JP2022140189A - Integrated system for organochlorine pesticide-contaminated soil remediation and exhaust gas treatment - Google Patents

Integrated system for organochlorine pesticide-contaminated soil remediation and exhaust gas treatment Download PDF

Info

Publication number
JP2022140189A
JP2022140189A JP2021075942A JP2021075942A JP2022140189A JP 2022140189 A JP2022140189 A JP 2022140189A JP 2021075942 A JP2021075942 A JP 2021075942A JP 2021075942 A JP2021075942 A JP 2021075942A JP 2022140189 A JP2022140189 A JP 2022140189A
Authority
JP
Japan
Prior art keywords
exhaust gas
shell
exhaust
light
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021075942A
Other languages
Japanese (ja)
Other versions
JP6965479B1 (en
Inventor
▲とう▼紹坡
Shaopo Deng
姜登登
Dengdeng Jiang
李旭偉
Xuwei Li
周艶
Yan Zhou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Environmental Sciences MEE
Original Assignee
Nanjing Institute of Environmental Sciences MEE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Environmental Sciences MEE filed Critical Nanjing Institute of Environmental Sciences MEE
Application granted granted Critical
Publication of JP6965479B1 publication Critical patent/JP6965479B1/en
Publication of JP2022140189A publication Critical patent/JP2022140189A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0036Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions by adsorption or absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • B01D46/12Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces in multiple arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

To provide an integrated system that can decompose pesticide residues in the soil and can, at the same time, treat the decomposed exhaust gas.SOLUTION: A systems has a support structure 10 for a material transport belt 211 at the bottom of an internal cavity. Over the material transport belt 211, provided are, in order along the material transport direction, a material distribution pipe 22, a pavement baffle 24, an agent spray plate 31, a partition plate 121, a UV catalyzer 34, a catalyst condenser 32, an exhaust gas treatment mechanism 50 for treating exhaust gas, and an exhaust gas filter. The system can treat pesticide residues and the decomposed exhaust gas at the same time.SELECTED DRAWING: Figure 1

Description

本発明は、汚染土壌修復の技術分野に関し、具体的には有機塩素系農薬汚染土壌の修復お
よび排気ガス処理の統合装置に関する。
TECHNICAL FIELD The present invention relates to the technical field of contaminated soil remediation, and more particularly to an integrated device for remediation of organochlorine pesticide-contaminated soil and exhaust gas treatment.

農業生産には大量の農薬が使用されており、土壌培地に農薬が蓄積し、生分解しにくいた
め、長期間存在し、継続的な汚染源となる。現在の土壌修復技術では、残留農薬の分解と
分解排気ガスの同時処理という2つの機能を組み合わせることができないため、土壌残留
農薬の分解と分解された排気ガスの同時処理ができる装置が求められている。
Large amounts of pesticides are used in agricultural production, and because they accumulate in soil media and are difficult to biodegrade, they exist for a long time and become a continuous source of pollution. With the current soil remediation technology, it is not possible to combine the two functions of decomposing residual pesticides and simultaneously treating the decomposed exhaust gas. there is

上記の目的を達成するために、本発明は、有機塩素系農薬汚染土壌の修復および排気ガス
処理の統合装置を提供し、土壌中の残留農薬を効果的に分解処理し、同時に生成された排
気ガスを収集処理し、具体的な技術的解決策は次の通りであり:
本発明によって設計された有機塩素系農薬汚染土壌の修復および排気ガス処理の統合装置
は、支持底板およびその上に設けられた封止シェルで構成される支持構造を含む装置であ
って、前記支持構造の内部キャビティの底部に材料輸送ベルトが設けられ、前記材料輸送
ベルトの上方に材料輸送方向に沿って順次、材料分配管、舗装バッフル、ノズル付き薬剤
噴霧プレート、仕切り板、紫外線触媒器、触媒集光器および排気ガス回収機構が設けられ
る。
前記材料輸送ベルトの輸送終端に、輸送面に密着する排出バッフルが設けられ、前記排出
バッフルは、封止シェル上に設けられた排出口を貫通して外部と連通する。
前記材料分配管の給料端は封止シェルを貫通して外部と連通し、材料分配管の排出端に分
配振動器付きの分配ホッパーが設けられる。分配振動器により、前記分配ホッパーから汚
染土壌がより均一に材料輸送ベルト上に落下する。
前記舗装バッフルは昇降スライドブロックを介して設封止シェルの内壁に設けられた摺動
支持ロッドに接続され、摺動支持ロッドに沿って垂直方向に移動可能である。前記舗装バ
ッフルの高さを調節することで、前記材料輸送ベルト上に置かれた汚染土壌の厚さを調整
することができる。
前記触媒集光器の内部に、上から下へ順次、触媒集光器の頂部を貫通する導光ファイバー
、光ファイバーバンドルプレート、導光筒および集光ミラー付きの光取出し口が設けられ
る。
前記導光ファイバーの触媒集光器から離れた一端は、封止シェルの頂部の外壁に設けられ
た集光機構に接続される。
前記排気ガス回収機構は回収シェルを含み、前記回収シェルの底部に空気入口が開設され
、内部に排気ファンが設けられ、頂部に排気穴が開設され、前記排気穴は、排気連通管を
介して封止シェルの頂部外壁に設けられた排気ガス処理機構に接続される。
本発明の一態様として、前記紫外線触媒器の内部に、上から下へ順次、紫外線発生器、導
光レンズ群および紫外線集光ミラー付きの紫外線取出し口が設けられる。触媒集光器は、
太陽光を利用してより高いエネルギー密度のビームを集束して汚染土壌を照射し、残留農
薬は高温および紫外線の条件下で触媒分解される。
To achieve the above objects, the present invention provides an integrated apparatus for remediation of organochlorine pesticide-contaminated soil and exhaust gas treatment, which effectively decomposes residual pesticides in the soil, and at the same time generates exhaust gas. The gas is collected and processed, and the specific technical solutions are as follows:
An integrated apparatus for remediation of organochlorine pesticide-contaminated soil and exhaust gas treatment designed according to the present invention includes a support structure composed of a support bottom plate and a sealing shell provided thereon, wherein the support A material conveying belt is provided at the bottom of the inner cavity of the structure, and above the material conveying belt, along the material conveying direction, a material distribution pipe, a paving baffle, a chemical spray plate with nozzles, a partition plate, an ultraviolet catalyzer, and a catalyst. A collector and an exhaust gas recovery mechanism are provided.
A discharge baffle is provided at the transport end of the material transport belt in close contact with the transport surface, and the discharge baffle communicates with the outside through a discharge port provided on the sealing shell.
The feeding end of the material distribution pipe passes through the sealing shell to communicate with the outside, and the discharge end of the material distribution pipe is provided with a distribution hopper with a distribution vibrator. A distribution vibrator causes contaminated soil to more evenly fall from the distribution hopper onto the material transport belt.
The pavement baffle is connected to a sliding support rod provided on the inner wall of the sealing shell through an elevating slide block, and is vertically movable along the sliding support rod. By adjusting the height of the paving baffle, the thickness of contaminated soil placed on the material transport belt can be adjusted.
Inside the catalyst collector, from top to bottom, a light guide fiber passing through the top of the catalyst collector, an optical fiber bundle plate, a light guide tube and a light outlet with a collector mirror are provided.
One end of the light guide fiber remote from the catalyst collector is connected to a light collection mechanism provided on the outer wall of the top of the sealing shell.
The exhaust gas recovery mechanism includes a recovery shell, an air inlet is opened at the bottom of the recovery shell, an exhaust fan is provided inside, and an exhaust hole is opened at the top, and the exhaust hole is connected through an exhaust communication pipe. It is connected to an exhaust gas treatment mechanism provided on the top outer wall of the sealing shell.
As one aspect of the present invention, an ultraviolet ray outlet with an ultraviolet ray generator, a group of light guide lenses, and an ultraviolet ray collecting mirror are provided in order from top to bottom inside the ultraviolet catalyzer. The catalytic concentrator is
Sunlight is used to focus a beam of higher energy density to irradiate the contaminated soil, and pesticide residues are catalytically destroyed under conditions of high temperature and ultraviolet light.

本発明の一態様として、前記集光機構は、封止シェルの頂部外壁に設けられた集光筒ベー
ス、および前記集光筒ベースに回転可能に接続された集光筒を含み、前記集光筒の頂部は
集光支持リングを介して集光レンズに接続され、集光筒の内部キャビティに、導光ファイ
バーに接続された集光管が設けられ、前記集光管の頂部は集光レンズの焦点と一致する。
本発明の一態様として、前記排気ガス処理機構は、排気ガス濾過シェルを含み、前記排気
ガス濾過シェルの内部キャビティの一端は排気連通管に接続され、他端はエアフロ流通方
向に沿って、順次エアフロ流通方向に垂直する複数層の濾過板、およびエアフロ流通方向
に平行し排気ガス濾過シェルを貫通する複数本の排気管が設けられる。
In one aspect of the present invention, the light collection mechanism includes a light collection tube base provided on the top outer wall of the sealing shell, and a light collection tube rotatably connected to the light collection tube base, The top of the tube is connected to the condensing lens through a condensing support ring, the internal cavity of the condensing tube is provided with a condensing tube connected to the light guide fiber, the top of the condensing tube is connected to the condensing lens. match the focal point.
As one aspect of the present invention, the exhaust gas treatment mechanism includes an exhaust gas filtering shell, one end of the internal cavity of the exhaust gas filtering shell is connected to the exhaust communication pipe, and the other end is sequentially connected along the air flow direction. A plurality of layers of filter plates perpendicular to the airflow circulation direction and a plurality of exhaust pipes parallel to the airflow circulation direction and penetrating the exhaust gas filtering shell are provided.

本発明の一態様として、前記排気ガス濾過シェルの内部キャビティに濾過板に平行な方向
に、互いに平行な掃除スライドレールおよびボールスクリューが設けられ、前記ボールス
クリュー上に、掃除スライドレールと摺動可能に接続された掃除スライドブロックが設け
られ、前記掃除スライドブロック上に、掃除ブラシ付きの濾過板クリーナーが接続される
。濾過板クリーナーにより、濾過板上に溜まったほこりを適時に掃除し、濾過板の目詰ま
りを防止する。
In one aspect of the present invention, the internal cavity of the exhaust gas filtering shell is provided with a cleaning slide rail and a ball screw parallel to each other in a direction parallel to the filter plate, the ball screw being slidable with the cleaning slide rail. A cleaning slide block is provided connected to the cleaning slide block, on which a filter plate cleaner with a cleaning brush is connected. To prevent clogging of a filter plate by timely cleaning dust accumulated on the filter plate with a filter plate cleaner.

本発明の一態様として、前記統合装置は、同軸に配置された外筒および内筒を有する排気
ガスフィルターをさらに含む。
前記外筒の側壁に、上から下へ順次、排気口、水出口および給水管が設けられ、前記外筒
の底部に、内外キャビティを有する通気シェルが設けられ、前記通気シェルの外キャビテ
ィの一端は排気管と連通し、他端は内筒の側壁の底端と連通し、前記通気シェルの内部キ
ャビティの頂部に回転支持リングが設けられる。
前記内筒の内部キャビティに、軸線に沿って外筒の頂部を貫通し水出しスロット付きの沈
下給水管が設けられ、前記内筒の側壁に周方向に沿って間隔を空けて通水穴および通気孔
付きの通気管が設けられ、前記内筒の底部の外縁に回転支持リングと密着する内筒支持リ
ングが設けられ、前記内筒の底部の中心軸は順次第1の従動ギアおよび第1の主動ギアを
介して第1のモーターに接続される。第1のモーターは前記内筒を回転させ、排気ガスと
排気ガス処理液を攪拌し、接触面積を増やし、反応プロセスを加速する。
前記通水穴と内筒側壁の切り欠き角、通気管と内筒側壁の切り欠き角、給水管と外筒側壁
の切り欠き角とは、すべて同じ大きさで同じ方向である。流体の給水管への進入による作
用力で内筒を回転させ攪拌を行い、同時に第1のモーターの作動力を共有して省エネを実
現する。
In one aspect of the invention, the integrated device further includes an exhaust gas filter having an outer cylinder and an inner cylinder arranged coaxially.
The side wall of the outer cylinder is provided with an exhaust port, a water outlet and a water supply pipe in order from top to bottom; communicates with the exhaust pipe, the other end communicates with the bottom end of the side wall of the inner cylinder, and a rotating support ring is provided on the top of the inner cavity of the vent shell.
The inner cavity of the inner cylinder is provided with a submerged water supply pipe with a water outlet slot extending axially through the top of the outer cylinder and circumferentially spaced in the side wall of the inner cylinder with water passage holes and A vent pipe with a vent hole is provided, an inner cylinder support ring is provided on the outer edge of the bottom of the inner cylinder and is in close contact with the rotation support ring, and the central axis of the bottom of the inner cylinder is sequentially connected to the first driven gear and the first gear. is connected to the first motor through the main drive gear of the The first motor rotates the inner cylinder to agitate the exhaust gas and the exhaust gas treatment liquid, increase the contact area, and accelerate the reaction process.
The notch angle between the water passage hole and the side wall of the inner cylinder, the notch angle between the vent pipe and the side wall of the inner cylinder, and the notch angle between the water supply pipe and the side wall of the outer cylinder are all of the same size and in the same direction. The force generated by the entry of the fluid into the water supply pipe rotates the inner cylinder to perform agitation, and at the same time, the operating force of the first motor is shared to achieve energy saving.

本発明の一態様として、前記材料輸送ベルトの調製材料は、高温での材料輸送ベルトの損
傷を防ぐために、CrMoVまたはWCrMoNbの高温耐性金属であり、材料輸送ベル
トの表面はTiOコーティング層でメッキされ、光触媒反応を促進する。
本発明の一態様として、前記材料輸送ベルトの輸送速度範囲は40~80m/hである。
材料輸送ベルトの動作速度は妥当な範囲内に保たれているため、処理効果を確保できるだ
けでなく、エネルギーの浪費も回避できる。
As one aspect of the present invention, the preparation material of the material conveying belt is CrMoV or WCrMoNb high temperature resistant metal, and the surface of the material conveying belt is plated with a TiO coating layer to prevent damage to the material conveying belt at high temperature. , promoting the photocatalytic reaction.
As an aspect of the present invention, the transport speed range of said material transport belt is 40-80 m/h.
The working speed of the material conveying belt is kept within a reasonable range, so as not only to ensure the treatment effect, but also to avoid wasting energy.

本発明の一態様として、前記紫外線発生器によって生成される紫外線は、260~380
nmの波長範囲を有する。紫外線触媒反応では、妥当な波長範囲で最高の処理効果が得ら
れる。
As an aspect of the present invention, the UV light generated by the UV generator is 260-380
It has a wavelength range of nm. Ultraviolet catalysis provides the best treatment efficiency in a reasonable wavelength range.

既存の土壌修復装置と比較すると、本発明は以下の有益な効果を有する。
本発明は、紫外線触媒器を用いて汚染土壌中の農薬残留を触媒分解するだけでなく、触媒
集光器の集束太陽光線を用いて汚染土壌を照射し、上記触媒分解を促進し、そして触媒分
解により生成された排気ガスを排出標準を満たすガスに処理し、高い応用価値がある。
Compared with existing soil remediation devices, the present invention has the following beneficial effects.
The present invention not only uses an ultraviolet ray catalyst to catalytically decompose pesticide residues in contaminated soil, but also uses focused sunlight from a catalyst collector to irradiate the contaminated soil to promote the catalytic decomposition, and It treats exhaust gas generated by decomposition into gas that meets emission standards, and has high application value.

本発明の正面図である。1 is a front view of the present invention; FIG. 図1の上面図である。2 is a top view of FIG. 1; FIG. 本発明の排気ガスフィルターの正面図である。1 is a front view of an exhaust gas filter of the present invention; FIG. 図3の上面図である。4 is a top view of FIG. 3; FIG. 図1のA箇所の部分図である。FIG. 2 is a partial view of part A in FIG. 1;

[符号の説明]
10 支持機構
11 支持底板
12 封止シェル
121 仕切り板
122 排出口
13 摺動支持ロッド
131 昇降スライドブロック
14 排出バッフル
21 材料輸送ベルト
22 材料分配管
23 分配ホッパー
231 分配振動器
24 舗装バッフル
31 薬剤噴霧プレート
311 ノズル
32 触媒集光器
321 光取出し口
322 光ファイバーバンドルプレート
323 導光筒
324 集光ミラー
33 集光機構
331 集光筒
332 集光支持リング
333 集光レンズ
334 集光管
335 導光ファイバー
336 集光筒ベース
34 紫外線触媒器
341 紫外線出口
342 紫外線集光ミラー
343 紫外線発生器
344 導光レンズ群
40 排気ガス回収機構
41 排気ガス回収シェル
411 空気入口
42 排気ファン
43 排気穴
44 排気連通管
50 排気ガス処理機構
501 排気ガス収集管
51 排気ガス濾過シェル
511 濾過板
512 排気管
513 掃除スライドレール
514 掃除スライドブロック
52 濾過板クリーナー
521 掃除ブラシ
53 昇降モーター
531 ボールスクリュー
60 排気ガスフィルター
61 外筒
62 通気シェル
621 回転支持リング
63 内筒
631 内筒支持リング
632 通水穴
633 通気管
6331 通気孔
634 第1の従動ギア
635 第1のモーター
636 第1の主動ギア
64 給水管
65 沈下給水管
651 水出しスロット
66 水出口
67 排気口
[Description of symbols]
10 Support Mechanism 11 Support Bottom Plate 12 Sealing Shell 121 Partition Plate 122 Discharge Port 13 Sliding Support Rod 131 Elevating Slide Block 14 Discharge Baffle 21 Material Transport Belt 22 Material Distribution Pipe 23 Distribution Hopper 231 Distribution Vibrator 24 Pavement Baffle 31 Chemical Spray Plate 311 Nozzle 32 Catalyst collector 321 Light outlet 322 Optical fiber bundle plate 323 Light guide tube 324 Condensing mirror 33 Condensing mechanism 331 Condensing tube 332 Condensing support ring 333 Condensing lens 334 Condensing tube 335 Light guiding fiber 336 Condensing Tube base 34 UV catalyst 341 UV outlet 342 UV collector mirror 343 UV generator 344 Light guide lens group 40 Exhaust gas recovery mechanism 41 Exhaust gas recovery shell 411 Air inlet 42 Exhaust fan 43 Exhaust hole 44 Exhaust communication pipe 50 Exhaust gas treatment Mechanism 501 Exhaust gas collection pipe 51 Exhaust gas filter shell 511 Filter plate 512 Exhaust pipe 513 Cleaning slide rail 514 Cleaning slide block 52 Filter plate cleaner 521 Cleaning brush 53 Lifting motor 531 Ball screw 60 Exhaust gas filter 61 Outer cylinder 62 Ventilation shell 621 Rotation Support ring 63 Inner cylinder 631 Inner cylinder support ring 632 Water passage hole 633 Ventilation pipe 6331 Ventilation hole 634 First driven gear 635 First motor 636 First main driving gear 64 Water supply pipe 65 Submerged water supply pipe 651 Drain slot 66 Water Exit 67 exhaust port

本発明によって達成される方法および効果をさらに説明するために、本発明の技術的解決
策を、添付の図面と併せて以下に明確かつ完全に説明する。
To further describe the methods and effects achieved by the present invention, the technical solutions of the present invention are clearly and completely described below in conjunction with the accompanying drawings.

実施例1
実施例1は、本発明の装置の具体的な構造を説明することを意図しており、その内容は以
下の通りである。
図1および図2を参照すると、本発明によって設計された有機塩素系農薬汚染土壌の修復
および排気ガス処理の統合装置は、支持底板11およびその上に設けられた封止シェル1
2で構成される支持構造10を含む装置であって、前記支持構造10の内部キャビティの
底部に材料輸送ベルト211が設けられ、前記材料輸送ベルト211の上方に材料輸送方
向に沿って順次、材料分配管22、舗装バッフル24、ノズル311付き薬剤噴霧プレー
ト31、仕切り板121、紫外線触媒器34、触媒集光器32および排気ガス回収機構4
0が設けられる。
前記材料輸送ベルト211の輸送終端に、輸送面に密着する排出バッフル14が設けられ
、前記排出バッフル14は、封止シェル12上に設けられた排出口122を貫通して外部
と連通する。
前記材料分配管22の給料端は封止シェル12を貫通して外部と連通し、材料分配管22
の排出端に分配振動器231付きの分配ホッパー23が設けられる。分配振動器により、
前記分配ホッパーから汚染土壌がより均一に材料輸送ベルト上に落下する。
前記舗装バッフル24は昇降スライドブロック131を介して設封止シェル12の内壁に
設けられた摺動支持ロッド13に接続され、摺動支持ロッド13に沿って垂直方向に移動
可能である。前記舗装バッフルの高さを調節することで、前記材料輸送ベルト上に置かれ
た汚染土壌の厚さを調整することができる。
前記触媒集光器32の内部に、上から下へ順次、触媒集光器32の頂部を貫通する導光フ
ァイバー335、光ファイバーバンドルプレート322、導光筒323および集光ミラー
324付きの光取出し口321が設けられる。
前記導光ファイバー335の触媒集光器32から離れた一端は、封止シェル12の頂部の
外壁に設けられた集光機構33に接続される。
前記排気ガス回収機構40は回収シェル41を含み、前記回収シェル41の底部に空気入
口411が開設され、内部に排気ファン42が設けられ、頂部に排気穴43が開設され、
前記排気穴43は、排気連通管44を介して封止シェル12の頂部外壁に設けられた排気
ガス処理機構50に接続される。
具体的に、前記紫外線触媒器34の内部に、上から下へ順次、紫外線発生器343、導光
レンズ群344および紫外線集光ミラー342付きの紫外線取出し口343が設けられる
。触媒集光器は、太陽光を利用してより高いエネルギー密度のビームを集束して汚染土壌
を照射し、残留農薬は高温および紫外線の条件下で触媒分解される。
具体的に、前記集光機構33は、封止シェル12の頂部外壁に設けられた集光筒ベース3
36、および前記集光筒ベース336に回転可能に接続された集光筒331を含み、前記
集光筒331の頂部は集光支持リング332を介して集光レンズ333に接続され、集光
筒331の内部キャビティに、導光ファイバー335に接続された集光管334が設けら
れ、前記集光管334の頂部は集光レンズ333の焦点と一致する。
具体的に、前記排気ガス処理機構50は、排気ガス濾過シェル51を含み、前記排気ガス
濾過シェル51の内部キャビティの一端は排気連通管44に接続され、他端はエアフロ流
通方向に沿って、順次エアフロ流通方向に垂直する複数層の濾過板511、およびエアフ
ロ流通方向に平行し排気ガス濾過シェル51を貫通する複数本の排気管512が設けられ
る。
具体的に、前記排気ガス濾過シェル51の内部キャビティに濾過板511に平行な方向に
、互いに平行な掃除スライドレール513およびボールスクリュー531が設けられ、前
記ボールスクリュー531上に、掃除スライドレール513と摺動可能に接続された掃除
スライドブロック514が設けられ、前記掃除スライドブロック514上に、掃除ブラシ
521付きの濾過板クリーナー52が接続される。濾過板クリーナー52により、濾過板
511上に溜まったほこりを適時に掃除し、濾過板511の目詰まりを防止する。
具体的に、前記統合装置は、同軸に配置された外筒61および内筒63を有する排気ガス
フィルター60をさらに含む。
前記外筒61の側壁に、上から下へ順次、排気口67、水出口66および給水管64が設
けられ、前記外筒61の底部に、内外キャビティを有する通気シェル62が設けられ、前
記通気シェル62の外キャビティの一端は排気管512と連通し、他端は内筒63の側壁
の底端と連通し、前記通気シェル62の内部キャビティの頂部に回転支持リング621が
設けられる。
前記内筒63の内部キャビティに、軸線に沿って外筒61の頂部を貫通し水出しスロット
651付きの沈下給水管65が設けられ、前記内筒63の側壁に周方向に沿って間隔を空
けて通水穴632および通気孔6331付きの通気管633が設けられ、前記内筒63の
底部の外縁に回転支持リング621と密着する内筒支持リング631が設けられ、前記内
筒63の底部の中心軸は順次第1の従動ギア634および第1の主動ギア636を介して
第1のモーター635に接続される。第1のモーターは前記内筒を回転させ、排気ガスと
排気ガス処理液を攪拌し、接触面積を増やし、反応プロセスを加速する。
前記通水穴632と内筒63側壁の切り欠き角、通気管633と内筒63側壁の切り欠き
角、給水管64と外筒61側壁の切り欠き角とは、すべて同じ大きさで同じ方向である。
流体の給水管64への進入による作用力で内筒63を回転させ攪拌を行い、同時に第1の
モーター635の作動力を共有して省エネを実現する。
Example 1
Example 1 is intended to describe the specific structure of the device of the present invention, and its content is as follows.
1 and 2, the integrated device for remediation of organochlorine pesticide-contaminated soil and exhaust gas treatment designed according to the present invention comprises a supporting bottom plate 11 and a sealing shell 1 provided thereon.
2, a material transport belt 211 is provided at the bottom of the inner cavity of said support structure 10, and material is sequentially placed above said material transport belt 211 along the material transport direction. Distribution pipe 22, paving baffle 24, chemical spray plate 31 with nozzle 311, partition plate 121, ultraviolet catalyst 34, catalyst collector 32 and exhaust gas recovery mechanism 4
0 is provided.
A discharge baffle 14 is provided at the transport end of the material transport belt 211 to be in close contact with the transport surface, and the discharge baffle 14 passes through a discharge port 122 provided on the sealing shell 12 to communicate with the outside.
The feeding end of the material distribution pipe 22 passes through the sealing shell 12 to communicate with the outside, and the material distribution pipe 22
A distribution hopper 23 with a distribution vibrator 231 is provided at the discharge end of the. With a distribution vibrator,
Contaminated soil from the distribution hopper falls more evenly onto the material transport belt.
The pavement baffle 24 is connected to a sliding support rod 13 provided on the inner wall of the sealing shell 12 via an elevating slide block 131 and is vertically movable along the sliding support rod 13 . By adjusting the height of the paving baffle, the thickness of contaminated soil placed on the material transport belt can be adjusted.
Inside the catalyst collector 32, from top to bottom, a light guide fiber 335 penetrating the top of the catalyst collector 32, an optical fiber bundle plate 322, a light guide cylinder 323, and a light extraction port 321 with a collector mirror 324 are arranged in order. is provided.
One end of the light guide fiber 335 remote from the catalyst collector 32 is connected to a light collecting mechanism 33 provided on the outer wall of the top of the sealing shell 12 .
The exhaust gas recovery mechanism 40 includes a recovery shell 41, an air inlet 411 is opened at the bottom of the recovery shell 41, an exhaust fan 42 is provided inside, and an exhaust hole 43 is opened at the top,
The exhaust hole 43 is connected through an exhaust communication pipe 44 to an exhaust gas processing mechanism 50 provided on the top outer wall of the sealing shell 12 .
Specifically, inside the ultraviolet catalyzer 34, an ultraviolet generator 343, a light guide lens group 344, and an ultraviolet outlet 343 with an ultraviolet collector mirror 342 are provided in this order from top to bottom. Catalytic concentrators use sunlight to focus a beam of higher energy density to irradiate contaminated soil, and pesticide residues are catalytically destroyed under conditions of high temperature and ultraviolet light.
Specifically, the light collecting mechanism 33 is provided on the outer wall of the top portion of the sealing shell 12 .
36, and a light collecting tube 331 rotatably connected to the light collecting tube base 336, the top of the light collecting tube 331 is connected to a light collecting lens 333 through a light collecting support ring 332, and the light collecting tube The inner cavity of 331 is provided with a collecting tube 334 connected to a light guiding fiber 335 , the top of said collecting tube 334 coincides with the focus of the collecting lens 333 .
Specifically, the exhaust gas treatment mechanism 50 includes an exhaust gas filter shell 51, one end of the internal cavity of the exhaust gas filter shell 51 is connected to the exhaust communication pipe 44, and the other end is along the airflow flow direction, A plurality of layers of filter plates 511 that are perpendicular to the airflow circulation direction and a plurality of exhaust pipes 512 that are parallel to the airflow circulation direction and pass through the exhaust gas filtering shell 51 are provided in sequence.
Specifically, a cleaning slide rail 513 and a ball screw 531 parallel to each other are installed in the inner cavity of the exhaust gas filtering shell 51 in a direction parallel to the filter plate 511 , and the cleaning slide rail 513 and the ball screw 531 are installed on the ball screw 531 . A slidably connected cleaning slide block 514 is provided on which the filter plate cleaner 52 with a cleaning brush 521 is connected. A filter plate cleaner 52 cleans the dust collected on the filter plate 511 in a timely manner to prevent clogging of the filter plate 511.例文帳に追加
Specifically, the integrated device further includes an exhaust gas filter 60 having an outer cylinder 61 and an inner cylinder 63 coaxially arranged.
The side wall of the outer cylinder 61 is provided with an exhaust port 67, a water outlet 66 and a water supply pipe 64 in this order from top to bottom. One end of the outer cavity of the shell 62 communicates with the exhaust pipe 512 , the other end communicates with the bottom end of the side wall of the inner cylinder 63 , and a rotating support ring 621 is provided on the top of the inner cavity of the ventilation shell 62 .
A submerged water supply pipe 65 with a water outlet slot 651 is provided in the inner cavity of the inner cylinder 63 along the axis through the top of the outer cylinder 61 and spaced circumferentially along the side wall of the inner cylinder 63 . A vent pipe 633 with a water passage hole 632 and a vent hole 6331 is provided at the bottom of the inner cylinder 63 , and an inner cylinder support ring 631 is provided on the outer edge of the bottom of the inner cylinder 63 to closely contact the rotation support ring 621 . The central shaft is connected to a first motor 635 through a first driven gear 634 and a first main driving gear 636 in turn. The first motor rotates the inner cylinder to agitate the exhaust gas and the exhaust gas treatment liquid, increase the contact area, and accelerate the reaction process.
The notch angle between the water flow hole 632 and the side wall of the inner cylinder 63, the notch angle between the vent pipe 633 and the side wall of the inner cylinder 63, and the notch angle between the water supply pipe 64 and the side wall of the outer cylinder 61 are all of the same size and in the same direction. is.
The force generated by the entry of the fluid into the water supply pipe 64 rotates the inner cylinder 63 for agitation, and at the same time, the operating force of the first motor 635 is shared to achieve energy saving.

実施例2
実施例2は、以下のことを除いて実施例1と同じである:
前記材料輸送ベルト211の調製材料は12CrMoV高温耐性金属であり、輸送速度範
囲は40m/hである。
前記紫外線発生器343により生成された紫外線は260nmの波長を有する。
Example 2
Example 2 is the same as Example 1 except for the following:
The preparation material of said material conveying belt 211 is 12CrMoV high temperature resistant metal, and the conveying speed range is 40m/h.
The UV light generated by the UV generator 343 has a wavelength of 260 nm.

実施例3
実施例3は、以下のことを除いて実施例1と同じである:
前記材料輸送ベルト211の調製材料は、W18CrMoNb高温耐性金属であり、輸送
速度範囲は80m/hである。
前記紫外線発生器343により生成された紫外線は380nmの波長を有する。
Example 3
Example 3 is the same as Example 1 except for the following:
The preparation material of said material conveying belt 211 is W18CrMoNb high temperature resistant metal, and the conveying speed range is 80m/h.
The UV light generated by the UV generator 343 has a wavelength of 380 nm.

応用例
本応用例は、実施例1に記載の内容に基づいて説明され、本発明の具体的な作業プロセス
を明らかにすることを目的としている。
本発明の実際の応用プロセスでは、まず汚染土壌を乾燥および粉砕する。図1に示すよう
に、前処理された汚染土壌を材料分配管22から投入し、材料分配管22内の汚染土壌が
分配ホッパー23中に落下し、分配ホッパー23中の汚染土壌が均一に材料輸送ベルト2
11上に広がり、材料輸送ベルト211は汚染土壌を左から右へ輸送し、舗装バッフル2
4は材料輸送ベルト211上の汚染土壌を平らにして厚さを均一にし、薬剤噴霧プレート
31上のノズル311から薬剤を噴出し、薬剤が均一に材料輸送ベルト211上の汚染土
壌に噴霧され、紫外線出口341から紫外線触媒器34の紫外線を出射して汚染土壌を照
射し、紫外線により汚染土壌中の農薬残留を触媒分解する。
太陽光が集光レンズ333を照射し、集光レンズ333は太陽光を集光管334に集光し
、集光された太陽光が導光ファイバー335によって光ファイバーバンドルプレート32
2に伝導され、次に導光筒323を介して集光ミラー324に伝達され、集光ミラー32
4の集光作用により、光取出し口321から出射され汚染土壌を照射して、汚染土壌中の
農薬残留をさらに除去する。
材料輸送ベルト211は汚染土壌を輸送し、汚染土壌が最終的に排出口122から排出さ
れて収集され、材料輸送ベルト211上に残っている土壌の一部は、排出バッフル14の
上縁によって掻き取られる。
汚染土壌の農薬残留を処理する時に生成された排気ガスおよびほこりは、排気ファン42
の吸引力作用下で、排気ガスが空気入口411を通って排気ガス回収シェル41に進入し
てから、排気ガスが排気穴43から排出され、排気穴43から排出された排気ガスが排気
連通管44を通って排気ガス収集管501に進入し、また排気ガス収集管501内の排気
ガスが排気ガス濾過シェル51内に進入し、濾過板511の濾過吸着作用により、排気ガ
ス中のほこりおよび一部の有害ガスが除去され、濾過板511で濾過された排気ガスが排
気管512から排出され、続いて排気ガスフィルター60によってさらに処理される。
図3に示すように、排気管512から排出された排気ガスが通気シェル62に進入し、通
気シェル62内の排気ガスが内筒63内部まで進入し、内筒63内の排気ガスが通気管6
33上の通気孔6331から排出される。
給水管64中に排気ガス処理液を導入し、沈下給水管65にも排気ガス処理液を導入し、
沈下給水管65中の排気ガス処理液が水出しスロット651から排出され、水出しスロッ
ト651から排出された排気ガス処理液が通水穴632を通って、図4に示すように、通
水穴632から排気ガス処理液が排出されると内筒63に作用力が与えられ、内筒63が
回転する。
通気孔6331から排出された排気ガスと給水管64および沈下給水管65に導入された
排気ガス処理液が十分に接触し反応して、そして処理された排気ガスが排気口67から排
出され、使用済みの排気ガス処理液が水出口66から排出され、集中的に処理されて再利
用する。
APPLICATION EXAMPLE This application example is explained based on the contents described in Example 1, and aims to clarify the specific working process of the present invention.
In the actual application process of the present invention, the contaminated soil is first dried and pulverized. As shown in FIG. 1, pretreated contaminated soil is introduced from the material distribution pipe 22, the contaminated soil in the material distribution pipe 22 falls into the distribution hopper 23, and the contaminated soil in the distribution hopper 23 is uniformly dispersed as material. transport belt 2
11, a material transport belt 211 transports contaminated soil from left to right, paving baffle 2
4 flattens the contaminated soil on the material transport belt 211 to make the thickness uniform, sprays the chemical from the nozzle 311 on the chemical spray plate 31, and the chemical is uniformly sprayed on the contaminated soil on the material transport belt 211, The ultraviolet rays of the ultraviolet catalyst 34 are emitted from the ultraviolet outlet 341 to irradiate the contaminated soil, and the ultraviolet rays catalytically decompose residual pesticides in the contaminated soil.
Sunlight irradiates the condensing lens 333 , the condensing lens 333 condenses the sunlight into the condensing tube 334 , and the condensed sunlight passes through the optical fiber bundle plate 32 through the light guide fiber 335 .
2, and then transmitted to the collecting mirror 324 via the light guide tube 323, and then to the collecting mirror 32
Due to the light condensing action of 4, the polluted soil is irradiated with the light emitted from the light outlet 321 to further remove residual pesticides in the polluted soil.
The material transport belt 211 transports the contaminated soil, which is finally discharged from the discharge port 122 and collected, and the part of the soil remaining on the material transport belt 211 is scraped off by the upper edge of the discharge baffle 14. be taken.
Exhaust gas and dust generated when treating pesticide residues in contaminated soil are removed by the exhaust fan 42
After the exhaust gas enters the exhaust gas recovery shell 41 through the air inlet 411, the exhaust gas is discharged from the exhaust hole 43, and the exhaust gas discharged from the exhaust hole 43 passes through the exhaust communicating pipe 44 to enter the exhaust gas collection pipe 501, and the exhaust gas in the exhaust gas collection pipe 501 enters the exhaust gas filter shell 51, and the filtration adsorption action of the filter plate 511 removes dust and particles in the exhaust gas. The exhaust gas that has been filtered by the filter plate 511 is discharged from the exhaust pipe 512 and then further treated by the exhaust gas filter 60 .
As shown in FIG. 3, the exhaust gas discharged from the exhaust pipe 512 enters the ventilation shell 62, the exhaust gas in the ventilation shell 62 enters the inner cylinder 63, and the exhaust gas in the inner cylinder 63 flows into the ventilation pipe. 6
33 through a vent 6331.
The exhaust gas treatment liquid is introduced into the water supply pipe 64, the exhaust gas treatment liquid is also introduced into the subsidence water supply pipe 65,
The exhaust gas treatment liquid in the subsidence water supply pipe 65 is discharged from the water discharge slot 651, and the exhaust gas treatment liquid discharged from the water discharge slot 651 passes through the water passage hole 632, as shown in FIG. When the exhaust gas treatment liquid is discharged from 632, an action force is applied to the inner cylinder 63, causing the inner cylinder 63 to rotate.
The exhaust gas discharged from the vent hole 6331 and the exhaust gas treatment liquid introduced into the water supply pipe 64 and subsidence water supply pipe 65 sufficiently contact and react, and the treated exhaust gas is discharged from the exhaust port 67 and used. The spent exhaust gas treatment liquid is discharged from the water outlet 66 and is centrally treated for reuse.

実験例
本実験例は、上記実施例1に記載の装置および上記応用例に記載の方法に基づき説明され
たものであり、実際応用における本発明の表現を明らかにすることを意図している。
本実験例では、南京農業大学の実験場として実験場所を選び、作物のないきれいな区画を
選び、砂と粘土の比率が中程度で、透水性が良く、耕作性の良いローム質土壌を選ぶ。深
さ0~20cmの耕作層の土を取り、風乾し、2mmのふるいを通過させ、よく混ぜて取
っておく。この実験土壌の主な物理的および化学的性質を表1に示す。
表1 実験土壌の主な物理的および化学的性質
EXPERIMENTAL EXAMPLE This experimental example is described on the basis of the apparatus described in Example 1 above and the method described in the Application Example above, and is intended to clarify the expression of the invention in practical application.
In this experimental example, the experimental site is chosen as the experimental field of Nanjing Agricultural University, choosing a clean plot without crops, choosing a loamy soil with a medium sand-to-clay ratio, good permeability and good cultivability. Take soil from a tillage layer 0-20 cm deep, air dry, pass through a 2 mm sieve, mix well and set aside. The main physical and chemical properties of this experimental soil are shown in Table 1.
Table 1 Main physical and chemical properties of experimental soil

Figure 2022140189000002

本実験例では、純度99.8%のトリアジメフォン(TDF)をターゲット汚染物として
選択し、使用したTDFはAladdin PharmaceuticalCompan
yから購入した。
本実験例では、アナターゼ型二酸化チタンベースの複合材料≧98%のナノTiOを触
媒として選択し、使用するナノTiOはShenzhen Chengyin Hig
h-tech Co.,Ltdから購入した。このナノTiOを原料として200μmo
l/LのTiO標準原液を調製した。
本実験例では、実験要件に従い、土壌中の塩素系有機農薬の除去効果に関するさまざまな
処理方法の次の組を比較する。実験土壌と分散TDFを完全に混合し、汚染土壌中のTD
F濃度を200μg/Lにし、混合土壌を1kgの組に分け、汚染土壌として保管する。
ブランク組:25℃で、1kgの汚染土壌を何にもせずに実施例1に記載の装置に入った
Figure 2022140189000002

In this example, 99.8% pure triadimefone (TDF) was selected as the target contaminant, and the TDF used was from Aladdin Pharmaceutical Company
purchased from y.
In this experimental example, an anatase titanium dioxide-based composite ≧98% nano- TiO2 is selected as the catalyst, and the nano- TiO2 used is Shenzhen Chengyin Hig
h-tech Co. , Ltd. Using this nano- TiO2 as a raw material, 200 μmo
A l/L TiO 2 standard stock solution was prepared.
This experimental example compares the following set of different treatment methods for their effectiveness in removing chlorinated organic pesticides in soil, according to the experimental requirements. Thoroughly mixing the experimental soil and the dispersed TDF, the TD in the contaminated soil
The F concentration is adjusted to 200 μg/L, and the mixed soil is divided into 1 kg groups and stored as contaminated soil.
Blank set: At 25° C., 1 kg of contaminated soil entered the apparatus described in Example 1 without any treatment.

実験組1:25℃で、1kgの汚染土壌置を実施例1に記載の装置に入れ、薬剤噴霧プレ
ート31のみを開いてTiO標準原液を噴霧した。
実験組2:25℃で、1kgの汚染土壌を実施例1に記載の装置に入れ、紫外線触媒器3
4のみを開いた。
実験組3:1kgの汚染土壌を実施例1に記載の装置に入れ、触媒集光器32のみを開い
て、ビーム照射領域の温度が27℃まで達した。
実験組4:25℃で、1kgの汚染土壌を実施例1に記載の装置に入れ、薬剤噴霧プレー
ト31を使用してTiO標準原液を噴霧する同時に、紫外線触媒器34を開いた。
実験組5:1kgの汚染土壌を実施例1に記載の装置に入れ、同時に噴霧プレート31、
紫外線触媒器34および触媒集光器32を開いた。
実験組6:実験組6では、触媒集光器32を使用してビーム照射領域温度を30℃に上昇
させること以外に、他のステップは実験組5と同じであった。
実験組7:実験組7では処理前の汚染土壌中のTDF濃度を220μg/Lとした以外に
、他のステップは実験組6と同じであった。
実験組8:実験組8では処理前の汚染土壌中のTDF濃度を250μg/Lとした以外に
、他のステップは実験組7と同じであった。
実験組9:実験組9では処理前の汚染土壌中のTDF濃度を300μg/Lとした以外に
、他のステップは実験組8と同じであった。
ブランク組、実験組1~9で処理された汚染土壌を収集し、洗浄した後液体クロマトグラ
フィーを使用して浸出後の土壌中のTDFの含有量を測定した。機器は液体クロマトグラ
フィー質量分析計(LC-MS、Agilent 1260-6420)であり、ソフトウ
ェアはMass Hunter Acquisition SoftwareB.08.
00であった。実験結果が表2に示される。
表2 異なる方法で処理された土壌中のTDF含有量
Experimental set 1: At 25° C., 1 kg of contaminated soil was placed in the apparatus described in Example 1, and only the chemical spray plate 31 was opened to spray TiO 2 standard undiluted solution.
Experimental set 2: Put 1 kg of contaminated soil into the apparatus described in Example 1 at 25 ° C, and put 3 ultraviolet catalyzers
Only 4 opened.
Experiment set 3: 1 kg of contaminated soil was placed in the apparatus described in Example 1, only the catalyst collector 32 was opened, and the temperature of the beam irradiation area reached 27°C.
Experimental set 4: At 25° C., 1 kg of contaminated soil was put into the apparatus described in Example 1, and the chemical spray plate 31 was used to spray the TiO 2 standard stock solution, while the ultraviolet catalyzer 34 was opened.
Experimental set 5: Put 1 kg of contaminated soil into the apparatus described in Example 1, and at the same time spray plate 31,
The ultraviolet catalyzer 34 and catalyst collector 32 were opened.
Experimental set 6: In experimental set 6, the other steps were the same as experimental set 5, except that the catalyst concentrator 32 was used to increase the beam irradiation region temperature to 30°C.
Experimental set 7: In Experimental set 7, the steps were the same as Experimental set 6, except that the TDF concentration in the contaminated soil before treatment was 220 μg/L.
Experimental Group 8: Experimental Group 8 was the same as Experimental Group 7 except that the TDF concentration in the contaminated soil before treatment was 250 μg/L.
Experimental Group 9: Experimental Group 9 was the same as Experimental Group 8 except that the TDF concentration in the contaminated soil before treatment was 300 μg/L.
A blank set, contaminated soil treated in experimental sets 1-9 was collected, washed and then liquid chromatography was used to determine the content of TDF in the soil after leaching. The instrument was a liquid chromatography mass spectrometer (LC-MS, Agilent 1260-6420) and the software was Mass Hunter Acquisition SoftwareB. 08.
was 00. Experimental results are shown in Table 2.
Table 2 TDF content in soils treated with different methods

Figure 2022140189000003
Figure 2022140189000003

実験組1、実験組2および実験組3とブランク組とを比較して分かるように、汚染土壌を
触媒するために触媒のみを使用する実験組1では、TDFの除去量が9.32%であり、
紫外線触媒器34のみを使用して汚染土壌を光放射で分解する実験組2では、TDFの除
去量が35.26%であり、触媒集光器32のみを使用して汚染土壌を高温で分解する実
験組3では、TDFの除去量が4.17%であった。3組の実験では、実験組1および3
のTDFの除去効果が低く、実験組2の除去効果がやや高いが、有機塩素農薬を含む汚染
土壌の除去標準には達していなかった。
実験組4と実験組1、2を比較して分かるように、触媒および光放射触媒を同時に使用す
る時、汚染土壌中のTDFの除去率が83.11%に達し、除去率が大幅に向上し、これ
は、ナノTiOが高活性、強力な光触媒効果を持ち、紫外線の照射下で、TDFに対し
て極強い触媒分解能力を持っているためである。
実験組5と実験組4を比較して分かるように、太陽光を使用して触媒分解領域の温度を上
げると、汚染土壌中のTDFをさらに分解できるため、実験組5のPDF除去率(86.
37%)は前の4つの実験組よりも高かった。
実験組6と実験組5を比較して分かるように、触媒分解領域の温度の上昇に従い、土壌中
のTDFの触媒分解効率(93.24%)も上昇した。
実験組7、8、9のデータを比較して分かるように、汚染土壌中のTDFの初期濃度の増
加に従い、本発明によって設計された装置によるTDFの除去率は、最初に上昇し、次に
減少した。除去率が上昇する理由は、汚染物の濃度が上がったが、装置の処理能力の上限
に達していないため、汚染物の初期濃度が上がると、最終的な除去率も上昇した。除去率
が上昇した後減少する理由は、汚染土壌中のPDFの初期濃度が高すぎ、汚染土壌の輸送
過程に拡散程度が制限され、最底層の汚染土壌は光放射および温度の影響をあまり受けな
かったため、未完全な除去があり、最終的な除去率が減少した。
表2中のデータから分かるように、本発明によって設計された修復装置は、すべての機能
的期間が稼働しているときに、塩素化有機農薬によって汚染された土壌に対して良好な修
復効果を有し、農薬の除去率は93%に達することができ、修復標準を満たし、広い応用
価値がある。
As can be seen by comparing experimental set 1, experimental set 2 and experimental set 3 with the blank set, in experimental set 1 using only catalyst to catalyze the contaminated soil, the amount of TDF removed was 9.32%. can be,
In experimental set 2, in which only the ultraviolet catalyst 34 is used to decompose the contaminated soil with light radiation, the amount of TDF removed is 35.26%, and only the catalyst collector 32 is used to decompose the contaminated soil at high temperatures. In experimental set 3, the amount of TDF removed was 4.17%. In triplicate experiments, experimental sets 1 and 3
The removal effect of TDF was low, and the removal effect of Experimental Group 2 was slightly higher, but did not reach the removal standard for contaminated soil containing organochlorine pesticides.
Comparing Experimental Group 4 with Experimental Groups 1 and 2, the removal rate of TDF in contaminated soil reached 83.11% when the catalyst and photo-emission catalyst were used at the same time, greatly improving the removal rate. However, this is because nano-TiO 2 has high activity and strong photocatalytic effect, and has extremely strong catalytic decomposition ability for TDF under ultraviolet irradiation.
As can be seen by comparing Set 5 and Set 4, the use of sunlight to increase the temperature of the catalytic decomposition zone can further degrade TDF in contaminated soil, thus increasing the PDF removal rate in Set 5 (86 .
37%) was higher than the previous four experimental sets.
Comparing Experimental Set 6 and Experimental Set 5, it can be seen that the catalytic decomposition efficiency (93.24%) of TDF in soil increased as the temperature of the catalytic decomposition zone increased.
As can be seen by comparing the data of experimental sets 7, 8, and 9, with increasing initial concentration of TDF in contaminated soil, the removal rate of TDF by the device designed according to the present invention first increases, then Diminished. The removal rate increased because the contaminant concentration increased but the upper capacity of the equipment was not reached, so the final removal rate increased as the initial contaminant concentration increased. The reason why the removal rate decreases after increasing is that the initial concentration of PDF in the contaminated soil is too high, the degree of diffusion is limited during the transport process of the contaminated soil, and the bottom layer of the contaminated soil is less affected by light radiation and temperature. There was incomplete removal and decreased final removal rate.
As can be seen from the data in Table 2, the remediation device designed according to the present invention has good remediation effect on soil contaminated with chlorinated organic pesticides during all functional periods. It has a pesticide removal rate of up to 93%, meets remediation standards, and has wide application value.

Claims (6)

支持底板(11)およびその上に設けられた封止シェル(12)で構成される支持構造(
10)を含む装置であって、前記支持構造(10)の内部キャビティの底部に材料輸送ベ
ルト(211)が設けられ、前記材料輸送ベルト(211)の上方に材料輸送方向に沿っ
て順次、材料分配管(22)、舗装バッフル(24)、ノズル(311)付き薬剤噴霧プ
レート(31)、仕切り板(121)、紫外線触媒器(34)、触媒集光器(32)およ
び排気ガス回収機構(40)が設けられ、
前記材料輸送ベルト(211)の輸送終端に、輸送面に密着する排出バッフル(14)が
設けられ、前記排出バッフル(14)は、封止シェル(12)上に設けられた排出口(1
22)を貫通して外部と連通し、
前記材料分配管(22)の給料端は封止シェル(12)を貫通して外部と連通し、材料分
配管(22)の排出端に分配振動器(231)付きの分配ホッパー(23)が設けられ、
前記舗装バッフル(24)は昇降スライドブロック(131)を介して設封止シェル(1
2)の内壁に設けられた摺動支持ロッド(13)に接続され、摺動支持ロッド(13)に
沿って垂直方向に移動可能であり、
前記触媒集光器(32)の内部に、上から下へ順次、触媒集光器(32)の頂部を貫通す
る導光ファイバー(335)、光ファイバーバンドルプレート(322)、導光筒(32
3)および集光ミラー(324)付きの光取出し口(321)が設けられ、
前記導光ファイバー(335)の触媒集光器(32)から離れた一端は、封止シェル(1
2)の頂部の外壁に設けられた集光機構(33)に接続され、
前記排気ガス回収機構(40)は回収シェル(41)を含み、前記回収シェル(41)の
底部に空気入口(411)が開設され、内部に排気ファン(42)が設けられ、頂部に排
気穴(43)が開設され、前記排気穴(43)は、排気連通管(44)を介して封止シェ
ル(12)の頂部外壁に設けられた排気ガス処理機構(50)に接続される、ことを特徴
とする有機塩素系農薬汚染土壌の修復および排気ガス処理の統合装置。
A support structure (
10), wherein a material transport belt (211) is provided at the bottom of the inner cavity of said support structure (10), and material Distribution pipe (22), pavement baffle (24), chemical spray plate (31) with nozzle (311), partition plate (121), ultraviolet catalyst (34), catalyst collector (32) and exhaust gas recovery mechanism ( 40) is provided,
At the transport end of said material transport belt (211), there is provided a discharge baffle (14) in close contact with the transport surface, said discharge baffle (14) being located on a discharge port (1) provided on the sealing shell (12).
22) to communicate with the outside,
The feeding end of the material distribution pipe (22) passes through the sealing shell (12) and communicates with the outside, and the discharge end of the material distribution pipe (22) has a distribution hopper (23) with a distribution vibrator (231). provided,
Said pavement baffle (24) is mounted on the sealing shell (1) through the elevating slide block (131).
2) is connected to a sliding support rod (13) provided on the inner wall of 2) and is vertically movable along the sliding support rod (13);
Inside the catalyst collector (32), from top to bottom, a light guide fiber (335) passing through the top of the catalyst collector (32), an optical fiber bundle plate (322), a light guide cylinder (32)
3) and a light outlet (321) with a collecting mirror (324) is provided,
One end of the light guiding fiber (335) remote from the catalyst collector (32) is connected to the sealing shell (1
2) is connected to the light collection mechanism (33) provided on the outer wall of the top part,
The exhaust gas recovery mechanism (40) includes a recovery shell (41), an air inlet (411) is opened at the bottom of the recovery shell (41), an exhaust fan (42) is provided inside, and an exhaust hole is provided at the top. (43) is opened, and the exhaust hole (43) is connected to an exhaust gas treatment mechanism (50) provided on the top outer wall of the sealing shell (12) through an exhaust communication pipe (44). An integrated device for remediation of organochlorine pesticide-contaminated soil and exhaust gas treatment.
前記紫外線触媒器(34)の内部に、上から下へ順次、紫外線発生器(343)、導光レ
ンズ群(344)および紫外線集光ミラー(342)付きの紫外線取出し口(343)が
設けられる、ことを特徴とする請求項1に記載の統合装置。
Inside the ultraviolet catalyzer (34), an ultraviolet generator (343), a group of light guiding lenses (344) and an ultraviolet outlet (343) with an ultraviolet collecting mirror (342) are provided in this order from top to bottom. 2. The integration device according to claim 1, characterized by:
前記集光機構(33)は、封止シェル(12)の頂部外壁に設けられた集光筒ベース(3
36)、および前記集光筒ベース(336)に回転可能に接続された集光筒(331)を
含み、前記集光筒(331)の頂部は集光支持リング(332)を介して集光レンズ(3
33)に接続され、集光筒(331)の内部キャビティに、導光ファイバー(335)に
接続された集光管(334)が設けられ、前記集光管(334)の頂部は集光レンズ(3
33)の焦点と一致する、ことを特徴とする請求項1に記載の統合装置。
The condensing mechanism (33) includes a condensing cylinder base (3) provided on the top outer wall of the sealing shell (12).
36), and a light collecting tube (331) rotatably connected to said light collecting tube base (336), the top of said light collecting tube (331) receiving light through a light collecting support ring (332). lens (3
33), the inner cavity of the light collecting tube (331) is provided with a light collecting tube (334) connected to the light guiding fiber (335), the top of said light collecting tube (334) is a light collecting lens ( 3
33) coincides with the focal point of 33).
前記排気ガス処理機構(50)は、排気ガス濾過シェル(51)を含み、前記排気ガス濾
過シェル(51)の内部キャビティの一端は排気連通管(44)に接続され、他端はエア
フロ流通方向に沿って順次、エアフロ流通方向に垂直する複数層の濾過板(511)、お
よびエアフロ流通方向に平行し排気ガス濾過シェル(51)を貫通する複数本の排気管(
512)が設けられる、ことを特徴とする請求項1に記載の統合装置。
The exhaust gas treatment mechanism (50) includes an exhaust gas filter shell (51), one end of the internal cavity of the exhaust gas filter shell (51) is connected to the exhaust communication pipe (44), and the other end is in the air flow direction. A plurality of filter plates (511) perpendicular to the airflow circulation direction, and a plurality of exhaust pipes (
512) is provided.
前記排気ガス濾過シェル(51)の内部キャビティに濾過板(511)に平行な方向に、
互いに平行な掃除スライドレール(513)およびボールスクリュー(531)が設けら
れ、前記ボールスクリュー(531)上に、掃除スライドレール(513)と摺動可能に
接続された掃除スライドブロック(514)が設けられ、前記掃除スライドブロック(5
14)上に、掃除ブラシ(521)付きの濾過板クリーナー(52)が接続される、こと
を特徴とする請求項4に記載の統合装置。
in the internal cavity of said exhaust gas filtering shell (51) in a direction parallel to the filtering plate (511),
A cleaning slide rail (513) and a ball screw (531) are provided parallel to each other, and a cleaning slide block (514) is provided on said ball screw (531) slidably connected with the cleaning slide rail (513). and said cleaning slide block (5
14) Integrated device according to claim 4, characterized in that a filter plate cleaner (52) with cleaning brushes (521) is connected thereon.
同軸に配置された外筒(61)および内筒(63)を有する排気ガスフィルター(60)
をさらに含み、
前記外筒(61)の側壁に、上から下へ順次、排気口(67)、水出口(66)および給
水管(64)が設けられ、前記外筒(61)の底部に、内外キャビティを有する通気シェ
ル(62)が設けられ、前記通気シェル(62)の外キャビティの一端は排気管(512
)と連通し、他端は内筒(63)の側壁の底端と連通し、前記通気シェル(62)の内部
キャビティの頂部に回転支持リング(621)が設けられ、
前記内筒(63)の内部キャビティに、軸線に沿って外筒(61)の頂部を貫通し水出し
スロット(651)付きの沈下給水管(65)が設けられ、前記内筒(63)の側壁に周
方向に沿って間隔を空けて通水穴(632)および通気孔(6331)付きの通気管(6
33)が設けられ、前記内筒(63)の底部の外縁に回転支持リング(621)と密着す
る内筒支持リング(631)が設けられ、前記内筒(63)の底部の中心軸は順次、第1
の従動ギア(634)および第1の主動ギア(636)を介して第1のモーター(635
)に接続され、
前記通水穴(632)と内筒(63)側壁の切り欠き角と、通気管(633)と内筒(6
3)側壁の切り欠き角と、給水管(64)と外筒(61)側壁の切り欠き角とは、すべて
同じ大きさであって同じ方向である、ことを特徴とする請求項1に記載の統合装置。
An exhaust gas filter (60) having an outer cylinder (61) and an inner cylinder (63) arranged coaxially
further comprising
An exhaust port (67), a water outlet (66) and a water supply pipe (64) are provided in order from top to bottom on the side wall of the outer cylinder (61), and internal and external cavities are formed at the bottom of the outer cylinder (61). There is provided a vent shell (62) having an exhaust pipe (512) at one end of the outer cavity of said vent shell (62).
), the other end communicates with the bottom end of the side wall of the inner cylinder (63), the top of the inner cavity of the ventilation shell (62) is provided with a rotating support ring (621),
The inner cavity of said inner cylinder (63) is provided with a submerged water supply pipe (65) with a water outlet slot (651) passing axially through the top of the outer cylinder (61), said inner cylinder (63) Ventilation tubes (6
33) is provided, and an inner cylinder support ring (631) is provided on the outer edge of the bottom of the inner cylinder (63) in close contact with the rotation support ring (621), and the central axis of the bottom of the inner cylinder (63) is sequentially , first
a first motor (635
) and connected to
The notch angle of the water passage hole (632) and the side wall of the inner cylinder (63), the ventilation pipe (633) and the inner cylinder (6)
3) The notch angle of the side wall and the notch angle of the side wall of the water supply pipe (64) and the outer cylinder (61) are all of the same magnitude and in the same direction. integrated equipment.
JP2021075942A 2021-03-12 2021-04-28 Integrated equipment for repairing soil contaminated with organochlorine pesticides and treating exhaust gas Active JP6965479B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110271939.1A CN113000583B (en) 2021-03-12 2021-03-12 Organochlorine pesticide contaminated soil restoration and exhaust-gas treatment integrated equipment
CN202110271939.1 2021-03-12

Publications (2)

Publication Number Publication Date
JP6965479B1 JP6965479B1 (en) 2021-11-10
JP2022140189A true JP2022140189A (en) 2022-09-26

Family

ID=76406470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021075942A Active JP6965479B1 (en) 2021-03-12 2021-04-28 Integrated equipment for repairing soil contaminated with organochlorine pesticides and treating exhaust gas

Country Status (2)

Country Link
JP (1) JP6965479B1 (en)
CN (1) CN113000583B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114832530B (en) * 2022-05-13 2023-07-18 杭州青云新材料股份有限公司 DMAC multistage spraying recycling system and method
CN115445310B (en) * 2022-09-19 2023-09-22 山东华仙浩森生物科技有限公司 Adsorption impurity removing mechanism for stevioside filtration
CN115646176A (en) * 2022-09-28 2023-01-31 江苏升辉装备集团股份有限公司 Reaction tower for pollution prevention and control and use method thereof
CN116747661B (en) * 2023-07-13 2023-12-15 山东环泰环保科技发展有限公司 Waste gas purifying treatment device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4115177A1 (en) * 1991-05-09 1992-11-12 Ultra Systems Gmbh Uv Oxidatio METHOD AND DEVICE FOR CLEANING SOLID SUBSTANCES WITH POLLUTANTS
CN106493166B (en) * 2016-12-26 2024-04-16 上海勘察设计研究院(集团)股份有限公司 Ultraviolet light-ozone combined catalysis oxidized contaminated soil remediation system
CN106493163B (en) * 2016-12-26 2022-10-25 上海勘察设计研究院(集团)有限公司 Two-phase ozone-ultraviolet light catalysis repair system for organic contaminated soil
CN207170503U (en) * 2017-08-28 2018-04-03 云南长江绿海环境工程股份有限公司 A kind of soil restoring device
CN108746192A (en) * 2018-07-20 2018-11-06 上海格林曼环境技术有限公司 Medicament spray and ultraviolet catalytic device for contaminated soil heterotopic prosthetic appliance

Also Published As

Publication number Publication date
JP6965479B1 (en) 2021-11-10
CN113000583A (en) 2021-06-22
CN113000583B (en) 2022-04-12

Similar Documents

Publication Publication Date Title
JP2022140189A (en) Integrated system for organochlorine pesticide-contaminated soil remediation and exhaust gas treatment
JP7080430B1 (en) Soil repair and integrated treatment equipment and methods for pesticide-contaminated areas
CN108905611A (en) A kind of device and method removing VOC
CN107149835B (en) A kind of concentration and processing method of the low concentration containing volatile organic compounds
CN107497278A (en) Horizontal exhaust treatment system based on dynamic interception and micro-nano bubbler techniques
CN110314507A (en) It is a kind of to print organic waste gas treatment process and processing system
CN112892186A (en) Waste gas treatment system
CN214972995U (en) Waste gas purification drying equipment
CN107899388B (en) Fluorine-containing waste gas treatment process
CN207042249U (en) The device of photocatalysis treatment volatile organic matter
CN115591388B (en) Waste gas purifying device of waste gas incinerator
CN209997380U (en) flue gas treatment system for high-molecular waterproof coiled material production line
CN116392915A (en) Steam boiler fume purification equipment for spinning
CN1259255C (en) Reactor for efficient removing organic pollutanti in water by catalysis and ozonization
CN209034112U (en) A kind of organic waste gas purifying processing device
JP3679167B2 (en) Processing equipment for volatile organic compounds
CN106039956A (en) Energy-saving multi-effect VOCs purification reactor and VOCs purification treatment method
CN207622157U (en) A kind of ultraviolet catalytic Degradator
CN216825629U (en) VOC exhaust treatment device
CN109261424A (en) Paint spray booth with air cleaning system
JPH09155160A (en) Apparatus for decomposing and removing volatile organic compound and method therefor
CN211676913U (en) Waste gas treatment equipment
KR100231238B1 (en) Trash burner
CN105944555A (en) Flue gas treatment device of printing and dyeing setting machine
CN206613381U (en) A kind of waste gas purification apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210428

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210916

R150 Certificate of patent or registration of utility model

Ref document number: 6965479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150