SrI 2 :Eu 2+ in the cristobalite structure.

クリストバライト構造に含まれるアルカリ金属イオンは、Li,Na,K,Rb,Csが挙げられる。また、クリストバライト構造に含まれるアルカリ金属イオンは、Siの10molに対して0.01mol以上1.00mol以下(0.1mol%以上10mol%以下)の比率で含まれることが好ましい。 Alkali metal ions contained in the cristobalite structure include Li, Na, K, Rb, and Cs. Further, the alkali metal ion contained in the cristobalite structure is preferably contained at a ratio of 0.01 mol or more and 1.00 mol or less (0.1 mol % or more and 10 mol % or less) with respect to 10 mol of Si.

アルカリ金属イオンが0.1mol%未満の場合には、クリストバライト構造に取り込まれるSrI:Eu2+量が少なく、放射線吸収率と可視光の発光強度を高めることが困難である。また、アルカリ金属イオンが10mol%より多い場合には、クリストバライト構造を構成できずSiOとアルカリ金属イオンがガラス化して、SrI:Eu2+を中に取り込めず、放射線吸収と可視光発光が困難になる。 If the alkali metal ion content is less than 0.1 mol %, the amount of SrI 2 :Eu 2+ taken into the cristobalite structure is small, making it difficult to increase the radiation absorption rate and the emission intensity of visible light. In addition, when the alkali metal ion content is more than 10 mol %, the cristobalite structure cannot be formed, and SiO 2 and alkali metal ions vitrify, making it difficult to incorporate SrI 2 :Eu 2+ into the material, making it difficult to absorb radiation and emit visible light. become.

上述したように、本実施形態の放射線検出装置10では、シンチレータ材13としてクリストバライト構造にSrI:Eu2+が取り込まれ、アルカリ金属イオンを含んでいるナノコンポジットを用いることで、耐湿性に優れ放射線によって発光した可視光を検出し、放射線の検出感度を高めることができる。また、低温で合成できIの昇華を抑制できるため、クリストバライト構造にSrI:Eu2+を多く含有させることができる。 As described above, in the radiation detection apparatus 10 of the present embodiment, by using a nanocomposite containing alkali metal ions in which SrI 2 :Eu 2+ is incorporated in the cristobalite structure as the scintillator material 13 , excellent moisture resistance is obtained. By detecting the visible light emitted by, it is possible to increase the detection sensitivity of radiation. Further, since the synthesis can be performed at a low temperature and the sublimation of I can be suppressed, a large amount of SrI 2 :Eu 2+ can be contained in the cristobalite structure.

(第2実施形態)
次に、本発明の第2実施形態について説明する。第1実施形態と重複する内容は説明を省略する。本実施形態では、シンチレータ材13のマトリックス相であるシリカとして、SiOの多孔質体を用いる。
(Second embodiment)
Next, a second embodiment of the invention will be described. The description of the content that overlaps with the first embodiment is omitted. In this embodiment, a porous body of SiO 2 is used as silica, which is the matrix phase of the scintillator material 13 .

多孔質体は、シンチレータ材のマトリクス相であるシリカで構成された成形体であり、シリカの表面から内部にわたって空隙が分布している。多孔質体の形状および構造は限定されないが、厚さ1mm~5mm程度の板状の成形体を用いることができる。また、多孔質体の形成方法は限定されないが、平均粒径(D50)が2~50μmのSiO粒子を焼結した集合体を用いることができる。多孔質体に含まれるシリカの充填率は、体積比で30~80%程度が好ましい。充填率が30%未満では、多孔質体の強度が不足して取り扱いが困難になる、また、充填率が80%を超えると、多孔質体の内部に蛍光体材料を取り込ませることが困難になる。 The porous body is a molded body composed of silica, which is the matrix phase of the scintillator material, and voids are distributed from the surface to the inside of the silica. The shape and structure of the porous body are not limited, but a plate-like molded body having a thickness of about 1 mm to 5 mm can be used. The method of forming the porous body is not limited, but aggregates obtained by sintering SiO 2 particles having an average particle diameter (D50) of 2 to 50 μm can be used. The filling ratio of silica contained in the porous body is preferably about 30 to 80% by volume. If the filling rate is less than 30%, the strength of the porous body is insufficient and handling becomes difficult, and if the filling rate exceeds 80%, it becomes difficult to incorporate the phosphor material inside the porous body. Become.

また、SiO粒子を焼成して集合体とするためには、SiO粒子はアルカリ金属成分を含有していることが好ましい。SiO粒子に含有されるアルカリ金属成分としては、Li,Na,K,Rb,Csが挙げられる。SiO粒子に含有されるアルカリ金属成分の含有量としては、Siの10molに対して0.01mol以上1.00mol以下(0.1mol%以上10mol%以下)の比率で含まれることが好ましい。SiO粒子にアルカリ金属成分が含有されことで、SiO粒子同士が焼結され、粒子間に空隙を有する多孔質体の成形体を得ることができる。 Moreover, in order to sinter the SiO 2 particles to form aggregates, the SiO 2 particles preferably contain an alkali metal component. Alkali metal components contained in the SiO2 particles include Li, Na, K, Rb, and Cs. The content of the alkali metal component contained in the SiO 2 particles is preferably 0.01 mol or more and 1.00 mol or less (0.1 mol % or more and 10 mol % or less) with respect to 10 mol of Si. By including an alkali metal component in the SiO 2 particles, the SiO 2 particles are sintered together, and a porous compact having voids between the particles can be obtained.

本実施形態のシンチレータ材の製造方法では、粉末調整工程において、蛍光体材料であるSrI:Eu2+およびアルカリ金属材料を用意し、不活性ガス雰囲気中で粉砕/混合して原料粉末を形成する。また、多孔質体形成工程において、SiO粒子とアルカリ金属材料の混合粉末を用意し、不活性ガス雰囲気中で粉砕/混合し、さらに大気雰囲気中で焼成して多孔質体のシリカを形成する。次に、熱処理工程において、原料粉末と多孔質体を接触させて、不活性雰囲気で加熱処理して焼成してシンチレータ材を得る。原料粉末と多孔質体の接触方法が限定されないが、原料粉末上に多孔質体を配置するとしてもよい。熱処理工程によって、多孔質体のシリカの一部は結晶化したクリストバライト構造を有し、蛍光体材料であるSrI:Eu2+がクリストバライト構造中に取り込まれてナノコンポジット化する。また、クリストバライト構造には、アルカリ金属イオンが含まれる。 In the method for producing the scintillator material of the present embodiment, in the powder preparation step, the phosphor material SrI 2 :Eu 2+ and the alkali metal material are prepared and pulverized/mixed in an inert gas atmosphere to form a raw material powder. . In addition, in the porous body forming step, a mixed powder of SiO2 particles and an alkali metal material is prepared, pulverized/mixed in an inert gas atmosphere, and fired in an air atmosphere to form porous silica. . Next, in the heat treatment step, the raw material powder and the porous body are brought into contact with each other, heat-treated in an inert atmosphere, and fired to obtain a scintillator material. Although the method of contacting the raw material powder and the porous body is not limited, the porous body may be arranged on the raw material powder. Part of the silica of the porous body has a crystallized cristobalite structure by the heat treatment process, and the phosphor material SrI 2 :Eu 2+ is incorporated into the cristobalite structure to form a nanocomposite. The cristobalite structure also contains alkali metal ions.

得られたシンチレータ材では、クリストバライト構造に含まれるSiに対して、Srイオンが0.9~15mol%、Iイオンが2.0~40mol%、Euイオンが0.1~5.0mol%の比率で含まれることが好ましい。イオン含有量がこれらの数値範囲よりも少ないと、SrI:Eu2+の取り込み量が低下して発光量が低下してしまう。また、イオン含有量がこれらの数値範囲よりも多いと、シンチレータ材の内部から過剰な元素が染み出し、染み出した箇所を起点に亀裂が入って粒子割れが発生する。粒子割れが発生すると、クリストバライト構造中に取り込まれたSrI:Eu2+が大気中に曝され、耐湿性が低下してしまう。また、Srイオンが15mol%以上では、SiO中へのSrI取り込み量が低下し、発光性能が低下する。また、Iイオンが40mol%以上でも、SiO中へのSrI取り込み量が低下し、発光性能が低下する。Euイオンが5.0mol%以上になると濃度消光を起こし、発光性能が低下する。 In the obtained scintillator material, the ratio of Sr ions is 0.9 to 15 mol%, I ions is 2.0 to 40 mol%, and Eu ions is 0.1 to 5.0 mol% with respect to Si contained in the cristobalite structure. is preferably included in If the ion content is less than these numerical ranges, the amount of SrI 2 :Eu 2+ incorporated decreases, resulting in a decrease in light emission. Also, if the ion content is higher than these numerical ranges, excess elements seep out from the inside of the scintillator material, and cracks start from the seeped points, resulting in grain cracking. When grain cracking occurs, the SrI 2 :Eu 2+ incorporated in the cristobalite structure is exposed to the atmosphere, resulting in a decrease in moisture resistance. Moreover, when the Sr ion content is 15 mol % or more, the amount of SrI incorporated into SiO 2 decreases, resulting in a decrease in light emission performance. Also, even if the I ion content is 40 mol % or more, the amount of SrI incorporated into SiO 2 decreases, resulting in a decrease in light emission performance. When the Eu ion content is 5.0 mol % or more, concentration quenching occurs, resulting in a decrease in light emission performance.

上述したように本実施例のシンチレータ材およびシンチレータ材の製造方法では、マトリクス相であるシリカを多孔質体で構成している。これにより、蛍光体材料であるSrI:Eu2+がクリストバライト構造中に取り込まれる量を増加させ、耐湿性に優れ放射線によって発光した可視光を検出し、放射線の検出感度を高めることができる。 As described above, in the scintillator material and the method for producing the scintillator material of the present embodiment, the silica, which is the matrix phase, is composed of a porous material. This increases the amount of SrI 2 :Eu 2+ which is a phosphor material incorporated into the cristobalite structure, has excellent moisture resistance, can detect visible light emitted by radiation, and can increase radiation detection sensitivity.

(第3実施形態)
次に、本発明の第3実施形態について図2を用いて説明する。第1実施形態と重複する内容は説明を省略する。図2は、本実施形態に係るシンチレータ材を用いた放射線検出装置20の構造を示す模式図である。図2に示すように放射線検出装置20は、受光素子21と、シンチレータ材23を備えている。
(Third embodiment)
Next, a third embodiment of the invention will be described with reference to FIG. The description of the content that overlaps with the first embodiment is omitted. FIG. 2 is a schematic diagram showing the structure of a radiation detection device 20 using a scintillator material according to this embodiment. As shown in FIG. 2 , the radiation detection device 20 includes a light receiving element 21 and a scintillator material 23 .

受光素子21は、半導体材料で構成されて、光を受光することで電子が生じる部材である。受光素子21は公知のものを用いることができ材料や構造は限定されないが、例えばシリコンやIII-V族化合物系半導体材料を材料としたフォトダイオード(PD:Photo Diode)やアバランシェフォトダイオード(APD:Avalanche Photo Diode)を用いることができる。受光素子21には、図示しない電極に配線が接続されており、配線を介して光の強度に応じた電圧または電流が出力される。 The light receiving element 21 is a member that is made of a semiconductor material and generates electrons by receiving light. The light-receiving element 21 can use a known element and its material and structure are not limited. For example, a photodiode (PD) or an avalanche photodiode (APD: Avalanche Photo Diode) can be used. A wire is connected to an electrode (not shown) of the light receiving element 21, and a voltage or current corresponding to the intensity of light is output through the wire.

シンチレータ材23は、受光素子21の受光面側に配置され、放射線が照射されることで可視光を発光する蛍光材料を含有する部材である。第1実施形態と同様に本実施形態でも、シンチレータ材23としてクリストバライト構造にSrI:Eu2+が取り込まれ、アルカリ金属イオンを含んでいるナノコンポジットを用いる。 The scintillator material 23 is arranged on the light receiving surface side of the light receiving element 21 and is a member containing a fluorescent material that emits visible light when irradiated with radiation. As in the first embodiment, in this embodiment as well, a nanocomposite in which SrI 2 :Eu 2+ is incorporated into a cristobalite structure and alkali metal ions are included is used as the scintillator material 23 .

図2に示した放射線検出装置20では、ガンマ線などの放射線がシンチレータ材23に入射すると、シンチレータ材23中の蛍光体材料が励起され、波長範囲が400nm以上500nm以下の青色光で発光する。シンチレータ材23で発光した青色光の光子は、受光素子21の受光面に到達し、光の強度に応じて電流または電圧が検出信号として外部の信号処理部に伝達される。信号処理部では、検出信号から光子数と放射線の強度を算出する。 In the radiation detection device 20 shown in FIG. 2, when radiation such as gamma rays is incident on the scintillator material 23, the phosphor material in the scintillator material 23 is excited and emits blue light with a wavelength range of 400 nm to 500 nm. Photons of blue light emitted by the scintillator material 23 reach the light receiving surface of the light receiving element 21, and current or voltage is transmitted as a detection signal to an external signal processing unit according to the intensity of the light. The signal processing unit calculates the number of photons and the intensity of radiation from the detection signal.

本実施形態の放射線検出装置20でも、シンチレータ材23としてクリストバライト構造にSrI:Eu2+が取り込まれ、アルカリ金属イオンを含んでいるナノコンポジットを用いることで、耐湿性に優れ放射線によって発光した可視光を検出し、放射線の検出感度を高めることができる。 Also in the radiation detection apparatus 20 of the present embodiment, by using a nanocomposite in which SrI 2 :Eu 2+ is incorporated in the cristobalite structure as the scintillator material 23 and contains alkali metal ions, visible light emitted by radiation is excellent in moisture resistance. can be detected and the detection sensitivity of radiation can be increased.

(ガンマ線照射による発光量の測定)
図1に示した放射線検出装置のシンチレータ材13として、以下に示す実施例1~3および比較例1~4の材料を用いてガンマ線による発光量を測定した。本実施形態では、ガンマ線源には137Csの662keVを用いている。
(Measurement of luminescence amount by gamma ray irradiation)
Materials of Examples 1 to 3 and Comparative Examples 1 to 4 shown below were used as the scintillator material 13 of the radiation detection apparatus shown in FIG. 1, and the amount of light emitted by gamma rays was measured. In this embodiment, 662 keV of 137 Cs is used as the gamma ray source.

(実施例1)
実施例1に係るシンチレータ材13は、クリストバライト構造に蛍光体材料であるSrI:Eu2+が取り込まれ、アルカリ金属イオンとしてNaを含むものである。原料として、SiO,SrI(融点402℃),NHI,EuFおよびNaIを用意し、これらのモル比が10:0.46:0.08:0.04:0.02となるよう精秤し、各原料を窒素ガス雰囲気中で石英乳鉢に入れ粉砕混合した。その後、混合粉末をアルミナ坩堝に入れ、窒素雰囲気において850℃で3時間焼成した。得られた焼成物を温純水で丹念に洗浄し、遊離のヨウ化物イオンを除去して実施例1のシンチレータ材13を得た。図1の放射線検出装置でガンマ線照射による発光を測定したところ、26,500[photons/Mev]の発光量が得られた。原料にアルカリ金属を含めているため、クリストバライト構造化するための温度を850℃まで下げることができた。
(Example 1)
The scintillator material 13 according to Example 1 has a cristobalite structure incorporated with SrI 2 :Eu 2+ which is a phosphor material, and contains Na as an alkali metal ion. SiO 2 , SrI 2 (melting point 402° C.), NH 4 I, EuF 3 and NaI were prepared as raw materials, and their molar ratios were 10:0.46:0.08:0.04:0.02. After being accurately weighed, each raw material was placed in a quartz mortar in a nitrogen gas atmosphere and pulverized and mixed. After that, the mixed powder was placed in an alumina crucible and fired at 850° C. for 3 hours in a nitrogen atmosphere. The resulting fired product was carefully washed with warm pure water to remove free iodide ions, thereby obtaining the scintillator material 13 of Example 1. When luminescence due to gamma ray irradiation was measured with the radiation detection apparatus of FIG. 1, a luminescence amount of 26,500 [photons/Mev] was obtained. Since the raw material contained an alkali metal, the temperature for structuring cristobalite could be lowered to 850°C.

(実施例2)
実施例2に係るシンチレータ材13は、クリストバライト構造に蛍光体材料であるSrI:Eu2+が取り込まれ、アルカリ金属イオンとしてKを含むものである。原料として、SiO,SrI,NHI,EuおよびKBrを用意し、これらのモル比が10:0.50:0.04:0.015:0.10となるよう精秤し、各原料を窒素ガス雰囲気中で石英乳鉢に入れ粉砕混合した。その後、混合粉末をアルミナ坩堝に入れ、窒素雰囲気において850℃で3時間焼成した。得られた焼成物を温純水で丹念に洗浄し、遊離のヨウ化物イオンを除去して実施例2のシンチレータ材13を得た。図1の放射線検出装置でガンマ線照射による発光を測定したところ、22,300[photons/Mev]の発光量が得られた。
(Example 2)
The scintillator material 13 according to Example 2 has a cristobalite structure in which SrI 2 :Eu 2+ , which is a phosphor material, is incorporated, and K is included as alkali metal ions. SiO 2 , SrI 2 , NH 4 I, Eu 2 O 3 and KBr were prepared as raw materials and precisely weighed so that their molar ratios were 10:0.50:0.04:0.015:0.10. Then, each raw material was placed in a quartz mortar in a nitrogen gas atmosphere and pulverized and mixed. After that, the mixed powder was placed in an alumina crucible and fired at 850° C. for 3 hours in a nitrogen atmosphere. The obtained fired product was carefully washed with warm pure water to remove free iodide ions, and a scintillator material 13 of Example 2 was obtained. When luminescence due to gamma ray irradiation was measured with the radiation detection apparatus of FIG. 1, a luminescence amount of 22,300 [photons/Mev] was obtained.

(実施例3)
実施例3に係るシンチレータ材13は、クリストバライト構造に蛍光体材料であるSrI:Eu2+が取り込まれ、アルカリ金属イオンとしてCsを含むものである。原料として、SiO,SrI,NHI,EuIおよびCsClを用意し、これらのモル比が10:0.40:0.10:0.06:1.80となるよう精秤し、各原料を窒素ガス雰囲気中で石英乳鉢に入れ粉砕混合した。その後、混合粉末をアルミナ坩堝に入れ、窒素雰囲気において900℃で3時間焼成した。得られた焼成物を温純水で丹念に洗浄し、遊離のヨウ化物イオンを除去して実施例3のシンチレータ材13を得た。図1の放射線検出装置でガンマ線照射による発光を測定したところ、20,100[photons/Mev]の発光量が得られた。
(Example 3)
The scintillator material 13 according to Example 3 incorporates SrI 2 :Eu 2+ as a phosphor material into the cristobalite structure and contains Cs as alkali metal ions. SiO 2 , SrI 2 , NH 4 I, EuI 3 and CsCl were prepared as raw materials and precisely weighed so that their molar ratios were 10:0.40:0.10:0.06:1.80, Each raw material was placed in a quartz mortar in a nitrogen gas atmosphere and pulverized and mixed. After that, the mixed powder was placed in an alumina crucible and fired at 900° C. for 3 hours in a nitrogen atmosphere. The obtained fired product was carefully washed with warm pure water to remove free iodide ions, and a scintillator material 13 of Example 3 was obtained. When luminescence due to gamma ray irradiation was measured with the radiation detection apparatus of FIG. 1, a luminescence amount of 20,100 [photons/Mev] was obtained.

(比較例1)
比較例1に係るシンチレータ材13は、クリストバライト構造に蛍光体材料であるSrI:Eu2+が取り込まれ、アルカリ金属イオンを含まないものである。原料として、SiO,SrI,NHI,EuFおよびCsClを用意し、これらのモル比が10:0.46:0.28:0.04となるよう精秤し、各原料を窒素ガス雰囲気中で石英乳鉢に入れ粉砕混合した。その後、混合粉末をアルミナ坩堝に入れ、窒素雰囲気において1000℃で3時間焼成した。得られた焼成物を温純水で丹念に洗浄し、遊離のヨウ化物イオンを除去して比較例1のシンチレータ材13を得た。図1の放射線検出装置でガンマ線照射による発光を測定したところ、12,000[photons/Mev]の発光量が得られた。
(Comparative example 1)
The scintillator material 13 according to Comparative Example 1 incorporates SrI 2 :Eu 2+ which is a phosphor material into the cristobalite structure and does not contain alkali metal ions. SiO 2 , SrI 2 , NH 4 I, EuF 3 and CsCl were prepared as raw materials and precisely weighed so that the molar ratio of these was 10:0.46:0.28:0.04. It was placed in a quartz mortar and ground and mixed in a gas atmosphere. After that, the mixed powder was placed in an alumina crucible and fired at 1000° C. for 3 hours in a nitrogen atmosphere. The obtained fired product was carefully washed with warm pure water to remove free iodide ions, and a scintillator material 13 of Comparative Example 1 was obtained. When luminescence due to gamma ray irradiation was measured with the radiation detection apparatus shown in FIG. 1, an amount of luminescence of 12,000 [photons/Mev] was obtained.

(比較例2)
比較例2に係るシンチレータ材13は、アルカリ金属イオンとして過剰にNaを含むものである。原料として、SiO,SrI,NHI,EuFおよびNaIを用意し、これらのモル比が10:0.41:0.04:0.02:2.40となるよう精秤し、各原料を窒素ガス雰囲気中で石英乳鉢に入れ粉砕混合した。その後、混合粉末をアルミナ坩堝に入れ、窒素雰囲気において850℃で3時間焼成した。得られた焼成物を温純水で丹念に洗浄し、遊離のヨウ化物イオンを除去して比較例2のシンチレータ材13を得た。図1の放射線検出装置でガンマ線照射による発光を測定したところ、発光量は0[photons/Mev]であった。
(Comparative example 2)
The scintillator material 13 according to Comparative Example 2 contains excess Na as alkali metal ions. SiO 2 , SrI 2 , NH 4 I, EuF 3 and NaI were prepared as raw materials and precisely weighed so that their molar ratios were 10:0.41:0.04:0.02:2.40, Each raw material was placed in a quartz mortar in a nitrogen gas atmosphere and pulverized and mixed. After that, the mixed powder was placed in an alumina crucible and fired at 850° C. for 3 hours in a nitrogen atmosphere. The resulting baked product was carefully washed with warm pure water to remove free iodide ions, and a scintillator material 13 of Comparative Example 2 was obtained. When luminescence due to gamma ray irradiation was measured with the radiation detection apparatus of FIG. 1, the luminescence amount was 0 [photons/Mev].

(比較例3)
比較例3に係るシンチレータ材13は、クリストバライト構造に蛍光体材料であるSrI:Eu2+が取り込まれ、アルカリ金属イオンとしてNaを微量に含むものである。原料として、SiO,SrI,NHI,EuIおよびNaIを用意し、これらのモル比が10:0.38:0.02:0.01:0.01となるよう精秤し、各原料を窒素ガス雰囲気中で石英乳鉢に入れ粉砕混合した。その後、混合粉末をアルミナ坩堝に入れ、窒素雰囲気において850℃で3時間焼成した。得られた焼成物を温純水で丹念に洗浄し、遊離のヨウ化物イオンを除去して比較例3のシンチレータ材13を得た。図1の放射線検出装置でガンマ線照射による発光を測定したところ、12,200[photons/Mev]の発光量が得られた。
(Comparative Example 3)
The scintillator material 13 according to Comparative Example 3 has SrI 2 :Eu 2+ , which is a phosphor material, incorporated into the cristobalite structure, and contains a trace amount of Na as alkali metal ions. SiO 2 , SrI 2 , NH 4 I, EuI 3 and NaI were prepared as raw materials and precisely weighed so that the molar ratio of these was 10:0.38:0.02:0.01:0.01, Each raw material was placed in a quartz mortar in a nitrogen gas atmosphere and pulverized and mixed. After that, the mixed powder was placed in an alumina crucible and fired at 850° C. for 3 hours in a nitrogen atmosphere. The resulting baked product was carefully washed with warm pure water to remove free iodide ions, and a scintillator material 13 of Comparative Example 3 was obtained. When luminescence due to gamma ray irradiation was measured with the radiation detection apparatus of FIG. 1, a luminescence amount of 12,200 [photons/Mev] was obtained.

(比較例4)
市販されているBGO(BiGe12)をシンチレータ材13として用いた。図1の放射線検出装置でガンマ線照射による発光を測定したところ、15,000[photons/Mev]の発光量が得られた。
(Comparative Example 4)
A commercially available BGO (Bi 4 Ge 3 O 12 ) was used as the scintillator material 13 . When luminescence due to gamma ray irradiation was measured with the radiation detection apparatus of FIG. 1, a luminescence amount of 15,000 [photons/Mev] was obtained.

表1に、実施例1~3および比較例1~4でのガンマ線照射による発光量の測定結果を示す。表1に示したように、クリストバライト構造にアルカリ金属イオンを含む実施例1~3では、アルカリ金属イオンを含まない比較例1および市販のBGOである比較例4よりも発光量が大幅に向上している。また、アルカリ金属イオンであるNaを過剰に含ませて製造した比較例2では、後述するようにクリストバライト構造に蛍光体材料であるSrI:Eu2+が取り込まれず、放射線を吸収して可視光を発光できていない。また、アルカリ金属イオンを微量に含む比較例3では、比較例1と同程度の発光量しか得られていない。 Table 1 shows the measurement results of the amount of light emitted by gamma ray irradiation in Examples 1 to 3 and Comparative Examples 1 to 4. As shown in Table 1, in Examples 1 to 3 containing alkali metal ions in the cristobalite structure, the luminescence amount was significantly improved as compared with Comparative Example 1 containing no alkali metal ions and Comparative Example 4 using commercially available BGO. ing. In addition, in Comparative Example 2, which was produced by excessively containing Na, which is an alkali metal ion, the phosphor material SrI 2 :Eu 2+ was not incorporated into the cristobalite structure as described later, and radiation was absorbed to emit visible light. Not able to emit light. Further, in Comparative Example 3 containing a trace amount of alkali metal ions, only the same amount of light emission as in Comparative Example 1 was obtained.

Figure 2022140222000002
Figure 2022140222000002

(シンチレータ材でのガンマ線吸収の測定)
次に、上述した実施例1~3および比較例1~3で作成したシンチレータ材によるガンマ線吸収率を測定した。図3は、シンチレータ材のガンマ線吸収率の測定装置30を示す模式図である。図3に示すように、ガンマ線吸収率の測定装置30は、光電子増倍管31と、検出用シンチレータ32と、評価サンプル33と、遮光シート34と、放射線源35を備えている。
(Measurement of gamma ray absorption in scintillator material)
Next, the gamma ray absorbance of the scintillator materials produced in Examples 1 to 3 and Comparative Examples 1 to 3 was measured. FIG. 3 is a schematic diagram showing an apparatus 30 for measuring the gamma ray absorptance of scintillator materials. As shown in FIG. 3 , the gamma ray absorptance measuring device 30 includes a photomultiplier tube 31 , a detection scintillator 32 , an evaluation sample 33 , a light shielding sheet 34 and a radiation source 35 .

光電子増倍管31は、微量の光子を検出して電気信号を出力する部材である。検出用シンチレータ32は、光電子増倍管31の入射窓に配置され、BGOを含有した部材であり、放射線源35から照射される放射線によって励起されて可視光を発光する。評価サンプル33は、上述した実施例1~3および比較例1~3で作成したシンチレータ材であり、光電子増倍管31と検出用シンチレータ32との間に配置されている。遮光シート34は、可視光を遮り放射線を透過する材料で構成されたシート状の部材であり、光電子増倍管31の入射窓と検出用シンチレータ32を覆って配置されている。また、遮光シート34は検出用シンチレータ32と評価サンプル33の間に挟まれている。放射線源35は、放射線を照射するための装置であり、本実施形態では241Amの60keVを用いている。 The photomultiplier tube 31 is a member that detects a minute amount of photons and outputs an electrical signal. The scintillator 32 for detection is arranged at the entrance window of the photomultiplier tube 31, is a member containing BGO, and is excited by the radiation emitted from the radiation source 35 to emit visible light. The evaluation sample 33 is the scintillator material produced in Examples 1 to 3 and Comparative Examples 1 to 3 described above, and is arranged between the photomultiplier tube 31 and the scintillator 32 for detection. The light shielding sheet 34 is a sheet-like member made of a material that blocks visible light and transmits radiation, and is arranged to cover the entrance window of the photomultiplier tube 31 and the detection scintillator 32 . Also, the light shielding sheet 34 is sandwiched between the scintillator 32 for detection and the evaluation sample 33 . The radiation source 35 is a device for irradiating radiation, and uses 60 keV of 241 Am in this embodiment.

図3に示した測定装置30では、放射線源35から照射されたガンマ線は、評価サンプル33および遮光シート34を透過して検出用シンチレータ32に到達する。検出用シンチレータ32では、ガンマ線によってBGOが励起され可視光を発光する。検出用シンチレータ32で発光した光子は、光電子増倍管14に到達して検出信号として信号処理部に出力される。信号処理部では、検出信号に基づいて光子数を算出する。 In the measurement apparatus 30 shown in FIG. 3, gamma rays emitted from the radiation source 35 pass through the evaluation sample 33 and the light shielding sheet 34 and reach the scintillator 32 for detection. In the detection scintillator 32, BGO is excited by gamma rays to emit visible light. Photons emitted by the detection scintillator 32 reach the photomultiplier tube 14 and are output to the signal processing section as a detection signal. The signal processor calculates the number of photons based on the detection signal.

このとき、評価サンプル33に入射したガンマ線によって、蛍光体材料も励起されて可視光を発光するが、遮光シート34で光が遮られるために、光電子増倍管31に入射する光子は検出用シンチレータ32で発光したものだけとなる。したがって、光電子増倍管31で検出された光子数を比較することで、評価サンプル33によって吸収されたガンマ線の量を測定することができる。 At this time, the phosphor material is also excited by the gamma rays incident on the evaluation sample 33 and emits visible light. Only the light emitted at 32 is obtained. Therefore, by comparing the number of photons detected by the photomultiplier tube 31, the amount of gamma rays absorbed by the evaluation sample 33 can be measured.

図3に示した測定装置30において、評価サンプル33を取り除いた状態で光電子増倍管31により検出用シンチレータ32の発光量を測定したものを基準値とする。また測定装置30において、評価サンプル33として実施例1~3および比較例1~3を置いた状態で光電子増倍管31により検出用シンチレータ32の発光量を測定し、基準値との比較でガンマ線吸収率を算出した。ここでガンマ線吸収率Rは、基準値での検出光子数(N)を100%として、評価サンプル33を置いた状態での検出光子数(N)の比率R(N/N)を求め、R=(100-R)%として算出している。 In the measurement apparatus 30 shown in FIG. 3, the amount of light emitted from the scintillator 32 for detection is measured by the photomultiplier tube 31 with the evaluation sample 33 removed, and this is used as a reference value. In the measuring device 30, the amount of light emitted from the scintillator 32 for detection is measured by the photomultiplier tube 31 while the evaluation samples 33 of Examples 1 to 3 and Comparative Examples 1 to 3 are placed. Absorption was calculated. Here, the gamma ray absorption rate R A is the ratio R (N B / NA ), and calculated as R A = (100-R)%.

Figure 2022140222000003
Figure 2022140222000003

表2に示したように、実施例1~3では評価サンプル33のシンチレータ材でガンマ線が20%程度以上吸収されており、クリストバライト構造にアルカリ金属イオンを含み蛍光体材料であるSrI:Eu2+が良好に取り込まれ、放射線で高効率に励起して可視光を発光できていることがわかる。それに対してアルカリ金属を含まない比較例1と、アルカリ金属イオンを微量に含む比較例3ではガンマ線の吸収は12%程度であり、放射線での励起により可視光を発光する効率が低いことがわかる。また、アルカリ金属イオンを過剰に含ませて製造した比較例2では、SrI:Eu2+が取り込まれていないため放射線をほとんど吸収していない。 As shown in Table 2, in Examples 1 to 3, the scintillator material of Evaluation Sample 33 absorbed about 20% or more of gamma rays, and SrI 2 :Eu 2+ which is a phosphor material containing alkali metal ions in the cristobalite structure. It can be seen that the is well incorporated and can be excited by radiation with high efficiency to emit visible light. On the other hand, in Comparative Example 1 containing no alkali metal and Comparative Example 3 containing a small amount of alkali metal ions, the absorption of gamma rays was about 12%, indicating that the efficiency of emitting visible light by excitation with radiation is low. . Moreover, in Comparative Example 2, which was produced by containing an excessive amount of alkali metal ions, SrI 2 :Eu 2+ was not incorporated, so radiation was hardly absorbed.

(実施例1~3および比較例1~3の分析結果)
次に、実施例1~3および比較例1~3で製造したシンチレータ材について、フレーム原子吸光光度法を用いて含まれる元素の比率を測定した。測定には蛍光X線装置(株式会社リガク製 RIX1000)を用いた。測定対象の元素と測定に用いてモノクロメーター、2θ測定範囲[deg.]、ステップ幅[deg.]を表3に示す。また、実施例1~3および比較例1~3の測定結果を表4に示す。表4においては、シンチレータ材における各元素の量として、Si元素の量を10molとした際のmol数で示している。したがって、表4中に示された数値を10倍した値がSiに対するmol%となる。
(Analysis results of Examples 1 to 3 and Comparative Examples 1 to 3)
Next, the scintillator materials produced in Examples 1 to 3 and Comparative Examples 1 to 3 were measured for the ratio of the contained elements using flame atomic absorption spectrophotometry. A fluorescent X-ray device (RIX1000 manufactured by Rigaku Corporation) was used for the measurement. Monochromator, 2θ measurement range [deg. ], step width [deg. ] is shown in Table 3. Table 4 shows the measurement results of Examples 1 to 3 and Comparative Examples 1 to 3. In Table 4, the amount of each element in the scintillator material is shown in mol when the amount of Si element is 10 mol. Therefore, the value obtained by multiplying the numerical value shown in Table 4 by 10 is the mol % with respect to Si.

Figure 2022140222000004
Figure 2022140222000004

Figure 2022140222000005
Figure 2022140222000005

表4に示したように、実施例1~3ではアルカリ金属イオンであるNa,K,Csがそれぞれ0.01mol(0.1mol%),0.05mol(0.5mol%),0.90mol(9.0mol%)含まれており、それに伴いSrとIの量が比較例1~3より多く含まれている。したがって、クリストバライト構造にアルカリ金属イオンがSiに対して0.1~10mol%含まれると、蛍光体材料であるSrI:Eu2+の取り込み量を多くできることがわかる。比較例1ではアルカリ金属イオンが含まれておらず、比較例3ではアルカリ金属イオンであるNaが0.005mol(0.05mol%)と微量であるため、SrとIの含有量が実施例1~3よりも小さくなっている。 As shown in Table 4, in Examples 1 to 3, Na, K, and Cs, which are alkali metal ions, are 0.01 mol (0.1 mol %), 0.05 mol (0.5 mol %), and 0.90 mol ( 9.0 mol %), and accordingly the amounts of Sr and I are greater than in Comparative Examples 1-3. Therefore, it can be seen that when the cristobalite structure contains 0.1 to 10 mol % of alkali metal ions with respect to Si, the amount of SrI 2 :Eu 2+ , which is the phosphor material, can be increased. In Comparative Example 1, alkali metal ions are not contained, and in Comparative Example 3, the amount of Na, which is an alkali metal ion, is as small as 0.005 mol (0.05 mol%). is smaller than ~3.

また、比較例2では、原材料に含まれていたSrIはサンプル中から検出されていない(ND:Not Detectable)。つまり、アルカリ金属イオンであるNaが1.20mol(12.0mol%)と過剰に含まれているため、SiOとNaがガラス化してしまい、クリストバライト構造を構成できないためシンチレータ材に蛍光体材料であるSrI:Eu2+が取り込まれていないことが確認できる。 In Comparative Example 2, SrI 2 contained in the raw material was not detected in the sample (ND: Not Detectable). In other words, since 1.20 mol (12.0 mol %) of Na, which is an alkali metal ion, is excessively contained, SiO 2 and Na are vitrified, and a cristobalite structure cannot be formed. It can be confirmed that a certain SrI 2 :Eu 2+ is not incorporated.

(実施例4)
実施例4に係るシンチレータ材13は、多孔質体のシリカを用い、クリストバライト構造に蛍光体材料であるSrI:Eu2+が取り込まれ、アルカリ金属イオンとしてNaを含むものである。まず、多孔質体形成工程では、アモルファスSiOとNaIを用意し、これらのmol比が10/0.1となるよう精秤し、窒素ガス雰囲気中で石英乳鉢に入れ粉砕/混合した。その後、混合粉末を金型一軸成形し、成形体を白金坩堝等の不活性容器に入れ、大気雰囲気で700℃、1時間焼結することで、φ20mm、厚さ3mmの多孔質体を得た。
(Example 4)
The scintillator material 13 according to Example 4 uses porous silica, has SrI 2 :Eu 2+ , which is a phosphor material, incorporated into the cristobalite structure, and contains Na as alkali metal ions. First, in the porous body forming step, amorphous SiO 2 and NaI were prepared, precisely weighed so that their molar ratio was 10/0.1, placed in a quartz mortar in a nitrogen gas atmosphere, and ground/mixed. After that, the mixed powder was uniaxially molded in a mold, and the molded body was placed in an inert container such as a platinum crucible and sintered at 700 ° C. for 1 hour in an air atmosphere to obtain a porous body with a diameter of 20 mm and a thickness of 3 mm. .

次に、粉末調製工程において、原料として、SrI,NHI,EuFおよびNaIを用意し、これらのモル比が0.46:0.08:0.04:0.02となるよう精秤し、各原料を窒素ガス雰囲気中で石英乳鉢に入れ粉砕混合し、原料粉末を得た。 Next, in the powder preparation step, SrI 2 , NH 4 I, EuF 3 and NaI were prepared as raw materials and refined so that their molar ratios were 0.46:0.08:0.04:0.02. Each raw material was weighed, placed in a quartz mortar in a nitrogen gas atmosphere, and pulverized and mixed to obtain a raw material powder.

その後、熱処理工程において、原料粉末上に多孔質体を載置し、窒素雰囲気で850℃、3時間焼成した。焼成後、原料粉末の上に載置した多孔質体を取り出して温純水で洗浄し、遊離のヨウ化物イオンを除去して実施例4のシンチレータ材13を得た。図1の放射線検出装置でガンマ線照射による発光を測定したところ、28,500[photons/Mev]の発光量が得られた。また、図3の測定装置30を用い、上述した方法でガンマ線吸収率を測定したところ、ガンマ線吸収率Rは26.3%であった。 After that, in the heat treatment step, the porous body was placed on the raw material powder and fired in a nitrogen atmosphere at 850° C. for 3 hours. After firing, the porous body placed on the raw material powder was taken out and washed with warm pure water to remove free iodide ions, thereby obtaining a scintillator material 13 of Example 4. When luminescence due to gamma ray irradiation was measured with the radiation detection apparatus of FIG. 1, a luminescence amount of 28,500 [photons/Mev] was obtained. Further, when the gamma ray absorption rate was measured by the method described above using the measuring device 30 of FIG. 3, the gamma ray absorption rate RA was 26.3%.

(実施例5)
実施例5に係るシンチレータ材13は、多孔質体のシリカを用い、クリストバライト構造に蛍光体材料であるSrI:Eu2+が取り込まれ、アルカリ金属イオンとしてKを含むものである。まず、多孔質体形成工程では、アモルファスSiOとKIを用意し、これらのmol比が10/0.1となるよう精秤し、窒素ガス雰囲気中で石英乳鉢に入れ粉砕/混合した。その後、混合粉末をφ20mm、厚さ2mmの石英板上に載せ、大気雰囲気で680℃、1時間加熱処理することで、石英板上に被膜厚さ2mmの多孔質体を得た。
(Example 5)
The scintillator material 13 according to Example 5 uses porous silica, has SrI 2 :Eu 2+ , which is a phosphor material, incorporated into the cristobalite structure, and contains K as alkali metal ions. First, in the porous body forming step, amorphous SiO 2 and KI were prepared, precisely weighed so that their molar ratio was 10/0.1, placed in a quartz mortar in a nitrogen gas atmosphere, and ground/mixed. After that, the mixed powder was placed on a quartz plate of φ20 mm and thickness of 2 mm, and heat-treated at 680° C. for 1 hour in an air atmosphere to obtain a porous body having a film thickness of 2 mm on the quartz plate.

次に、粉末調製工程において、原料として、SrI,NHI,EuおよびKBrを用意し、これらのモル比が0.50:0.04:0.015:0.10となるよう精秤し、各原料を窒素ガス雰囲気中で石英乳鉢に入れ粉砕混合し、原料粉末を得た。 Next, in the powder preparation process, SrI 2 , NH 4 I, Eu 2 O 3 and KBr are prepared as raw materials, and the molar ratio of these is 0.50:0.04:0.015:0.10. The raw materials were precisely weighed, put in a quartz mortar in a nitrogen gas atmosphere, and pulverized and mixed to obtain a raw material powder.

その後、熱処理工程において、原料粉末上に多孔質体を載置し、窒素雰囲気で850℃、3時間焼成した。焼成後、原料粉末の上に載置した多孔質体を取り出して温純水で洗浄し、遊離のヨウ化物イオンを除去して実施例5のシンチレータ材13を得た。図1の放射線検出装置でガンマ線照射による発光を測定したところ、24,300[photons/Mev]の発光量が得られた。また、図3の測定装置30を用い、上述した方法でガンマ線吸収率を測定したところ、ガンマ線吸収率Rは24.5%であった。 After that, in the heat treatment step, the porous body was placed on the raw material powder and fired in a nitrogen atmosphere at 850° C. for 3 hours. After firing, the porous body placed on the raw material powder was taken out and washed with warm pure water to remove free iodide ions, thereby obtaining a scintillator material 13 of Example 5. When luminescence due to gamma ray irradiation was measured with the radiation detection apparatus of FIG. 1, a luminescence amount of 24,300 [photons/Mev] was obtained. Further, when the gamma ray absorption rate was measured by the method described above using the measuring device 30 of FIG. 3, the gamma ray absorption rate RA was 24.5%.

(実施例6)
実施例6に係るシンチレータ材13は、多孔質体のシリカを用い、クリストバライト構造に蛍光体材料であるSrI:Eu2+が取り込まれ、アルカリ金属イオンとしてCsを含むものである。まず、多孔質体形成工程では、アモルファスSiOとCsIを用意し、これらのmol比が10/0.1となるよう精秤し、窒素ガス雰囲気中で石英乳鉢に入れ粉砕/混合した。その後、混合粉末をφ24mm、厚さ1mmのホウケイ酸ガラス上に載せ、大気雰囲気で650℃、1時間焼成することで、ホウケイ酸ガラス上に被膜厚さ0.5mmの多孔質体を得た。
(Example 6)
The scintillator material 13 according to Example 6 uses porous silica, has a cristobalite structure in which SrI 2 :Eu 2+ as a phosphor material is incorporated, and contains Cs as alkali metal ions. First, in the porous body forming step, amorphous SiO 2 and CsI were prepared, precisely weighed so that their molar ratio was 10/0.1, placed in a quartz mortar in a nitrogen gas atmosphere, and ground/mixed. After that, the mixed powder was placed on a borosilicate glass having a diameter of 24 mm and a thickness of 1 mm, and fired at 650° C. for 1 hour in an air atmosphere to obtain a porous body having a film thickness of 0.5 mm on the borosilicate glass.

次に、粉末調製工程において、原料として、SrI,NHI,EuIおよびCsClを用意し、これらのモル比が0.40:0.10:0.06:1.80となるよう精秤し、各原料を窒素ガス雰囲気中で石英乳鉢に入れ粉砕混合し、原料粉末を得た。 Next, in the powder preparation step, SrI 2 , NH 4 I, EuI 3 and CsCl were prepared as raw materials and refined so that their molar ratios were 0.40:0.10:0.06:1.80. Each raw material was weighed, placed in a quartz mortar in a nitrogen gas atmosphere, and pulverized and mixed to obtain a raw material powder.

その後、熱処理工程において、原料粉末上に多孔質体を載置し、窒素雰囲気で700℃、10時間焼成した。焼成後、原料粉末の上に載置した多孔質体を取り出して温純水で洗浄し、遊離のヨウ化物イオンを除去して実施例6のシンチレータ材13を得た。図1の放射線検出装置でガンマ線照射による発光を測定したところ、22,100[photons/Mev]の発光量が得られた。また、図3の測定装置30を用い、上述した方法でガンマ線吸収率を測定したところ、ガンマ線吸収率Rは21.7%であった。 After that, in the heat treatment step, the porous body was placed on the raw material powder and fired in a nitrogen atmosphere at 700° C. for 10 hours. After firing, the porous body placed on the raw material powder was taken out and washed with warm pure water to remove free iodide ions, thereby obtaining a scintillator material 13 of Example 6. When luminescence due to gamma ray irradiation was measured with the radiation detection apparatus of FIG. 1, a luminescence amount of 22,100 [photons/Mev] was obtained. Further, when the gamma ray absorption rate was measured by the method described above using the measuring device 30 of FIG. 3, the gamma ray absorption rate RA was 21.7%.

(比較例5)
比較例5に係るシンチレータ材13は、内部に空隙の無い石英板を用い、クリストバライト構造に蛍光体材料であるSrI:Eu2+が取り込まれたものである。原料として、SrI,NHI,EuFを用意し、これらのモル比が0.46:0.28:0.04となるよう精秤し、各原料を窒素ガス雰囲気中で石英乳鉢に入れ粉砕混合した。その後、原料粉末上に石英板を載置し、窒素雰囲気で1000℃、3時間焼成した。焼成後、原料粉末の上に載置した多孔質体を取り出して温純水で洗浄し、遊離のヨウ化物イオンを除去して比較例5のシンチレータ材13を得た。図1の放射線検出装置でガンマ線照射による発光を測定したところ、13,000[photons/Mev]の発光量が得られた。また、図3の測定装置30を用い、上述した方法でガンマ線吸収率を測定したところ、ガンマ線吸収率Rは14.1%であった。
(Comparative Example 5)
The scintillator material 13 according to Comparative Example 5 uses a quartz plate having no voids inside and incorporates SrI 2 :Eu 2+ , which is a phosphor material, into the cristobalite structure. SrI 2 , NH 4 I, and EuF 3 were prepared as raw materials and precisely weighed so that their molar ratio was 0.46:0.28:0.04. It was added and pulverized and mixed. After that, a quartz plate was placed on the raw material powder and fired at 1000° C. for 3 hours in a nitrogen atmosphere. After firing, the porous body placed on the raw material powder was taken out and washed with warm pure water to remove free iodide ions, and a scintillator material 13 of Comparative Example 5 was obtained. When luminescence due to gamma ray irradiation was measured with the radiation detection apparatus of FIG. 1, a luminescence amount of 13,000 [photons/Mev] was obtained. Further, when the gamma ray absorption rate was measured by the method described above using the measuring device 30 of FIG. 3, the gamma ray absorption rate RA was 14.1%.

実施例4~6および比較例5について、図1の放射線検出装置を用いたガンマ線照射による発光量の測定結果を表5に示す。また、図3の測定装置30を用いたガンマ線吸収率Rの測定結果を表6に示す。 For Examples 4 to 6 and Comparative Example 5, Table 5 shows the measurement results of the amount of light emitted by gamma ray irradiation using the radiation detection apparatus of FIG. Table 6 shows the measurement results of the gamma ray absorption rate RA using the measuring apparatus 30 of FIG.

Figure 2022140222000006
Figure 2022140222000006

Figure 2022140222000007
Figure 2022140222000007

(実施例4~6および比較例5の分析結果)
次に、実施例4~6および比較例5で製造したシンチレータ材について、フレーム原子吸光光度法を用いて含まれる元素の比率を測定した。測定には蛍光X線装置(株式会社リガク製 RIX1000)を用いた。実施例4~6および比較例5の測定結果を表7に示す。表7においては、シンチレータ材における各元素の量として、Si元素の量を10molとした際のmol数で示している。したがって、表7中に示された数値を10倍した値がSiに対するmol%となる。
(Analysis results of Examples 4 to 6 and Comparative Example 5)
Next, with respect to the scintillator materials produced in Examples 4 to 6 and Comparative Example 5, the ratio of contained elements was measured using flame atomic absorption spectrophotometry. A fluorescent X-ray device (RIX1000 manufactured by Rigaku Corporation) was used for the measurement. Table 7 shows the measurement results of Examples 4 to 6 and Comparative Example 5. In Table 7, the amount of each element in the scintillator material is shown in mol when the amount of Si element is 10 mol. Therefore, the value obtained by multiplying the numerical value shown in Table 7 by 10 is the mol % with respect to Si.

Figure 2022140222000008
Figure 2022140222000008

表7に示したように、実施例4~6ではアルカリ金属イオンであるNa,K,Csがそれぞれ0.01mol(0.1mol%),0.05mol(0.5mol%),0.90mol(9.0mol%)含まれており、それに伴いSrとIの量が比較例5の1.4倍程度多く含まれている。また、表4に示した実施例1~3と同等かそれ以上のSrとIを含んでいる。したがって、表面から内部にわたって空隙が分布する多孔質体をマトリクス相であるシリカとして用いることで、クリストバライト構造への蛍光体材料であるSrI:Eu2+の取り込み量を多くできることがわかる。これによりシンチレータ材13の放射線吸収率を高め、蛍光体材料での発光量を向上させることができる。 As shown in Table 7, in Examples 4 to 6, Na, K, and Cs, which are alkali metal ions, are 0.01 mol (0.1 mol %), 0.05 mol (0.5 mol %), and 0.90 mol ( 9.0 mol %). It also contains Sr and I equal to or greater than those of Examples 1-3 shown in Table 4. Therefore, by using a porous body in which voids are distributed from the surface to the inside as the matrix phase silica, it is possible to increase the amount of the phosphor material SrI 2 :Eu 2+ incorporated into the cristobalite structure. Thereby, the radiation absorption rate of the scintillator material 13 can be increased, and the amount of light emitted from the phosphor material can be improved.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, but can be modified in various ways within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. is also included in the technical scope of the present invention.

10,20…放射線検出装置
30…測定装置
11…容器
12…窓部材
13,23…シンチレータ材
14,31…光電子増倍管
15…ブリーダ回路
21…受光素子
32…検出用シンチレータ
33…評価サンプル
34…遮光シート
35…放射線源


Reference Signs List 10, 20 Radiation detection device 30 Measuring device 11 Container 12 Window member 13, 23 Scintillator material 14, 31 Photomultiplier tube 15 Bleeder circuit 21 Light receiving element 32 Scintillator for detection 33 Evaluation sample 34 ... Shielding sheet 35 ... Radiation source


Claims (10)

放射線により励起されて可視光を発光するシンチレータ材であって、
シリカの一部が結晶化したクリストバライト構造を有し、
蛍光体材料であるSrI:Eu2+が前記クリストバライト構造中に取り込まれてナノコンポジット化しており、
前記クリストバライト構造にアルカリ金属イオンを含むことを特徴とするシンチレータ材。
A scintillator material that emits visible light when excited by radiation,
Having a cristobalite structure in which a part of silica is crystallized,
SrI 2 :Eu 2+ which is a phosphor material is incorporated into the cristobalite structure to form a nanocomposite,
A scintillator material, wherein the cristobalite structure contains alkali metal ions.
請求項1に記載のシンチレータ材であって、
前記アルカリ金属イオンは、Li,Na,K,RbまたはCsの何れかであることを特徴とするシンチレータ材。
The scintillator material according to claim 1,
The scintillator material, wherein the alkali metal ion is Li, Na, K, Rb or Cs.
請求項1または2に記載のシンチレータ材であって、
前記クリストバライト構造に含まれるSiに対して、前記アルカリ金属イオンが0.1~10mol%の比率で含まれることを特徴とするシンチレータ材。
The scintillator material according to claim 1 or 2,
A scintillator material, wherein the alkali metal ion is contained at a ratio of 0.1 to 10 mol % with respect to Si contained in the cristobalite structure.
請求項1から3の何れか一つに記載のシンチレータ材であって、
前記蛍光体材料を単結晶または多結晶で含むことを特徴とするシンチレータ材。
The scintillator material according to any one of claims 1 to 3,
A scintillator material comprising the phosphor material in the form of a single crystal or a polycrystal.
請求項1から4の何れか一つに記載のシンチレータ材であって、
前記シリカは、表面から内部にわたって空隙が分布する多孔質体であることを特徴とするシンチレータ材。
The scintillator material according to any one of claims 1 to 4,
A scintillator material, wherein the silica is a porous body in which voids are distributed from the surface to the inside.
請求項5に記載のシンチレータ材であって、
前記多孔質体は、平均粒径(D50)が2~50μmのアモルファスSiO粒子の集合体であることを特徴とするシンチレータ材。
The scintillator material according to claim 5,
The scintillator material, wherein the porous body is an aggregate of amorphous SiO 2 particles having an average particle size (D50) of 2 to 50 μm.
請求項6に記載のシンチレータ材であって、
前記SiO粒子は、アルカリ金属成分を含有していることを特徴とするシンチレータ材。
A scintillator material according to claim 6,
A scintillator material, wherein the SiO2 particles contain an alkali metal component.
請求項5から7の何れか一つに記載のシンチレータ材であって、
前記クリストバライト構造に含まれるSiに対して、Srイオンが0.9~15mol%、Iイオンが2.0~40mol%、Euイオンが0.1~5.0mol%の比率で含まれることを特徴とするシンチレータ材。
The scintillator material according to any one of claims 5 to 7,
The cristobalite structure contains 0.9 to 15 mol% of Sr ions, 2.0 to 40 mol% of I ions, and 0.1 to 5.0 mol% of Eu ions relative to Si contained in the cristobalite structure. scintillator material.
請求項1から8の何れか一つに記載のシンチレータ材と、
400nm以上500nm以下の波長を検出する光検知部を備えることを特徴とする放射線検出装置。
a scintillator material according to any one of claims 1 to 8;
1. A radiation detection apparatus comprising a photodetector that detects wavelengths of 400 nm or more and 500 nm or less.
蛍光体材料であるSrI:Eu2+およびアルカリ金属材料を含む原料粉末を形成する粉末調整工程と、
表面から内部にわたって空隙が分布する多孔質体のシリカを形成する多孔質体形成工程と、
前記多孔質体と前記原料粉末を接触させて加熱処理する熱処理工程とを備えることを特徴とするシンチレータ材の製造方法。

a powder preparation step of forming a raw material powder containing SrI 2 :Eu 2+ as a phosphor material and an alkali metal material;
a porous body forming step of forming porous silica in which voids are distributed from the surface to the inside;
A method for producing a scintillator material, comprising: a heat treatment step in which the porous body and the raw material powder are brought into contact with each other and heat-treated.

JP2021116025A 2021-03-11 2021-07-13 Scintillator material, radiation detection device, and method of manufacturing scintillator material Pending JP2022140222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/008851 WO2022190991A1 (en) 2021-03-11 2022-03-02 Scintillator material, radiation detector, and method for producing scintillator material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021039759 2021-03-11
JP2021039759 2021-03-11

Publications (1)

Publication Number Publication Date
JP2022140222A true JP2022140222A (en) 2022-09-26

Family

ID=83400051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021116025A Pending JP2022140222A (en) 2021-03-11 2021-07-13 Scintillator material, radiation detection device, and method of manufacturing scintillator material

Country Status (1)

Country Link
JP (1) JP2022140222A (en)

Similar Documents

Publication Publication Date Title
US7655157B2 (en) Doped cadmium tungstate scintillator with improved radiation hardness
KR101538194B1 (en) Scintillator for neutron detection and neutron detector
US20120119092A1 (en) Scintillating material having low afterglow
US20100200758A1 (en) Radiation detecting apparatus and method for detecting radiation
Isokawa et al. Radiation induced luminescence properties of Eu-doped SiO2 glass synthesized by spark plasma sintering
Lindsey et al. Effects of increasing size and changing europium activator concentration in KCaI3 scintillator crystals
WO2012121346A1 (en) Neutron beam detection device
Ichiba et al. Radiation-induced luminescence properties of Ce–doped Mg 2 SiO 4 single crystals
CN109666479B (en) Scintillator material and radiation detector
WO2012137738A1 (en) Scintillator, radiation detector, and method for detecting radiation
WO2011115179A1 (en) Scintillator for neutron detection, neutron detector, and neutron imaging apparatus
JP5575123B2 (en) Scintillator
US3296448A (en) Scintillation detector comprising a transparent tin-activated calcium iodide scintillator
WO2022190991A1 (en) Scintillator material, radiation detector, and method for producing scintillator material
JP2022140222A (en) Scintillator material, radiation detection device, and method of manufacturing scintillator material
JPWO2005028590A1 (en) Glass scintillator
JP2023551754A (en) Scintillator materials containing halogenated perovskites
JP2022119660A (en) Scintillator material and radiation detection device
JP2023119537A (en) Scintillator material manufacturing method and scintillator material
Fan et al. Experimental and theoretical study of defect-driven scintillation from γ− G a 2 O 3 nanophosphor-embedded transparent glass-ceramics
JP5737978B2 (en) Neutron detection scintillator and neutron beam detector
JP5737974B2 (en) Neutron detection scintillator and neutron beam detector
Cavanaugh Development of codoped cesium iodide scintillators for medical imaging applications
Yang Discovery and development of rare earth activated binary metal halide scintillators for next generation radiation detectors
Zhang et al. High-efficiency narrow-band green-emitting Tb-doped fluorosilicate glass for X-ray detectors