JP2022139461A - Partial condenser, overhead partial condenser, and air separation device - Google Patents

Partial condenser, overhead partial condenser, and air separation device Download PDF

Info

Publication number
JP2022139461A
JP2022139461A JP2021039866A JP2021039866A JP2022139461A JP 2022139461 A JP2022139461 A JP 2022139461A JP 2021039866 A JP2021039866 A JP 2021039866A JP 2021039866 A JP2021039866 A JP 2021039866A JP 2022139461 A JP2022139461 A JP 2022139461A
Authority
JP
Japan
Prior art keywords
liquid
heat exchanger
exchanger block
steam
partial condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021039866A
Other languages
Japanese (ja)
Other versions
JP7308237B2 (en
Inventor
信明 江越
Nobuaki Ekoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2021039866A priority Critical patent/JP7308237B2/en
Publication of JP2022139461A publication Critical patent/JP2022139461A/en
Application granted granted Critical
Publication of JP7308237B2 publication Critical patent/JP7308237B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04624Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using integrated mass and heat exchange, so-called non-adiabatic rectification, e.g. dephlegmator, reflux exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/007Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger combined with mass exchange, i.e. in a so-called dephlegmator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/80Processes or apparatus using separation by rectification using integrated mass and heat exchange, i.e. non-adiabatic rectification in a reflux exchanger or dephlegmator

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To provide a partial condenser that is excellent in heat exchange efficiency and mass transfer efficiency and can improve the heat exchange efficiency and the mass transfer efficiency even when introduced steam contains non-condensable components, and to provide an overhead partial condenser using the partial condenser, and an air separation device provided with the overhead partial condenser.SOLUTION: A partial condenser 1 according to the present invention comprises a heat exchanger block 7 having evaporation passages 3 and condensation distillation passages 5, a container 9 for immersing the heat exchanger block 7 therein and storing the liquid flowing into the evaporation passages 3, a steam supply header 11 for supplying steam to the bottom of the heat exchanger block 7, and a residual steam header 13 for taking out residual steam distilled in the condensation distillation passages 5. Residual steam openings 5b serving as outlets for residual steam are provided on the top surface of the heat exchanger block 7, and the residual steam header 13 is provided on the top surface of the heat exchanger block 7. Gas-liquid two-phase flow openings 17a serving as outlets for a gas-liquid two-phase fluid from the evaporation passages 3 are provided in a region not covered with the residual steam header 13.SELECTED DRAWING: Figure 1

Description

本発明は、蒸発通路と凝縮蒸留通路を備えた熱交換器ブロックによって構成される分縮器、該分縮器を用いた塔頂分縮器、該塔頂分縮器を備えた空気分離装置に関するものである。 The present invention provides a partial condenser composed of a heat exchanger block having an evaporation passage and a condensation distillation passage, an overhead partial condenser using the partial condenser, and an air separation apparatus comprising the overhead partial condenser. It is about.

分縮器は、分離装置あるいは蒸気を部分的に凝縮させるための凝縮器として用いられる。このような分縮器には、プレートとフィンによって蒸発通路及び凝縮蒸留通路が構成されるプレートフィン型熱交換器が適用される。 Dephlegmators are used as separators or condensers to partially condense vapor. A plate-fin type heat exchanger in which plates and fins form evaporation passages and condensing distillation passages is applied to such a partial condenser.

分縮器においては、蒸発通路に冷媒として液体が供給され、凝縮蒸留通路には底部から多成分系の蒸気が導入される。凝縮蒸留通路に導入された蒸気は、蒸発通路の冷媒との熱交換により、部分的に液化され、蒸気と液体とが向流で接触して物質移動が行われる。そのため、蒸気は低沸点成分を濃縮させながら上昇し、生じた液体は高沸点成分を濃縮させながら下降する。 In the partial condenser, liquid is supplied as refrigerant to the evaporation passage, and multicomponent vapor is introduced from the bottom into the condensation distillation passage. The vapor introduced into the condensing distillation passage is partially liquefied by heat exchange with the refrigerant in the evaporation passage, and the vapor and the liquid come into contact with each other in a countercurrent flow to effect mass transfer. Therefore, the steam rises while concentrating the low boiling point components, and the resulting liquid descends while concentrating the high boiling point components.

特許文献1には、このような分縮器(特許文献1では「還流凝縮器」と記載、特許文献2も同じ)が空気分離装置の粗アルゴン塔の塔頂凝縮器として用いられることが開示されている。
また、特許文献2には、蒸発通路と凝縮蒸留通路からなる熱交換器ブロックによる分縮器が記載され、凝縮蒸留通路に蒸気を導入する手段、低沸点成分を濃縮した蒸気を取り出す手段が開示されている。
Patent Document 1 discloses that such a partial condenser (described as a "reflux condenser" in Patent Document 1 and the same applies to Patent Document 2) is used as a top condenser of a crude argon column of an air separation unit. It is
Further, Patent Document 2 describes a partial condenser with a heat exchanger block consisting of an evaporation passage and a condensation distillation passage, and discloses a means for introducing steam into the condensation distillation passage and a means for extracting steam in which low boiling point components are concentrated. It is

特開2009-30966号公報JP-A-2009-30966 特開2008-39386号公報JP 2008-39386 A

特許文献2に開示された分縮器においては、凝縮蒸留通路に蒸気を導入するためのヘッダーが熱交換器ブロックの底面に設けられ、凝縮蒸留通路で低沸点成分を濃縮した蒸気を導出するためのヘッダーが熱交換器ブロックの上部側面に設けられている。
この場合、底面から凝縮蒸留通路に導入された蒸気は、凝縮に伴い低沸点成分を濃縮させながら上向きに流れるが、その蒸気を凝縮蒸留通路から導出するためには、蒸気の流れの向きをヘッダーが設けられている側面側にほぼ90°変えなければならない。
In the partial condenser disclosed in Patent Document 2, a header for introducing steam into the condensing and distillation passage is provided on the bottom surface of the heat exchanger block, and the steam in which the low boiling point components are concentrated in the condensing and distillation passage is led out. headers are provided on the upper side of the heat exchanger block.
In this case, the steam introduced into the condensation distillation passage from the bottom flows upward while condensing the low boiling point components as it condenses. must turn almost 90° to the side where the

このため、凝縮蒸留通路内に流れの方向を大きく変えるためのディストリビュータを設けることになり、この部分では熱交換や物質移動が十分できないため、熱交換効率及び物質移動効率が低下するという問題があった。
また、凝縮蒸留通路に導入する蒸気に非凝縮性成分ガスが含まれる場合、その非凝縮性成分ガスがディストリビュータに滞留し、効率がさらに低下してしまうという問題があった。
For this reason, a distributor is provided in the condensing and distillation passage to greatly change the direction of the flow, and heat exchange and mass transfer cannot be performed sufficiently in this portion, resulting in a problem of reduced heat exchange efficiency and mass transfer efficiency. rice field.
Moreover, when the steam introduced into the condensation distillation passage contains non-condensable component gas, there is a problem that the non-condensable component gas stays in the distributor, further lowering the efficiency.

本発明はかかる課題を解決するためになされたものであり、熱交換効率及び物質移動効率に優れ、導入される蒸気に非凝縮性成分が含まれる場合においても熱交換効率及び物質移動効率を改善できる分縮器、該分縮器を蒸留塔の塔頂部に用いた塔頂分縮器、該塔頂分縮器を備えた空気分離装置を提供することを目的としている。 The present invention has been made to solve such problems, and is excellent in heat exchange efficiency and mass transfer efficiency, and improves heat exchange efficiency and mass transfer efficiency even when the introduced steam contains non-condensable components. It is an object of the present invention to provide a partial condenser capable of producing a partial condenser, an overhead partial condenser using the partial condenser at the top of a distillation column, and an air separation apparatus equipped with the overhead partial condenser.

(1)本発明に係る分縮器は、蒸発する液体が通流する蒸発通路と該蒸発通路を流れる液体と熱交換して凝縮蒸留するための蒸気が通流する凝縮蒸留通路とを有する熱交換器ブロックと、該熱交換器ブロックを浸漬させると共に前記蒸発通路に流入する液体を貯液するための容器と、前記熱交換器ブロックの底面に設けられて前記凝縮蒸留通路に前記蒸気を供給するための蒸気供給ヘッダーと、前記凝縮蒸留通路で蒸留された残留蒸気を取り出すための残留蒸気ヘッダーとを備え、
前記熱交換器ブロックの頂面に前記残留蒸気の導出口となる残留蒸気用開口が設けられ、前記残留蒸気ヘッダーは該残留蒸気用開口を覆うように前記熱交換器ブロックの頂面に設けられ、前記蒸発通路からの気液2相流体の導出口となる気液2相流用開口が前記残留蒸気ヘッダーで覆われていない領域に設けられていることを特徴とするものである。
(1) The partial condenser according to the present invention has an evaporation passage through which the liquid to evaporate flows and a condensation distillation passage through which the vapor for condensing and distilling the liquid flowing through the evaporation passage flows by exchanging heat. an exchanger block, a container for immersing the heat exchanger block and storing the liquid flowing into the evaporation passage, and a container provided on the bottom surface of the heat exchanger block for supplying the vapor to the condensing distillation passage. and a residual vapor header for removing residual vapor distilled in the condensing distillation passage,
A residual steam opening serving as an outlet for the residual steam is provided on the top surface of the heat exchanger block, and the residual steam header is provided on the top surface of the heat exchanger block so as to cover the residual steam opening. and a gas-liquid two-phase flow opening serving as an outlet for the gas-liquid two-phase fluid from the evaporation passage is provided in a region not covered with the residual steam header.

(2)また、上記(1)に記載のものにおいて、前記残留蒸気ヘッダーは、前記熱交換器ブロックの頂面全体を覆うように設けられ、前記気液2相流用開口は前記熱交換器ブロックの上部側面に設けられていることを特徴とするものである。 (2) Further, in the apparatus described in (1) above, the residual steam header is provided so as to cover the entire top surface of the heat exchanger block, and the gas-liquid two-phase flow opening is the heat exchanger block. It is characterized by being provided on the upper side surface of the.

(3)また、上記(1)に記載のものにおいて、前記熱交換器ブロックは、残留蒸気を前記熱交換器ブロックの頂面の一部に集約するためのフィンを有し、残留蒸気用開口は前記フィンによって集約された部位に設けられ、前記気液2相流用開口は前記頂面における前記残留蒸気ヘッダーで覆われていない領域に設けられていることを特徴とするものである。 (3) Further, in the apparatus described in (1) above, the heat exchanger block has fins for concentrating the residual steam on a part of the top surface of the heat exchanger block, and the residual steam opening is provided at a portion concentrated by the fins, and the gas-liquid two-phase flow opening is provided in a region of the top surface not covered with the residual steam header.

(4)また、本発明に係る塔頂分縮器は、蒸留塔の塔頂部に設けられるものであって、
上記(1)乃至(3)のいずれかに記載の分縮器と、該分縮器の前記蒸気供給ヘッダーに連結されて前記蒸留塔の塔壁と接続される底板と、前記蒸気供給ヘッダーを経て流下する液体を収集するための液収集器とを備えたことを特徴とするものである。
(4) Further, the overhead partial condenser according to the present invention is provided at the top of the distillation column,
The partial condenser according to any one of the above (1) to (3), a bottom plate connected to the steam supply header of the partial condenser and connected to the wall of the distillation column, and the steam supply header. and a liquid collector for collecting liquid flowing down through.

(5)また、本発明に係る空気分離装置は、空気から窒素、酸素、アルゴンを採取する複式精留システムからなる空気分離装置であって、上記(4)に記載の塔頂分縮器をアルゴン塔の塔頂分縮器として備えることを特徴とするものである。 (5) Further, an air separation apparatus according to the present invention is an air separation apparatus comprising a double rectification system for extracting nitrogen, oxygen, and argon from air, wherein the overhead partial condenser described in (4) above is used. It is characterized by being provided as an overhead partial condenser of an argon column.

本発明に係る分縮器においては、熱交換器ブロックの頂面に残留蒸気の導出口となる残留蒸気用開口が設けられ、残留蒸気ヘッダーは該残留蒸気用開口を覆うように熱交換器ブロックの頂面に設けられていることにより、凝縮蒸留通路内の流れの方向を大きく変えるディストリビュータ等を設ける必要がなく凝縮蒸留通路の全長に亘って熱交換と物質移動を行うことができる。それ故に、熱交換効率及び物質移動効率に優れ、導入される蒸気に非凝縮性成分ガスが含まれる場合においても熱交換効率及び物質移動効率を改善できる。 In the partial condenser according to the present invention, a residual steam opening serving as an outlet for residual steam is provided on the top surface of the heat exchanger block, and the residual steam header covers the heat exchanger block so as to cover the residual steam opening. Since it is provided on the top surface of the condensing distillation passage, heat exchange and mass transfer can be performed over the entire length of the condensing distillation passage without the need to provide a distributor or the like that greatly changes the flow direction in the condensing distillation passage. Therefore, the heat exchange efficiency and the mass transfer efficiency are excellent, and the heat exchange efficiency and the mass transfer efficiency can be improved even when the introduced steam contains the non-condensable component gas.

本発明の一実施の形態に係る分縮器の説明図である。FIG. 2 is an explanatory diagram of a dephlegmator according to one embodiment of the present invention; 図1に示した分縮器の凝縮蒸留通路(a)と蒸発通路(b)の説明図である。FIG. 2 is an explanatory diagram of a condensation distillation passage (a) and an evaporation passage (b) of the partial condenser shown in FIG. 1; 図1に示した分縮器を蒸留塔の塔頂部に設けられる塔頂分縮器とした場合の説明図である。FIG. 2 is an explanatory diagram when the partial condenser shown in FIG. 1 is used as a top partial condenser provided at the top of a distillation column. 凝縮蒸留通路(a)と蒸発通路(b)の他の態様の説明図である。It is explanatory drawing of another aspect of a condensation distillation passage (a) and an evaporation passage (b). 図4に示した凝縮蒸留通路と蒸発通路を備えた分縮器を蒸留塔の塔頂部に設けられる塔頂分縮器とした場合の説明図である。FIG. 5 is an explanatory diagram when the partial condenser having the condensation distillation passage and the evaporation passage shown in FIG. 4 is used as a top partial condenser provided at the top of the distillation column. 図4に示した塔頂分縮器を空気分離装置に適用した場合の説明図である。FIG. 5 is an explanatory view when the overhead partial condenser shown in FIG. 4 is applied to an air separation device;

本実施の形態に係る分縮器1は、図1に示すように、蒸発する液体が通流する蒸発通路3と蒸発通路3を流れる液体と熱交換して凝縮蒸留するための蒸気が通流する凝縮蒸留通路5とを有する熱交換器ブロック7と、熱交換器ブロック7を浸漬させると共に蒸発通路3に流入する液体を貯液するための容器9と、熱交換器ブロック7の底面に設けられて凝縮蒸留通路5に蒸気を供給するための蒸気供給ヘッダー11と、凝縮蒸留通路5で蒸留された残留蒸気を取り出すための残留蒸気ヘッダー13とを備えている。
以下、各構成を詳細に説明する。
なお、図1における矢印は流体の流れの向きを示している。また、矢印に付したVは蒸気(Vapor)、Lは液体(Liquid)を示している。また、VやLに添えているWはその流体が暖かい(warm)ことを、cは冷たい(cold)ことを示している。さらに、wやcに添えているiはその流体が入ってくる(in)ものであることを、oはその流体が出てゆく(out)ものであることを示している。
As shown in FIG. 1, the partial condenser 1 according to the present embodiment includes an evaporation passage 3 through which a liquid to evaporate flows, and a vapor that exchanges heat with the liquid flowing through the evaporation passage 3 and is condensed and distilled. a container 9 for immersing the heat exchanger block 7 and storing the liquid flowing into the evaporation passage 3; It comprises a steam feed header 11 for supplying steam to the condensing distillation passage 5 and a residual steam header 13 for removing residual steam distilled in the condensing distillation passage 5.
Each configuration will be described in detail below.
The arrows in FIG. 1 indicate the direction of fluid flow. Further, V attached to the arrow indicates vapor, and L indicates liquid. W attached to V and L indicates that the fluid is warm, and c indicates that it is cold. Furthermore, i attached to w and c indicates that the fluid is in, and o indicates that the fluid is out.

<熱交換器ブロック>
熱交換器ブロック7はプレートとフィンによって構成され、蒸発する液体が通流する蒸発通路3と蒸発通路3を流れる液体と熱交換して凝縮蒸留するための蒸気が通流する凝縮蒸留通路5とを有している。
<Heat exchanger block>
The heat exchanger block 7 is composed of plates and fins, and has an evaporation passage 3 through which the liquid to evaporate flows and a condensation distillation passage 5 through which the vapor for condensing and distilling the liquid flowing through the evaporation passage 3 flows. have.

蒸発通路3は、図1、図2(b)に示すように、熱交換器ブロック7の下部から上部に亘って設けられている。蒸発通路3の下端には、図2(b)に示すように、容器9内の液体を導入するための液体導入路15が設けられ、液体導入路15の入り口には液体導入開口15aが設けられている。
また、蒸発通路3の上端には気液2相流体を導出するための気液2相流体導出路17が設けられ、気液2相流体導出路17の出口には気液2相流用開口17aが設けられている。気液2相流用開口17aが設けられている領域は、残留蒸気ヘッダー13で覆われていない熱交換器ブロック7の上部側面の領域である。
蒸発通路3の液体導入路15と気液2相流体導出路17は、図2(b)に示すように、フィンを横向きにすることで形成されている。なお、図2において各通路に記載した線の向きは当該通路に設けられるフィンの向きを示している。
The evaporation passage 3 is provided from the bottom to the top of the heat exchanger block 7 as shown in FIGS. 1 and 2(b). As shown in FIG. 2(b), the lower end of the evaporation passage 3 is provided with a liquid introduction passage 15 for introducing the liquid in the container 9, and the entrance of the liquid introduction passage 15 is provided with a liquid introduction opening 15a. It is
A gas-liquid two-phase fluid lead-out passage 17 for leading out a gas-liquid two-phase fluid is provided at the upper end of the evaporation passage 3, and an opening 17a for gas-liquid two-phase flow is provided at the outlet of the gas-liquid two-phase fluid lead-out passage 17. is provided. The area where the gas-liquid two-phase flow openings 17 a are provided is the area of the upper side surface of the heat exchanger block 7 that is not covered with the residual steam header 13 .
As shown in FIG. 2B, the liquid introduction path 15 and the gas-liquid two-phase fluid outlet path 17 of the evaporation passage 3 are formed by turning the fins sideways. The direction of the line drawn in each passage in FIG. 2 indicates the direction of the fins provided in the passage.

凝縮蒸留通路5は、図1、図2(a)に示すように、熱交換器ブロック7の下端から上端に亘って設けられている。そして、凝縮蒸留通路5の下端が蒸気を導入する蒸気導入用開口5aとなり、上端が残留蒸気を導出する残留蒸気用開口5bとなっている。残留蒸気用開口5bは、熱交換器ブロック7の頂面に位置している。 The condensation distillation passage 5 is provided from the lower end to the upper end of the heat exchanger block 7, as shown in FIGS. 1 and 2(a). The lower end of the condensation distillation passage 5 serves as a steam introduction opening 5a for introducing steam, and the upper end serves as a residual steam opening 5b for leading out residual steam. Residual steam openings 5 b are located on the top surface of heat exchanger block 7 .

本実施の形態では、残留蒸気用開口5bを熱交換器ブロック7の頂面に設けているので、図2(a)に示すように、凝縮蒸留通路5を流れる蒸気の流れの向きを変える必要がなく、それ故にディストリビュータ等を設ける必要がない。そのため、ディストリビュータ等を設けることによって発生する熱交換や物質移動への悪影響がない。また、凝縮蒸留通路5に導入する蒸気に非凝縮性成分ガスが含まれる場合であっても、その非凝縮性成分ガスがディストリビュータ等に滞留することがないので、効率が低下するという問題も発生しない。 In this embodiment, since the residual steam opening 5b is provided on the top surface of the heat exchanger block 7, it is necessary to change the direction of the steam flowing through the condensation distillation passage 5 as shown in FIG. 2(a). Therefore, there is no need to provide a distributor or the like. Therefore, there is no adverse effect on heat exchange or mass transfer caused by providing a distributor or the like. Further, even if the steam introduced into the condensation distillation passage 5 contains non-condensable component gas, the non-condensable component gas does not stay in the distributor or the like, so there is a problem that the efficiency is lowered. do not do.

<容器>
容器9は、熱交換器ブロック7を浸漬させて、蒸発通路3に流入する液体を貯液するためのものである。容器9の上部には、容器9内のガスを排出するためのガス排出管19が設けられている。また、容器9内に液体を供給するための液体供給管20が設けられている。
<Container>
The container 9 is for immersing the heat exchanger block 7 and storing the liquid flowing into the evaporation passage 3 . A gas discharge pipe 19 for discharging the gas in the container 9 is provided on the upper part of the container 9 . A liquid supply pipe 20 for supplying liquid into the container 9 is also provided.

<蒸気供給ヘッダー>
蒸気供給ヘッダー11は、熱交換器ブロック7の底面に設けられて凝縮蒸留通路5に蒸気を供給するためのものである。蒸気供給ヘッダー11は、図1に示すように、熱交換器ブロック7の底面全体を覆うように設けられ、熱交換器ブロック7に形成された全ての凝縮蒸留通路5と連通するように設けられている。
<Steam supply header>
A steam supply header 11 is provided on the bottom surface of the heat exchanger block 7 to supply steam to the condensing distillation passage 5 . As shown in FIG. 1, the steam supply header 11 is provided so as to cover the entire bottom surface of the heat exchanger block 7, and is provided so as to communicate with all the condensation distillation passages 5 formed in the heat exchanger block 7. ing.

<残留蒸気ヘッダー>
残留蒸気ヘッダー13は、凝縮蒸留通路5で蒸留された残留蒸気を取り出すためのものであり、残留蒸気用開口5bを覆うように熱交換器ブロック7の頂面に設けられている。
図1に示す例では、残留蒸気ヘッダー13は熱交換器ブロック7の頂面全体を覆うように設けられ、残留蒸気ヘッダー13には残留蒸気を外部に取り出すための残留蒸気取出し管21が設けられている。
<Residual steam header>
The residual steam header 13 is for taking out the residual steam distilled in the condensing distillation passage 5, and is provided on the top surface of the heat exchanger block 7 so as to cover the residual steam opening 5b.
In the example shown in FIG. 1, the residual steam header 13 is provided so as to cover the entire top surface of the heat exchanger block 7, and the residual steam header 13 is provided with a residual steam extraction pipe 21 for extracting the residual steam to the outside. ing.

[動作説明]
次に、上記のように構成された本実施の形態に係る分縮器1の動作を図1に基づいて説明する。
容器9には冷媒となる液体(Lc)が貯留されており、この液体(Lc)は熱交換器ブロック7の液体導入開口15aから液体導入路15を通過して蒸発通路3に導入される。
一方、凝縮蒸留の対象となる多成分系の蒸気(Vw)は、外部から蒸気供給ヘッダー11を介して凝縮蒸留通路5に導入される。
蒸発通路3に導入された液体(Lc)は、凝縮蒸留通路5を流れる流体から熱を受け、その一部が蒸発する。その蒸発により、蒸発通路3を流れる流体の密度が、容器9に貯液されている液体の密度より小さくなり、上向きへの流れが生じ、熱交換器ブロック7の気液2相流体導出路17を介して気液2相流用開口17aから気液2相流体(Lc+Vc)として容器9に戻される。気液2相流用開口17aから排出されたガス(Vc)は容器9のガス排出管19から外部に排出され、液体(Lc)は再び容器9内に貯液される。
[Description of operation]
Next, the operation of the dephlegmator 1 according to the present embodiment configured as described above will be described with reference to FIG.
A liquid (Lc) serving as a refrigerant is stored in the container 9 , and this liquid (Lc) passes through the liquid introduction passage 15 from the liquid introduction opening 15 a of the heat exchanger block 7 and is introduced into the evaporation passage 3 .
On the other hand, the multi-component vapor (Vw) to be condensed and distilled is introduced from the outside into the condensed distillation passage 5 via the vapor supply header 11 .
The liquid (Lc) introduced into the evaporation passage 3 receives heat from the fluid flowing through the condensation distillation passage 5 and is partially evaporated. Due to the evaporation, the density of the fluid flowing through the evaporation passage 3 becomes lower than the density of the liquid stored in the container 9, causing an upward flow, and the gas-liquid two-phase fluid lead-out passage 17 of the heat exchanger block 7. is returned to the container 9 as a gas-liquid two-phase fluid (Lc+Vc) from the gas-liquid two-phase flow opening 17a. The gas (Vc) discharged from the gas-liquid two-phase flow opening 17a is discharged outside from the gas discharge pipe 19 of the container 9, and the liquid (Lc) is stored in the container 9 again.

一方、凝縮蒸留通路5に導入された蒸気(Vw)は、通路内を上昇し、上昇に伴い、蒸発通路3を流れる流体との熱交換により、その一部が凝縮して下降液が生じる。よって上昇ガスと下降液との間で向流接触が生じ、蒸気は上昇するにつれ低沸点成分が濃縮し、残留蒸気用開口5bから頂面の残留蒸気ヘッダー13を経て残留蒸気取出し管21から容器9の外部に取り出される。
他方、凝縮蒸留通路5内で凝縮して生成した液体は下降するにつれて高沸点成分が濃縮し、底面の蒸気供給ヘッダー11を経て導出される。
On the other hand, the vapor (Vw) introduced into the condensation distillation passage 5 rises in the passage, and as it rises, it exchanges heat with the fluid flowing through the evaporation passage 3, and part of it condenses to produce a descending liquid. As a result, countercurrent contact occurs between the ascending gas and the descending liquid, and as the vapor rises, the low-boiling point components are concentrated. 9 is taken out.
On the other hand, the liquid condensed in the condensing distillation passage 5 is condensed in high boiling point components as it descends, and is discharged through the vapor supply header 11 at the bottom.

この際の凝縮蒸留通路5は、図2(a)に示すように、流れの向きを変えることがないので、熱交換器ブロック7の全高さにおいて気液が効率的に接触でき、また流れがスムーズなため、非凝縮性成分が含まれる場合においても、その成分ガスを滞留させることなく排出することできる。その効率化は、例えば、伝熱面積を10%以上削減することに相当し、熱交換器ブロック7の小型化に資することができる。 As shown in FIG. 2(a), the condensing and distillation passage 5 at this time does not change the flow direction, so that the gas-liquid can efficiently come into contact with the entire height of the heat exchanger block 7, and the flow can be controlled. Since it is smooth, even if non-condensable components are contained, the component gas can be discharged without being retained. The efficiency improvement corresponds to, for example, reducing the heat transfer area by 10% or more, and can contribute to the size reduction of the heat exchanger block 7 .

上記のように構成された分縮器1は、例えば図3に示すように、蒸留塔の塔頂部に設けられる塔頂分縮器23として用いることができる。塔頂分縮器23として用いた場合の特有の構成について図3に基づいて説明する。なお、図3において、図1と同一部分には同一の符号が付してある。 The partial condenser 1 configured as described above can be used, for example, as a top partial condenser 23 provided at the top of a distillation column, as shown in FIG. A specific configuration when used as the overhead partial condenser 23 will be described with reference to FIG. In FIG. 3, the same parts as in FIG. 1 are denoted by the same reference numerals.

塔頂分縮器23とした場合、蒸気供給ヘッダー11が容器9の底板25に固定され、蒸気供給ヘッダー11を経て流下する液体を捕集する液収集器27が底板25の下方に設けられる。液収集器27は、例えば流下した液を収集するための液収集路29と、流下する液を液収集路29に導くための傘31と、塔内の蒸気が通過して上昇するための通路となる蒸気上昇路33と、塔壁に設けられて液収集路29と接続された周路35と、周路35と接続されて液を取り出すための液取出し管37から構成される。 In the case of the overhead partial condenser 23 , the vapor feed header 11 is fixed to the bottom plate 25 of the vessel 9 , and a liquid collector 27 is provided below the bottom plate 25 for collecting the liquid flowing down through the vapor feed header 11 . The liquid collector 27 includes, for example, a liquid collection path 29 for collecting the liquid that has flowed down, an umbrella 31 for guiding the liquid that has flowed down to the liquid collection path 29, and a passage for the vapor in the column to pass through and rise. , a circuit 35 provided in the tower wall and connected to the liquid collecting passage 29, and a liquid take-out pipe 37 connected to the circuit 35 for taking out the liquid.

上記のように構成された塔頂分縮器23においては、蒸気供給ヘッダー11を経て流下した液体(Lw)は、傘31に導かれて液収集路29に集められ、各液収集路29から周路35に導かれ、周路35に接続された液取出し管37により取り出される。 In the overhead partial condenser 23 configured as described above, the liquid (Lw) flowing down through the vapor supply header 11 is guided by the umbrella 31 and collected in the liquid collecting passages 29. From each liquid collecting passage 29, It is led to the peripheral path 35 and taken out by a liquid take-out pipe 37 connected to the peripheral path 35 .

なお、上記の実施の形態では、残留蒸気ヘッダー13を熱交換器ブロック7の頂面の全領域に設け、気液2相流用開口17aを熱交換器ブロック7上部の側面に設けたものであったが、残留蒸気ヘッダー13を熱交換器ブロック7の頂面の一部に設け、頂面における残留蒸気ヘッダー13を設けていない領域に気液2相流用開口17aを設けるようにしてもよい。 In the above-described embodiment, the residual steam header 13 is provided over the entire area of the top surface of the heat exchanger block 7, and the gas-liquid two-phase flow openings 17a are provided on the upper side surface of the heat exchanger block 7. Alternatively, the residual steam header 13 may be provided on a portion of the top surface of the heat exchanger block 7, and the gas-liquid two-phase flow opening 17a may be provided in a region of the top surface where the residual steam header 13 is not provided.

この場合の凝縮蒸留通路5と蒸発通路3の構成の一例を図4に示す。凝縮蒸留通路5は、図4(a)に示すように、上部に凝縮蒸留通路5を中央に集約するための集約通路39と、集約通路39に連通する中央通路41を有している。
また、蒸発通路3は、図4(b)に示すように、その上部に熱交換器ブロック7の頂面中央部を避けるように頂面の両側に分岐する分岐路43が設けられている。そして、分岐路43が気液2相流体導出路17に接続されている。
このような態様であっても、図1、図2に示したものと同様の効果が得られる。
An example of the configuration of the condensation distillation passage 5 and the evaporation passage 3 in this case is shown in FIG. As shown in FIG. 4( a ), the condensing distillation passage 5 has a central passage 39 for centralizing the condensing distillation passages 5 and a central passage 41 communicating with the central passage 39 .
As shown in FIG. 4B, the evaporation passage 3 is provided with branch passages 43 on both sides of the top surface of the heat exchanger block 7 so as to avoid the central portion of the top surface of the heat exchanger block 7 . A branch passage 43 is connected to the gas-liquid two-phase fluid lead-out passage 17 .
Even in such a mode, the same effects as those shown in FIGS. 1 and 2 can be obtained.

また、凝縮蒸留通路5と蒸発通路3を図4に示す態様にした分縮器1を塔頂分縮器23とした場合の一例を図5に示す。図5において、図3と同一部分及び対応する部分には同一の符号が付してある。 FIG. 5 shows an example in which the overhead partial condenser 23 is used instead of the partial condenser 1 in which the condensation distillation passage 5 and the evaporation passage 3 are arranged as shown in FIG. In FIG. 5, the same reference numerals are given to the same parts as in FIG. 3 and the corresponding parts.

次に塔頂分縮器23を備えた空気分離装置について図6に基づいて説明する。なお、図6において、図3と同一部分には同一の符号が付してある。
空気分離装置45は、空気から窒素、酸素、アルゴンを採取する複式精留システムからなり、主な構成として、高圧塔47と、低圧塔49と、低圧塔49の下部に配設された主凝縮器51と、アルゴン塔53を備えている。そして、アルゴン塔53の塔頂部に塔頂分縮器23が設けられている。
Next, the air separation apparatus provided with the overhead partial condenser 23 will be described with reference to FIG. In FIG. 6, the same parts as in FIG. 3 are denoted by the same reference numerals.
The air separation unit 45 consists of a double rectification system for extracting nitrogen, oxygen, and argon from air, and is mainly composed of a high pressure column 47, a low pressure column 49, and a main condenser disposed below the low pressure column 49. A vessel 51 and an argon column 53 are provided. A top partial condenser 23 is provided at the top of the argon column 53 .

上記のような空気分離装置45においては、原料空気は、高圧塔47の底部に送り込まれて蒸留され、窒素ガス、酸素に富む液体空気(酸素富化液体空気)に分離される。低圧塔49の中央部からは、酸素を主成分とし、アルゴンが5~15%で微量の窒素を含む組成の原料ガス(アルゴン含有酸素ガス)が抜き出されアルゴン塔53の底部に導入される。 In the air separation unit 45 as described above, the feed air is sent to the bottom of the high pressure column 47 and distilled to be separated into nitrogen gas and oxygen-rich liquid air (oxygen-enriched liquid air). From the central portion of the low-pressure column 49, a raw material gas (argon-containing oxygen gas) composed mainly of oxygen, containing 5 to 15% argon and a small amount of nitrogen is extracted and introduced into the bottom of the argon column 53. .

アルゴン塔53に導入されたアルゴン含有酸素ガスはアルゴン塔53内を上昇し、アルゴンが濃縮し、分縮器1に導入される。
分縮器1に導入されたアルゴン濃縮ガスは、蒸発通路3を流れる酸素富化液体空気を蒸発させ、凝縮蒸留通路5を凝縮しながら上昇し、高沸点成分である酸素を減少させ、また低沸点成分である窒素を濃縮させ、アルゴンガス(不純物ガス)として分縮器1の残留蒸気ヘッダー13から排出される。
一方、凝縮蒸留通路5で凝縮して下降した液体は液収集器27を経てその一部が製品である液体アルゴンとして取り出される。
The argon-containing oxygen gas introduced into the argon column 53 rises in the argon column 53 to concentrate the argon and is introduced into the partial condenser 1 .
The argon-enriched gas introduced into the partial condenser 1 evaporates the oxygen-enriched liquid air flowing through the evaporation passage 3, rises while condensing in the condensation distillation passage 5, reduces the high-boiling-point component oxygen, and reduces the Nitrogen, which is a boiling point component, is condensed and discharged from the residual vapor header 13 of the partial condenser 1 as argon gas (impurity gas).
On the other hand, the liquid condensed and descended in the condensing distillation passage 5 passes through the liquid collector 27 and is partially taken out as liquid argon as a product.

1 分縮器
3 蒸発通路
5 凝縮蒸留通路
5a 蒸気導入用開口
5b 残留蒸気用開口
7 熱交換器ブロック
9 容器
11 蒸気供給ヘッダー
13 残留蒸気ヘッダー
15 液体導入路
15a 液体導入開口
17 気液2相流体導出路
17a 気液2相流用開口
19 ガス排出管
20 液体供給管
21 残留蒸気取出し管
23 塔頂分縮器
25 底板
27 液収集器
29 液収集路
31 傘
33 蒸気上昇路
35 周路
37 液取出し管
39 集約通路
41 中央通路
43 分岐路
45 空気分離装置
47 高圧塔
49 低圧塔
51 主凝縮器
53 アルゴン塔
1 partial condenser 3 evaporation passage 5 condensation distillation passage 5a vapor introduction opening 5b residual vapor opening 7 heat exchanger block 9 vessel 11 vapor supply header 13 residual vapor header 15 liquid introduction passage 15a liquid introduction opening 17 gas-liquid two-phase fluid Lead-out passage 17a Gas-liquid two-phase flow opening 19 Gas discharge pipe 20 Liquid supply pipe 21 Residual vapor withdrawal pipe 23 Top partial condenser 25 Bottom plate 27 Liquid collector 29 Liquid collection passage 31 Umbrella 33 Vapor rise passage 35 Circuit 37 Liquid withdrawal Pipe 39 Collective Passage 41 Central Passage 43 Branch Passage 45 Air Separator 47 High Pressure Column 49 Low Pressure Column 51 Main Condenser 53 Argon Column

Claims (5)

蒸発する液体が通流する蒸発通路と該蒸発通路を流れる液体と熱交換して凝縮蒸留するための蒸気が通流する凝縮蒸留通路とを有する熱交換器ブロックと、該熱交換器ブロックを浸漬させると共に前記蒸発通路に流入する液体を貯液するための容器と、前記熱交換器ブロックの底面に設けられて前記凝縮蒸留通路に前記蒸気を供給するための蒸気供給ヘッダーと、前記凝縮蒸留通路で蒸留された残留蒸気を取り出すための残留蒸気ヘッダーとを備え、
前記熱交換器ブロックの頂面に前記残留蒸気の導出口となる残留蒸気用開口が設けられ、前記残留蒸気ヘッダーは該残留蒸気用開口を覆うように前記熱交換器ブロックの頂面に設けられ、前記蒸発通路からの気液2相流体の導出口となる気液2相流用開口が前記残留蒸気ヘッダーで覆われていない領域に設けられていることを特徴とする分縮器。
A heat exchanger block having an evaporation passage through which a liquid to evaporate flows and a condensation distillation passage through which vapor for condensing and distilling the liquid flowing through the evaporation passage by exchanging heat with the vapor flows; and the heat exchanger block being immersed. a container for storing the liquid flowing into the evaporation passage while causing the vaporization, a steam supply header provided on the bottom surface of the heat exchanger block for supplying the steam to the condensation distillation passage, and the condensation distillation passage a residual vapor header for removing residual vapor distilled in the
A residual steam opening serving as an outlet for the residual steam is provided on the top surface of the heat exchanger block, and the residual steam header is provided on the top surface of the heat exchanger block so as to cover the residual steam opening. 2. A dephlegmator, wherein a gas-liquid two-phase flow opening serving as an outlet port for the gas-liquid two-phase fluid from said evaporation passage is provided in a region not covered by said residual steam header.
前記残留蒸気ヘッダーは、前記熱交換器ブロックの頂面全体を覆うように設けられ、前記気液2相流用開口は前記熱交換器ブロックの上部側面に設けられていることを特徴とする請求項1に記載の分縮器。 3. The residual steam header is provided to cover the entire top surface of the heat exchanger block, and the gas-liquid two-phase flow opening is provided on the upper side surface of the heat exchanger block. 1. The dephlegmator according to claim 1. 前記熱交換器ブロックは、残留蒸気を前記熱交換器ブロックの頂面の一部に集約するためのフィンを有し、残留蒸気用開口は前記フィンによって集約された部位に設けられ、前記気液2相流用開口は前記頂面における前記残留蒸気ヘッダーで覆われていない領域に設けられていることを特徴とする請求項1に記載の分縮器。 The heat exchanger block has fins for concentrating the residual steam on a part of the top surface of the heat exchanger block, and the residual vapor opening is provided in the portion concentrated by the fins. 2. The dephlegmator of claim 1, wherein two-phase flow openings are provided in areas of said top surface not covered by said residual steam header. 蒸留塔の塔頂部に設けられる塔頂分縮器であって、
請求項1乃至3のいずれかに記載の分縮器と、該分縮器の前記蒸気供給ヘッダーに連結されて前記蒸留塔の塔壁と接続される底板と、前記蒸気供給ヘッダーを経て流下する液体を収集するための液収集器とを備えたことを特徴とする塔頂分縮器。
A top partial condenser provided at the top of a distillation column,
The partial condenser according to any one of claims 1 to 3, a bottom plate connected to the steam supply header of the partial condenser and connected to the column wall of the distillation column, and the steam flowing down through the steam supply header. and a liquid collector for collecting liquid.
空気から窒素、酸素、アルゴンを採取する複式精留システムからなる空気分離装置であって、請求項4記載の塔頂分縮器をアルゴン塔の塔頂分縮器として備えることを特徴とする空気分離装置。 An air separation apparatus comprising a double rectification system for extracting nitrogen, oxygen and argon from air, wherein the overhead partial condenser according to claim 4 is provided as the overhead partial condenser of an argon column. separation device.
JP2021039866A 2021-03-12 2021-03-12 Partial condenser, overhead partial condenser, air separation unit Active JP7308237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021039866A JP7308237B2 (en) 2021-03-12 2021-03-12 Partial condenser, overhead partial condenser, air separation unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021039866A JP7308237B2 (en) 2021-03-12 2021-03-12 Partial condenser, overhead partial condenser, air separation unit

Publications (2)

Publication Number Publication Date
JP2022139461A true JP2022139461A (en) 2022-09-26
JP7308237B2 JP7308237B2 (en) 2023-07-13

Family

ID=83399867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021039866A Active JP7308237B2 (en) 2021-03-12 2021-03-12 Partial condenser, overhead partial condenser, air separation unit

Country Status (1)

Country Link
JP (1) JP7308237B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11244603A (en) * 1998-03-03 1999-09-14 Mitsubishi Chemical Corp Dephlegmator
JP2002147947A (en) * 2000-09-15 2002-05-22 Air Products & Chemicals Inc Device and method of separating crude gas mixture
JP2007192466A (en) * 2006-01-19 2007-08-02 Nippon Steel Corp Cryogenic air separation plant and its control method
JP2008039386A (en) * 2006-08-08 2008-02-21 Linde Ag Reflux condenser
JP2013205010A (en) * 2012-03-29 2013-10-07 Linde Ag Plate type heat exchanger
JP2016044894A (en) * 2014-08-22 2016-04-04 大陽日酸株式会社 Multistep liquid storage type condensation evaporator
JP2017090035A (en) * 2015-10-20 2017-05-25 リンデ アクチエンゲゼルシャフトLinde Aktiengesellschaft Plate heat exchanger/condensation vaporizer and low temperature separation method of air
WO2020158734A1 (en) * 2019-01-28 2020-08-06 大陽日酸株式会社 Multistage reservoir-type condenser-evaporator, and nitrogen production device using multistage reservoir-type condenser-evaporator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2431103A1 (en) 1978-07-12 1980-02-08 Air Liquide Low-temp. fractionation column for sepg. gaseous mixt. - superposed compartments interconnected by vaporiser-condenser circumscribed by column ensuring max. compactness
DE102008045736A1 (en) 2008-09-04 2010-03-11 Linde Ag Return flow condenser has heat exchanger block, return passage and refrigerant passage, where upper and lateral sides of pressure reservoir are enclosed by heat exchanger block

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11244603A (en) * 1998-03-03 1999-09-14 Mitsubishi Chemical Corp Dephlegmator
JP2002147947A (en) * 2000-09-15 2002-05-22 Air Products & Chemicals Inc Device and method of separating crude gas mixture
JP2007192466A (en) * 2006-01-19 2007-08-02 Nippon Steel Corp Cryogenic air separation plant and its control method
JP2008039386A (en) * 2006-08-08 2008-02-21 Linde Ag Reflux condenser
JP2013205010A (en) * 2012-03-29 2013-10-07 Linde Ag Plate type heat exchanger
JP2016044894A (en) * 2014-08-22 2016-04-04 大陽日酸株式会社 Multistep liquid storage type condensation evaporator
JP2017090035A (en) * 2015-10-20 2017-05-25 リンデ アクチエンゲゼルシャフトLinde Aktiengesellschaft Plate heat exchanger/condensation vaporizer and low temperature separation method of air
WO2020158734A1 (en) * 2019-01-28 2020-08-06 大陽日酸株式会社 Multistage reservoir-type condenser-evaporator, and nitrogen production device using multistage reservoir-type condenser-evaporator

Also Published As

Publication number Publication date
JP7308237B2 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
EP0501471B1 (en) Boiling process and a heat exchanger for use in the process
EP3184944B1 (en) Multistage liquid-reservoir-type condensation evaporator
US5901574A (en) Device and process for evaporating a liquid
US20070028649A1 (en) Cryogenic air separation main condenser system with enhanced boiling and condensing surfaces
US6338384B1 (en) Downflow liquid film type condensation evaporator
JP3935503B2 (en) Argon separation method and apparatus
JP7308237B2 (en) Partial condenser, overhead partial condenser, air separation unit
US10048004B2 (en) Condenser-reboiler system and method
US5775129A (en) Heat exchanger
JP7103816B2 (en) Argon production equipment and method by air liquefaction separation
CN106512463A (en) Gas and liquid separation device of rectifying tower
US6393864B1 (en) Bath reboiler-condenser consisting of brazed plates and its application to an air distillation plant
JP7382352B2 (en) Multi-stage reservoir condenser evaporator and nitrogen production equipment using multi-stage reservoir condenser evaporator
US9476641B2 (en) Down-flow condenser reboiler system for use in an air separation plant
JP7356334B2 (en) Multi-stage reservoir condensing evaporator, air separation device equipped with the multi-stage reservoir condensing evaporator
US6311517B1 (en) Apparatus and process for fractionating a gas mixture at low temperature
JP2000111245A (en) Flowing-down liquid film type condensation evaporator and method of its use
JPH0789008B2 (en) Condensing evaporator
JPH0332701A (en) Method and device for removing uncondensed gas in vertical tube condenser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230703

R150 Certificate of patent or registration of utility model

Ref document number: 7308237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150