JP2022140179A - Method of continuously reproducing grinding face of rubber grinding stone or grinding wheel by action of ejection of fine air bubble and its device, griding/polishing grinder for improving property of surface ground layer of material to be ground, cavitation ejection nozzle for grinding wheel and automatic grinding operation method - Google Patents

Method of continuously reproducing grinding face of rubber grinding stone or grinding wheel by action of ejection of fine air bubble and its device, griding/polishing grinder for improving property of surface ground layer of material to be ground, cavitation ejection nozzle for grinding wheel and automatic grinding operation method Download PDF

Info

Publication number
JP2022140179A
JP2022140179A JP2021074454A JP2021074454A JP2022140179A JP 2022140179 A JP2022140179 A JP 2022140179A JP 2021074454 A JP2021074454 A JP 2021074454A JP 2021074454 A JP2021074454 A JP 2021074454A JP 2022140179 A JP2022140179 A JP 2022140179A
Authority
JP
Japan
Prior art keywords
grinding
rubber
cavitation
grindstone
microbubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021074454A
Other languages
Japanese (ja)
Other versions
JP7317279B2 (en
Inventor
泰三 岩川
Taizo Iwakawa
泰弘 八尾
Yasuhiro Yao
隆太郎 松原
Ryutaro Matsubara
成稀 松原
Shigeki Matsubara
衛 野村
Mamoru Nomura
佳之 喜多
Yoshiyuki Kita
幸男 伊藤
Yukio Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2021074454A priority Critical patent/JP7317279B2/en
Publication of JP2022140179A publication Critical patent/JP2022140179A/en
Application granted granted Critical
Publication of JP7317279B2 publication Critical patent/JP7317279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

To provide a method of reproducing a grinding face of rubber grinding stone or else which applies erosion action (cavitation peening) of fine air bubble, and to provide a grinding technique which gives excellent results of grinding for improving properties of a ground surface layer of material to be ground due to compression explosion of the fine air bubbles.SOLUTION: A ground face reproducing method with respect to a rubber grinding stone face according to erosion action which occurs when ejecting fine air bubbles 1a produced by a cavitation generation device 100 onto a grinding face 11a of a rubber grinding stone GT (11) is provided, and a continuously grinding face reproducing method of the rubber grinding stone which ejects fine air bubbles onto an outer circumferential face of the grinding stone to wash/erose the face, and expose and reproduce abrasive grains G in a rubber grinding stone inner layer onto the grinding face when ejecting the fine air bubbles toward the outer circumferential face of the grinding stone in which the abrasive grains G are filled within the rubber grinding stone.SELECTED DRAWING: Figure 1

Description

本発明は、工作機械の研削・研磨加工、特に研削盤における新規な研削技術に係わり、マイクロバブルクーラント液(微細気泡)等を研削・研磨加工に使用した従来実施例において、更に技術革新した新技術であり、特に、微細気泡が持つ気泡の洗浄作用を適用するも、ゴム砥石を主体とする研削砥石の新規な研削面再生方法と、上記微細気泡が研削点での気泡崩壊時に発生する衝撃波・衝撃力の新規利用で、ショットピーニングによる表面改質を図る他、研削砥石内層の砥粒を研削面に露出再生成形する。更に、研削・研磨点において、被削材の加工面性状を被削材の表面研削層の生成で性状向上させる新規研削の効果を、自動研削運転方法により発揮する画期的な技術に関する。 The present invention relates to the grinding and polishing of machine tools, particularly to a new grinding technology for grinding machines, and is a further technological innovation in the conventional examples in which microbubble coolant liquid (microbubbles) or the like is used for grinding and polishing. In particular, a novel method for regenerating the grinding surface of a grinding wheel mainly composed of a rubber grindstone, and a shock wave generated when the microbubbles collapse at the grinding point.・With the new use of impact force, in addition to improving surface properties by shot peening, abrasive grains in the inner layer of the grinding wheel are exposed and remolded on the grinding surface. Furthermore, the present invention relates to an epoch-making technology that exhibits a new grinding effect of improving the properties of the machined surface of the work material by forming a surface grinding layer of the work material at the point of grinding and polishing, by means of an automatic grinding operation method.

近年、マイクロバブルクーラント液(微細気泡)を研削・研磨加工に使用する試みと、この研究成果を受けての試験例・実施例が報告されている。
例えば、2007年度精密機械工学春季大会学術講演会講演論文集に記載の「マイクロバブルクーラントの研究一第1報:研削液への適用」においては、マイクロバブル発生機構で作られたマイクロ・ナノバブルクーラント液を、研削砥石に噴射する試験結果と実際の効果が記載されている。その効果は、・加工液の冷却作用の向上・切り屑の洗浄効果の向上・加工液の加工点への確実供給・加工液供給量の低減・工具摩耗の抑制・表面粗さの向上・加工液腐敗の抑制が測れることを確認した。とするものである(例えば、非特許文献の技術論文1参照)。
In recent years, there have been reports of attempts to use microbubble coolant liquids (microbubbles) for grinding and polishing, and test examples and examples based on the results of this research.
For example, in the 2007 Precision Machinery Engineering Spring Conference Scientific Lecture Proceedings, "Research on Microbubble Coolant 1st Report: Application to Grinding Fluid", a micro/nanobubble coolant made with a microbubble generation mechanism Test results and actual effects of spraying the liquid onto the grinding wheel are described. The effects are: ・Improvement of cooling effect of machining fluid ・Improvement of chip cleaning effect ・Reliable supply of machining fluid to the machining point ・Reduction of machining fluid supply volume ・Control of tool wear ・Improvement of surface roughness ・Machining It was confirmed that suppression of liquid putrefaction could be measured. (For example, see Technical Paper 1 of Non-Patent Document).

また、2017年度精密機械工学春季大会学術講演会講演論文集に記載の「マイクロ・ナノバブルクーラントによる除去加工の研究」においては、マイクロバブル発生装置や研削盤への適用模式図他が開示されている。そして、研削性能に及ぼすサブμmオーダーのバブルの効果が開示されている。これによると、既存の数10μmのバブル径に対してサブμmオーダーのバブル径のマイクロ・ナノバブルクーラントを一般砥石による焼入鋼の平面研削に適用すると、長期間に渡ってクーラント中に残存し続けられること、焼入鋼の平面研削に適用することが判明した。そして、上記マイクロ・ナノバブルクーラント液(微細気泡)を研削・研磨加工に使用すると、1、加工時間短縮。2、切込み量のアップ。3、工具・砥石寿命・加工精度アップ等に寄与している事が明らかであると、報告している(例えば、非特許文献の技術論文2参照)。 In addition, in the 2017 Precision Machinery Engineering Spring Conference Scientific Lecture Proceedings, "Study on Removal Machining Using Micro/Nano Bubble Coolant", schematic diagrams of applications to microbubble generators and grinders are disclosed. . Then, the effect of sub-micron order bubbles on grinding performance is disclosed. According to this, when a micro-nano bubble coolant with a sub-micron order bubble diameter is applied to the surface grinding of hardened steel with a general grindstone, it will remain in the coolant for a long period of time. It was found to be suitable for surface grinding of hardened steel. And when the micro/nano bubble coolant liquid (microbubbles) is used for grinding and polishing, 1, the processing time is shortened. 2. Increased depth of cut. 3. It is reported that it is clear that it contributes to the improvement of tools, grinding wheel life, machining accuracy, etc. (for example, see technical paper 2 of non-patent literature).

他方、研削性能を向上させる機能を備えたバブルクーラント液を活用した特許第5574243号の「発明の名称:泡状クーラント液による研削方法と研削装置」は、本願発明者の一人である伊藤幸男の過去の開発技術に係わり、泡状クーラント液を利用した研削方法と研削装置及び加工装置である。
特に、研削方法と研削装置は、本発明の請求項1記載の泡状クーラント液による研削方法において、不活性ガスを電着砥石の中心部から砥石内を浸透して砥石外周面に噴出させるとともに、天然石鹸系発泡剤を混入した強アルカリ性液を上記砥石両側面から外周面の加工点に噴射することで、気化器の原理により、泡立ち現象を簡便に起こさせて泡状クーラント液に出来る。これで、泡状クーラント液は電着砥石の全外周面を包囲して無酸素状態とし、研削砥石及びワークの冷却及び研削屑吸着作用が発揮される。これで、研削液の飛散が無く、冷却潤滑液が気泡化して研削点での少量潤滑ができる。また、強アルカリ性液により高い防錆・洗浄・腐敗防止効果が得られる。更に、天然石鹸系発泡剤水による高い研削屑吸着効果と、高い気液分離性により、後処理となる研削屑の分離とクーラント液の清浄度維持が期待できるものである(例えば、特許文献1参照)。
On the other hand, Yukio Ito, one of the inventors of the present application, published Japanese Patent No. 5574243 titled "Grinding Method and Grinding Apparatus Using Bubble Coolant Liquid", which utilizes a bubble coolant liquid having a function to improve grinding performance. A grinding method, a grinding apparatus, and a processing apparatus that are related to past development technology and that use a foamed coolant liquid.
In particular, the grinding method and the grinding apparatus are characterized in that in the grinding method using the foamed coolant liquid according to claim 1 of the present invention, the inert gas penetrates from the center of the electrodeposited grindstone into the grindstone and is ejected to the outer peripheral surface of the grindstone. By injecting a strong alkaline liquid mixed with a natural soap-based foaming agent from both sides of the grinding wheel to the processing point on the outer peripheral surface, the bubble phenomenon can be easily caused by the principle of a vaporizer to create a foamed coolant liquid. As a result, the foamed coolant surrounds the entire outer peripheral surface of the electrodeposited grindstone in an oxygen-free state, and the grinding grindstone and workpiece can be cooled and the grinding wastes can be adsorbed. As a result, the cooling lubricating liquid is bubbled without scattering of the grinding liquid, and a small amount of lubrication can be performed at the grinding point. In addition, the strong alkaline liquid provides high anti-corrosion, cleaning, and anti-corrosion effects. Furthermore, due to the high grinding dust adsorption effect of the natural soap-based foaming agent water and the high gas-liquid separation property, separation of grinding dust and maintenance of cleanliness of the coolant liquid, which are post-treatments, can be expected (for example, Patent Document 1 reference).

更に、上記マイクロ・ナノバブルクーラント液(微細気泡)が持つ気泡の壊滅時に生じる衝撃波による圧縮破裂(キャビテーションピーニング)作用により、金属表面を高強度化改善させた「キャビテーションピーニングによる鋼歯車の高強度化」が、砥粒加工学会誌VoL65 No2 2021 FEB.70-73に、特集「ピーニングによる圧縮残留応力付加技術」で、紹介されている。該論文中の図1では、キャビテーション気泡の変化の模式図を示している。その作用は、高速水噴流を噴射するノズル先端でキャビテーションが生成され、図2では、水中キャビテーション噴流と気中キャビテーション噴流を示し、図3は、キャビテーションピーニング装置による加工例を示している。(例えば、非特許文献の技術論文3参照)。 In addition, the metal surface is strengthened and improved by compressive rupture (cavitation peening) effect caused by the shock wave generated when the bubbles of the micro/nano bubble coolant liquid (microbubbles) are destroyed. However, Journal of Abrasive Processing Society Vol65 No2 2021 FEB. pp. 70-73, featured in the special feature "Compressive Residual Stress Application Technology by Peening". FIG. 1 in the article shows a schematic diagram of changes in cavitation bubbles. The effect is that cavitation is generated at the tip of a nozzle that injects a high-speed water jet. FIG. 2 shows an underwater cavitation jet and an air cavitation jet, and FIG. 3 shows an example of processing by a cavitation peening device. (For example, see Technical Paper 3 of Non-Patent Literature).

最後に、公開特許の一つに「研削液供給装置、研削加工システム、研削加工方法及びそれに用いるキャビテーション処理モジュール」がある。
この技術内容は、砥石研削による金属製品の加工において、砥石の目詰まりが簡便な液処理により劇的に改善され、砥石切込量を従来よりも大幅に増加させても連続的な加工継続が可能となり、ひいては研削加工の効率改善に大きく貢献する研削液供給装置である。
具体的な解決手段は、水系研削液CLを処理媒体粒子の集合体に流通させることにより、水系研削液CLは処理媒体粒子の表面に接触してキャビテーション処理されたのち、研削加工装置100に供給される。処理媒体粒子をなす絶縁性セラミックは気孔率が10%以上60%以下の多孔質であり、また見かけ比重が1.0以上のものが採用されることで、ケーシング内で浮遊することなく安定した流速にて水系研削液CLと接触する。これにより、処理媒体粒子表面では水系研削液CL中の溶存空気が減圧析出するキャビテーションが生じ、水系研削液CLの回転砥石101表面への浸透性が改善されるものである(例えば、特許文献2参照)。
Finally, one of the published patents is "Grinding Fluid Supply Device, Grinding System, Grinding Method and Cavitation Processing Module Used Therefor".
The content of this technology is that in the processing of metal products by grindstone grinding, clogging of the grindstone can be dramatically improved by a simple liquid treatment, and continuous processing can be continued even if the depth of cut of the grindstone is significantly increased compared to conventional methods. It is a grinding fluid supply device that makes it possible and, in turn, greatly contributes to the improvement of the efficiency of grinding.
A specific solution is to circulate the aqueous grinding fluid CL through the aggregate of the treatment medium particles, so that the aqueous grinding fluid CL contacts the surfaces of the treatment medium particles and is subjected to cavitation treatment, and then supplied to the grinding apparatus 100. be done. The insulating ceramic that forms the processing medium particles is porous with a porosity of 10% or more and 60% or less, and has an apparent specific gravity of 1.0 or more, so that it is stable without floating in the casing. It comes into contact with the water-based grinding fluid CL at the flow rate. As a result, cavitation occurs on the surface of the treatment medium particles, in which dissolved air in the aqueous grinding fluid CL precipitates under reduced pressure, and the permeability of the aqueous grinding fluid CL to the surface of the grindstone 101 is improved (for example, Patent Document 2 reference).

非特許文献の技術論文1Technical paper 1 of non-patent literature

2007年度精密機械工学春季大会学術講演会講演論文集Proceedings of the 2007 Precision Machinery Engineering Spring Conference

非特許文献の技術論文2Technical paper 2 of non-patent literature

2017年度精密機械工学春季大会学術講演会講演論文集Proceedings of the 2017 Precision Machinery Engineering Spring Conference

非特許文献の技術論文3Technical paper 3 of non-patent literature

砥粒加工学会誌VoL65 No2 2021 FEB.70-73Journal of Abrasive Processing Society Vol65 No2 2021 FEB. 70-73

特許文献1Patent document 1

特許第5574243号公報
特開2020-203332号公報
Japanese Patent No. 5574243
Japanese Patent Application Laid-Open No. 2020-203332

上記非特許文献の技術論文1である2007年度精密機械工学春季大会学術講演会講演論文集に記載の「マイクロバブルクーラントの研究一第1報:研削液への適用」は、マイクロバブル発生機構で作られたマイクロ・ナノバブルクーラント液を、研削砥石に噴射させることで、「・加工液の冷却作用の向上・切り屑の洗浄効果の向上・加工液の加工点への確実供給・加工液供給量の低減・工具摩耗の抑制・表面粗さの向上・加工液腐敗の抑制が測れる」ことができる。
しかしながら、被削材の研削表面の粗さが改善出来ても、研削面の寸法精度や表面硬度等の加工面性状は向上していない。即ち、鏡面状に仕上げられた、との限定的なマイク・ナノバルブクーラント液の作用・効果に留まっている。
Technical paper 1 of the above non-patent literature, "Research on Microbubble Coolant 1st Report: Application to Grinding Fluid" described in the 2007 Precision Machinery Spring Conference Scientific Lecture Proceedings, is a microbubble generation mechanism. By injecting the micro/nano bubble coolant into the grinding wheel, it is possible to: ・Improve the cooling effect of the machining fluid ・Improve the cleaning effect of chips ・Reliably supply the machining fluid to the machining point ・Amount of machining fluid supplied reduction of tool wear, improvement of surface roughness, and suppression of machining fluid spoilage.
However, even if the roughness of the ground surface of the work material can be improved, the machined surface properties such as dimensional accuracy and surface hardness of the ground surface are not improved. In other words, the action and effect of the micro-nanovalve coolant liquid is limited to that it is mirror-finished.

上記非特許文献の技術論文2である2017年度精密機械工学春季大会学術講演会講演論文集に記載の「マイクロ・ナノバブルクーラントによる除去加工の研究」は、上記マイクロ・ナノバブルクーラント液(微細気泡)を研削・研磨加工に使用すると、1、加工時間短縮。2、切り込み量のアップ。3、工具・砥石寿命・加工精度アップ等に寄与するものの、特に、ゴム砥石における砥石外周面に露出する砥粒を埋没させてしまう接着剤の排除や、研削面の寸法精度や表面硬度等の加工面性状の向上には余り寄与していない。 Technical paper 2 of the above non-patent document, "Research on removal processing using micro-nano bubble coolant" described in the 2017 Precision Mechanical Engineering Spring Conference academic lecture collection, is the above-mentioned micro-nano bubble coolant liquid (fine bubbles). When used for grinding and polishing, 1. Reduces processing time. 2. Increased cutting depth. 3. Although it contributes to the improvement of tool life, grinding wheel life, processing accuracy, etc., it especially eliminates adhesives that bury the abrasive grains exposed on the outer peripheral surface of the rubber grinding wheel, and improves the dimensional accuracy and surface hardness of the grinding surface. It does not contribute much to the improvement of the machined surface properties.

上記非特許文献の技術論文3である砥粒加工学会誌VoL65 No2 2021 FEB.70-73「キャビテーションピーニングによる鋼歯車の高強度化」は、マイクロ・ナノバブルクーラント液(微細気泡)のキャビテーションピーニング作用による破裂壊食作用により、金属材料の表面に衝撃力(圧縮残留応力の付与)により、製品の表面改質(加工硬化)を図る。例えば、鋼歯車の高強度化(疲労強度向上)が測れるものの、表面粗さ増大による加工精度の低下弊害を招いている。 Abrasive Machining Society Journal Vol65 No2 2021 FEB. 70-73 "Increase in strength of steel gears by cavitation peening" is an impact force (imparting compressive residual stress) to the surface of metal materials due to the rupture erosion caused by the cavitation peening action of micro-nano bubble coolant liquid (fine bubbles). This will improve the surface of the product (work hardening). For example, although the strength of steel gears can be increased (improved fatigue strength), the increase in surface roughness causes a reduction in machining accuracy.

また、特許第5574243号公報の「泡状クーラント液による研削方法と研削装置」は、高い研削屑吸着効果と、高い気液分離性により、後処理となる研削屑の分離とクーラント液の清浄度維持が期待できるものの、ワークに対する研磨加工時に、研削面の表面硬度等の加工面性状は向上できない。 In addition, Japanese Patent No. 5574243, "Grinding Method and Grinding Apparatus Using Foamed Coolant Liquid", has a high grinding dust adsorption effect and high gas-liquid separation performance, resulting in separation of grinding dust and cleanliness of the coolant liquid, which are post-treatments. Although this can be expected to be maintained, the properties of the machined surface such as the surface hardness of the ground surface cannot be improved when the workpiece is polished.

最後の特開2020-203332号公報である「研削液供給装置、研削加工システム、研削加工方法及びそれに用いるキャビテーション処理モジュール」においても、ワークに対する研磨加工時に、研削面の表面硬度は増強されても加工面性状は逆に低下する。 In the last Japanese Patent Application Laid-Open No. 2020-203332, "Grinding liquid supply device, grinding system, grinding method, and cavitation processing module used therefor", the surface hardness of the grinding surface is increased even when the workpiece is polished. Conversely, the machined surface quality deteriorates.

本発明の目的は、上記従来のマイクロ・ナノバブルクーラント液(微細気泡)が持つ研削精度や圧縮破裂(キャビテーションピーニング)による研削面の表面硬度は増強されても加工面性状は逆に低下すると言う問題点に鑑みて成されたものである。
即ち、マイクロ・ナノバブルクーラント液(微細気泡)が持つ気泡崩壊・圧縮破裂(キャビテーションピーニング)により、特にゴム砥石等の研削面再生方法(ドレッシング方法)とその装置及び、マイクロ・ナノバブルクーラント液(微細気泡)の気泡崩壊(キャビテーションピーニング)と、この直後の研削工程の複合作用による被削材の表面研削層の性状向上研削方法とその装置について、ゴム砥石を初めとして研削砥石の使用時にも適用したものである。
The object of the present invention is to solve the problem that the surface hardness of the ground surface due to the grinding accuracy and compression rupture (cavitation peening) of the conventional micro/nano bubble coolant liquid (fine bubbles) is enhanced, but the machined surface properties are reduced. It is made in view of the points.
That is, due to bubble collapse/compression rupture (cavitation peening) possessed by micro/nano bubble coolant liquid (fine bubbles), grinding surface regeneration method (dressing method) such as rubber grindstone, its device, and micro/nano bubble coolant liquid (fine bubbles ) bubble collapse (cavitation peening) and the combined action of the grinding process immediately after this, improving the properties of the surface grinding layer of the work material. is.

本発明で使用する用語解説。
▲1▼ 壊食(エロージョン)とは。
面近くの泡は粘性と表面張力で張り付き遠い側がくぼみ激突分裂し消滅の瞬間、中心で強い圧力波が発生し金属破損等の強い力がある。
▲2▼ 微細気泡(マイクロバブル)は、ISO 20480-1:2017に定める。
ファインバブルは直径100μm以下の全て、マイクロバブルは直径1~100μmの気泡であり、マイクロ・ナノバブルは数十~数百ナノメートルの気泡を言う。
▲3▼キャビテーションピーニングとは、気泡崩壊時の圧縮破裂作用時に衝撃波・衝撃力を発生し、ショットピーニングのような表面改質法に利用される用語。
A glossary of terms used in the present invention.
▲1▼ What is erosion?
Bubbles near the surface stick to each other due to viscosity and surface tension, and at the moment of disappearance, a strong pressure wave is generated at the center of the bubble, causing damage to the metal.
(2) Microbubbles are defined in ISO 20480-1:2017.
Fine bubbles are all bubbles with a diameter of 100 μm or less, microbubbles are bubbles with a diameter of 1 to 100 μm, and micro/nanobubbles are bubbles with a diameter of several tens to hundreds of nanometers.
(3) Cavitation peening is a term used in surface modification methods such as shot peening, in which shock waves and impact forces are generated at the time of compression bursting action during bubble collapse.

本発明の請求項1は、キャビテーション発生装置で作られた微細気泡を研削装置上の砥石の研削面に噴射時に起きる洗浄作用による研削砥石面に対する研削面再生方法であって、上記微細気泡を噴射するキャビテーション噴射ノズルは、研削砥石の外周面に向けて上記微細気泡を噴射することで研削砥石表面層の研削屑を排除して研削面に砥粒を露出再生する微細気泡の噴射作用による研削砥石の常時研削面再生方法である。 Claim 1 of the present invention is a method for regenerating a grinding surface for a grinding wheel surface by a cleaning action that occurs when microbubbles produced by a cavitation generator are injected onto the grinding surface of a grinding wheel on a grinding machine, wherein the microbubbles are injected. The cavitation injection nozzle ejects the fine bubbles toward the outer peripheral surface of the grinding wheel to remove the grinding debris on the surface layer of the grinding wheel and expose the abrasive grains to the grinding surface. This is a method for constantly regenerating a ground surface.

請求項2は、請求項1の微細気泡の噴射作用による研削砥石の常時研削面再生方法であって、上記研削砥石がゴム砥石時には、該ゴム砥石の外周面にキャビテーション噴射ノズルから噴射する微細気泡は、表面円滑なゴム砥石面の結合剤である熱硬化性樹脂を剥離機能で剥がすことで砥粒を砥石面に露出して新たな梨地面をゴム砥石に再生成形させることを特徴とする。 A second aspect of the present invention is a method for constantly regenerating a grinding surface of a grinding wheel by jetting microbubbles according to the first aspect, wherein, when the grinding wheel is a rubber grindstone, the microbubbles are jetted from a cavitation jet nozzle onto the outer peripheral surface of the rubber grindstone. is characterized by exposing the abrasive grains on the grindstone surface by peeling off the thermosetting resin, which is the binding agent for the rubber grindstone surface with a smooth surface, and remolding a new satin surface on the rubber grindstone.

請求項3は、上記請求項1~請求項2に記載の微細気泡の噴射作用によるゴム砥石又は研削砥石の常時研削面再生成形方法において、キャビテーション発生装置で作られる微細気泡は、キャビテーション発生装置内のアキュームレーターを介在時は連続する均一圧力でキャビテーション噴射ノズルから吐出させ、アキュームレーターを介在しない時は脈動噴射する構成とした、微細気泡の噴射作用によるゴム砥石及び研削砥石の常時研削面再生装置である。 Claim 3 is the method for constantly regenerating the grinding surface of a rubber grindstone or grinding wheel by the jetting action of microbubbles according to any one of claims 1 and 2, wherein the microbubbles generated by the cavitation generator are generated in the cavitation generator. Continuous uniform pressure is discharged from the cavitation injection nozzle when the accumulator is interposed, and pulsating injection is performed when the accumulator is not interposed. is.

請求項4は、上記請求項3に記載のゴム砥石又は研削砥石の常時研削面再生装置において、上記キャビテーション発生装置で作られる微細気泡の水圧、水量、脈動噴射のオン・オフ、微細気泡のサイズ設定等は、NC制御装置からの指令信号により、キャビテーション発生装置の機能設定を司るゴム砥石及び研削砥石の常時研削面再生装置である。 Claim 4 is the apparatus for constantly regenerating the grinding surface of a rubber whetstone or a grinding wheel according to claim 3, wherein the water pressure and water volume of microbubbles generated by the cavitation generator, the on/off of pulsating jet, and the size of the microbubbles. Settings, etc. are the constant grinding surface regeneration device for the rubber whetstone and the grinding whetstone, which governs the function setting of the cavitation generator according to the command signal from the NC control device.

請求項5は、上記微細気泡を噴射するキャビテーション噴射ノズルは、ゴム砥石又は研削砥石の外周面と、該ゴム砥石又は研削砥石の外周面が被研削材に接する研削面に向けて微細気泡を噴射すべく各々配置され、上記微細気泡を研削砥石の外周面と被研削材に接する研削面に噴射させ、ゴム砥石又は研削砥石の外周面を噴射時に砥粒を露出させる一方、被研削材の表面研削層に対して噴射される微細気泡をゴム砥石又は研削砥石の気泡圧搾研削力により崩壊食させて気泡崩壊時に衝撃波・衝撃力を発生し、ショットピーニングのような表面改質を図り、ゴム砥石内層又は研削砥石内層の砥粒を研削面に露出再生成形するとともに被削材の加工面性状を高精度に研削・研磨することを特徴とする。 In claim 5, the cavitation injection nozzle for injecting fine air bubbles jets fine air bubbles toward the outer peripheral surface of the rubber whetstone or the grinding whetstone and the grinding surface where the outer peripheral surface of the rubber whetstone or the grinding whetstone is in contact with the material to be ground. The fine bubbles are sprayed onto the outer peripheral surface of the grinding wheel and the grinding surface in contact with the material to be ground. Fine bubbles injected into the grinding layer are collapsed and eaten by the rubber grindstone or the grinding force of the grinding wheel, and shock waves and impact forces are generated when the bubbles collapse, and surface modification such as shot peening is attempted, and the rubber grindstone is used. The abrasive grains of the inner layer or the inner layer of the grinding wheel are exposed and remolded on the grinding surface, and the processed surface properties of the work material are ground and polished with high precision.

請求項6は、上記請求項5の研削装置において、上記微細気泡を噴射するキャビテーション噴射ノズルは、ゴム砥石又は研削砥石の外周面が被研削材に接する研削面に向けて微細気泡を噴射する1本だけとしたことを特徴とする。 According to claim 6, in the grinding apparatus according to claim 5, the cavitation injection nozzle for injecting the microbubbles injects microbubbles toward the grinding surface where the outer peripheral surface of the rubber whetstone or the grinding whetstone is in contact with the material to be ground. It is characterized by having only a book.

請求項7の被削材の表面研削層を性状向上する研削・研磨する研削装置は、上記請求項5と請求項6の被削材の表面研削層を性状向上する研削・研磨する研削装置において、キャビテーション発生装置で作られる微細気泡は、キャビテーション発生装置内のアキュームレーターを介在時は連続する均一圧力でキャビテーション噴射ノズルから吐出させ、アキュームレーターを介在しない時は脈動噴射する構成としたことを特徴とする。 The grinding apparatus for grinding and polishing the surface grinding layer of the work material according to claim 7 is the grinding apparatus for grinding and polishing the surface grinding layer of the work material according to claim 5 and claim 6. , The microbubbles produced by the cavitation generator are discharged from the cavitation injection nozzle at a continuous uniform pressure when the accumulator in the cavitation generator is interposed, and are pulsatingly injected when the accumulator is not interposed. and

請求項8の被削材の表面研削層を性状向上する研削・研磨する研削装置は、上記請求項7記載の被削材の表面研削層を性状向上する研削・研磨する研削装置において、上記キャビテーション発生装置の設定となる水圧、水量、脈動噴射のオン・オフ、微細気泡のサイズ設定等は、キャビテーション発生装置の機能設定を司るNC制御装置からの指令信号により行うことを特徴とする。 The grinding apparatus for grinding and polishing the surface grinding layer of the work material according to claim 8 is the grinding apparatus for grinding and polishing the surface grinding layer of the work material according to claim 7, wherein the cavitation is The setting of the generator, such as water pressure, water volume, on/off of pulsating jet, fine bubble size setting, etc., is performed by a command signal from the NC controller that controls the function setting of the cavitation generator.

請求項9のキャビテーション噴射ノズルは、上記請求項1~4記載のゴム砥石又は研削砥石の常時研削面再生方法及び装置において、上記キャビテーション噴射ノズルは、内外の二重筒体からなり、中心側筒内には超高圧水を供給し、外周側環状筒の空間内には圧水を供給する構成であって、上記キャビテーション噴射ノズルから噴射する噴射水は、中心部は超高圧柱を呈し、該超高圧柱の外周辺は環状の微細気泡を呈し、該微細気泡の外周辺は環状の低圧水からなる三重環状の噴射水となし、中心部の超高圧柱は砥石外周面に付着した研削屑や剥離した接着剤を高圧洗浄し、環状の微細気泡は砥石外周面を壊食させ、外周辺の環状の低圧水は、壊食された砥石外周面の研削屑や剥離した接着剤等を洗浄することを特徴とする。 According to claim 9, there is provided a cavitation injection nozzle in the method and apparatus for constantly regenerating a ground surface of a rubber grindstone or grinding wheel according to claims 1 to 4, wherein the cavitation injection nozzle is composed of inner and outer double cylinders. Ultra high pressure water is supplied to the inside of the cylinder, and high pressure water is supplied to the space of the outer circumferential annular cylinder. The outer periphery of the ultra-high pressure column presents annular micro-bubbles, the outer periphery of the micro-bubbles is a triple annular jet of low-pressure water, and the ultra-high pressure column in the center is grinding dust adhering to the outer peripheral surface of the grindstone. The ring-shaped fine bubbles erode the outer peripheral surface of the grinding wheel, and the ring-shaped low-pressure water cleans the eroded grinding dust and peeled adhesive on the outer peripheral surface of the wheel. characterized by

請求項10のキャビテーション噴射ノズルは、上記請求項5と6記載の被削材の表面研削層を性状向上する研削・研磨する研削装置において、上記キャビテーション噴射ノズルは、内外の二重筒体からなり、中心側筒内には超高圧水を供給し、外周側環状筒の空間内には低圧水を供給することで、上記キャビテーション噴射ノズルから噴射する噴射水は、砥石の研削面に対して、その中心部は超高圧柱を呈し、該超高圧柱の外周辺は環状の微細気泡を呈し、該微細気泡の外周辺は環状の低圧水からなる三重環状の噴射水としたこと特徴とする。 The cavitation injection nozzle of claim 10 is the grinding apparatus for grinding and polishing the surface grinding layer of the work material according to claims 5 and 6, wherein the cavitation injection nozzle comprises an inner and outer double cylinder. By supplying ultra-high pressure water to the center side cylinder and low pressure water to the space of the outer circumference side ring cylinder, the jet water jetted from the cavitation jet nozzle is applied to the grinding surface of the grindstone by: The central portion presents an ultra-high pressure column, the outer periphery of the ultra-high pressure column presents annular fine bubbles, and the outer periphery of the fine bubbles is characterized by a triple annular jet of annular low-pressure water.

請求項11の自動研削運転方法は、上記請求項4と請求項8における研削制御を司るNC制御装置において、被研削材に対する砥石選定と、微細気泡の選定と、研削作業中の研削面及び被研削材の表面状態検出と、研削後の砥石面や被研削材の表面形状の画像検出と、研削後の砥石面や被研削材の表面形状の総合判定と、不良品の被研削材を砥石選定工程にフィードバックして再度の研削作業を繰り返させることを特徴とする。 The automatic grinding operation method of claim 11 is characterized in that, in the NC control device that controls the grinding of claims 4 and 8, selection of a grinding wheel for a material to be ground, selection of microbubbles, selection of a grinding surface and a workpiece during grinding work, Detection of the surface condition of the grinding material, image detection of the surface shape of the grinding wheel surface and the material to be ground after grinding, comprehensive judgment of the surface shape of the grinding wheel surface and the material to be ground after grinding, and determination of the defective grinding material to the grinding wheel It is characterized by feeding back to the selection process and repeating the grinding work again.

請求項1の微細気泡の噴射作用による研削砥石の常時研削面再生方法よると、微細気泡を噴射するキャビテーション噴射ノズルは、研削砥石の外周面に向けて上記微細気泡を外周面に噴射して研削砥石表面層の研削屑を排除して研削面に砥粒を露出再生するから、砥石表面を目詰まりさせようとする研削屑他を吹き飛ばし、研削砥石内層の砥粒を研削面に常に露出再生でき、砥石表面が常時ドレッシング・清掃され、研削作用が高効率に促進できる。この結果、被削材加工面に対する加工面性状を高精度に向上できる。 According to the method for constantly regenerating the grinding surface of a grinding wheel by the action of injecting microbubbles according to claim 1, the cavitation injection nozzle for injecting microbubbles injects the microbubbles toward the outer peripheral surface of the grinding wheel to grind. Since the grinding debris on the surface layer of the grinding wheel is removed and the abrasive grains are exposed and regenerated on the grinding surface, the grinding debris and other substances that clog the surface of the grinding wheel are blown away, and the abrasive grains in the inner layer of the grinding wheel are always exposed and regenerated on the grinding surface. , the surface of the grinding wheel is constantly dressed and cleaned, and the grinding action can be promoted with high efficiency. As a result, the machined surface properties of the machined surface of the work material can be improved with high accuracy.

請求項2の微細気泡の噴射作用によるゴム砥石の常時研削面再生方法よると、ゴム表面を目詰まりさせようとする研削屑他を吹き飛ばし、研削砥石内層の砥粒を研削面に常に露出再生でき、目詰まりするゴム砥石表面が常時ドレッシング・清掃され、研削作用が高効率に促進できる。この結果、ゴム砥石による被削材加工面に対する加工面性状を高精度に向上できる。 According to the method for constantly regenerating the grinding surface of a rubber grindstone by the jetting action of microbubbles according to claim 2, the grinding shavings and the like that tend to clog the rubber surface are blown off, and the abrasive grains in the inner layer of the grinding wheel are constantly exposed to the grinding surface and regenerated. , The surface of the clogged rubber whetstone is constantly dressed and cleaned, and the grinding action can be promoted with high efficiency. As a result, the quality of the machined surface of the material to be machined by the rubber whetstone can be improved with high accuracy.

請求項3は上記請求項1~請求項2に記載の微細気泡の噴射作用によるゴム砥石又は研削砥石の常時研削面再生方法において、キャビテーション発生装置で作られた微細気泡は、キャビテーション発生装置内のアキュームレーターを介在時は連続する均一圧力でキャビテーション噴射ノズルから吐出させるか、アキュームレーターを介在しない時は脈動噴射できるから、上記微細気泡は、砥石外周面に対し一定噴射か脈動噴射が選択でき、砥石面の目詰まり状況に対応した研削屑の排除作用を大幅に促進でき、ゴム砥石又は研削砥石による被削材に対する更なる研削効率と研削面・加工面性状を高精度に向上できる。 Claim 3 is a method for constantly regenerating a grinding surface of a rubber whetstone or a grinding wheel by the jetting action of microbubbles according to any one of claims 1 and 2 above, wherein the microbubbles generated by the cavitation generator are injected into the cavitation generator. When an accumulator is interposed, it is discharged from the cavitation injection nozzle at a continuous uniform pressure. It is possible to greatly promote the removal of grinding debris corresponding to the clogging of the grindstone surface, and to further improve the grinding efficiency and the ground/machined surface properties of the work material with the rubber grindstone or grinding grindstone with high accuracy.

請求項4は、上記請求項3に記載のゴム砥石又は研削砥石の常時研削面再生装置において、上記キャビテーション発生装置で作られる微細気泡の水圧、水量、脈動噴射のオン・オフ、微細気泡のサイズ設定等は、NC制御装置からの指令信号により、キャビテーション発生装置の機能設定を司るから、砥石外周面に対する任意で最適条件の噴射量他が自在に選択できる。この結果、研削面の目詰まりやゴム砥石の研削面のゴム砥石露出状況に対応した研削屑やゴム剤の排除作用を適応制御でき、大幅な研削面の改善が図られ、被削材に対する研削効率と研削面の面性状を高精度に維持向上できる。 Claim 4 is the apparatus for constantly regenerating the grinding surface of a rubber whetstone or a grinding wheel according to claim 3, wherein the water pressure and water volume of microbubbles generated by the cavitation generator, the on/off of pulsating jet, and the size of the microbubbles. Since the function of the cavitation generator is controlled by the command signal from the NC control device, the injection amount and other conditions for the outer circumferential surface of the grindstone can be freely selected. As a result, it is possible to adaptively control the removal of grinding waste and rubber agent according to the clogging of the grinding surface and the exposure of the rubber grinding wheel on the grinding surface of the rubber grinding wheel. Efficiency and surface quality of the ground surface can be maintained and improved with high accuracy.

請求項5は、キャビテーション噴射ノズルの微細気泡をゴム砥石又は研削砥石面と、このゴム砥石又は研削砥石で研削・研磨される被研削材の研削面にも噴射してゴム砥石又は研削砥石により被研削材の表面研削層研削装置であるから、ゴム砥石又は研削砥石の外周面が常時ドレッシング・清掃されゴム砥石内層又は研削砥石内層の砥粒を研削面に露出再生出来るとともに、該ゴム砥石又は研削砥石の外周面が被研削材に接する研削面に向けて上記ゴム砥石又は研削砥石の外周面と被研削材の表面研削層に対し、高速噴射時に微細気泡を噴射すると、ゴム砥石又は研削砥石による圧搾研削力により、微細気泡は気泡圧搾研削力により崩壊食されて気泡崩壊時に衝撃波・衝撃力を発生し、ショットピーニング作用による表面改質を図る。更に、ゴム砥石内層又は研削砥石内層の砥粒は、研削面に露出再生成形され、結果的に被削材の加工面性状を高精度に研削・研磨・改善できる。 In claim 5, fine air bubbles of the cavitation injection nozzle are injected to the surface of the rubber whetstone or the grinding whetstone and also to the grinding surface of the material to be ground and polished by the rubber whetstone or the grinding whetstone, so that the rubber whetstone or the grinding whetstone is applied. Since it is a surface-grinding layer grinding machine for abrasives, the rubber whetstone or the outer peripheral surface of the grinding whetstone is constantly dressed and cleaned so that the abrasive grains of the inner layer of the rubber whetstone or the inner layer of the whetstone can be exposed and regenerated on the grinding surface. When microbubbles are injected at high speed toward the grinding surface where the outer peripheral surface of the grindstone contacts the material to be ground, the outer peripheral surface of the rubber grindstone or the grinding wheel and the surface grinding layer of the material to be ground. Due to the compression grinding force, the fine bubbles are collapsed by the bubble compression grinding force, generating a shock wave and impact force when the bubbles collapse, aiming for surface modification by shot peening action. Furthermore, the abrasive grains in the inner layer of the rubber whetstone or the inner layer of the grinding whetstone are exposed and reproduced on the grinding surface, and as a result, the surface properties of the work can be ground, polished and improved with high accuracy.

請求項6は、上記請求項5の研削装置において、上記微細気泡を噴射するキャビテーション噴射ノズルは、砥石の外周面が被研削材に接する研削面に向けて微細気泡を噴射する1本としても良く、先ず砥石の外周面に微細気泡が噴射されて常時ドレッシング・清掃されて砥石内層の砥粒を研削面に露出再生し、該砥石の外周面が被研削材に接する研削面に向けられ、上記砥石の外周面にも微細気泡が噴射されて被研削材の表面研削層に対して該微細気泡を崩壊食させ、この時に砥石の圧搾研削力により、被削材の加工面性状を高精度に研削・研磨できる。 In claim 6, in the grinding apparatus of claim 5, the cavitation injection nozzle for injecting the fine bubbles may be one that injects the fine bubbles toward the grinding surface where the outer peripheral surface of the grindstone is in contact with the material to be ground. First, microbubbles are sprayed onto the outer peripheral surface of the grindstone, which is constantly dressed and cleaned to expose and regenerate the abrasive grains in the inner layer of the grindstone on the grinding surface. Microbubbles are also sprayed onto the outer peripheral surface of the grindstone, causing the microbubbles to collapse and eat the surface grinding layer of the material to be ground. Can be ground and polished.

上記請求項7は、上記請求項5と請求項6の被削材の表面研削層を性状向上する研削・研磨する研削装置において、キャビテーション発生装置で作られる微細気泡は、キャビテーション発生装置内のアキュームレーターを介在時は連続する均一圧力でキャビテーション噴射ノズルから吐出し、アキュームレーターを介在しない時は脈動噴射する作用となり、上記微細気泡は、脈動又は一定圧で砥石外周面に対応した任意な噴射方法が選択できるから、目詰まり状況に対応した排除作用を大幅に改善・促進でき、被削材に対する更なる加工効率と加工面性状を高精度に向上できる。 The above claim 7 is the grinding apparatus for grinding and polishing the surface grinding layer of the work material according to the above claims 5 and 6, wherein the fine bubbles created by the cavitation generator are accumulated in the cavitation generator. When an accumulator is interposed, it is discharged from the cavitation injection nozzle at a continuous uniform pressure, and when an accumulator is not intervened, it becomes a pulsating injection. can be selected, the removal action corresponding to the clogging condition can be greatly improved and accelerated, and the machining efficiency and machined surface properties of the work material can be improved with high accuracy.

上記請求項8の被削材の表面研削層を研削・研磨する研削装置によると、上記請求項7記載の被削材の表面研削層を性状向上する研削・研磨する研削装置において、上記キャビテーション発生装置の設定となる水圧、水量、脈動噴射のオン・オフ、微細気泡のサイズ設定は、キャビテーション発生装置の機能設定を司るNC制御装置からの指令信号により、自由自在に各種機能設定ができ、砥石外周面や研削面に対して任意で最適条件に噴射量が選択できる。この結果、被削材に対する更なる研削効率と研削面性状を高精度に向上できる。 According to the grinding apparatus for grinding and polishing the surface grinding layer of the work material according to the above claim 8, in the grinding apparatus for grinding and polishing the surface grinding layer of the work material according to the above claim 7, the cavitation occurs. The water pressure, water volume, pulsating jet on/off, and fine bubble size settings, which are the device settings, can be freely set by command signals from the NC controller that controls the function settings of the cavitation generator. The injection amount can be arbitrarily selected according to the optimum conditions for the outer peripheral surface and the grinding surface. As a result, it is possible to improve the efficiency of grinding the work material and the quality of the ground surface with high accuracy.

上記請求項9と請求項10は、上記請求項1~4と請求項6~7において、上記キャビテーション噴射ノズルは、1本構成でも三重環状の噴射水を放出できるから、中心側筒内に超高圧水を供給すると、外周側環状筒の空間内には低圧水が供給されるから、上記キャビテーション噴射ノズルから噴射する噴射水は、ゴム砥石又は研削砥石の研削面に対して、その中心部は超高圧柱を呈し、該超高圧柱の外周辺は環状の微細気泡を呈し、該微細気泡の外周辺は環状の低圧水を分割給水できる。これで、各研削・研磨部位に対応した繊細且つ高精度な微細気泡の噴射になり、ゴム砥石又は研削砥石の外周面や被削材に対する更なる研削効率と研削面性状を飛躍的に高精度に向上できる。 Claims 9 and 10 are based on Claims 1 to 4 and Claims 6 to 7, in which the cavitation injection nozzle can emit triple ring-shaped injection water even with a single structure. When high-pressure water is supplied, low-pressure water is supplied into the space of the outer circumferential annular cylinder. An ultra-high pressure column is present, and the periphery of the ultra-high pressure column presents annular microbubbles, and the periphery of the microbubbles can be dividedly supplied with annular low-pressure water. With this, fine and highly accurate fine air bubbles are jetted corresponding to each grinding/polishing part, and the grinding efficiency and grinding surface properties for the outer peripheral surface of the rubber grinding wheel or grinding wheel and the work material are dramatically improved. can be improved to

上記請求項11の自動研削運転方法によると、上記研削制御を司るNC制御装置に対して、被研削材に対する砥石選定と、微細気泡の選定と、研削作業中の研削面及び被研削材の表面状態検出と、研削後の砥石面や被研削材の表面形状の画像検出と、研削後の砥石面や被研削材の表面形状の総合判定と、不良品の被研削材を砥石選定工程にフィードバックして再度の研削作業を繰り返させるから、上記被研削材に対する研削砥石の自動選定と、微細気泡の水圧・水量他の選定と、研削中の研削状態の検出と、研削後の良否判定及び不良品砥石や被研削材の再研削が自動で行える。更に、自動研削運転により、被研削材に対する品質が均一に保たれ保証される。 According to the automatic grinding operation method of claim 11, the grinding wheel selection for the material to be ground, the selection of microbubbles, the grinding surface during the grinding operation and the surface of the material to be ground State detection, image detection of the surface shape of the grinding wheel surface and material to be ground after grinding, comprehensive judgment of the surface shape of the grinding wheel surface and material to be ground after grinding, and feedback of defective grinding material to the grinding wheel selection process. Since the grinding work is repeated again, automatic selection of the grinding wheel for the material to be ground, selection of water pressure and water volume of fine bubbles, detection of the grinding state during grinding, judgment of quality and failure after grinding. Re-grinding of non-defective whetstones and materials to be ground can be performed automatically. In addition, the automatic grinding operation ensures uniform quality for the material to be ground.

本発明の第1実施態様で、ゴム砥石又は硬質砥石の常時研削面再生装置及び被削材の表面研削層の性状向上研削装置の全体図である。 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall view of a device for constantly regenerating a ground surface of a rubber whetstone or a hard whetstone and a grinding device for improving properties of a surface grinding layer of a work material in the first embodiment of the present invention; 本発明の第1実施態様で、キャビテーションノズルの模式断面図である。 1 is a schematic cross-sectional view of a cavitation nozzle in the first embodiment of the present invention; FIG. 本発明の実施態様で、キャビテーションノズルからゴム砥石又は研削砥石への微細気泡の噴射状態図である。 FIG. 2 is a diagram showing the injection state of fine air bubbles from a cavitation nozzle to a rubber whetstone or a grinding whetstone in an embodiment of the present invention; 本発明の実施態様で、被被研削材の表面での微細気泡の脈動キャビテーションピーニングの作用断面図である。 FIG. 4 is a cross-sectional view of the action of pulsating cavitation peening of microbubbles on the surface of the material to be ground in the embodiment of the present invention. 本発明の実施態様で、ゴム砥石と硬質砥石(ビトリファイド砥石)の研削面再生作用図である。 FIG. 2 is a diagram showing the action of regenerating a ground surface of a rubber grindstone and a hard grindstone (vitrified grindstone) in an embodiment of the present invention. 本発明の実施態様で、ゴム砥石又は硬質砥石への脈動微細気泡によるドレッシング作用図である。 FIG. 5 is a diagram showing the action of dressing with pulsating microbubbles on a rubber grindstone or a hard grindstone in an embodiment of the present invention. 本発明の実施態様で、一定微細気泡と脈動微細気泡とのキャビテーション発生装置の各機能図である。 FIG. 4 is a functional diagram of a cavitation generator for constant microbubbles and pulsating microbubbles according to an embodiment of the present invention; 本発明の第2実施態様で、被削材と砥石間での微細気泡の圧縮ピーニングの作用断面図である。 FIG. 8 is a cross-sectional view of the operation of compression peening of microbubbles between the work material and the grindstone in the second embodiment of the present invention. 本発明の第3実施態様で、ブレードに対するゴム砥石又は硬質砥石による研削作業図である。 FIG. 10 is a diagram of a grinding operation of a blade with a rubber grindstone or a hard grindstone in the third embodiment of the present invention; 本発明の各実施態様を総括的に示し、発明技術の系統図である。 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system diagram of an invention technique, generally showing each embodiment of the present invention; 本発明の第4実施態様で、NC制御装置でのプログラム作成のフローチャート図である。 FIG. 11 is a flowchart of program creation in the NC control device in the fourth embodiment of the present invention;

以下、図1~図11により、本発明の各実施例について順次に説明する。 1 to 11, each embodiment of the present invention will be described in sequence.

先ず、図1は、キャビテーション発生装100置及びゴム砥石11(GT)による被削材Yの表面研削層の性状向上のシステム全体図を示している。
先ず、キャビテーション発生装置100は、公知装置と略同じ構成部材からなる。クーラント液1を貯めるタンク2には、吸引ポンプPを備えており、該ポンプPを駆動するモーターMにより、クーラント液1を汲み上げる時の濾過フィルタ3とレギュレータ4とプランジャー弁5とそのドレン6と、更に圧縮されたクーラント液1のバイパス弁7と、脈動するクーラント液1を平滑化するアキュームレーター8とを備えており、配管9を経由して外部の研削盤10の回転軸に取付けたゴム砥石11の上部空間に気泡噴射ノズルNを備えている。上記気泡噴射ノズルNは、図1(b)に見るように、ゴム砥石11の上部のノズルN1と、研削砥石11の回転方向で被削材Yに食い込む部分に向けたノズルN2の2箇所に配置されている。尚、上記キャビテーション発生装置100は、NC制御装置50によって運転制御されている。(詳細機能は、後記する)。
First, FIG. 1 shows an overall view of the system for improving the properties of the surface grinding layer of the workpiece Y using a cavitation generator 100 and a rubber grindstone 11 (GT).
First, the cavitation generator 100 is composed of substantially the same components as those of known devices. A tank 2 for storing the coolant 1 is provided with a suction pump P, and a motor M driving the pump P controls a filtration filter 3, a regulator 4, a plunger valve 5, and a drain 6 thereof when pumping up the coolant 1. , a bypass valve 7 for the compressed coolant liquid 1, and an accumulator 8 for smoothing the pulsating coolant liquid 1, and are attached to the rotating shaft of the external grinder 10 via a pipe 9. A bubble injection nozzle N is provided in the upper space of the rubber whetstone 11 . As shown in FIG. 1(b), the bubble injection nozzle N is provided at two locations: a nozzle N1 above the rubber whetstone 11 and a nozzle N2 directed toward a portion of the grinding whetstone 11 that bites into the workpiece Y in the rotation direction. are placed. The operation of the cavitation generator 100 is controlled by an NC controller 50. As shown in FIG. (Detailed functions will be described later).

更に、図1(b)(c)において、ゴム砥石11(GT)と被削材Yに食い込む部分の細部を図示する。即ち、ノズルN2からの微細気泡1aは、ゴム砥石11(GT)が被削材Yに食い込む部分の研削面Y1に向け、噴射した微細気泡1aは研削面Y1に対するゴム砥石11(GT)の切削力により気泡崩壊、即ち、気泡崩壊Kされる(詳細は後記する)。また、砥石11(GT)の表面11aにも、ノズルN1から微細気泡1aを噴射して洗浄作用し、ゴム砥石表面が梨地化されて、内層の砥粒Gを研削面11aに露出生成する。 1(b) and 1(c) show details of the rubber whetstone 11 (GT) and the portion that bites into the work material Y. FIG. That is, the microbubbles 1a from the nozzle N2 are directed toward the grinding surface Y1 where the rubber grindstone 11 (GT) bites into the work material Y, and the injected microbubbles 1a are used to cut the rubber grindstone 11 (GT) against the grinding surface Y1. The force causes bubble collapse, that is, bubble collapse K (details will be described later). The surface 11a of the grindstone 11 (GT) is also cleaned by spraying fine air bubbles 1a from the nozzle N1, so that the surface of the rubber grindstone is satinized and the abrasive grains G in the inner layer are exposed on the grinding surface 11a.

上記微細気泡1aを噴射する気泡噴射ノズルNの構成は、図2の如く公知構成と略同一である。上記気泡噴射ノズルNは、内外の二重筒体P1,P2からなる。上記中心側筒P2内には、キャビテーション発生装置100の吸引ポンプPから吐出する超高圧水W1を供給し、外周側環状筒P1の環状空間内には低圧水W2を供給する。これで、上記気泡噴射ノズルNから噴射する噴射水である微細気泡1aは、図3の如く、ゴム砥石11(GT)の研削面11aに対して、その中心部は超高圧水柱W1を呈し、該水W1の外周辺は環状の微細気泡1aを呈し、該微細気泡の外周辺は環状の低圧水W2からなる三重環状の噴射水となる。 The structure of the bubble jetting nozzle N for jetting the fine bubbles 1a is substantially the same as the known structure as shown in FIG. The air bubble injection nozzle N is composed of inner and outer double cylinders P1 and P2. Ultrahigh-pressure water W1 discharged from the suction pump P of the cavitation generator 100 is supplied into the central cylinder P2, and low-pressure water W2 is supplied into the annular space of the outer circumferential annular cylinder P1. As shown in FIG. 3, the microbubbles 1a, which are jet water jetted from the bubble jetting nozzle N, exhibit an ultrahigh-pressure water column W1 at the center of the grinding surface 11a of the rubber grindstone 11 (GT). The outer circumference of the water W1 presents an annular microbubble 1a, and the outer circumference of the microbubble becomes a triple annular jet of annular low-pressure water W2.

上記キャビテーション発生装置100の吸引ポンプPから吐出する超高圧水W1は、図7に示す様に、キャビテーション発生装置100内のアキュームレーター8を介在時は連続する均一圧力P0で気泡噴射ノズルNから吐出し、アキュームレーター8を介在しない時は脈動噴射圧力PBとなる。上記脈動する微細気泡1aは、図3に示すように、砥石11の外周面11aに対応した任意な噴射方法が選択できる。しかして、ゴム砥石11の研削面11aの目詰まり状況に対応した研削屑の排除作用を大幅に促進でき、被削材Yの研削面Y1に対する更なる加工効率と加工面性状を高精度に向上できる(詳細は後記する)。 As shown in FIG. 7, the ultrahigh-pressure water W1 discharged from the suction pump P of the cavitation generator 100 is discharged from the bubble injection nozzle N at a continuous uniform pressure P0 when the accumulator 8 in the cavitation generator 100 is interposed. However, when the accumulator 8 is not interposed, the pulsating injection pressure becomes PB. As shown in FIG. 3, any injection method corresponding to the outer peripheral surface 11a of the grindstone 11 can be selected for the pulsating microbubbles 1a. As a result, it is possible to greatly promote the action of removing grinding chips corresponding to the clogging of the grinding surface 11a of the rubber whetstone 11, and to further improve the machining efficiency and the machined surface properties of the grinding surface Y1 of the workpiece Y with high accuracy. Yes (details below).

上記キャビテーション発生装置100で作られる微細気泡1aの水圧、水量、脈動噴射のオン・オフ、微細気泡1aのサイズ設定は、NC制御装置50からの指令信号(図示なし)により、キャビテーション発生装置100の機能設定を司る自動運転(コンピュータ運転制御技術AI)により支配されている。即ち、NC制御装置50が持つコンピュータ運転制御技術AIの機能により、図11の如く自動プログラムされ、自動運転される(詳細は後記する)。 The water pressure and water volume of the microbubbles 1a generated by the cavitation generator 100, the ON/OFF of the pulsating jet, and the size setting of the microbubbles 1a are controlled by a command signal (not shown) from the NC controller 50. It is governed by automatic driving (computer driving control technology AI) that governs function settings. That is, by the functions of computer operation control technology AI that the NC control device 50 has, automatic programming as shown in FIG. 11 and automatic operation are performed (details will be described later).

続いて、上記NC制御装置50により自動運転するためのプロラム設定と自動運転の概要を説明する。
初めに、自動研削運転方法となる研削作業の手順構成から説明する。研削制御を司るNC制御装置50に対して、被研削材Yに対する砥石選定と、微細気泡1aの選定と、研削作業中の研削面Y1及び被研削材Yの表面状態検出と、研削後の砥石面や被研削材Yの表面形状の画像検出と、研削後の砥石面11aや被研削材Yの表面形Y1の総合判定と、不良品の被研削材を砥石選定工程にフィードバックして再度の研削作業を繰り返えされる。
Next, an overview of program setting and automatic operation for automatic operation by the NC control device 50 will be described.
First, the procedure configuration of the grinding work, which is the automatic grinding operation method, will be described. For the NC control device 50 that controls grinding, selection of the grindstone for the material Y to be ground, selection of the microbubbles 1a, detection of the grinding surface Y1 during the grinding operation and the surface state of the material Y to be ground, and the grindstone after grinding Image detection of the surface and the surface shape of the material Y to be ground, comprehensive judgment of the grinding wheel surface 11a after grinding and the surface shape Y1 of the material Y to be ground, and feedback of the defective material to be ground to the grinding wheel selection process to perform the process again. Grinding work is repeated.

その詳細は、図1及び図11において、NC制御装置50の起動「スタート」S1により、「被研削材の選定・・・ゴム砥石か研削砥石か」S2を設定すると、次の「水圧・水量・脈動の有無・微細気泡のサイズ・の各設定」S3、「ゴム砥石GT」S4の「状態検出」S6か「研削砥石BT」S5の「状態検出」S7か、「被削材Y」S6かを、各々「状態検出」S8する。この時、各砥石からの反射光線で砥石表面の粗さを・画像として映し出すリモートセンサ(図示なし)により画像検出」S8する機能が盛り込まれているから、設定した「表面粗さか適か否か?」S9,S10,S11を判定し、OKならば「総合的判定で合格品」S12として「エンド」S13。NG(不合格品)ならば「水圧・水量・脈動の有無・微細気泡のサイズ・の各設定」S3にフィードバックし、設定変更して再トライする。最終的に合格品に誘導制御される。 1 and 11, when the NC control device 50 is activated "start" S1 to set "selection of material to be ground ... rubber whetstone or grinding whetstone" S2, the following "water pressure/water volume・Each setting of presence/absence of pulsation and size of microbubbles” S3, “status detection” S6 of “rubber wheel GT” S4 or “status detection” S7 of “grinding wheel BT” S5, or “work material Y” S6 "state detection" S8. At this time, a remote sensor (not shown) that projects the roughness of the surface of the grindstone as an image using the reflected light from each grindstone detects an image (S8). ?” S9, S10, and S11 are judged, and if OK, “passed product by comprehensive judgment” S12 and “end” S13. If it is NG (failed product), it is fed back to "each setting of water pressure, amount of water, presence or absence of pulsation, and size of microbubbles" S3 to change the setting and try again. Finally, it is guided and controlled to a passing product.

しかして、上記被研削材Yに対するゴム砥石GT(11)、又は硬質砥石BTの自動選定と、微細気泡1aの水圧他の各選定と、この後の自動研削運転により、被研削材Yに対する品質が均一に保たれ、且つ保証される。 Thus, the automatic selection of the rubber grindstone GT (11) or the hard grindstone BT for the material Y to be ground, the water pressure of the microbubbles 1a and other selections, and the automatic grinding operation after this, the quality of the material Y to be ground is kept uniform and guaranteed.

続いて、図3~図5により、キャビテーション発生装置100で作られた微細気泡1aを砥石11(GT)の研削面11aに噴射時に起きる洗浄作用や崩壊作用(キャビテーション・ピーニング)による砥石面に対する研削面再生方法と被削材Yの研削作用について、以下に説明する。
図4(a)(b)(c)は、脈動又は定圧した微細気泡1aによる砥石面に対する研削面の再生と同時に作用する被削材Yの表面Y1の崩壊食作用(脈動キャビテーション・ピーニング)の各工程を示している。先ず、微細気泡1aを研削面Y1に向けて噴射(a)すると、微細気泡1aは衝撃力で被削材Yの表面Y1に噴射・衝突(b)し、表面層Y1を崩壊食させる。この時、ゴム砥石11(GT)の表面も破壊するとともに、この表面層の接着層を気泡崩壊(c)させる。これで、ゴム砥石11の研削面11aにも、微細気泡1aによる壊食作用が働き、研削面11aにこびり付いた接合剤Sや研削屑を吹き飛ばし、砥粒Gを研削面に露出再生する研削砥石の常時研削面再生方法が実行される。
しかして、上記噴射による気泡の崩壊時において、被削材Yの表面層Y1には圧縮応力が作用し、研削面を補強する。これにより、砥石面の研削時の砥粒Gの無駄な脱落を防止できるから、被削材Yに対する研削効率を高めるとともに、ゴム砥石11GTの常時研削面再生方法が確実に実行できる。勿論、硬質砥石BTにおいても、同様である。
Subsequently, referring to FIGS. 3 to 5, grinding of the grindstone surface by cleaning action and collapsing action (cavitation peening) that occurs when microbubbles 1a created by the cavitation generator 100 are sprayed onto the grinding surface 11a of the grindstone 11 (GT). The surface regeneration method and the grinding action of the work material Y will be described below.
FIGS. 4(a), 4(b) and 4(c) show the decay phagocytosis (pulsation cavitation peening) of the surface Y1 of the work material Y acting simultaneously with regeneration of the ground surface on the grindstone surface by pulsating or constant-pressure microbubbles 1a. Each step is shown. First, when microbubbles 1a are jetted toward the grinding surface Y1 (a), the microbubbles 1a are jetted and collided with the surface Y1 of the work material Y by impact force (b), causing the surface layer Y1 to collapse and erode. At this time, the surface of the rubber grindstone 11 (GT) is also destroyed, and the adhesive layer of this surface layer is collapsed (c). As a result, the grinding surface 11a of the rubber grindstone 11 is also eroded by the microbubbles 1a, blowing off the bonding agent S and grinding dust sticking to the grinding surface 11a, and exposing and regenerating the abrasive grains G on the grinding surface. is executed.
Thus, when the bubbles collapse due to the injection, a compressive stress acts on the surface layer Y1 of the material Y to reinforce the ground surface. As a result, the abrasive grains G can be prevented from falling off unnecessarily during grinding of the grindstone surface, so that the grinding efficiency for the work material Y can be improved, and the method for constantly regenerating the ground surface of the rubber grindstone 11GT can be reliably carried out. Of course, the same applies to the hard grindstone BT.

更に、細かく説明すれば、図5(a)に示す上記ゴム砥石GT(11)時には、該ゴム砥石の外周面にキャビテーション噴射ノズルNから噴射された微細気泡1aは、高圧力で表面円滑なゴム砥石面の結合剤Sである熱硬化性樹脂又はゴムを微細気泡1aの衝突で脱落・分離させて梨地化される。この衝突で壊食作用が起き、多数の砥粒Gを砥石面に露出することで、窪み面を形成したゴム砥石に再生させる。しかして、研削性能と研削屑微粉の排出性能を促進維持する微細気泡1aの作用によるゴム砥石GT(11)の常時研削面再生方法が確実に実行できる。この作用は、図5(b)の硬質砥石(ビトリファイド砥石)BTにおいても、同様な作用効果が得られる。図示のみ示し、説明は省略する。 More specifically, when the rubber grindstone GT (11) shown in FIG. 5(a) is used, the microbubbles 1a jetted from the cavitation jet nozzle N onto the outer peripheral surface of the rubber grindstone are sprayed onto the rubber with a smooth surface at high pressure. The thermosetting resin or rubber, which is the bonding agent S on the grindstone surface, is dropped and separated by the collision of the microbubbles 1a to form a satin finish. This collision causes erosion, exposing a large number of abrasive grains G on the grindstone surface, thereby regenerating the rubber grindstone with a recessed surface. Thus, the method of constantly regenerating the ground surface of the rubber grindstone GT (11) by the action of the micro-bubbles 1a, which promotes and maintains the grinding performance and the discharge performance of fine powder of grinding dust, can be reliably carried out. This effect can also be obtained in the hard grindstone (vitrified grindstone) BT shown in FIG. 5(b). Only the illustration is shown, and the description is omitted.

しかして、上記ゴム砥石GTの特徴は、・気孔が無い。・切り屑ポケットの機能が無い。・表面は滑らか(ツルツル)。・弾性(除荷されると完全に復元する)。・被削材Yとの接触は面接触(面加工)。・砥粒Gは結合剤Sから突出していない。・冷却液となる微細気泡1aの砥石内部への供給が極めて困難。・研削も可能だが研磨が得意分野。・冷却液砥石内供給は流路設計が必要である。であるが、これにも関わらず、ゴム砥石GTの研削性能を維持できる。また、硬質砥石BTは、図5(b)中にその特性を説明しているも、砥粒が研削屑等で埋没すれば、微細気泡1aを砥石面に噴射することで、ゴム砥石と同様の表面洗浄の作用が高効率に行われる。 The characteristics of the rubber grindstone GT are as follows: No pores.・There is no chip pocket function.・The surface is smooth. • Elasticity (perfect recovery when unloaded).・Contact with work material Y is surface contact (surface machining). - The abrasive grains G do not protrude from the binder S.・It is extremely difficult to supply fine air bubbles 1a, which serve as coolant, into the grinding wheel.・Grinding is also possible, but polishing is our specialty.・It is necessary to design a flow path for supplying the cooling liquid inside the grindstone. However, in spite of this, the grinding performance of the rubber grindstone GT can be maintained. In addition, although the characteristics of the hard grindstone BT are explained in FIG. The surface cleaning action of is performed with high efficiency.

再度、上記ゴム砥石GTの常時研削面再生方法を、図6で簡潔に説明する。即ち、(脈動ウオータージェット・ピーニング)による微細気泡1a(PB)を、図7の(不連続、不等吐出)とし、このキャビテーション発生装置100による運転で説明する。先ず、図6(a)において、・砥粒Gは、砥石GT(11)の表面から見えなく埋没している。そして、・砥石の表面Sはツルツルに滑らかである。そこで、図6(b)の様に、・脈動ウオータージェットPBの微細気泡1aを砥石表面に噴射する。そうすると、図6(b)に示すように、噴射した微細気泡1aは、表面円滑なゴム砥石GT(11)面の結合剤Sである熱硬化性樹脂又はゴムを崩壊機能の付与で飛散させて、多数の砥粒Gを砥石面に露出する。この結果として、・結合剤(ゴム)Sが飛散されて削り取られる。そして、・ゴムに埋没していた砥粒Gがゴム砥石GT(11)の表層に突出する。これで、・滑らかな結合剤Sであるゴムは、削られて飛散し梨地状に荒れた面にドレッシング処理される。 Again, the method for constantly regenerating the grinding surface of the rubber grindstone GT will be briefly described with reference to FIG. That is, the operation of the cavitation generator 100 will be described with the microbubbles 1a (PB) generated by (pulsating water jet peening) being the (discontinuous, non-uniform discharge) shown in FIG. First, in FIG. 6A, the abrasive grains G are buried invisible from the surface of the grindstone GT (11). and • The surface S of the whetstone is smooth and smooth. Therefore, as shown in FIG. 6(b), fine bubbles 1a of the pulsating water jet PB are jetted onto the grindstone surface. Then, as shown in FIG. 6(b), the jetted microbubbles 1a scatter the thermosetting resin or rubber, which is the binding agent S on the surface of the rubber grindstone GT (11) with a smooth surface, by imparting a disintegrating function. , a large number of abrasive grains G are exposed on the grindstone surface. As a result, the binder (rubber) S is scattered and scraped off. Then, • The abrasive grains G embedded in the rubber protrude from the surface layer of the rubber grindstone GT (11). In this way, the rubber, which is the smooth binder S, is ground and scattered, and the surface roughened like a satin finish is subjected to a dressing treatment.

上記の如く、常時研削面再生方法によりゴム砥石GT(11)は、その表面が梨地状に荒れた面になり、・クーラント冷却液(微細気泡)1aは、荒れた面に巻き込まれて加工点に供給される。しかして、・切り屑を荒れた面が捕えて排出する。・梨地状の結合材は加工に伴い磨耗して滑らかになるも、・砥粒Gは脱落して新しい砥粒が供給される。更に、・加工点から加工点の任意間で脈動ウオータージェトである微細気泡1aが、摩耗した砥粒Gを突出再生させる。この時、・NC制御装置で、脈動サイクル、吐出圧、吐出量を適時適切に制御する。・此れらを総合的に連携し一体化して行うシステムが常時研削面再生方法である。この作用は、・ビトリファイド砥石BTでも、従来にない気孔の高効率洗浄が可能になる。勿論、均一圧力P0の微細気泡1aにおいても、略同一の作用効果が得られる。 As described above, the rubber grindstone GT (11) has a satin-like roughened surface due to the method of constantly regenerating the ground surface, and the coolant cooling liquid (microbubbles) 1a is caught in the roughened surface and supplied to Thus: • Chips are captured and ejected by the rough surface.・Although the satin-like binding material is worn away and becomes smooth with the processing, ・Abrasive grains G fall off and new abrasive grains are supplied. In addition, the fine air bubbles 1a, which are pulsating water jets, protrude and regenerate the worn abrasive grains G between working points. At this time, • The pulsation cycle, the discharge pressure, and the discharge amount are appropriately and timely controlled by the NC control device.・The system that comprehensively cooperates and integrates these is the constant grinding surface regeneration method. This action enables the vitrified grindstone BT to clean pores with high efficiency, which has not been possible in the past. Of course, substantially the same effects can be obtained with the microbubbles 1a at the uniform pressure P0.

続いて、上記研削砥石であるビトリファイド砥石BTの常時研削面再生方法について、図5(b)により、その機能・作用を詳細に説明する。図5(b)の硬質砥石であるビトリファイド砥石BTは、砥粒Gと気泡Eと結合剤Sからなる。このビトリファイド砥石BTの特性は、・気孔が有る。・気孔が切り屑ポケットの機能を果たす。・砥石表面はザラザラ(梨地)。砥石は・硬質(硬い)。・被削材Yとの接触は線(線加工)となる。・砥粒Gは結合剤Sから突出している。・クーラント冷却液となる微細気泡1aは、気孔Eに貯められ、ここから供給される。・研削(微細な切削とも言われる)。・微細気泡1aがくぼみに貯められ、砥石内供給が可能である。等々の作用効果が得られる。
更に言えば、上記微細気泡1aは、冷却液を加工点に供給した後に、切屑を包み込み吸着して外部へ効率良く排出する。これにより、従来は気泡を持たないゴム砥石において、「冷却性」「切屑排出性」を発揮して「研削焼け」を抑止し、研削面の「加工性状を向上する効果が得られる。
Next, with reference to FIG. 5(b), the functions and actions of the method for constantly regenerating the grinding surface of the vitrified grinding wheel BT, which is the grinding wheel, will be described in detail. A vitrified grindstone BT, which is a hard grindstone, shown in FIG. The characteristics of this vitrified grindstone BT are: ・There are pores. • Pores serve as chip pockets.・The whetstone surface is rough (pear-skin). The whetstone is hard (hard).・The contact with the work material Y becomes a line (line processing). - The abrasive grains G protrude from the bonding agent S. - The microbubbles 1a serving as the coolant are stored in the pores E and supplied from there. • Grinding (also known as fine cutting).・Microscopic air bubbles 1a are stored in the depressions and can be supplied into the grindstone. etc. are obtained.
Furthermore, after the cooling liquid is supplied to the machining point, the microbubbles 1a envelop the chips, adsorb them, and efficiently discharge them to the outside. As a result, conventional rubber grindstones that do not have air bubbles exhibit "cooling properties" and "chip discharging properties" to suppress "grinding burn" and to obtain the effect of improving "processability" of the ground surface.

次の本発明は、キャビテーション発生装置100で作られた微細気泡1aを、特にゴム砥石GT若しくは研削砥石(ビトリファイド砥石)BTにおいて、この砥石で研削・研磨される被研削材Yの研削面Y1に噴射し、被研削材の表面研削層Y1、即ち、研削面Y1を性状向上(疲労強度、耐食性、面粗さ、強度強化の向上)する研削装置に特定したものである。図1~図3と図5(a)、図7、図8、図9に記載の実施例を基に説明する。 Next, the present invention applies microbubbles 1a produced by the cavitation generator 100 to the grinding surface Y1 of the material Y to be ground and polished by a rubber grindstone GT or a grinding grindstone (vitrified grindstone) BT. It is specified as a grinding apparatus that jets and improves the properties (fatigue strength, corrosion resistance, surface roughness, strength enhancement) of the surface grinding layer Y1 of the material to be ground, that is, the grinding surface Y1. 1 to 3, 5(a), 7, 8 and 9 will be described.

図1において、本発明は、前記キャビテーション発生装置100で造られた細気泡1aを噴射するキャビテーション噴射ノズルN2からの微細気泡1aは、研削砥石11が被削材Yに食い込む部分の研削面Y1に向けて噴射し、加工点(研削点)を崩壊・壊食させるものである。 In FIG. 1, according to the present invention, the fine bubbles 1a from the cavitation injection nozzle N2 that injects the fine bubbles 1a created by the cavitation generator 100 are applied to the grinding surface Y1 where the grinding wheel 11 bites into the material Y to be cut. It is aimed at and sprayed to collapse and erode the processing point (grinding point).

図8において、上記微細気泡1aをPB又はP0とし、これをゴム砥石GP又は硬質砥石BTと、被研削材Yに接する研削面Y1に向けて噴射する。この時に、被研削材の表面研削層に対して高速噴射させる微細気泡1aは、キャビテーションピーニングで崩壊食(圧縮崩壊)Kする。即ち、砥石GP又BTの研削点は、圧搾研削力Fにより、研削砥石内層の砥粒Gを露出再生されるとともに被削材Yの加工面性状を高精度・高硬度に研削・研磨する。即ち、冷間加工の一種で、加工面表層の硬さ向上と残留応力を付与する慣性ピーニング効果が、砥石と被研削材Yに微細気泡1aが挟まれ圧縮されて気泡崩壊時の衝撃波・衝撃力が発生する。これにより、「疲労強度」「耐食性」「面粗さ」等の向上と強度が図られる。 In FIG. 8, the microbubbles 1a are PB or P0, which are jetted toward the rubber grindstone GP or the hard grindstone BT and the grinding surface Y1 in contact with the material Y to be ground. At this time, the microbubbles 1a jetted at high speed to the surface grinding layer of the material to be ground collapse (compressively collapse) by cavitation peening. That is, at the grinding point of the grindstone GP or BT, the abrasive grains G in the inner layer of the grindstone are exposed and regenerated by the compression grinding force F, and the processed surface properties of the work material Y are ground and polished with high precision and high hardness. That is, it is a type of cold working, and the inertial peening effect of improving the hardness of the surface layer of the processed surface and imparting residual stress is generated by the shock wave and impact when the fine bubbles 1a are sandwiched and compressed between the grindstone and the material Y to be ground, and the bubbles collapse. force is generated. As a result, "fatigue strength", "corrosion resistance", "surface roughness" and the like can be improved and the strength can be improved.

即ち、上記作用を再度説明すれば、微細気泡1aを、図1(c)及び図8(b)の如く、ゴム砥石GP又は研削砥石BTと研削面Y1に向け噴射する。これで、微細気泡1aは、砥石の表面及び研削面Y1との間に侵入して圧縮破壊K・Fを発生させ、研削面の表面層、即ち、研削面を図8(c)の如く、強・圧縮応力が働いて機械強度を高め補強するものである。 That is, to describe the above operation again, fine bubbles 1a are jetted toward the rubber grindstone GP or grinding grindstone BT and the grinding surface Y1 as shown in FIGS. 1(c) and 8(b). As a result, the microbubbles 1a enter between the surface of the grindstone and the grinding surface Y1 to generate compressive fracture KF, and the surface layer of the grinding surface, that is, the grinding surface, becomes as shown in FIG. 8(c). Strong compressive stress works to increase mechanical strength and reinforce.

上記被削材の表面研削層を性状向上する研削・研磨する研削装置の作用を、更に、具体的なワークである図9のブレードBLの翼面加工例で、再度詳細に説明する。図面では、回転軸SPの砥石GT,BTがブレードBLの曲面となる研削面Y1を高精度・高精密に研削・研磨加工研磨するに際して、・砥石は衝突面を荒くする冷却液を巻き込みながら加工点へ供給する。・特に表面が滑らかなゴム砥石GTの時は、回転に伴う外周の空気層と、相まって冷却液を弾き飛ばすことから加工点の研削焼けが長く宿命となっていた。然し乍ら、本発明によると、・荒くなった砥石GT,BTの面は砥粒Gの脱落と共に磨耗で元の滑らかさに戻るが、常にドレッシングとツルーイングを微細気泡1aの噴射により、ウオータージェットとマイクロバブル1aを維持する。・この時、微細気泡1aのマイクロバブルは砥石GT,BTと被削材BLに挟まれ圧縮されて微細気泡1aが崩壊する。しかして、効率良く、研削面Y1を高精度・高精密に研削・研磨加工研磨するのみならず、ブレードBLの表面は「疲労強度」「耐食性」「面粗さ」等の向上と強度が図られる。 The operation of the grinding apparatus for grinding and polishing the surface grinding layer of the work material to improve the properties will be described in detail again with reference to the example of blade surface processing of blade BL in FIG. 9, which is a specific workpiece. In the drawing, the grindstones GT and BT of the rotating shaft SP grind and polish the grinding surface Y1, which is the curved surface of the blade BL, with high precision and high precision. Feed to the point.・Especially when using the rubber grindstone GT, which has a smooth surface, the cooling liquid is thrown off by the air layer on the outer circumference as it rotates. However, according to the present invention, the surfaces of the grinding wheels GT and BT that have become rough return to their original smoothness due to wear as the abrasive grains G fall off. Maintain bubble 1a. - At this time, the microbubbles of the microbubbles 1a are sandwiched and compressed between the grindstones GT and BT and the work material BL, and the microbubbles 1a collapse. Thus, not only is the grinding surface Y1 efficiently and highly precisely ground, polished, and polished, but also the surface of the blade BL has improved "fatigue strength", "corrosion resistance", "surface roughness", etc. and strength. be done.

本発明の各実施態様となる発明技術の総括的系統について、図10により、簡潔に説明する。先ず、キャビテーション系のノズル形状の開発は、(A)案、(B)案、(C)案からなる。バブルの開発は、上記各ノズル形状により、(A)案、(B)案の微細気泡1aが得られる。次に、キャビテーション・バブルの開発の一つとなるゴム砥石GTにおいては、ノズルNからの微細気泡1aの噴射で、(A)案~(D)案が得られる。更に、キャビテーション・バブル・ピーニングによると、研削砥石11(GT)において、各種被削材Y(SUS材試験・実ブレード試験・実機試験のブレード)の(A)案~(D)案が実施できる。上記総括的な技術が、本発明の要旨を包括している。 A general system of the invention technology that constitutes each embodiment of the present invention will be briefly described with reference to FIG. First, the development of the cavitation nozzle shape consists of plans (A), (B), and (C). As for the development of the bubbles, fine air bubbles 1a of plan (A) and plan (B) are obtained according to the nozzle shapes described above. Next, in the rubber grindstone GT, which is one of the developments of cavitation bubbles, fine bubbles 1a are jetted from the nozzle N, and plans (A) to (D) are obtained. Furthermore, according to cavitation bubble peening, it is possible to implement plans (A) to (D) for various work materials Y (SUS material test, actual blade test, actual machine test blade) on the grinding wheel 11 (GT). . The general technique described above encompasses the gist of the present invention.

上記ブレードBLの翼面加工例による作用・効果は、・表層から約1mm圧縮応力が付与される。・加工面の疲労強度が向上する。・加工面の超寿命化。・水のみ使用しショット材(金属玉、砥粒、砂・・・)が不要。・材料の靱性を維持し組織を微細緻密化する。・表層に形成されるディンプルは摺動、潤滑性を向上する。・加工後の洗浄が不要。・研削焼けが抑止される。・硬化表層は剥がれない。・高額なプランジャーポンプが不要。等々の多彩なメリットが得られる。 The effects and effects of the example of blade surface processing of the blade BL are as follows: ・A compressive stress of about 1 mm is applied from the surface layer.・The fatigue strength of the machined surface is improved.・Extremely long service life of the machined surface.・Uses only water and does not require shot materials (metal balls, abrasive grains, sand...).・Maintains the toughness of the material and makes the structure fine and dense.・The dimples formed on the surface improve sliding and lubricity.・No need to wash after processing.・Grinding burn is suppressed.・The hardened surface layer does not peel off.・Expensive plunger pump is unnecessary. You can get various benefits such as

以上のように、本発明は、工作機械の研削・研磨加工、特に研削盤における研削技術に係わり、例えばマイクロバブルクーラント液(微細気泡)を研削・研磨加工に使用した実施例における革新的な技術であり、特に、微細気泡が持つ崩壊食作用(キャビテーションピーニング作用)により、全く新規な微細気泡の噴射作用によるゴム砥石又は研削砥石の常時研削面再生方法とその装置、被削材の表面研削層を性状向上する研削・研磨する研削装置、研削砥石用のキャビテーション噴射ノズル、自動研削運転方法の画期的な新技術を提供できる。 As described above, the present invention relates to the grinding and polishing of machine tools, particularly to the grinding technology of grinding machines. In particular, due to the decay erosion effect (cavitation peening effect) possessed by microbubbles, a completely new method and apparatus for constantly regenerating the grinding surface of a rubber grindstone or grinding wheel by the jetting action of microbubbles, and the surface grinding layer of the work material. We can provide groundbreaking new technologies such as grinding equipment for grinding and polishing, cavitation injection nozzles for grinding wheels, and automatic grinding operation methods.

本発明は、上記実施態様に限定されず、その他の多種多様な研削や磨き技術にも、更に、多様な他の用途にも展開できる新技術である。 The present invention is not limited to the embodiments described above, but is a new technology that can be extended to a wide variety of other grinding and polishing techniques, as well as to a wide variety of other applications.

1 クーラント液
1a 微細気泡
2 タンク
3 濾過フィルタ
4 レギュレータ
5 プランジャー弁
6 ドレン
8 アキュームレーター
9 配管
10 研削盤
11 研削砥石
11a 研削面
50 NC制御装置
100 キャビテーション発生装置
BL ブレード
GT,BT ゴム砥石と硬質砥石
G 砥粒
S 結合剤
SP 回転軸
E 気孔
F 圧搾研削力
K 気泡崩壊
N キャビテーションノズル
n1,n2 ノズル
P 吸引ポンプ
M モーター
Y 被削材
Y1 表面
W1 超高圧水
W2 低圧水
1 Coolant liquid 1a Fine bubble 2 Tank 3 Filtration filter 4 Regulator 5 Plunger valve 6 Drain 8 Accumulator 9 Piping 10 Grinding machine 11 Grinding wheel 11a Grinding surface 50 NC control device 100 Cavitation generator BL Blade GT, BT Rubber wheel and hard Grinding wheel G Abrasive grain S Bonding agent SP Rotating shaft E Pores F Compression grinding force K Bubble collapse N Cavitation nozzles n1, n2 Nozzle P Suction pump M Motor Y Work material Y1 Surface W1 Ultra high pressure water W2 Low pressure water

Claims (11)

キャビテーション発生装置で作られた微細気泡を研削装置上の研削砥石の研削面に噴射時に起きる洗浄作用による砥石面に対する研削面再生法であって、
上記微細気泡を噴射するキャビテーション噴射ノズルは、研削砥石の外周面に向けて上記微細気泡を噴射することで研削砥石表面層の研削屑を排除して研削面に砥粒を露出再生することを特徴とする微細気泡の噴射作用による研削砥石の常時研削面再生方法。
A grinding surface regeneration method for a grinding wheel surface by a cleaning action that occurs when microbubbles produced by a cavitation generator are sprayed onto the grinding surface of a grinding wheel on a grinding machine, comprising:
The cavitation injection nozzle that injects the fine bubbles is characterized by ejecting the fine bubbles toward the outer peripheral surface of the grinding wheel, thereby removing the grinding dust on the surface layer of the grinding wheel and exposing and regenerating the abrasive grains on the grinding surface. A method for constantly regenerating the grinding surface of a grinding wheel by the jetting action of microbubbles.
上記請求項1の微細気泡の噴射作用による研削砥石の常時研削面再生方法であって、
上記研削砥石がゴム砥石時には、該ゴム砥石の外周面にキャビテーション噴射ノズルから噴射する微細気泡は、表面平滑なゴム砥石面の結合剤である熱硬化性樹脂又はゴムを剥離機能で剥がすことで砥粒を砥石面に露出して新たな梨地面状をゴム砥石に再生成形させることを特徴とする微細気泡の噴射作用によるゴム砥石の常時研削面再生方法。
A method for constantly regenerating a grinding surface of a grinding wheel by the jet action of microbubbles according to claim 1,
When the grinding wheel is a rubber wheel, the microbubbles injected from the cavitation injection nozzle to the outer peripheral surface of the rubber wheel remove the thermosetting resin or rubber, which is the binding agent of the rubber wheel with a smooth surface, using a peeling function. A method for constantly regenerating a grinding surface of a rubber grindstone by the jet action of microbubbles, characterized by exposing grains on the grindstone surface to regenerate a new satin-like surface on the rubber grindstone.
上記請求項1~請求項2に記載の微細気泡の噴射作用によるゴム砥石又は研削砥石の常時研削面再生成形方法において、キャビテーション発生装置で作られる微細気泡は、キャビテーション発生装置内のアキュームレーターを介在時は連続する均一圧力でキャビテーション噴射ノズルから吐出させ、アキュームレーターを介在しない時は脈動、揺らぎ、不等噴射する構成としたことを特徴とする微細気泡の噴射作用によるゴム砥石及び研削砥石の常時研削面再生方法。 In the method for constantly regenerating and molding a grinding surface of a rubber grindstone or a grinding wheel by the jetting action of microbubbles according to claims 1 and 2 above, the microbubbles generated by the cavitation generator pass through an accumulator in the cavitation generator. When the pressure is continuous and uniform, the cavitation injection nozzle is ejected, and when the accumulator is not interposed, the injection is pulsating, fluctuating, and uneven. Grinding surface regeneration method. 上記請求項3に記載の微細気泡の噴射作用によるゴム砥石及び研削砥石の常時研削面再生成形方法において、上記キャビテーション発生装置で作られる微細気泡の水圧、水量、脈動噴射のオン・オフ、微細気泡のサイズ設定等は、NC制御装置からの指令により、キャビテーション発生装置の機能設定を司ることを特徴とするゴム砥石及び研削砥石の常時研削面再生装置。 In the method for constantly regenerating and molding a grinding surface of a rubber whetstone and a grinding whetstone by the injection action of microbubbles according to claim 3, the water pressure and water volume of the microbubbles generated by the cavitation generator, the on/off of the pulsating jet, and the microbubbles. A constant grinding surface regenerating device for rubber whetstones and grinding whetstones, characterized in that the size setting and other functions of the cavitation generator are controlled by commands from an NC control device. キャビテーション発生装置で作られた微細気泡をゴム砥石又は研削砥石で研削・研磨される被研削材の研削面に噴射して該被研削材の表面研削層を性状向上する研削装置であって、上記微細気泡を噴射するキャビテーション噴射ノズルは、ゴム砥石又は研削砥石の外周面と、該ゴム砥石又は研削砥石の外周面が被研削材に接する研削面に向けて微細気泡を噴射すべく各々配置され、上記微細気泡を研削砥石の外周面と被研削材に接する研削面に噴射させ、ゴム砥石又は研削砥石の外周面を噴射時に砥粒を露出させる一方、被研削材の表面研削層に対して噴射される微細気泡をゴム砥石又は研削砥石の気泡を圧搾し研削力により崩壊食促進させて気泡崩壊時に衝撃波・衝撃力を発生し、ショットピーニングのような表面改質を図り、ゴム砥石内層又は研削砥石内層の砥粒を研削面に露出再生成形するとともに被削材の加工面性状を同時に高精度に研削・研磨することを特徴とする被削材の表面研削層を性状向上する研削・研磨する研削装置。 A grinding apparatus for improving properties of a surface grinding layer of a material to be ground by injecting microbubbles produced by a cavitation generator onto a grinding surface of a material to be ground and polished by a rubber whetstone or a grinding wheel, the grinding apparatus comprising: The cavitation injection nozzles for injecting fine bubbles are arranged to inject fine bubbles toward the outer peripheral surface of the rubber whetstone or grinding wheel and the grinding surface where the outer peripheral surface of the rubber whetstone or grinding whetstone is in contact with the material to be ground, The fine bubbles are sprayed onto the outer peripheral surface of the grinding wheel and the grinding surface in contact with the material to be ground, and the abrasive grains are exposed when the outer peripheral surface of the rubber grindstone or grinding wheel is sprayed, while the fine bubbles are sprayed onto the surface grinding layer of the material to be ground. Squeeze the microbubbles of the rubber grindstone or grinding wheel and promote collapse and corrosion by grinding force, generate shock wave and impact force when the bubbles collapse, aim for surface modification such as shot peening, and improve the inner layer of the rubber grindstone or grinding. Grinding and polishing to improve the properties of the surface grinding layer of the work material characterized by exposing and reproducing the abrasive grains of the inner layer of the grindstone on the grinding surface and simultaneously grinding and polishing the machined surface properties of the work material with high precision. grinding equipment. 上記請求項5の被削材の表面研削層を研削・研磨する研削装置において、上記キャビテーション噴射ノズルは、ゴム砥石又は研削砥石の外周面が被研削材に接する研削面に向けて微細気泡を噴射する1本だけとしたことを特徴とする被削材の表面研削層を性状向上する研削・研磨する研削装置。 In the grinding apparatus for grinding and polishing the surface grinding layer of the work material according to claim 5, the cavitation injection nozzle injects fine bubbles toward the grinding surface where the outer peripheral surface of the rubber grindstone or grinding wheel contacts the material to be ground. A grinding apparatus for grinding and polishing a surface grinding layer of a work material to improve properties thereof. 上記請求項5と請求項6の被削材の表面研削層を性状向上する研削・研磨する研削装置において、キャビテーション発生装置で作られる微細気泡は、キャビテーション発生装置内のアキュームレーターを介在時は連続する均一圧力でキャビテーション噴射ノズルから吐出させ、アキュームレーターを介在しない時は脈動、揺らぎ、不等噴射させる構成としたことを特徴とする被削材の表面研削層を性状向上する研削・研磨する研削装置。 In the grinding apparatus for grinding and polishing the surface grinding layer of the work material according to the above claims 5 and 6, the microbubbles generated by the cavitation generator are continuous when intervening the accumulator in the cavitation generator. Grinding and polishing to improve the properties of the surface grinding layer of the work material, characterized in that it is discharged from the cavitation injection nozzle at a uniform pressure, and is pulsating, fluctuating, and unevenly injected when no accumulator is interposed. Device. 上記請求項7記載の被削材の表面研削層を性状向上する研削・研磨する研削装置において、上記キャビテーション発生装置の設定となる水圧、水量、脈動噴射のオン・オフ、微細気泡のサイズ設定は、キャビテーション発生装置の機能設定を司るNC制御装置からの指令信号により行うことを特徴とする被削材の表面研削層を性状向上する研削・研磨する研削装置。 In the grinding apparatus for grinding and polishing the surface grinding layer of the work material according to claim 7, the setting of the water pressure, water volume, on/off of the pulsating jet, and the size of the microbubbles, which are the settings of the cavitation generator, are 1. A grinding device for grinding and polishing a surface grinding layer of a work material to improve properties, wherein the grinding is performed by a command signal from an NC control device that controls the function setting of the cavitation generator. 上記請求項1~4記載のゴム砥石又は研削砥石の常時研削面再生方法及び装置において、上記キャビテーション噴射ノズルは、内外の二重筒体からなり、中心側筒内には超高圧水を供給し、外周側環状筒の空間内には低圧水を供給する構成であって、上記キャビテーション噴射ノズルから噴射する噴射水は、中心部は超高圧柱を呈し、該超高圧柱の外周辺は環状の微細気泡を呈し、該微細気泡の外周辺は環状の低圧水からなる三重環状の噴射水となし、中心部の超高圧柱は砥石外周面に付着した研削屑や剥離した接着剤を高圧洗浄し、環状の微細気泡は砥石外周面に砥粒を露出させ、外周辺の環状の低圧水は、露出された砥石外周面の研削屑や剥離した接着材等を洗浄することを特徴とする研削砥石用のキャビテーション噴射ノズル。 In the method and apparatus for constantly regenerating a grinding surface of a rubber whetstone or a grinding whetstone according to claims 1 to 4, the cavitation injection nozzle consists of an inner and outer double cylinder, and ultrahigh-pressure water is supplied to the central cylinder. , low-pressure water is supplied to the space of the outer peripheral annular cylinder, and the jet water jetted from the cavitation jet nozzle has an ultra-high pressure column in the center, and the outer periphery of the ultra-high pressure column is annular. Micro bubbles are present, and the periphery of the micro bubbles is a triple annular jet of low-pressure water, and the ultra-high pressure column in the center is high-pressure washing of grinding dust and peeled adhesive adhered to the outer peripheral surface of the grindstone. A grinding wheel characterized in that the annular fine bubbles expose the abrasive grains on the outer peripheral surface of the grindstone, and the annular low-pressure water around the outer periphery cleans the exposed grinding dust and peeled adhesive material on the outer peripheral surface of the grindstone. Cavitation injection nozzle for. 上記請求項5と6記載の被削材の表面研削層を性状向上する研削・研磨する研削装置において、上記キャビテーション噴射ノズルは、内外の二重筒体からなり、中心側筒内には超高圧水を供給し、外周側環状筒の空間内には低圧水を供給する構成であって、上記キャビテーション噴射ノズルから噴射する噴射水は、中心部は超高圧柱を呈し、該超高圧柱の外周辺は環状の微細気泡を呈し、該微細気泡の外周辺は環状の低圧水からなる三重環状の噴射水となし、中心部の超高圧柱は砥石外周面に付着した研削屑や剥離した接着剤を高圧洗浄し、環状の微細気泡は砥石外周面に砥粒を露出させ、外周辺の環状の低圧水は、露出された砥石外周面の研削屑や剥離した接着材等を洗浄することを特徴とする研削砥石用のキャビテーション噴射ノズル。 In the grinding apparatus for grinding and polishing the surface grinding layer of the work material according to the above claims 5 and 6, the cavitation injection nozzle is composed of inner and outer double cylinders, and an ultra high pressure is injected into the central cylinder. Water is supplied, and low-pressure water is supplied into the space of the outer circumferential annular cylinder, and the jetted water jetted from the cavitation jet nozzle forms an ultrahigh-pressure column in the center and outside the ultrahigh-pressure column. The periphery presents annular microbubbles, the outer periphery of the microbubbles is a triple annular jet of low-pressure water, and the ultra-high pressure column in the center is grinding dust adhering to the outer peripheral surface of the grindstone and peeled adhesive. The ring microbubbles expose the abrasive grains on the outer peripheral surface of the grindstone, and the ringed low-pressure water on the outer periphery cleans the exposed grinding dust and peeled adhesive on the outer peripheral surface of the grindstone. Cavitation injection nozzle for grinding wheels. 上記請求項4と請求項8における研削制御を司るNC制御装置は、被研削材に対する砥石選定と、微細気泡の選定と、研削作業中の研削面及び被研削材の表面状態検出と、研削後の砥石面や被研削材の表面形状の画像検出と、研削後の砥石面や被研削材の表面形状の総合判定と、不良品の被研削材に対する砥石選定工程にフィードバックして再度の研削作業を繰り返させることを特徴とする自動研削運転方法。 The NC control device that governs the grinding control in the above claims 4 and 8 includes selection of a grinding wheel for the material to be ground, selection of fine bubbles, detection of the surface state of the grinding surface and the material to be ground during grinding, and Image detection of the surface shape of the grinding wheel surface and the material to be ground, comprehensive judgment of the surface shape of the grinding wheel surface and the material to be ground after grinding, and feedback to the grinding wheel selection process for the defective material to be ground again. An automatic grinding operation method characterized by repeating
JP2021074454A 2021-03-10 2021-03-10 Automatic Grinding Operation Method for Turbine Blades Using Fine Air Bubbles Active JP7317279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021074454A JP7317279B2 (en) 2021-03-10 2021-03-10 Automatic Grinding Operation Method for Turbine Blades Using Fine Air Bubbles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021074454A JP7317279B2 (en) 2021-03-10 2021-03-10 Automatic Grinding Operation Method for Turbine Blades Using Fine Air Bubbles

Publications (2)

Publication Number Publication Date
JP2022140179A true JP2022140179A (en) 2022-09-26
JP7317279B2 JP7317279B2 (en) 2023-07-31

Family

ID=83399956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021074454A Active JP7317279B2 (en) 2021-03-10 2021-03-10 Automatic Grinding Operation Method for Turbine Blades Using Fine Air Bubbles

Country Status (1)

Country Link
JP (1) JP7317279B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879388A (en) * 1972-01-27 1973-10-24
JP2008173628A (en) * 2006-12-18 2008-07-31 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Microorganism crushing apparatus
JP2009183873A (en) * 2008-02-06 2009-08-20 Isuzu Motors Ltd Double structural nozzle mechanism
JP2010000420A (en) * 2008-06-18 2010-01-07 Kumamoto Univ Microbubble generator, generation method thereof, and microbubble generation valve
WO2018168912A1 (en) * 2017-03-16 2018-09-20 Idec株式会社 Grinding fluid generating device, grinding fluid generating method, grinding device, and grinding fluid
JP2020179493A (en) * 2019-04-24 2020-11-05 伊藤 幸男 Empty can type cylindrical grinding wheel, grinding device, and empty can type cylindrical body manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879388A (en) * 1972-01-27 1973-10-24
JP2008173628A (en) * 2006-12-18 2008-07-31 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Microorganism crushing apparatus
JP2009183873A (en) * 2008-02-06 2009-08-20 Isuzu Motors Ltd Double structural nozzle mechanism
JP2010000420A (en) * 2008-06-18 2010-01-07 Kumamoto Univ Microbubble generator, generation method thereof, and microbubble generation valve
WO2018168912A1 (en) * 2017-03-16 2018-09-20 Idec株式会社 Grinding fluid generating device, grinding fluid generating method, grinding device, and grinding fluid
JP2020179493A (en) * 2019-04-24 2020-11-05 伊藤 幸男 Empty can type cylindrical grinding wheel, grinding device, and empty can type cylindrical body manufacturing method

Also Published As

Publication number Publication date
JP7317279B2 (en) 2023-07-31

Similar Documents

Publication Publication Date Title
JP6934653B2 (en) Surface treatment method for metal parts
CN104736300B (en) Grinding tool and the grinding-polishing device for having used the grinding tool
CN106392885A (en) Combined precise trimming device and trimming method for ultrahard grinding sand wheel
CN113103070B (en) Method for machining microgrooves by shearing, thickening and abrasive flow combined grinding
CN110387213B (en) Method for manufacturing soft elastic abrasive, cutting tool and method for processing die
CN101745846A (en) Grinding material vibration porous deburring process
JP2006224292A (en) Deburring method and device
JP7317279B2 (en) Automatic Grinding Operation Method for Turbine Blades Using Fine Air Bubbles
US11980997B2 (en) Dressing apparatus and polishing apparatus
JP4412192B2 (en) Polishing pad dressing method
US20060121837A1 (en) Dressing method for polishing pad
CN100376357C (en) Grinding wheel constraining abrasive particle injection precise dressing processing method and device
JP4619850B2 (en) Water jet device and method of jetting polishing liquid
JP2005217037A (en) Method for conditioning semiconductor wafer polishing pad
JP7152937B2 (en) Grinding method and grinding apparatus
JP7031548B2 (en) Blasting equipment and blasting method
JP2007007780A (en) Blade part surface treatment method for cutting tool
JP2020124761A (en) Slurry supply device, wet type blast processing device, and slurry supply method
JP2006281419A (en) Machining liquid feeder and machining device
JPH06218673A (en) Grinding work and device therefor
JP2000246635A (en) Grinding wheel reproducing method and device
Azarhoushang Abrasive machining processes
TWI669189B (en) Apparatus for grinding wheel chip removing and sharpening
JPS59134651A (en) Method and device for grinding surface of workpiece
JP2003127063A (en) Cmp device and polishing method by cmp device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230626

R150 Certificate of patent or registration of utility model

Ref document number: 7317279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150