JP2022138684A - Ozone generation controller - Google Patents

Ozone generation controller Download PDF

Info

Publication number
JP2022138684A
JP2022138684A JP2021038703A JP2021038703A JP2022138684A JP 2022138684 A JP2022138684 A JP 2022138684A JP 2021038703 A JP2021038703 A JP 2021038703A JP 2021038703 A JP2021038703 A JP 2021038703A JP 2022138684 A JP2022138684 A JP 2022138684A
Authority
JP
Japan
Prior art keywords
ozone
time
supply unit
space
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021038703A
Other languages
Japanese (ja)
Inventor
広行 蛇口
Hiroyuki Hebiguchi
義幸 古山
Yoshiyuki Furuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Alpine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Alpine Co Ltd filed Critical Alps Alpine Co Ltd
Priority to JP2021038703A priority Critical patent/JP2022138684A/en
Publication of JP2022138684A publication Critical patent/JP2022138684A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

To provide an ozone generation controller that can accurately determine completion of treatment of an object.SOLUTION: An ozone generation controller comprises: an ozone supply unit which supplies ozone into a target space; an ozone detection unit which detects ozone inside the target space and outputs an ozone concentration value; and a control unit which controls driving of the ozone supply unit on the basis of the ozone concentration value. The control unit determines that treatment of an object inside the target space has not been completed when the reduction speed of the ozone concentration value after the driving of the ozone supply unit is stopped is large, and determines that treatment of the object inside the target space has been completed when the reduction speed is small.SELECTED DRAWING: Figure 1

Description

本発明は、オゾン発生制御装置に関する。 The present invention relates to an ozone generation control device.

オゾンは、強い酸化力を有するため、脱臭、有機物除去、有害物質除去、殺菌等を目的として、被処理物である対象物の濃度に応じてオゾンの発生量を制御して、オゾンにより対象物の除去(脱臭)及び殺菌を行うオゾン発生制御装置が様々な分野で使用されている。 Ozone has a strong oxidizing power, so for the purpose of deodorizing, removing organic matter, removing harmful substances, sterilizing, etc., the amount of ozone generated is controlled according to the concentration of the object to be treated, and the ozone oxidizes the object. Ozone generation control devices that remove (deodorize) and sterilize are used in various fields.

オゾン発生制御装置として、例えば、オゾンを発生させて空間内の空気中に含まれる臭気成分を分解して除去する清浄部と、オゾンを発生させる浄化物質発生部と、空気中のオゾン濃度を検知する浄化物質濃度センサと、浄化物質濃度センサが検知したオゾン濃度に応じてオゾンの発生量を制御する制御部とを備える空気清浄装置が開示されている(例えば、特許文献1参照)。この空気清浄装置では、空間内の単位時間当たりのオゾン濃度が所定の割合で増加している場合には、浄化物質発生部の運転を停止してオゾンの発生を停止している。 As an ozone generation control device, for example, a cleaning unit that generates ozone and decomposes and removes odorous components contained in the air in the space, a purification substance generation unit that generates ozone, and detects the ozone concentration in the air. and a controller for controlling the amount of ozone generated in accordance with the ozone concentration detected by the concentration sensor (see, for example, Patent Document 1). In this air cleaner, when the ozone concentration per unit time in the space increases at a predetermined rate, the operation of the purification substance generator is stopped to stop the generation of ozone.

国際公開第2019-150735号WO2019-150735

しかしながら、特許文献1の技術では、オゾン濃度の増加速度と臭気成分等の対象物の処理状況とが対応しない場合があるため、対象物の処理の完了を正確に判断することが困難である、という問題があった。 However, with the technique of Patent Document 1, the rate of increase in ozone concentration may not correspond to the processing status of an object such as odorous components, so it is difficult to accurately determine the completion of processing of the object. There was a problem.

オゾン濃度の増加速度と対象物の処理状況が対応しない場合として、例えば、オゾンの供給速度が対象物によるオゾンの消費速度に比べて非常に大きかったり、対象物のオゾンによる酸化反応が遅いため、オゾン濃度の増加速度の変化が小さい場合がある。また、他に、オゾン濃度が一定値になるようにオゾンの発生をオンオフ制御する際にオゾンの供給量を多くすることで、オゾン濃度の増加速度の変化が小さくなる場合がある。 If the rate of ozone concentration increase does not correspond to the processing status of the object, for example, the rate of supply of ozone is much greater than the rate of consumption of ozone by the object, or the oxidation reaction of the object by ozone is slow. In some cases, the change in the rate of increase in ozone concentration is small. In addition, when the ozone generation is on/off controlled so that the ozone concentration becomes a constant value, increasing the supply amount of ozone may reduce the change in the increase speed of the ozone concentration.

本発明の一態様は、対象物の処理の完了を高精度に判断することができるオゾン発生制御装置を提供することを目的とする。 An object of one aspect of the present invention is to provide an ozone generation control device capable of determining the completion of processing of an object with high accuracy.

本発明に係るオゾン発生制御装置の一態様は、対象空間内にオゾンを供給するオゾン供給部と、前記対象空間内のオゾンを検出してオゾン濃度値を出力するオゾン検出部と、前記オゾン濃度値に基づいて前記オゾン供給部を駆動制御する制御部と、を備えたオゾン発生制御装置であって、前記制御部は、前記オゾン供給部の駆動を停止した後の前記オゾン濃度値の減少速度が大きい時に前記対象空間内の対象物の処理が完了していないと判断し、減少速度が小さい時に前記対象空間内の前記対象物の処理が完了したと判断する。 One aspect of the ozone generation control apparatus according to the present invention includes an ozone supply unit that supplies ozone into a target space, an ozone detection unit that detects ozone in the target space and outputs an ozone concentration value, and the ozone concentration. and a control unit for driving and controlling the ozone supply unit based on the value, wherein the control unit controls the reduction rate of the ozone concentration value after stopping the driving of the ozone supply unit. When is large, it is determined that the processing of the object in the object space is not completed, and when the decreasing speed is small, it is determined that the processing of the object in the object space is completed.

本発明に係るオゾン発生制御装置の他の態様は、対象空間内にオゾンを供給するオゾン供給部と、前記対象空間内のオゾンを検出してオゾン濃度値を出力するオゾン検出部と、前記オゾン濃度値に基づいて前記オゾン供給部を駆動制御する制御部と、を備えたオゾン発生制御装置であって、前記制御部は、前記オゾン供給部の駆動を停止した後の前記オゾン濃度値の減少速度が大きい時に前記対象空間内の対象物の処理が所定のレベルまで進んでいないと判断し、前記減少速度が小さい時に前記対象空間内の前記対象物の処理が所定のレベルまで進んだと判断する。 Another aspect of the ozone generation control device according to the present invention includes an ozone supply unit that supplies ozone into a target space, an ozone detection unit that detects ozone in the target space and outputs an ozone concentration value, and the ozone and a control unit for driving and controlling the ozone supply unit based on the concentration value, wherein the control unit reduces the ozone concentration value after stopping the driving of the ozone supply unit. When the speed is high, it is determined that the processing of the object in the object space has not progressed to a predetermined level, and when the speed of decrease is small, it is determined that the processing of the object in the object space has progressed to the predetermined level. do.

本発明に係るオゾン発生制御装置の一態様は、対象物の処理の完了を高精度に判断することができる。 One aspect of the ozone generation control device according to the present invention can determine the completion of the processing of the object with high accuracy.

第1の実施形態に係るオゾン発生制御装置を示す概略構成図である。1 is a schematic configuration diagram showing an ozone generation control device according to a first embodiment; FIG. 時間とオゾン濃度との関係を示す説明図である。FIG. 4 is an explanatory diagram showing the relationship between time and ozone concentration; オゾン処理方法を説明するフローチャートである。It is a flow chart explaining an ozone processing method. 図3のオゾン処理工程(ステップS11)の動作を示すフローチャートである。FIG. 4 is a flow chart showing the operation of the ozone treatment step (step S11) in FIG. 3. FIG. 第2の実施形態に係るオゾン発生制御装置を示す概略構成図である。FIG. 5 is a schematic configuration diagram showing an ozone generation control device according to a second embodiment; オゾン処理方法を説明するフローチャートである。It is a flow chart explaining an ozone processing method. 第3の実施形態に係るオゾン発生制御装置を示す概略構成図である。FIG. 11 is a schematic configuration diagram showing an ozone generation control device according to a third embodiment; オゾン処理方法を説明するフローチャートである。It is a flow chart explaining an ozone processing method. 第4の本実施形態に係るオゾン発生制御装置を示す概略構成図である。FIG. 11 is a schematic configuration diagram showing an ozone generation control device according to a fourth embodiment; オゾン処理方法を説明するフローチャートである。It is a flow chart explaining an ozone processing method. 第5の本実施形態に係るオゾン発生制御装置を示す概略構成図である。FIG. 11 is a schematic configuration diagram showing an ozone generation control device according to a fifth embodiment; オゾン処理方法を説明するフローチャートである。It is a flow chart explaining an ozone processing method.

以下、本発明の実施の形態について、詳細に説明する。なお、説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の符号を付して、重複する説明は省略する。また、図面における各部材の縮尺は実際とは異なる場合がある。本明細書において数値範囲を示す「~」は、別段の断わりがない限り、その前後に記載された数値を下限値及び上限値として含むことを意味する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail. In addition, in order to facilitate understanding of the description, the same components are denoted by the same reference numerals in each drawing, and overlapping descriptions are omitted. Also, the scale of each member in the drawings may differ from the actual scale. Unless otherwise specified, "-" indicating a numerical range in this specification means that the numerical values before and after it are included as lower and upper limits.

[第1の実施形態]
<オゾン発生制御装置>
本発明の第1の実施形態に係るオゾン発生制御装置について説明する。なお、オゾン発生制御装置が設置される対象空間内には、対象物が含まれているものとする。
[First embodiment]
<Ozone generation controller>
An ozone generation control device according to a first embodiment of the present invention will be described. It is assumed that an object is included in the target space in which the ozone generation control device is installed.

なお、本実施形態において、対象空間とは、家、ビル、病院、福祉施設等の建物、自動車、電車等の車両、飛行機等の室内空間等のように、閉鎖された空間であって空気が存在する雰囲気をいう。閉鎖された空間は、実質密閉とみなせる空間を含み、空気が循環していてもよいし、循環していなくてもよい。 In this embodiment, the target space is a closed space where air is not present, such as a house, a building, a hospital, a building such as a welfare facility, an automobile, a vehicle such as a train, an indoor space such as an airplane, or the like. It refers to the atmosphere that exists. A closed space includes a space that can be regarded as substantially closed, and air may or may not circulate.

対象物とは、揮発性有機化合物(VOC)、臭気成分、細菌、ウィルス等をいう。なお、臭気成分とは、悪臭物質や揮発性有機化合物等をいい、トリメチルアミン、メチルメルカプタン、NH3、H2S等が挙げられる。 Objects refer to volatile organic compounds (VOCs), odor components, bacteria, viruses, and the like. The malodorous component refers to a malodorous substance, a volatile organic compound, and the like, and includes trimethylamine, methyl mercaptan, NH 3 , H 2 S, and the like.

図1は、本実施形態に係るオゾン発生制御装置を示す概略構成図である。図1に示すように、オゾン発生制御装置1Aは、オゾン供給部10と、オゾン検出部であるオゾン濃度センサ20と、制御部30Aとを備え、温度センサ40、湿度センサ50、CO2センサ60及び報知部70を備えてもよい。オゾン発生制御装置1Aは、対象空間S内に設置されている。オゾン発生制御装置1Aは、対象空間S内に存在する対象物をオゾン(O3)と接触させ、対象物をオゾンにより酸化分解して除去することで、対象物の濃度が許容される値以下まで低下するように処理して、対称空間S内の空気を清浄にしている。 FIG. 1 is a schematic configuration diagram showing an ozone generation control device according to this embodiment. As shown in FIG. 1, the ozone generation control device 1A includes an ozone supply section 10, an ozone concentration sensor 20 as an ozone detection section, and a control section 30A. and a notification unit 70 may be provided. 1 A of ozone generation control apparatuses are installed in the target space S. As shown in FIG. The ozone generation control device 1A brings an object present in the target space S into contact with ozone (O 3 ), oxidatively decomposes the object with ozone, and removes the object, thereby reducing the concentration of the object to a permissible value or less. to clean the air in the symmetrical space S.

オゾン発生制御装置1Aは、対象空間S内に存在する対象物を除去する際に、対象空間S内のオゾン濃度が所定の範囲内に維持されるようにオゾン供給部10の運転にフィードバック制御する。オゾン発生制御装置1Aは、オゾン供給部10の運転を停止した時のオゾン濃度の減少速度の大きさに基づいて、対象空間S内の対象物の除去が完了していることを判断するものである。 The ozone generation control device 1A performs feedback control on the operation of the ozone supply unit 10 so that the ozone concentration in the target space S is maintained within a predetermined range when removing the target object present in the target space S. . The ozone generation control device 1A judges that the removal of the object in the object space S is completed based on the rate of decrease of the ozone concentration when the operation of the ozone supply unit 10 is stopped. be.

一般に、従来の技術は、空間内のオゾン濃度を所定の範囲内に制御することはできるが、オゾン発生中に、悪臭の脱臭割合、細菌及びウィルス等の殺菌割合等のような、対象物の処理具合を把握することは困難である。そのため、従来の技術では、対象物の除去(脱臭、殺菌等)が十分完了していても、オゾンの発生及び空間内におけるオゾン濃度の制御を続けることが多い。また、有人環境下で対象物の除去(脱臭、殺菌等)を行う場合、オゾン濃度が安全濃度であっても、空間内にいる人が不要なオゾンに晒されることになるため、不快なオゾン臭を感じることも考えられる。 In general, the conventional technology can control the ozone concentration in the space within a predetermined range, but during the ozone generation, the target object, such as the deodorization rate of bad odors, the sterilization rate of bacteria and viruses, etc. It is difficult to grasp the processing condition. Therefore, in the conventional technology, even if the removal of the object (deodorization, sterilization, etc.) is sufficiently completed, the generation of ozone and the control of the ozone concentration in the space are often continued. In addition, when removing objects (deodorization, sterilization, etc.) in a manned environment, even if the ozone concentration is safe, people in the space will be exposed to unnecessary ozone. It is also possible that you can smell it.

オゾン発生制御装置1Aは、オゾン濃度の減少速度に基づいてオゾン消費量を推定することで、対象空間Sの対象物の除去(脱臭、殺菌等)が所定の目的濃度以下になるまで行うことができ、対象空間S内の空気が清浄化されていることをリアルタイムで把握することができる。 By estimating the ozone consumption amount based on the rate of decrease of the ozone concentration, the ozone generation control device 1A can remove the target object in the target space S (deodorization, sterilization, etc.) until the target concentration becomes equal to or less than a predetermined target concentration. It can be grasped in real time that the air in the target space S is purified.

オゾン発生制御装置1Aの各構成について説明する。 Each configuration of the ozone generation control device 1A will be described.

オゾン供給部10は、対象空間S内の空気中の酸素を原料として、対象空間S内にオゾンを発生させて、対象空間S内にオゾンを供給する。オゾン供給部10は、制御部30Aと電気的に接続され、制御部30Aによって制御される。オゾン供給部10は、制御部30Aから送られる駆動信号に基づいてオゾンを発生させることができる。 The ozone supply unit 10 generates ozone within the target space S using oxygen in the air within the target space S as a raw material, and supplies the ozone within the target space S. The ozone supply unit 10 is electrically connected to the control unit 30A and controlled by the control unit 30A. The ozone supply unit 10 can generate ozone based on a drive signal sent from the control unit 30A.

オゾン供給部10は、オゾンを発生できるものであれば、どのような方式のものでも用いることができる。オゾン供給部10として、例えば、放電電極と対向電極とを互いに向かい合った状態で交互に配置してなる放電式を利用してオゾンを生成する装置、紫外線を用いた光化学反応方式を利用してオゾンを生成する装置等を用いることができる。 Any type of ozone supply unit 10 can be used as long as it can generate ozone. As the ozone supply unit 10, for example, a device for generating ozone using a discharge method in which discharge electrodes and counter electrodes are alternately arranged facing each other, ozone using a photochemical reaction method using ultraviolet rays. can be used.

放電式を利用してオゾンを生成する装置では、両電極に電圧を印加することで、両電極間で放電を生じさせる。放電を生じている電極間に空気を通過させることにより、空気中に含まれる酸素が活性化され、解離又は励起された酸素の一部がオゾン(O3)に変化する。これにより、空気中にオゾンが発生する。そして、発生したオゾンは、対象空間Sの空気中に含まれる対象物と反応して、対象物を分解し、除去する。オゾン供給部10でのオゾンの発生量(オゾン発生量)は、制御部30Aより出力される駆動信号を調整して放電量を調整することにより、増減、稼働、停止等を制御することができる。 In an apparatus that generates ozone using a discharge method, a voltage is applied to both electrodes to generate discharge between the electrodes. Oxygen contained in the air is activated by passing air between the electrodes generating the discharge, and part of the dissociated or excited oxygen changes to ozone (O 3 ). This creates ozone in the air. The generated ozone reacts with objects contained in the air in the target space S to decompose and remove the objects. The amount of ozone generated in the ozone supply unit 10 (ozone generation amount) can be controlled to increase/decrease, operate, stop, etc. by adjusting the discharge amount by adjusting the drive signal output from the control unit 30A. .

紫外線を用いた光化学反応方式を利用してオゾンを生成する装置としては、紫外線を放出する紫外線ランプを備えた紫外線照射装置を用いることができる。紫外線ランプとしては、例えば、低圧水銀ランプやエキシマランプ等を用いることができるが、オゾン分解波長を含まない光を放出することのできるエキシマランプを用いることが好ましい。 As an apparatus for generating ozone using a photochemical reaction method using ultraviolet rays, an ultraviolet irradiation apparatus equipped with an ultraviolet lamp that emits ultraviolet rays can be used. As the ultraviolet lamp, for example, a low-pressure mercury lamp, an excimer lamp, or the like can be used, but it is preferable to use an excimer lamp that can emit light that does not contain the ozone decomposition wavelength.

オゾン濃度センサ20は、対象空間S内のオゾン濃度を測定する。オゾン濃度センサ20は、測定したオゾン濃度に応じた検出値(オゾン濃度値)を出力する。オゾン濃度センサ20は、制御部30Aと電気的に接続され、オゾン濃度値に対応するオゾン濃度検出信号(濃度信号)を制御部30Aに送信する。 The ozone concentration sensor 20 measures the ozone concentration within the target space S. The ozone concentration sensor 20 outputs a detection value (ozone concentration value) corresponding to the measured ozone concentration. The ozone concentration sensor 20 is electrically connected to the control section 30A, and transmits an ozone concentration detection signal (concentration signal) corresponding to the ozone concentration value to the control section 30A.

オゾン濃度センサ20は、特に限定されるものでなく、適宜選択することができる。オゾン濃度センサ20として、例えば、金属酸化物半導体材料よりなる感ガス部として半導体素子を備える半導体式センサ等を用いることができる。半導体式センサでは、オゾンが半導体素子の表面に接触することによって生ずる半導体素子の抵抗値の変化量を検出することにより、オゾン濃度が測定され、オゾン濃度に応じた電圧信号をオゾン濃度値として出力するものである。 The ozone concentration sensor 20 is not particularly limited and can be selected as appropriate. As the ozone concentration sensor 20, for example, a semiconductor sensor or the like having a semiconductor element as a gas sensitive portion made of a metal oxide semiconductor material can be used. In the semiconductor sensor, the ozone concentration is measured by detecting the amount of change in the resistance value of the semiconductor element caused by ozone contacting the surface of the semiconductor element, and a voltage signal corresponding to the ozone concentration is output as the ozone concentration value. It is something to do.

制御部30Aは、オゾン供給部10等のオゾン発生制御装置1Aを構成する各部材を制御可能にこれらと接続されている。制御部30Aは、制御プログラムや各種記憶情報を格納する記憶手段と、制御プログラムに基づいて動作する演算手段とを有している。制御部30Aは、演算手段が記憶手段に格納されている制御プログラム等を読み出して実行することで実現される。 The control unit 30A is connected to each member constituting the ozone generation control device 1A such as the ozone supply unit 10 so as to be controllable. The control unit 30A has storage means for storing control programs and various types of storage information, and calculation means for operating based on the control programs. The control unit 30A is realized by reading out and executing a control program or the like stored in the storage means by the calculation means.

制御部30Aは、オゾン濃度センサ20で測定されたオゾン濃度値に基づいてオゾン供給部10の駆動制御を行い、オゾン供給部10で発生させるオゾンの発生量を制御する。具体的には、制御部30Aは、オゾン濃度センサ20で測定されたオゾン濃度の測定結果であるオゾン濃度値に対応する濃度信号を受信する。制御部30Aは、オゾン濃度センサ20から受信した濃度信号に基づいて、対象空間S中のオゾン濃度を算出する。制御部30Aは、算出したオゾン濃度に基づいて、オゾン供給部10にオゾンを発生させる駆動出力値を算出する。制御部30Aは、算出した駆動出力値に対応する駆動信号をオゾン供給部10に送信し、オゾン供給部10で発生させるオゾンの発生量を制御する。また、制御部30Aは、オゾン供給部10を制御することで、オゾン供給部10から所定濃度のオゾンを発生させてもよい。 The control unit 30A performs drive control of the ozone supply unit 10 based on the ozone concentration value measured by the ozone concentration sensor 20, and controls the amount of ozone generated by the ozone supply unit 10. FIG. Specifically, the controller 30</b>A receives a concentration signal corresponding to the ozone concentration value, which is the measurement result of the ozone concentration measured by the ozone concentration sensor 20 . The controller 30A calculates the ozone concentration in the target space S based on the concentration signal received from the ozone concentration sensor 20. FIG. The control unit 30A calculates a drive output value for generating ozone in the ozone supply unit 10 based on the calculated ozone concentration. The controller 30</b>A transmits a drive signal corresponding to the calculated drive output value to the ozone supply unit 10 to control the amount of ozone generated by the ozone supply unit 10 . Further, the control unit 30A may control the ozone supply unit 10 to generate ozone of a predetermined concentration from the ozone supply unit 10 .

オゾン濃度は、人体に安全な基準値以下の範囲の濃度であればよく、対称空間Sの大きさ、対象物の種類、数、濃度等に応じ適宜設定できる。オゾン濃度としては、例えば、0.1ppm以下が好ましい。 The ozone concentration may be any concentration within a range of a standard value or less that is safe for the human body, and can be appropriately set according to the size of the symmetrical space S, the type, number, concentration, and the like of the objects. The ozone concentration is preferably 0.1 ppm or less, for example.

制御部30Aは、オゾン供給部10の駆動を停止した後のオゾン濃度値の減少速度が大きい時に対象空間S内の対象物の処理が完了していないと判断し、減少速度が小さい時に対象空間S内の対象物の処理が完了していると判断する。即ち、制御部30Aは、オゾン供給部10の駆動停止から駆動再開までの単位時間当たりにおけるオゾン濃度値の減少速度の変化量に基づいて判断する。制御部30Aは、オゾン供給部10の駆動停止後のオゾン濃度値の減少速度が所定の基準値を超える場合には、対象空間S内の対象物の処理が完了していないと判断し、オゾン濃度値の減少速度が所定の基準値以下である時には、対象空間S内の対象物の処理が完了していると判断する。 The control unit 30A determines that the processing of the object in the target space S is not completed when the rate of decrease of the ozone concentration value after stopping the driving of the ozone supply unit 10 is high, and determines that the processing of the object in the target space S is not completed when the rate of decrease is low. Determine that the objects in S have been processed. That is, the control unit 30A makes a determination based on the amount of change in the rate of decrease of the ozone concentration value per unit time from when the operation of the ozone supply unit 10 is stopped until when the operation is restarted. If the rate of decrease of the ozone concentration value after stopping the operation of the ozone supply unit 10 exceeds a predetermined reference value, the control unit 30A determines that the processing of the object in the object space S is not completed, When the speed of decrease of the density value is equal to or less than a predetermined reference value, it is determined that the processing of the object in the object space S is completed.

なお、基準値とは、特に限定されず、対象物の種類等に応じて適宜設定される。 Note that the reference value is not particularly limited, and is appropriately set according to the type of the object.

制御部30Aは、オゾン濃度値が開始用閾値以下になった時にオゾン供給部10の駆動を開始し、オゾン濃度値が停止用閾値以上になった時にオゾン供給部10の駆動を停止できる。 The control unit 30A can start driving the ozone supply unit 10 when the ozone concentration value becomes equal to or less than the start threshold value, and can stop driving the ozone supply unit 10 when the ozone concentration value becomes equal to or more than the stop threshold value.

開始用閾値は、対象物の種類等に応じて、適宜任意のオゾン濃度値に設定可能である。停止用閾値は、開始用閾値よりも高いオゾン濃度値であり、対象物の種類等に応じて、適宜任意のオゾン濃度値に設定可能である。開始用閾値及び停止用閾値は、対象空間S内のオゾン濃度を安全濃度に維持する濃度値であればよく、開始用閾値は、例えば0.08ppmとし、停止用閾値は、例えば0.1ppmとしてもよい。 The starting threshold value can be appropriately set to an arbitrary ozone concentration value according to the type of object and the like. The threshold for stopping is an ozone concentration value higher than the threshold for starting, and can be appropriately set to an arbitrary ozone concentration value according to the type of object. The start threshold and stop threshold may be concentration values that maintain the ozone concentration in the target space S at a safe concentration. For example, the start threshold is 0.08 ppm, and the stop threshold is 0.1 ppm. good too.

オゾン濃度センサ20の測定時間と、対象空間S内のオゾン濃度との関係の一例を図2に示す。図2に示すように、処理空間S内に対象物等が存在し、処理空間S内の空気が汚染されている状態の時に、オゾン供給部10の駆動が停止しているオフ時間Toffを時間t1とし、オゾン供給部10の駆動しているオン時間Tonを時間t11とする。処理空間S内に対象物等が殆ど存在せず清浄化されている状態の時に、オフ時間Toffを時間t0とし、オン時間Tonを時間t10とする。オゾン濃度が開始用閾値である時のオゾン濃度値をC11とし、オゾン濃度が停止用閾値である時のオゾン濃度値をC12とする。対象空間S内のオゾン濃度は、開始用閾値及び停止用閾値の間で安全濃度(例えば、0.08ppm~0.1ppm)に維持されている。 An example of the relationship between the measurement time of the ozone concentration sensor 20 and the ozone concentration in the target space S is shown in FIG. As shown in FIG. 2, when an object or the like exists in the processing space S and the air in the processing space S is polluted, the off time T off during which the ozone supply unit 10 is stopped is set to It is assumed that time t1 and the on - time T on during which the ozone supply unit 10 is driven is time t11. When the processing space S is in a clean state with almost no objects, etc., the OFF time T off is set to time t 0 and the ON time T on is set to time t 10 . Let C11 be the ozone concentration value when the ozone concentration is the starting threshold value, and let C12 be the ozone concentration value when the ozone concentration is the stopping threshold value. The ozone concentration in the target space S is maintained at a safe concentration (eg, 0.08 ppm to 0.1 ppm) between the start threshold and stop threshold.

処理空間S内の空気が汚染されている状態である時のオフ時間Toff(時間t1)のオゾンの減少速度(オゾン濃度が開始用閾値C11から停止用閾値C12までの時間のオゾンの減少速度)は、処理空間S内が清浄化されている状態である時のオフ時間Toff(時間t0)のオゾンの減少速度(オゾン濃度値が開始用閾値C11から停止用閾値C12までの時間のオゾンの減少速度)よりも大きい。 Ozone reduction rate during the OFF time T off (time t 1 ) when the air in the processing space S is polluted (ozone reduction during the period from the start threshold value C11 to the stop threshold value C12) speed) is the rate of decrease of ozone during the OFF time T off (time t 0 ) when the inside of the processing space S is cleaned (the time from the start threshold value C11 to the stop threshold value C12 for the ozone concentration value ozone depletion rate).

即ち、オフ時間Toffは、オゾンは処理対象物と反応して消費され、新たにオゾン供給部10より供給されるオゾンがないため、オゾン濃度は減少する。そして、対象空間S内に対象物が残っていると、対象空間S内のオゾン濃度は更に減少するため、対象空間S内の対象物の濃度によって、オフ時間Toffでのオゾン濃度の減少速度は更に大きくなる。そのため、制御部30Aは、オゾン供給部10からのオゾンの供給停止後、オゾン濃度値の減少速度が大きく、所定速度を超えていれば、対象空間S内の対象物はオゾンで所定の濃度以下になるまで処理が完了していないと判断できる。オゾン濃度値の減少速度が小さく、所定速度以下であれば、対象空間S内の対象物はオゾンで所定の濃度以下になるまで処理が完了していると判断できる。 That is, during the OFF time Toff, ozone reacts with the object to be treated and is consumed, and no new ozone is supplied from the ozone supply unit 10, so the ozone concentration decreases. If the object remains in the target space S, the ozone concentration in the target space S further decreases. becomes even larger. Therefore, if the rate of decrease in the ozone concentration value after stopping the supply of ozone from the ozone supply unit 10 is large and exceeds a predetermined rate, the control unit 30A determines that the object in the target space S is ozone and has a predetermined concentration or less. It can be judged that the processing is not completed until it becomes . If the rate of decrease in the ozone concentration value is small and is equal to or less than a predetermined rate, it can be determined that the treatment of the object in the target space S has been completed with ozone until the concentration becomes equal to or less than the predetermined rate.

本実施形態において、所定速度とは、対象物の種類、対象物の初期濃度、温度、湿度等に応じて適宜選択される。 In this embodiment, the predetermined speed is appropriately selected according to the type of object, the initial density of the object, temperature, humidity, and the like.

オフ時間Toff(時間t0、t1)は、オゾン濃度のみにより一義的に決まるものではなく、温度センサ40及び湿度センサ50で測定される、処理空間S内の空気の温度、湿度等を考慮して適宜補正して調整することが好ましい。オゾンの自然分解による半減期は、温度及び湿度に依存する傾向があるため、対象空間S内の温度及び湿度も考慮することで、オフ時間Toff(時間t0、t1)はより適切に算出できる。 The off-time T off (time t 0 , t 1 ) is not uniquely determined by the ozone concentration alone, but is determined by the temperature, humidity, etc. of the air in the processing space S measured by the temperature sensor 40 and the humidity sensor 50. It is preferable to take the above into consideration and make appropriate corrections and adjustments. Since the half-life due to natural decomposition of ozone tends to depend on temperature and humidity, the off-time T off (time t 0 , t 1 ) can be set more appropriately by also considering the temperature and humidity in the target space S. can be calculated.

制御部30Aは、オゾン濃度の減少速度を算出する際、例えば、下記式(1)のように、停止用閾値C12と開始用閾値C11との時間との差に対する、停止用閾値C12と開始用閾値C11とのオゾン濃度値の差等を用いることができる。
(停止用閾値C12-開始用閾値C11)/(停止用閾値C12の時刻-開始用閾値C11の時刻) ・・・(1)
When calculating the rate of decrease of the ozone concentration, for example, the control unit 30A calculates the stop threshold value C12 and the start A difference between the ozone concentration value and the threshold value C11 can be used.
(Stop threshold value C12−Start threshold value C11)/(Time of stop threshold value C12−Time of start threshold value C11) (1)

また、制御部30Aは、オフ時間Toff内の任意の2点間の時間の差に対するオゾン濃度値の差の比等を用いることができる。 Further, the control unit 30A can use the ratio of the difference in ozone concentration value to the time difference between any two points within the OFF time Toff.

制御部30Aは、時間とオゾン濃度との関係を、予め記憶手段に記憶させておいてもよい。この場合、制御部30Aは、記憶手段に記憶されている記憶値と、オゾン濃度センサ20で測定された実測値及びオゾン供給部10の稼働時間とを比較して、対象空間S内に存在する対象物の酸化が完了しているか否か判断することができる。 The controller 30A may store the relationship between time and ozone concentration in advance in the storage means. In this case, the control unit 30A compares the stored value stored in the storage unit with the actual measurement value measured by the ozone concentration sensor 20 and the operation time of the ozone supply unit 10, and determines whether the ozone supply unit 10 exists in the target space S. It can be determined whether the oxidation of the object is complete.

また、制御部30Aは、オゾン供給部10の駆動を停止した後のオゾン濃度値の減少速度が大きい時に対象空間S内の対象物の処理が所定の処理まで進んでいないと判断し、減少速度が小さい時に対象空間S内の対象物の処理が所定の処理まで進んだと判断してもよい。 Further, when the rate of decrease of the ozone concentration value after stopping the driving of the ozone supply section 10 is high, the control section 30A determines that the processing of the object in the target space S has not progressed to the predetermined level, and determines that the rate of decrease is When is small, it may be determined that the processing of the object in the object space S has progressed to the predetermined processing.

なお、所定の処理とは、例えば、安全レベル、普通レベル、要注意レベル、危険レベル等の、対象空間S内の対象物の処理の進行具合の指標である。 Note that the predetermined process is an indicator of the progress of the process of the object in the target space S, such as a safe level, normal level, caution level, or dangerous level.

温度センサ40は、処理空間S内の温度を測定する。温度センサ40は、特に限定されず、一般的な温度計等を用いることができる。 A temperature sensor 40 measures the temperature in the processing space S. FIG. The temperature sensor 40 is not particularly limited, and a general thermometer or the like can be used.

湿度センサ50は、処理空間S内の湿度を測定する。湿度センサ50は、特に限定されず、一般的な湿度計等を用いることができる。 The humidity sensor 50 measures the humidity within the processing space S. The humidity sensor 50 is not particularly limited, and a general hygrometer or the like can be used.

CO2センサ60は、処理空間S内のCO2濃度を測定する。CO2センサ60は、特に限定されず、一般的なCO2測度計等を用いることができる。 The CO 2 sensor 60 measures the CO 2 concentration within the processing space S. The CO 2 sensor 60 is not particularly limited, and a general CO 2 meter or the like can be used.

報知部70は、制御部30Aの算出結果を報知する機能を有する。報知部70は、目的処理の完了を、表示、音声の出力、振動の発生等により報知することができる。報知部6
0としては、モニター、警報、振動等を用いることができる。
The notification unit 70 has a function of notifying the calculation result of the control unit 30A. The notification unit 70 can notify completion of the target process by display, output of sound, generation of vibration, or the like. Notification unit 6
As 0, a monitor, alarm, vibration, or the like can be used.

例えば、図2に示すように、オフ時間Toffが時間t1を超え時間t0以下の間(t1<Toff≦t0)であるとする。この場合、オフ時間Toffでのオゾン濃度の減少速度は、時間t1を超え時間t0以下の間(t1<Toff≦t0)でのオゾン濃度の減少速度となり、対象空間S内は、少なくとも通常レベル以上に清浄化されている状態であるといえる。この場合には、報知部70は、普通レベル以上であることの表示(例えば、レベル1の表示)、白色ランプの点灯等を行ってもよい。 For example, as shown in FIG. 2, it is assumed that the off-time T off exceeds time t 1 and is equal to or less than time t 0 (t 1 <T off ≦t 0 ). In this case, the rate of decrease of the ozone concentration at the OFF time T off is the rate of decrease of the ozone concentration during the period from time t 1 to time t 0 (t 1 <T off ≦t 0 ), and within the target space S can be said to be in a state of being purified to at least a normal level or higher. In this case, the notification unit 70 may display that the level is normal or higher (for example, display level 1), turn on a white lamp, or the like.

オフ時間Toffが時間t1以下(Toff≦t1)であるとする。この場合、オフ時間Toffでのオゾン濃度の減少速度は、時間t1以下(Toff≦t1)でのオゾン濃度の減少速度となり、対象空間S内は、少なくとも清浄化が必要な状態であるといえる。この場合には、報知部70は、清浄化が必要な状態であることの表示(例えば、レベル2や換気マークの表示)、赤色ランプの点灯等を行ってもよい。 Assume that the OFF time T off is less than or equal to time t 1 (T off ≦t 1 ). In this case, the rate of decrease of the ozone concentration during the OFF time Toff is the rate of decrease of the ozone concentration at time t1 or less ( Toff ≤ t1), and the target space S is in a state where at least cleaning is required. It can be said that there is. In this case, the notification unit 70 may indicate that cleaning is required (for example, display level 2 or a ventilation mark), turn on a red lamp, or the like.

また、対象空間S内の清浄化を行うために、対象空間S内の換気を行う場合、対象空間S内のオゾンも対象空間Sから排出され、オフ時間Toffが時間t0以下と略同等になってしまう。そのため、制御部30Aは、清浄化が必要な状態、特に、オゾン消費が非常に大きい危険レベルの状態の場合であるか清浄化が不要な状態の場合であるかを区別できなくなる。この場合、制御部30は、CO2の濃度が減少する場合には、対称空間S内を換気していると判断し、CO2濃度が減少しない場合は、換気を行っておらず、対象空間Sは、オゾンによる処理能力(例えば、脱臭及び殺菌能力)が不足している状態(危険レベル)であると判断してよい。 In addition, when the target space S is ventilated in order to clean the target space S, the ozone in the target space S is also discharged from the target space S, and the off time T off is substantially equal to the time t 0 or less. Become. Therefore, the control unit 30A cannot distinguish between a state in which cleaning is required, particularly a state in which ozone consumption is at a dangerous level, and a state in which cleaning is not required. In this case, the control unit 30 determines that the inside of the symmetrical space S is being ventilated when the CO 2 concentration decreases, and determines that the target space S is not being ventilated when the CO 2 concentration does not decrease. S may be determined to be in a state (dangerous level) in which the ozone treatment capacity (for example, deodorizing and sterilizing capacity) is insufficient.

また、報知部70は、制御部30Aがオゾン供給部10の駆動停止後におけるオゾン濃度値の減少速度の大小に応じて対象空間S内の対象物の処理の進行具合を判断する場合には、対象物の処理の進行具合を、表示、音声の出力、振動の発生等により報知してもよい。 Further, when the control unit 30A determines the progress of the processing of the object in the target space S according to the rate of decrease of the ozone concentration value after stopping the driving of the ozone supply unit 10, the notification unit 70 The progress of the processing of the object may be notified by display, output of sound, generation of vibration, or the like.

例えば、図2に示すように、対象空間S内が清浄化されている場合、オフ時間Toffが時間toであるとする。この場合、オフ時間Toffでのオゾン濃度の減少速度は、時間toでのオゾン濃度の減少速度となり、オゾンが自然分解されている状態であり、清浄化が完了しており、オゾン供給部10の運転を停止してもよいといえる。この場合には、報知部70は、安全レベルであることの表示(例えば、レベル0の表示)、白色ランプの点灯等を行ってもよい。 For example, as shown in FIG. 2, when the inside of the target space S is cleaned, the OFF time T off is the time t 0 . In this case, the rate of decrease of the ozone concentration at the OFF time T off is the rate of decrease of the ozone concentration at the time t o , which is a state in which ozone is naturally decomposed, cleaning is completed, and the ozone supply unit It can be said that the operation of 10 may be stopped. In this case, the notification unit 70 may display the safety level (for example, display level 0), turn on a white lamp, or the like.

オフ時間Toffが時間t1以上時間t0未満の間(t1≦Toff<t0)であるとする。この場合、オフ時間Toffでのオゾン濃度の減少速度は、時間t1以上時間t0未満の間(t1≦Toff<t0)でのオゾン濃度の減少速度となり、対象空間S内は、通常レベルに清浄化されている状態であり、オゾン供給部10への供給電力を最小にして、オゾン供給部10の運転継続してもよいといえる。この場合には、報知部70は、普通レベルであることの表示(例えば、レベル1の表示)、青色ランプの点灯等を行ってもよい。 Assume that the OFF time T off is between time t 1 and time t 0 (t 1 ≦T off <t 0 ). In this case, the rate of decrease of the ozone concentration at the OFF time T off is the rate of decrease of the ozone concentration during the period from time t 1 to less than time t 0 (t 1 ≤ T off < t 0 ), and the target space S is It can be said that the operation of the ozone supply unit 10 may be continued with the power supplied to the ozone supply unit 10 minimized. In this case, the notification unit 70 may display that the level is normal (for example, display level 1), turn on a blue lamp, or the like.

オフ時間Toffが時間t2以上時間t1未満(t2≦Toff<t1)であるとする。この場合、オフ時間Toffでのオゾン濃度の減少速度は、時間t2以上時間t1未満(t2≦Toff<t1)でのオゾン濃度の減少速度となり、対象空間S内は、要注意レベルの状態であり、オゾン供給部10への供給電力を最大にして、オゾン供給部10の運転を継続してもよいといえる。この場合には、報知部70は、要注意レベルであることの表示(例えば、レベル2の表示)、黄色ランプの点灯等を行ってもよい。 Assume that the OFF time T off is equal to or longer than time t 2 and shorter than time t 1 (t 2 ≦T off <t 1 ). In this case, the rate of decrease of the ozone concentration at the OFF time Toff is the rate of decrease of the ozone concentration at time t2 or more and less than time t1 ( t2≤Toff <t1). This is a caution level state, and it can be said that the operation of the ozone supply unit 10 may be continued by maximizing the power supplied to the ozone supply unit 10 . In this case, the notification unit 70 may display a warning level (for example, level 2 display), turn on a yellow lamp, or the like.

オフ時間Toffが0時間を超え時間t2未満(0<Toff≦t2)であるとする。この場合、オフ時間Toffでのオゾン濃度の減少速度は、時間t2以下でのオゾン濃度の減少速度となり、対象空間S内は、オゾンによる脱臭及び殺菌能力が不足しており、危険レベルの状態であるといえる。この場合には、報知部70は、危険レベルであることの表示(例えば、レベル3の表示)、赤色ランプの点灯、換気推奨マークの表示等を行ってもよい。 Assume that the off-time T off exceeds 0 hours and is less than the time t 2 (0<T off ≦t 2 ). In this case, the rate of decrease of the ozone concentration at the OFF time Toff is the rate of decrease of the ozone concentration at time t2 or less, and the deodorization and sterilization capacity of the target space S is insufficient, and the dangerous level is reached. It can be said that it is a state. In this case, the notification unit 70 may display a danger level (for example, display of level 3), turn on a red lamp, display a ventilation recommendation mark, or the like.

なお、オフ時間Toffが0時間である時、オゾン供給部10よりオゾンを供給しても、所定空間S内のオゾン濃度が所定値(例えば、10ppm)に到達しない。そのため、この場合には、制御部30Aは、報知部70により、換気推奨マーク等の表示のみを表示し、換気等の手段の併用を促すように報知してもよい。 When the off time Toff is 0 hours, even if ozone is supplied from the ozone supply unit 10, the ozone concentration in the predetermined space S does not reach a predetermined value (for example, 10 ppm). Therefore, in this case, the control unit 30A may cause the notification unit 70 to display only the ventilation recommendation mark or the like, and notify the user to encourage the combined use of means such as ventilation.

また、対象空間S内がオゾン消費が非常に大きい危険レベルの状態であるため、対象空間S内の換気を行う場合、上述の通り、対象空間S内のオゾンも対象空間Sから排出され、オフ時間Toffが時間t以下と略同等になってしまう。そのため、制御部30Aは、対象空間S内が危険レベルの状態の場合であるか清浄化が不要な状態の場合であるかを区別できなくなる。この場合、制御部30は、CO2の濃度が減少する場合には、対称空間S内を換気していると判断し、CO2濃度が減少しない場合は、換気を行っておらず、対象空間Sは危険レベルであると判断してよい。 In addition, since the inside of the target space S is at a dangerous level where ozone consumption is extremely high, when the inside of the target space S is ventilated, as described above, the ozone in the target space S is also discharged from the target space S, and the ozone is turned off. The time T off becomes substantially equal to the time t or less. Therefore, the control unit 30A cannot distinguish whether the inside of the target space S is in a dangerous level state or in a state where cleaning is unnecessary. In this case, the control unit 30 determines that the inside of the symmetrical space S is being ventilated when the CO 2 concentration decreases, and determines that the target space S is not being ventilated when the CO 2 concentration does not decrease. You may judge that S is a danger level.

<オゾン処理方法>
次に、上記構成を有するオゾン発生制御装置1Aを用いて対象空間S内に存在する対象物を除去するオゾン処理方法の一例について説明する。図3は、オゾン処理方法を説明するフローチャートである。図3に示すように、制御部30Aは、オゾン供給部10の運転を制御して、オゾンにより対象空間S内に存在する対象物を処理する(オゾン処理工程:ステップS11)。
<Ozone treatment method>
Next, an example of an ozone treatment method for removing a target existing in the target space S using the ozone generation control device 1A having the above configuration will be described. FIG. 3 is a flow chart explaining the ozone treatment method. As shown in FIG. 3, the control unit 30A controls the operation of the ozone supply unit 10 to treat the object present in the target space S with ozone (ozone treatment step: step S11).

オゾン処理工程(ステップS11)における、対象物のオゾン処理方法について説明する。図4は、図3のオゾン処理工程(ステップS11)の動作を示すフローチャートである。図4に示すように、オゾン処理工程(ステップS11)では、オゾン供給部10を運転させて、オゾン供給部10で対象空間S内にオゾンを発生させる(ステップS111)。オゾンを発生させると、対象空間S内の空気中に存在する対象物がオゾンと反応して、酸化分解される。 A method for treating an object with ozone in the ozone treatment step (step S11) will be described. FIG. 4 is a flow chart showing the operation of the ozone treatment step (step S11) in FIG. As shown in FIG. 4, in the ozone treatment step (step S11), the ozone supply unit 10 is operated to generate ozone in the target space S (step S111). When ozone is generated, an object present in the air within the object space S reacts with the ozone and is oxidatively decomposed.

続いて、オゾン濃度センサ20は、対象空間S内のオゾン濃度を測定し、オゾン濃度に応じたオゾン濃度値を出力し、制御部30Aに送る。制御部30Aは、オゾン濃度センサ20から出力されたオゾン濃度値に基づいて、対象空間S内のオゾン濃度を算出する(ステップS112)。 Subsequently, the ozone concentration sensor 20 measures the ozone concentration in the target space S, outputs an ozone concentration value corresponding to the ozone concentration, and sends it to the control section 30A. The controller 30A calculates the ozone concentration in the target space S based on the ozone concentration value output from the ozone concentration sensor 20 (step S112).

オゾン濃度センサ20は、オゾン濃度値を制御部30Aに連続して継続的に送信してもよいし、所定時間毎に送信してもよい。 The ozone concentration sensor 20 may continuously transmit the ozone concentration value to the control section 30A, or may transmit the ozone concentration value at predetermined time intervals.

続いて、制御部30Aは、算出したオゾン濃度が停止用閾値以上か否か判定する(ステップS113)。 Subsequently, the control unit 30A determines whether or not the calculated ozone concentration is equal to or higher than the stop threshold (step S113).

ステップS113において、オゾン濃度が停止用閾値未満である場合(ステップS113:No)には、オゾンがオゾン供給部10より供給されつつ対象物と反応して消費されている状態にあり、対象空間S内のオゾン濃度は人体に安全な基準の範囲内にある。制御部30Aは、対象空間S内のオゾン濃度は人体に安全な基準の範囲内であると判断し、再度、オゾン濃度センサ20で対象空間S内のオゾン濃度を測定する(ステップS112)。 In step S113, when the ozone concentration is less than the threshold value for stopping (step S113: No), ozone is being supplied from the ozone supply unit 10 and is being consumed by reacting with the target object. The ozone concentration inside is within the range of safe standards for humans. The control unit 30A determines that the ozone concentration in the target space S is within the safe standard range for the human body, and measures the ozone concentration in the target space S again with the ozone concentration sensor 20 (step S112).

ステップS113において、オゾン濃度が停止用閾値以上である場合(ステップS113:Yes)には、オゾン供給部10より供給されて残存するオゾン量が過多の状態であるといえる。制御部30Aは、対象空間S内のオゾン濃度が人体に安全な基準の範囲を超えていると判断し、オゾン供給部10の運転を停止する(ステップS114)。 In step S113, when the ozone concentration is equal to or higher than the threshold value for stopping (step S113: Yes), it can be said that the remaining amount of ozone supplied from the ozone supply unit 10 is excessive. The control unit 30A determines that the ozone concentration in the target space S exceeds the safe standard range for the human body, and stops the operation of the ozone supply unit 10 (step S114).

オゾン供給部10の運転が停止すると、オゾン供給部10からオゾンが対象空間Sに供給されることが停止されるので、対象空間Sに新たに供給されるオゾンはなくなる。また、対象空間S内に対象物が存在していると、対象物にオゾンが反応して消費される。さらに、対象空間S内のオゾンは自然に分解する。そのため、オゾン供給部10の運転が停止すると、時間の経過と共に対象空間S内のオゾン濃度は低下していく。 When the operation of the ozone supply unit 10 is stopped, the supply of ozone from the ozone supply unit 10 to the target space S is stopped, so no ozone is newly supplied to the target space S. Further, if an object exists in the object space S, the ozone reacts with the object and is consumed. Furthermore, the ozone in the target space S decomposes naturally. Therefore, when the operation of the ozone supply unit 10 is stopped, the ozone concentration in the target space S decreases over time.

続いて、制御部30Aは、オゾン濃度センサ20から出力されるオゾン濃度値に基づいて、対象空間S内のオゾン濃度を測定し(ステップS115)、算出したオゾン濃度が開始用閾値以下か否か判定する(ステップS116)。 Subsequently, the control unit 30A measures the ozone concentration in the target space S based on the ozone concentration value output from the ozone concentration sensor 20 (step S115), and determines whether the calculated ozone concentration is equal to or less than the start threshold. Determine (step S116).

ステップS116において、オゾン濃度が開始用閾値よりも高い場合(ステップS116:No)には、制御部30Aは、対象空間S内にはオゾンが存在しているが、対象空間S内のオゾン濃度は人体に安全な基準の範囲内であると判断し、再度、オゾン濃度センサ20で対象空間S内のオゾン濃度を測定する(ステップS115)。 In step S116, when the ozone concentration is higher than the start threshold (step S116: No), the control unit 30A determines that ozone exists in the target space S, but the ozone concentration in the target space S is It is determined that the ozone concentration is within the range of the safety standard for the human body, and the ozone concentration sensor 20 measures the ozone concentration in the target space S again (step S115).

ステップS116において、オゾン濃度が開始用閾値以下である場合(ステップS116:Yes)には、制御部30Aは、対象空間S内には対象物を処理するのに十分なオゾンが存在しておらず、対象物が酸化完了と判断できる濃度を超えて存在している可能性が高いと判断する。 In step S116, if the ozone concentration is equal to or less than the start threshold (step S116: Yes), the control unit 30A determines that there is not enough ozone in the target space S to process the target object. , it is judged that there is a high possibility that the target substance exists in a concentration exceeding the concentration at which oxidation can be judged to be completed.

図3に示すように、オゾン処理工程(ステップS11)後、制御部30Aは、オフ時間Toff後の対象空間S内のオゾン濃度の減少速度を算出し(ステップS12)、算出したオゾン濃度の減少速度が所定速度以下か否か判定する(ステップS13)。 As shown in FIG. 3, after the ozone treatment step (step S11), the control unit 30A calculates the rate of decrease of the ozone concentration in the target space S after the off time T off (step S12), and the calculated ozone concentration It is determined whether or not the speed of decrease is equal to or less than a predetermined speed (step S13).

オゾン濃度の減少速度は、上記式(1)等のように算出できる。 The rate of decrease in ozone concentration can be calculated as in the above formula (1).

本実施形態において、所定速度とは、対象物の種類、対象物の初期濃度等に応じて適宜選択される。 In this embodiment, the predetermined speed is appropriately selected according to the type of object, the initial density of the object, and the like.

ステップS13において、時間Toffでのオゾン濃度の減少速度が所定速度以下である場合(ステップS13:Yes)、制御部30Aは、対処空間S内の対象物の処理が完了したと判断し、処理を終了する。 In step S13, if the rate of decrease of the ozone concentration at the time T off is equal to or less than the predetermined rate (step S13: Yes), the control unit 30A determines that the processing of the object in the handling space S is completed, and performs the processing. exit.

例えば、オフ時間Toffでのオゾン濃度の減少速度が、図2に示す時間toでのオゾン濃度の減少速度のように、対象空間S内のオゾンが自然分解されている状態であり、対象空間Sの清浄化が完了している場合には、制御部30Aは、オゾン供給部10の運転を停止したまま、全体の処理を終了する。 For example, the rate of decrease of the ozone concentration at the off time T off is a state in which the ozone in the target space S is naturally decomposed like the rate of decrease of the ozone concentration at the time t o shown in FIG. When the cleaning of the space S is completed, the control section 30A terminates the entire process while the operation of the ozone supply section 10 is stopped.

また、制御部30Aは、オゾン発生制御装置1Aの運転を停止してもよい。 Also, the control unit 30A may stop the operation of the ozone generation control device 1A.

また、ステップS13において、オゾン濃度の減少速度が所定速度以下である場合(ステップS13:Yes)には、制御部30Aは、算出結果を報知部70によって使用者に報知させるようにしてもよい。 Further, in step S13, when the rate of decrease of the ozone concentration is equal to or less than the predetermined rate (step S13: Yes), the control section 30A may cause the notification section 70 to notify the user of the calculation result.

報知部70は、ステップS13の判定結果に基づいて、対称空間S内の清浄化されている状態に対応する表示(例えば、レベル0、1及び2、換気マーク等の表示)、ランプ(例えば、白色ランプ、青色ランプ、黄色ランプ、赤色ランプ等)の点灯、警報、振動等を行ってもよい。 Based on the determination result of step S13, the notification unit 70 displays a display corresponding to the cleaned state in the symmetrical space S (e.g., levels 0, 1 and 2, a ventilation mark, etc.), a lamp (e.g., A white lamp, a blue lamp, a yellow lamp, a red lamp, etc.) may be turned on, an alarm, vibration, or the like may be performed.

ステップS13において、オフ時間Toffでのオゾン濃度の減少速度が所定速度を超える場合(ステップS13:No)には、対処空間S内の対象物の処理が完了していないと判断する。そして、制御部30Aは、オゾン供給部10を再度駆動させてオゾンを発生させ、オゾンにより対象空間S内に存在する対象物を処理する(オゾン処理工程:ステップS11)。 In step S13, if the rate of decrease of the ozone concentration during the OFF time T off exceeds a predetermined rate (step S13: No), it is determined that the processing of the object in the treatment space S has not been completed. Then, the control unit 30A drives the ozone supply unit 10 again to generate ozone, and treats the object present in the target space S with ozone (ozone treatment step: step S11).

例えば、オフ時間Toffでのオゾン濃度の減少速度が、図2に示す時間t1以上時間t0未満の間(t1≦Toff<t0)でのオゾン濃度の減少速度である場合のように、対象空間S内は通常レベルに清浄されている状態である場合には、制御部30Aは、オゾン供給部10への供給電力は最小にしつつ運転させてもよい。 For example, when the rate of decrease in ozone concentration at the OFF time T off is the rate of decrease in ozone concentration during the period from time t 1 to less than time t 0 (t 1 ≦T off <t 0 ) shown in FIG. Thus, when the inside of the target space S is in a state of being cleaned to a normal level, the control section 30A may operate the ozone supply section 10 while minimizing the electric power supplied thereto.

また、オフ時間Toffでのオゾン濃度の減少速度が、図2に示す時間t1以下(Toff≦t1)でのオゾン濃度の減少速度である場合のように、対象空間S内は清浄が要注意レベルの状態である場合には、制御部30Aは、オゾン供給部10への供給電力は最大にしつつ運転させてもよい。 Moreover, the inside of the target space S is clean, as in the case where the rate of decrease of the ozone concentration at the OFF time T off is the rate of decrease of the ozone concentration at time t 1 or less (T off ≦t 1 ) shown in FIG. is in a caution level state, the control unit 30A may operate the ozone supply unit 10 while maximizing the power supply.

このように、本実施形態に係るオゾン処理方法によれば、処理空間S内におけるオゾンの発生及び停止を最適なタイミングで行うことができる。そのため、本実施形態に係るオゾン処理方法を用いれば、対象空間S内のオゾン濃度を安全濃度(例えば、0.08ppm~0.1ppm)に維持しながら、対象空間S内の対象物を分解しつつ、オゾン供給部10で余分なオゾンを発生させることを抑えることができる。 As described above, according to the ozone treatment method according to the present embodiment, ozone can be generated and stopped in the treatment space S at optimum timing. Therefore, by using the ozone treatment method according to the present embodiment, the object in the target space S can be decomposed while maintaining the ozone concentration in the target space S at a safe concentration (for example, 0.08 ppm to 0.1 ppm). At the same time, generation of excessive ozone in the ozone supply unit 10 can be suppressed.

なお、図3及び図4に示すオゾン処理方法では、オゾン供給部10を停止してオゾンの発生を行わないようにすることで、対象空間S中のオゾン濃度を徐々に下げているが、対象空間S中のオゾン濃度を低下させられればよいため、オゾン供給部10を停止せずに、発生させるオゾン量を徐々に低くする制御にしてもよい。 In the ozone treatment method shown in FIGS. 3 and 4, the ozone concentration in the target space S is gradually lowered by stopping the ozone supply unit 10 to stop generating ozone. Since it is sufficient to reduce the ozone concentration in the space S, control may be performed such that the amount of generated ozone is gradually reduced without stopping the ozone supply unit 10 .

また、図3及び4に示すオゾン処理方法は、制御部30Aがオゾン供給部10の駆動停止後におけるオゾン濃度値の減少速度の大小に応じて対象空間S内の対象物の処理の進行具合を判断する場合でも同様に行うことができる。この場合、図3に示すステップS13において、オフ時間Toffでのオゾン濃度の減少速度が所定速度以下である場合(ステップS13:Yes)には、対処空間S内の対象物の処理が所定のレベルに達したと判断し、処理を終了する。 In the ozone processing method shown in FIGS. 3 and 4, the control unit 30A controls the progress of the processing of the object in the object space S according to the rate of decrease of the ozone concentration value after stopping the operation of the ozone supply unit 10. The same can be done when judging. In this case, in step S13 shown in FIG. 3, when the rate of decrease of the ozone concentration during the off time T off is equal to or less than the predetermined rate (step S13: Yes), the processing of the object in the handling space S is performed at the predetermined rate. Determine that the level has been reached, and terminate the process.

単位時間当たりのオゾン濃度の減少速度が所定速度を超える場合(ステップS13:No)、対処空間S内の対象物の処理が所定のレベルに達していないと判断し、オゾン供給部10を再度駆動させてオゾンを発生させ、オゾンにより対象空間S内に存在する対象物を処理する(オゾン処理工程:ステップS11)。 If the rate of decrease in ozone concentration per unit time exceeds a predetermined rate (step S13: No), it is determined that the processing of the object in the treatment space S has not reached a predetermined level, and the ozone supply unit 10 is driven again. and ozone is generated, and the object present in the object space S is treated with the ozone (ozone treatment step: step S11).

この場合でも、本実施形態に係るオゾン処理方法は、処理空間S内におけるオゾンの発生及び停止を最適なタイミングで行うことができるため、対象空間S内のオゾン濃度を安全濃度(例えば、0.08ppm~0.1ppm)に維持しながら、対象空間S内の対象物を分解しつつ、オゾン供給部10で余分なオゾンを発生させることを抑えることができる。 Even in this case, the ozone processing method according to the present embodiment can generate and stop ozone in the processing space S at optimum timing, so that the ozone concentration in the target space S can be set to a safe concentration (for example, 0.00). 08 ppm to 0.1 ppm), it is possible to decompose the object in the object space S and suppress generation of excess ozone in the ozone supply unit 10 .

以上のように、オゾン発生制御装置1Aは、オゾン供給部10と、オゾン濃度センサ20と、制御部30Aとを備えている。制御部30Aは、オゾン供給部10の駆動を停止した後のオゾン濃度値の減少速度が大きい時には対象空間S内の対象物の処理が完了していないと判断し、減少速度が小さい時には対象空間S内の対象物の処理が完了したと判断する。オゾン濃度値の減少速度は、オゾン供給部10のオフ時間Toffにおけるオゾン濃度の減少量から求められ、対処空間S内の対象物の処理状況に対応して変動する。対象空間S内に対象物が多く存在し、対称空間S内が対象物で汚染されているほど、その分だけオゾンが早く消費されるため、オゾン濃度値の減少速度は大きくなる。一方、対象空間S内に存在する対象物の量が少なく、対処空間S内が清浄化されているほど、オゾンの消費量は少ないため、オゾン濃度値の減少速度は小さくなる。オゾン発生制御装置1Aは、制御部30Aで算出されるオゾン濃度値の減少速度に基づいて、オゾン供給部10の運転を制御することで、対処空間S内の対象物を殆どオゾン消費がない状態にまで確実に分解して許容可能な濃度以下にまで低減できるため、対処空間S内の対象物の処理が完了したことを高精度に判断することができる。 As described above, the ozone generation control device 1A includes the ozone supply section 10, the ozone concentration sensor 20, and the control section 30A. The control unit 30A determines that the processing of the object in the target space S is not completed when the rate of decrease of the ozone concentration value after stopping the driving of the ozone supply unit 10 is high, and determines that the processing of the object in the target space S is not completed when the rate of decrease is low. It is determined that the processing of the objects in S is complete. The rate of decrease of the ozone concentration value is obtained from the amount of decrease of the ozone concentration during the OFF time Toff of the ozone supply unit 10, and fluctuates according to the processing status of the object within the processing space S. FIG. The more objects exist in the target space S and the more the symmetrical space S is polluted by the objects, the faster the ozone is consumed, and the faster the ozone concentration value decreases. On the other hand, the smaller the amount of objects present in the target space S and the cleaner the inside of the space S to be dealt with, the smaller the amount of ozone consumed, and the slower the rate of decrease in the ozone concentration value. The ozone generation control device 1A controls the operation of the ozone supply unit 10 based on the rate of decrease of the ozone concentration value calculated by the control unit 30A, so that the object in the treatment space S is kept in a state where almost no ozone is consumed. , and can be reduced to an allowable concentration or less, it is possible to determine with high accuracy that the processing of the object in the space S has been completed.

また、オゾン発生制御装置1Aは、オゾン濃度の減少速度の低下具合に基づいて、対象空間S内に存在する対象物の処理の完了を判断しているため、対象空間S内の対象物を分解しつつ、オゾン供給部10で余分なオゾンを発生させることを抑えることができる。さらに、オゾン発生制御装置1Aは、オゾン濃度の減少速度の低下具合に基づいて、オゾンを再度発生させることができるため、オゾン供給部10でオゾンの発生を最適なタイミングで開始することができる。よって、オゾン発生制御装置1Aは、オゾンの発生に要するエネルギーの消費を低減することができる。 Further, the ozone generation control device 1A judges the completion of the processing of the object existing in the target space S based on the degree of decrease in the rate of decrease of the ozone concentration. Generating excessive ozone in the ozone supply unit 10 can be suppressed while the ozone supply unit 10 is being used. Furthermore, the ozone generation control device 1A can generate ozone again based on how much the rate of decrease of the ozone concentration has decreased, so that the ozone supply section 10 can start generating ozone at the optimum timing. Therefore, the ozone generation control device 1A can reduce consumption of energy required for generating ozone.

オゾン発生制御装置1Aは、制御部30Aが、オゾン濃度値が開始用閾値以下になった時にオゾン供給部10の駆動を開始し、オゾン濃度値が停止用閾値以上になった時にオゾン供給部10の駆動を停止できる。オゾン発生制御装置1Aは、オゾン濃度値が停止用閾値以下であり、かつ開始用閾値以上である時には、対象空間S内にはオゾンが存在しており、対象空間S内のオゾン濃度は人体に安全な基準の範囲内であることを容易に判断できる。よって、オゾン発生制御装置1Aは、停止用閾値及び開始用閾値に基づいて、オゾン供給部10をより適切に運転させることができるため、対象物の処理をより高精度かつ簡易に行うことができる。 In the ozone generation control device 1A, the control unit 30A starts driving the ozone supply unit 10 when the ozone concentration value becomes equal to or less than the start threshold value, and starts driving the ozone supply unit 10 when the ozone concentration value becomes equal to or more than the stop threshold value. can be stopped. When the ozone concentration value is equal to or less than the stop threshold value and equal to or more than the start threshold value, the ozone generation control device 1A indicates that ozone exists in the target space S, and the ozone concentration in the target space S does not affect the human body. It can be easily judged that it is within the range of safe standards. Therefore, the ozone generation control device 1A can operate the ozone supply unit 10 more appropriately based on the threshold for stopping and the threshold for starting, so that the object can be processed more accurately and easily. .

オゾン発生制御装置1Aは、制御部30Aで、オゾン供給部10の駆動を停止した後のオゾン濃度値の減少速度が大きい時には、対象空間S内の対象物の処理が所定の処理まで進んでいないと判断し、減少速度が小さい時には、対象空間S内の対象物の処理が所定の処理まで進んだと判断してよい。この場合には、オゾン発生制御装置1Aは、オゾン濃度値の減少速度の低下具合に基づいて、対象空間S内の対象物の処理の進行具合を把握できる。そのため、オゾン発生制御装置1Aは、制制御部30Aで算出されるオゾン濃度値の減少速度に基づいて、オゾン供給部10の運転を長めに行い、オゾンの発生量を多めにすることで、対処空間S内の対象物を殆どオゾン消費がない状態かその近傍まで確実に分解して許容可能な濃度以下にまで低減できる。よって、この場合でも、オゾン発生制御装置1Aは、対処空間S内の対象物の処理が完了したことを高精度に判断することができる。 In the ozone generation control device 1A, when the rate of decrease of the ozone concentration value after stopping the driving of the ozone supply unit 10 is high in the control unit 30A, the processing of the object in the target space S has not progressed to the predetermined processing. , and when the rate of decrease is small, it may be determined that the processing of the object in the object space S has progressed to the predetermined processing. In this case, the ozone generation control device 1A can grasp the progress of the processing of the object in the target space S based on the decrease in the rate of decrease of the ozone concentration value. Therefore, the ozone generation control device 1A operates the ozone supply unit 10 longer based on the rate of decrease of the ozone concentration value calculated by the control unit 30A, thereby increasing the amount of ozone generated. The object in the space S can be reliably decomposed to a state where ozone is hardly consumed or in the vicinity thereof, and the concentration can be reduced to an allowable level or less. Therefore, even in this case, the ozone generation control device 1A can determine with high accuracy that the processing of the object in the treatment space S has been completed.

[第2の実施形態]
本発明の第2の実施形態に係るオゾン発生制御装置について説明する。図5は、本実施形態に係るオゾン発生制御装置を示す概略構成図である。図5に示すように、本実施形態に係るオゾン発生制御装置1Bは、上記の第1の実施形態に係るオゾン発生制御装置1Aの制御部30Aを制御部30Bに変更したものである。本実施形態では、制御部30Bの構成以外、第1の実施形態に係るオゾン発生制御装置1Aと同様であるため、制御部30Bの構成についてのみ説明する。
[Second embodiment]
An ozone generation control device according to a second embodiment of the present invention will be described. FIG. 5 is a schematic configuration diagram showing an ozone generation control device according to this embodiment. As shown in FIG. 5, the ozone generation control device 1B according to the present embodiment is obtained by changing the control section 30A of the ozone generation control device 1A according to the first embodiment to a control section 30B. Since this embodiment is the same as the ozone generation control device 1A according to the first embodiment except for the configuration of the control section 30B, only the configuration of the control section 30B will be described.

オゾン発生制御装置1Bは、対象空間S内に存在する対象物を除去する際、対象空間S内のオゾン濃度を所定の範囲内に維持するようにオゾン供給部10の運転にフィードバック制御してオゾン供給部10の運転を停止する。オゾン発生制御装置1Bは、その時のオゾン供給部10の運転のオフ時間Toffに基づいてオゾン消費量を推定することで、対象空間Sの対象物の除去が所定の目的濃度以下になるまで行うことができ、対象空間S内の対象物の除去が完了していることを正確に判断できる。 When removing an object present in the target space S, the ozone generation control device 1B performs feedback control on the operation of the ozone supply unit 10 so as to maintain the ozone concentration in the target space S within a predetermined range. The operation of the supply unit 10 is stopped. The ozone generation control device 1B estimates the amount of ozone consumption based on the off -time Toff of the operation of the ozone supply unit 10 at that time, and removes the target object in the target space S until the target concentration becomes equal to or less than a predetermined target concentration. Therefore, it can be accurately determined that the removal of the object in the object space S is completed.

制御部30Bは、制御部30Aにおいて、オゾン濃度値の減少速度の大きさを、オゾン供給部10の駆動を停止してから再開するまでのオフ時間Toffの長さで判断するものである。 In the control section 30A, the control section 30B determines the rate of decrease of the ozone concentration value based on the length of the OFF time Toff from when the ozone supply section 10 is stopped to when it is restarted.

図2に示すように、オフ時間Toffは時間t1の場合の方が時間t0の場合よりも短く、オゾン濃度値の減少速度が大きくなる。処理空間S内に対象物等で汚染されている状態の時の方が処理空間S内が清浄化されている状態の時よりも、オゾン濃度値の減少速度が大きくなるため、オフ時間Toffは短くなる。よって、オゾン濃度値の減少速度は、オフ時間Toffの長さに対応しており、オゾン濃度値の減少速度が大きくなるほどオフ時間Toffは短くなり、オゾン濃度値の減少速度が小さくなるほどオフ時間Toffは長くなる。 As shown in FIG. 2, the OFF time T off is shorter at time t 1 than at time t 0 , and the rate of decrease in the ozone concentration value is greater. When the processing space S is contaminated with an object or the like, the ozone concentration value decreases faster than when the processing space S is clean. becomes shorter. Therefore, the rate of decrease of the ozone concentration value corresponds to the length of the off -time Toff . The time T off becomes longer.

制御部30Bは、オゾン供給部10のオフ時間Toffが短い時には対象物の処理が完了していないと判断し、オフ時間Toffが長い時には対象物の処理が完了したと判断する。即ち、制御部30Bは、オフ時間Toffが所定時間未満である場合には、対象空間S内の対象物の処理が完了していないと判断し、オフ時間Toffが所定時間以上である時には、対象空間S内の対象物の処理が完了したと判断する。 The control unit 30B determines that the processing of the object is not completed when the off time T off of the ozone supply unit 10 is short, and determines that the processing of the object is completed when the off time T off is long. That is, the control unit 30B determines that the processing of the object in the target space S is not completed when the off-time T off is less than the predetermined time, and determines that the off-time T off is longer than or equal to the predetermined time. , that the processing of the object in the object space S is completed.

なお、所定時間とは、特に限定されず、対象物の種類等に応じて適宜設定される。所定時間は、例えば、対称空間S内の対象物を処理するのに十分なオゾンが存在し、対象物が酸化完了と判断できる濃度以下で存在し得る時間である。 It should be noted that the predetermined time is not particularly limited, and is appropriately set according to the type of object and the like. The predetermined time is, for example, a time during which sufficient ozone exists to treat the object in the symmetrical space S, and the object can exist at a concentration below which it can be determined that oxidation has been completed.

上記構成を有するオゾン発生制御装置1Bを用いて対象空間S内に存在する対象物を除去するオゾン処理方法の一例について説明する。 An example of an ozone treatment method for removing an object present in the object space S using the ozone generation control device 1B having the above configuration will be described.

図6は、オゾン処理方法を説明するフローチャートである。図6に示すように、制御部30Bは、オゾン供給部10の運転を制御して、オゾンにより対象空間S内に存在する対象物を処理する(オゾン処理工程:ステップS21)。オゾン処理工程(ステップS21)は、図3に示すオゾン処理方法のオゾン処理工程(ステップS11)と同様であるため、詳細は省略する。 FIG. 6 is a flow chart explaining the ozone treatment method. As shown in FIG. 6, the control unit 30B controls the operation of the ozone supply unit 10 to treat the object present in the target space S with ozone (ozone treatment step: step S21). Since the ozone treatment step (step S21) is the same as the ozone treatment step (step S11) of the ozone treatment method shown in FIG. 3, details thereof are omitted.

オゾン処理工程(ステップS21)後、制御部30Bは、オフ時間Toffを算出し(ステップS22)、オフ時間Toffが所定時間以上か否か判定する(ステップS23)。 After the ozone treatment step (step S21), the control unit 30B calculates the off -time Toff (step S22), and determines whether the off -time Toff is equal to or longer than a predetermined time (step S23).

ステップS23において、オフ時間Toffが所定時間以上である場合(ステップS23:Yes)、制御部30Bは、対処空間S内の対象物の処理が完了したと判断し、処理を終了する。 In step S23, if the OFF time Toff is equal to or longer than the predetermined time (step S23: Yes), the control unit 30B determines that the processing of the object in the coping space S is completed, and terminates the processing.

ステップS23において、オフ時間Toffが所定時間に満たない場合(ステップS23:No)には、制御部30Bは、対処空間S内の対象物の処理が完了していないと判断する。そして、制御部30Bは、オゾン供給部10を再度駆動させてオゾンを発生させ、オゾンにより対象空間S内に存在する対象物を処理する(オゾン処理工程:ステップS21)。 In step S23, when the off time T off is less than the predetermined time (step S23: No), the control unit 30B determines that the processing of the object in the coping space S has not been completed. Then, the control unit 30B drives the ozone supply unit 10 again to generate ozone, and treats the object existing in the target space S with ozone (ozone treatment step: step S21).

本実施形態に係るオゾン処理方法によれば、第1の実施形態に係るオゾン処理方法と同様、処理空間S内におけるオゾンの発生及び停止を最適なタイミングで行うことができる。そのため、本実施形態に係るオゾン処理方法を用いれば、対象空間S内のオゾン濃度を安全濃度(例えば、0.08ppm~0.1ppm)に維持しながら、対象空間S内の対象物を分解しつつ、オゾン供給部10で余分なオゾンを発生させることを抑えることができる。 According to the ozone processing method according to the present embodiment, as in the ozone processing method according to the first embodiment, ozone can be generated and stopped in the processing space S at optimum timing. Therefore, by using the ozone treatment method according to the present embodiment, the object in the target space S can be decomposed while maintaining the ozone concentration in the target space S at a safe concentration (for example, 0.08 ppm to 0.1 ppm). At the same time, generation of excessive ozone in the ozone supply unit 10 can be suppressed.

オゾン発生制御装置1Bは、制御部30Bで、オゾン供給部10のオフ時間Toffが短い時には対象物の処理が完了していないと判断し、オフ時間Toffが長い時には対象物の処理が完了したと判断する。これにより、オゾン発生制御装置1Bは、オゾン供給部10のオフ時間Toffの長さに基づいて、オゾン供給部10の運転を制御することで、対処空間S内の対象物を殆どオゾン消費がない状態にまで確実に分解して許容可能な濃度以下にまで低減し、対象物の処理の完了の有無を簡易に判断できる。よって、オゾン発生制御装置1Bは、対処空間S内の対象物の処理が完了したことを簡易かつ高精度に判断することができる。 The control unit 30B of the ozone generation control device 1B determines that the processing of the object is not completed when the off time T off of the ozone supply unit 10 is short, and the processing of the object is completed when the off time T off is long. judge that it did. As a result, the ozone generation control device 1B controls the operation of the ozone supply unit 10 based on the length of the off time Toff of the ozone supply unit 10, so that the object in the treatment space S is almost completely free from ozone consumption. It is possible to reliably decompose to a state where there is no contamination, reduce the concentration to an allowable level or less, and easily determine whether or not the processing of the object has been completed. Therefore, the ozone generation control device 1B can easily and accurately determine that the processing of the object in the treatment space S has been completed.

また、オゾン発生制御装置1Bは、オフ時間Toffの長さの延長具合に基づいて、対象空間S内に存在する対象物の処理の完了を判断しているため、対象空間S内の対象物を分解しつつ、オゾン供給部10で余分なオゾンを発生させることを容易に抑えることができる。さらに、オゾン発生制御装置1Bは、オフ時間Toffの長さの延長具合に基づいて、オゾンを再度発生させることができるため、オゾン供給部10でオゾンの発生を最適なタイミングで開始することができる。よって、オゾン発生制御装置1Bは、オゾンの発生に要するエネルギーの消費を低減することができる。 Further, the ozone generation control device 1B judges the completion of the processing of the object existing in the target space S based on the extension of the length of the off time Toff. can be easily suppressed from generating excess ozone in the ozone supply unit 10 while decomposing the Furthermore, the ozone generation control device 1B can generate ozone again based on the extension of the length of the off -time Toff, so that the ozone supply section 10 can start generating ozone at the optimum timing. can. Therefore, the ozone generation control device 1B can reduce consumption of energy required for generating ozone.

[第3の実施形態]
本発明の第3の実施形態に係るオゾン発生制御装置について説明する。図7は、本実施形態に係るオゾン発生制御装置を示す概略構成図である。図7に示すように、本実施形態に係るオゾン発生制御装置1Cは、上記の第2の実施形態に係るオゾン発生制御装置1Bの制御部30Bを制御部30Cに変更したものである。本実施形態では、制御部30Cの構成以外、第2の実施形態に係るオゾン発生制御装置1Bと同様であるため、制御部30Cの構成についてのみ説明する。
[Third embodiment]
An ozone generation control device according to a third embodiment of the present invention will be described. FIG. 7 is a schematic configuration diagram showing an ozone generation control device according to this embodiment. As shown in FIG. 7, the ozone generation control device 1C according to the present embodiment is obtained by changing the control section 30B of the ozone generation control device 1B according to the second embodiment to a control section 30C. Since this embodiment is the same as the ozone generation control device 1B according to the second embodiment except for the configuration of the control section 30C, only the configuration of the control section 30C will be described.

制御部30Cは、制御部30Bにおいて、オゾン濃度値の減少速度の大きさを、オゾン供給部10のオフ時間Toffの長さにオゾン供給部10の駆動を再開してから停止するまでのオン時間Tonの長さも含めた累積時間で判断する。 The control unit 30C sets the rate of decrease of the ozone concentration value to the length of the OFF time T off of the ozone supply unit 10 in the control unit 30B. The cumulative time including the length of the time T on is used for judgment.

図2に示すように、オン時間Tonは時間t11の場合及び時間t10の場合の両方とも略同じ長さであり、オゾン濃度値の増加速度も略同じ大きさである。また、オン時間Ton(時間t11及び時間t10)は、いずれもオフ時間Toff(時間t1、時間t0)よりも短い。そのため、オフ時間Toffの違いを判断する際、オフ時間Toffとオン時間Tonとの累積時間からなる周期で判断すれば、オフ時間Toffの違いを実質的に同等に判断できる。 As shown in FIG. 2, the on-time T on at time t 11 and at time t 10 have approximately the same length, and the rate of increase of the ozone concentration value is also approximately the same. Also, the on-time T on (time t 11 and time t 10 ) is shorter than the off-time T off (time t 1 , time t 0 ). Therefore, when judging the difference in the off -time Toff, the difference in the off -time Toff can be judged to be substantially the same by judging by the cycle consisting of the cumulative time of the off -time Toff and the on -time Ton.

制御部30Cは、オン時間Tonとオフ時間Toffからなる累積時間を1周期として、周期が短い時に対象空間S内の対象物の処理が完了していないと判断し、周期が長い時に対象空間S内の対象物の処理が完了したと判断する。即ち、制御部30Cは、オン時間Tonとオフ時間Toffとからなる周期が所定時間未満である場合には、対象空間S内の対象物の処理が完了していないと判断し、周期が所定時間以上である時には、対象空間S内の対象物の処理が完了したと判断する。 The control unit 30C determines that the processing of the object in the target space S is not completed when the period is short, and determines that the processing of the object in the target space S is not completed when the period is short, and the period is long. It is determined that the processing of the object in the space S is completed. That is, when the cycle consisting of the ON time T on and the OFF time T off is less than the predetermined time, the control unit 30C determines that the processing of the object in the target space S is not completed, and the cycle is When it is longer than the predetermined time, it is determined that the processing of the object in the object space S is completed.

なお、所定時間とは、特に限定されず、対象物の種類等に応じて適宜設定される。所定時間は、例えば、対称空間S内の対象物を処理するのに十分なオゾンが存在し、対象物が酸化完了と判断できる濃度以下で存在し得る時間にオン時間Tonを合わせた時間である。 It should be noted that the predetermined time is not particularly limited, and is appropriately set according to the type of object and the like. The predetermined time is, for example, a time obtained by combining the ON time T on with the time during which sufficient ozone exists to process the object in the symmetrical space S and the object can exist at a concentration below which it can be determined that oxidation has been completed. be.

上記構成を有するオゾン発生制御装置1Cを用いて対象空間S内に存在する対象物を除去するオゾン処理方法の一例について説明する。 An example of an ozone treatment method for removing an object present in the object space S using the ozone generation control device 1C having the above configuration will be described.

図8は、オゾン処理方法を説明するフローチャートである。図8に示すように、制御部30Cは、オゾン供給部10の運転を制御して、オゾンにより対象空間S内に存在する対象物を処理する(オゾン処理工程:ステップS31)。オゾン処理工程(ステップS31)は、図3に示すオゾン処理方法のオゾン処理工程(ステップS11)と同様であるため、詳細は省略する。 FIG. 8 is a flow chart explaining the ozone treatment method. As shown in FIG. 8, the control unit 30C controls the operation of the ozone supply unit 10 to treat the object present in the target space S with ozone (ozone treatment step: step S31). Since the ozone treatment step (step S31) is the same as the ozone treatment step (step S11) of the ozone treatment method shown in FIG. 3, details thereof are omitted.

オゾン処理工程(ステップS31)後、制御部30Cは、オフ時間Toff及びオン時間Tonをそれぞれ算出し(ステップS32)、オフ時間Toffとオン時間Tonからなる周期を算出する(ステップS33)。 After the ozone treatment step (step S31), the control unit 30C calculates the off -time Toff and the on-time Ton (step S32), and calculates the cycle consisting of the off -time Toff and the on -time Ton (step S33). .

続いて、制御部30Cは、算出した周期が所定時間以上か否か判定する(ステップS34)。 Subsequently, the control unit 30C determines whether or not the calculated cycle is equal to or longer than a predetermined time (step S34).

ステップS34において、オフ時間Toffとオン時間Tonの周期が所定時間以上である場合(ステップS34:Yes)、制御部30Cは、対処空間S内の対象物の処理が完了したと判断し、処理を終了する。 In step S34, if the cycle of the off-time T off and the on-time T on is equal to or longer than the predetermined time (step S34: Yes), the control unit 30C determines that the processing of the object in the handling space S is completed, End the process.

ステップS34において、周期が所定時間に満たない場合(ステップS34:No)には、制御部30Cは、対処空間S内の対象物の処理が完了していないと判断する。そして、制御部30Cは、オゾン供給部10を再度駆動させてオゾンを発生させ、オゾンにより対象空間S内に存在する対象物を処理する(オゾン処理工程:ステップS31)。 In step S34, when the period is less than the predetermined time (step S34: No), the control unit 30C determines that the processing of the object in the coping space S has not been completed. Then, the control unit 30C drives the ozone supply unit 10 again to generate ozone, and treats the object present in the target space S with ozone (ozone treatment step: step S31).

本実施形態に係るオゾン処理方法によれば、第1の実施形態に係るオゾン処理方法と同様、処理空間S内におけるオゾンの発生及び停止を最適なタイミングで行うことができる。そのため、本実施形態に係るオゾン処理方法を用いれば、対象空間S内のオゾン濃度を安全濃度(例えば、0.08ppm~0.1ppm)に維持しながら、対象空間S内の対象物を分解しつつ、オゾン供給部10で余分なオゾンを発生させることを抑えることができる。 According to the ozone processing method according to the present embodiment, as in the ozone processing method according to the first embodiment, ozone can be generated and stopped in the processing space S at optimum timing. Therefore, by using the ozone treatment method according to the present embodiment, the object in the target space S can be decomposed while maintaining the ozone concentration in the target space S at a safe concentration (for example, 0.08 ppm to 0.1 ppm). At the same time, generation of excessive ozone in the ozone supply unit 10 can be suppressed.

オゾン発生制御装置1Cは、制御部30Cで、オン時間Tonとオフ時間Toffからなる周期が短い時に対象空間S内の対象物の処理が完了していないと判断し、周期が長い時に対象空間S内の対象物の処理が完了したと判断する。オゾン発生制御装置1Cは、オゾン供給部10のオフ時間Toff及びオン時間Tonからなる周期の長さに基づいて、オゾン供給部10の運転を制御することで、対処空間S内の対象物をその濃度が許容可能な濃度以下にまで低減でき、対象物の処理の完了の有無を簡易に判断できる。オン時間Tonは対処空間S内に存在する対象物の量に関わらず殆ど変化しないので、周期に基づいて判断してもオフ時間Toffに基づいて判断した場合と略同じ結果を得ることができる。よって、オゾン発生制御装置1Cは、オゾン発生制御装置1Bと同様、対処空間S内の対象物の処理が完了したことを簡易かつ高精度に判断することができる。 The control unit 30C of the ozone generation control device 1C determines that the processing of the object in the target space S is not completed when the period consisting of the ON time T on and the OFF time T off is short, and when the period is long It is determined that the processing of the object in the space S is completed. The ozone generation control device 1C controls the operation of the ozone supply unit 10 based on the length of the cycle consisting of the OFF time T off and the ON time T on of the ozone supply unit 10, so that the object in the space S is can be reduced to an allowable concentration or less, and it is possible to easily determine whether or not the processing of the object has been completed. Since the on-time T on hardly changes regardless of the amount of objects present in the coping space S, even if it is determined based on the period, it is possible to obtain substantially the same result as if it is determined based on the off-time T off . can. Therefore, similarly to the ozone generation control device 1B, the ozone generation control device 1C can easily and accurately determine that the processing of the object in the treatment space S is completed.

また、オゾン発生制御装置1Cは、オン時間Ton及びオフ時間Toffの長さの延長具合に基づいて、対象空間S内に存在する対象物の処理の完了を判断しているため、対象空間S内の対象物を分解しつつ、オゾン供給部10で余分なオゾンを発生させることを容易に抑えることができる。さらに、オゾン発生制御装置1Cは、オフ時間Toffの長さの延長具合に基づいて、オゾンを再度発生させることができるため、オゾン供給部10でオゾンの発生を最適なタイミングで開始することができる。よって、オゾン発生制御装置1Bは、オゾン発生制御装置1Aと同様、オゾンの発生に要するエネルギーの消費を低減することができる。 Further, the ozone generation control device 1C judges the completion of the processing of the object existing in the target space S based on the extension of the length of the ON time T on and the OFF time T off . It is possible to easily suppress generation of excess ozone in the ozone supply unit 10 while decomposing the object in S. Furthermore, the ozone generation control device 1C can generate ozone again based on the extension of the length of the off time Toff, so that the ozone supply unit 10 can start generating ozone at the optimum timing. can. Therefore, the ozone generation control device 1B can reduce consumption of energy required for generating ozone, like the ozone generation control device 1A.

[第4の実施形態]
本発明の第4の実施形態に係るオゾン発生制御装置について説明する。図9は、本実施形態に係るオゾン発生制御装置を示す概略構成図である。図9に示すように、本実施形態に係るオゾン発生制御装置1Dは、上記の第3の実施形態に係るオゾン発生制御装置1Cの制御部30Cを制御部30Dに変更したものである。本実施形態では、制御部30Dの構成以外、第3の実施形態に係るオゾン発生制御装置1Cと同様であるため、制御部30Dの構成についてのみ説明する。
[Fourth embodiment]
An ozone generation control device according to a fourth embodiment of the present invention will be described. FIG. 9 is a schematic configuration diagram showing an ozone generation control device according to this embodiment. As shown in FIG. 9, an ozone generation control device 1D according to this embodiment is obtained by changing the control section 30C of the ozone generation control device 1C according to the third embodiment to a control section 30D. Since this embodiment is the same as the ozone generation control device 1C according to the third embodiment except for the configuration of the control section 30D, only the configuration of the control section 30D will be described.

制御部30Dは、制御部30Cにおいて、オゾン濃度値の減少速度の大きさを、オゾン供給部10のオフ時間Toffの長さの、オゾン供給部10の駆動を再開してから停止するまでのオン時間Tonの長さに対する比(オフ時間Toff/オン時間Ton(以下、「オフ時間の相対比(Toff/Ton)」という。))で判断するものである。 The control unit 30D controls the rate of decrease of the ozone concentration value in the control unit 30C to the length of the off time T off of the ozone supply unit 10. It is determined by the ratio of the length of the ON time T on (OFF time T off /ON time T on (hereinafter referred to as “relative ratio of OFF time (T off /T on )”)).

図2に示すように、オン時間Tonは時間t11の場合及び時間t10の場合の両方とも略同じ長さであり、オゾン濃度値の増加速度も略同じ大きさである。また、オン時間Ton(時間t11、時間t10)は、いずれもオフ時間Toff(時間t1、時間t0)よりも短い。そのため、オフ時間Toffの違いを判断する際、オフ時間の相対比(Toff/Ton)で判断しても、オフ時間Toffの違いを実質的に同等に判断できる。 As shown in FIG. 2, the on-time T on at time t 11 and at time t 10 have approximately the same length, and the rate of increase of the ozone concentration value is also approximately the same. Also, the on-time T on (time t 11 , time t 10 ) is shorter than the off-time T off (time t 1 , time t 0 ). Therefore, when judging the difference in the off-time T off , the difference in the off-time T off can be judged in substantially the same way even if it is judged by the relative ratio (T off /T on ) of the off time.

制御部30Dは、オフ時間の相対比(Toff/Ton)が小さい時に、対象空間S内の対象物の処理が完了していないと判断し、オフ時間の相対比(Toff/Ton)が大きい時に対象空間S内の対象物の処理が完了したと判断する。即ち、制御部30Dは、オフ時間の相対比(Toff/Ton)が所定値未満である場合には、対象空間S内の対象物の処理が完了していないと判断し、オフ時間の相対比(Toff/Ton)が所定値以上である時には、対象空間S内の対象物の処理が完了したと判断する。 When the off-time relative ratio (T off /T on ) is small, the control unit 30D determines that the processing of the object in the object space S is not completed, and determines that the off-time relative ratio (T off /T on ) is large, it is determined that the processing of the object in the object space S has been completed. That is, when the off-time relative ratio (T off /T on ) is less than a predetermined value, the control unit 30D determines that the processing of the object in the target space S has not been completed. When the relative ratio (T off /T on ) is equal to or greater than a predetermined value, it is determined that the processing of the object within the object space S has been completed.

なお、所定値とは、特に限定されず、対象物の種類等に応じて適宜設定される。所定値は、例えば、対称空間S内の対象物を処理するのに十分なオゾンが存在し、対象物が酸化完了と判断できる濃度以下で存在し得る時の、オフ時間の相対比(Toff/Ton)である。 It should be noted that the predetermined value is not particularly limited, and is appropriately set according to the type of object and the like. The predetermined value is, for example, the relative ratio of off time (Toff /T on ).

上記構成を有するオゾン発生制御装置1Dを用いて対象空間S内に存在する対象物を除去するオゾン処理方法の一例について説明する。 An example of an ozone treatment method for removing an object existing in the object space S using the ozone generation control device 1D having the above configuration will be described.

図10は、オゾン処理方法を説明するフローチャートである。図10に示すように、制御部30Dは、オゾン供給部10の運転を制御して、オゾンにより対象空間S内に存在する対象物を処理する(オゾン処理工程:ステップS41)。オゾン処理工程(ステップS41)は、図3に示すオゾン処理方法のオゾン処理工程(ステップS11)と同様であるため、詳細は省略する。 FIG. 10 is a flow chart explaining the ozone treatment method. As shown in FIG. 10, the control unit 30D controls the operation of the ozone supply unit 10 to treat the object present in the target space S with ozone (ozone treatment step: step S41). Since the ozone treatment step (step S41) is the same as the ozone treatment step (step S11) of the ozone treatment method shown in FIG. 3, details thereof are omitted.

オゾン処理工程(ステップS41)後、制御部30Dは、オフ時間Toff及びオン時間Tonを算出し(ステップS42)し、オフ時間の相対比(Toff/Ton)を算出する(ステップS43)。 After the ozone treatment step (step S41), the control unit 30D calculates the off -time Toff and the on -time Ton (step S42), and calculates the off -time relative ratio (Toff/ Ton ) (step S43). ).

続いて、制御部30Dは、算出したオフ時間の相対比(Toff/Ton)が所定値以上か否か判定する(ステップS44)。 Subsequently, the control unit 30D determines whether or not the calculated relative ratio of off times (T off /T on ) is equal to or greater than a predetermined value (step S44).

ステップS44において、オフ時間の相対比(Toff/Ton)が所定値以上である場合(ステップS44:Yes)には、対処空間S内の対象物の処理が完了したと判断し、処理を終了する。 In step S44, if the off-time relative ratio (T off /T on ) is equal to or greater than the predetermined value (step S44: Yes), it is determined that the processing of the object in the coping space S has been completed, and the processing is continued. finish.

ステップS44において、オフ時間の相対比(Toff/Ton)が所定値に満たない場合(ステップS44:No)、対処空間S内の対象物の処理が完了していないと判断する。そして、制御部30Dは、オゾン供給部10を再度駆動させてオゾンを発生させ、オゾンにより対象空間S内に存在する対象物を処理する(オゾン処理工程:ステップS41)。 In step S44, if the off-time relative ratio (T off /T on ) is less than the predetermined value (step S44: No), it is determined that the processing of the object in the coping space S has not been completed. Then, the control unit 30D drives the ozone supply unit 10 again to generate ozone, and treats the object present in the target space S with ozone (ozone treatment step: step S41).

本実施形態に係るオゾン処理方法によれば、第1の実施形態に係るオゾン処理方法と同様、処理空間S内におけるオゾンの発生及び停止を最適なタイミングで行うことができる。そのため、本実施形態に係るオゾン処理方法を用いれば、対象空間S内のオゾン濃度を安全濃度(例えば、0.08ppm~0.1ppm)に維持しながら、対象空間S内の対象物を分解しつつ、オゾン供給部10で余分なオゾンを発生させることを抑えることができる。 According to the ozone processing method according to the present embodiment, as in the ozone processing method according to the first embodiment, ozone can be generated and stopped in the processing space S at optimum timing. Therefore, by using the ozone treatment method according to the present embodiment, the object in the target space S can be decomposed while maintaining the ozone concentration in the target space S at a safe concentration (for example, 0.08 ppm to 0.1 ppm). At the same time, generation of excessive ozone in the ozone supply unit 10 can be suppressed.

オゾン発生制御装置1Dは、制御部30Dで、オフ時間の相対比(Toff/Ton)が小さい時には、対象空間S内の対象物の処理が完了していないと判断し、オフ時間の相対比(Toff/Ton)が大きい時には、対象空間S内の対象物の処理が完了したと判断する。オゾン発生制御装置1Dは、オゾン供給部10のオフ時間の相対比(Toff/Ton)の大きさに基づいて、オゾン供給部10の運転を制御することで、対処空間S内の対象物をその濃度が許容可能な濃度以下にまで低減し、対象物の処理の完了の有無を簡易に判断できる。オン時間Tonは対処空間S内に存在する対象物の量に関わらず殆ど変化しないので、(オフ時間Toff/オン時間Ton)に基づいて判断してもオフ時間に基づいて判断した場合と略同じ結果を得ることができる。よって、オゾン発生制御装置1Dは、オゾン発生制御装置1Cと同様、対処空間S内の対象物の処理が完了したことを簡易かつ高精度に判断することができる。 The control unit 30D of the ozone generation control device 1D determines that the processing of the object in the target space S is not completed when the off-time relative ratio (T off /T on ) is small, When the ratio (T off /T on ) is large, it is determined that the processing of the objects in the object space S has been completed. The ozone generation control device 1D controls the operation of the ozone supply unit 10 based on the magnitude of the relative off-time ratio (T off /T on ) of the ozone supply unit 10, so that the object in the treatment space S is reduced to an allowable concentration or less, and it is possible to easily determine whether or not the processing of the object has been completed. Since the on-time T on hardly changes regardless of the amount of objects present in the coping space S, even if the judgment is made based on (off-time T off /on-time T on ), the judgment based on the off-time can obtain almost the same result. Therefore, similarly to the ozone generation control device 1C, the ozone generation control device 1D can easily and highly accurately determine that the processing of the object in the treatment space S is completed.

[第5の実施形態]
本発明の第5の実施形態に係るオゾン発生制御装置について説明する。図11は、本実施形態に係るオゾン発生制御装置を示す概略構成図である。図11に示すように、本実施形態に係るオゾン発生制御装置1Eは、上記の第1の実施形態に係るオゾン発生制御装置1Aの制御部30Aを制御部30Eに変更したものである。本実施形態では、制御部30Eの構成以外、第1の実施形態に係るオゾン発生制御装置1Aと同様であるため、制御部30Eの構成についてのみ説明する。
[Fifth embodiment]
An ozone generation control device according to a fifth embodiment of the present invention will be described. FIG. 11 is a schematic configuration diagram showing an ozone generation control device according to this embodiment. As shown in FIG. 11, an ozone generation control device 1E according to this embodiment is obtained by changing the control section 30A of the ozone generation control device 1A according to the first embodiment to a control section 30E. Since this embodiment is the same as the ozone generation control device 1A according to the first embodiment except for the configuration of the control section 30E, only the configuration of the control section 30E will be described.

制御部30Eは、制御部30Aにおいて、対象物の処理が完了したと判断した後、オゾン供給部10を所定時間駆動させて、対象空間S内に存在する、特定の対象物(第1対象物)以外の、第1対象物とは異なる種類の他の対象物(第2対象物)の処理を行うものである。 After the control unit 30A determines that the processing of the object has been completed, the control unit 30E drives the ozone supply unit 10 for a predetermined period of time to identify a specific object existing in the object space S (first object ) other than the first object (second object) of a type different from the first object.

対象空間S内には、分解対象となる対象物が複数存在することが多い。対象物がオゾンによって分解されて除去される割合は、対象物の種類、濃度等によって異なる。そのため、特定の対象物を除去しても、残りの他の対象物は残っている場合がある。 In the object space S, there are often a plurality of objects to be decomposed. The rate at which the target is decomposed and removed by ozone varies depending on the type, concentration, and the like of the target. Therefore, even if a particular object is removed, other remaining objects may remain.

制御部30Eは、対象物の処理が完了したと判断した後に、オゾン供給部10を所定時間駆動させ、対象空間S内に存在する、対象物以外の他の対象物の処理を行い、他の対象物を所定の基準値以下の濃度にまで除去する。 After determining that the processing of the object has been completed, the control unit 30E drives the ozone supply unit 10 for a predetermined period of time to process objects other than the object existing in the object space S, and Objects are removed to a concentration below a predetermined reference value.

所定時間とは、特に限定されず、他の対象物の種類、濃度等に応じて、他の対象物の処理が完了できる時間であればよい。例えば、オゾンは残存する対象物の他に他の対象物と反応して消費されつつ、新たにオゾン供給部10よりオゾンが対象空間S内に供給されるため、単位時間当たりのオゾン濃度が変動する傾向は見られないが、他の対象物の濃度がオゾンと反応しない程度にまで低下するかほぼ全て分解されると、オゾン濃度が急激に上昇する。そのため、所定時間は、他の対象物との反応によりオゾン濃度の増加速度が上昇した時点までとしてもよい。 The predetermined time is not particularly limited, and may be any time that allows the processing of another object to be completed according to the type, density, etc. of the other object. For example, ozone reacts with other objects in addition to the remaining objects and is consumed, while ozone is newly supplied from the ozone supply unit 10 into the target space S, so that the ozone concentration per unit time fluctuates. However, when the concentration of other objects decreases to the extent that they do not react with ozone, or when almost all of them are decomposed, the ozone concentration rises sharply. Therefore, the predetermined time may be up to the time when the rate of increase in the ozone concentration increases due to the reaction with other objects.

上記構成を有するオゾン発生制御装置1Eを用いて対象空間S内に存在する対象物を除去するオゾン処理方法の一例について説明する。 An example of an ozone treatment method for removing a target existing in the target space S using the ozone generation control device 1E having the above configuration will be described.

図12は、オゾン処理方法を説明するフローチャートである。図12に示すように、制御部30Eは、オゾン供給部10の運転を制御して、オゾンにより対象空間S内に存在する対象物を処理(オゾン処理工程:ステップS51)した後、オフ時間Toff後の対象空間S内のオゾン濃度の減少速度を算出し(ステップS52)、算出したオゾン濃度の減少速度が所定速度以下か否か判定する(ステップS53)。なお、本実施形態に係るオゾン処理方法のステップS51)~ステップS53は、上述の図3に示す第1の実施形態に係るオゾン発生制御装置1Aのオゾン処理方法のステップS11~ステップS13と同様であるため、詳細は省略する。 FIG. 12 is a flow chart explaining the ozone treatment method. As shown in FIG. 12 , the control unit 30E controls the operation of the ozone supply unit 10 to treat the object present in the target space S with ozone (ozone treatment step: step S51), and then the off time T is reached. The rate of decrease of the ozone concentration in the target space S after turning off is calculated (step S52), and it is determined whether or not the calculated rate of decrease of the ozone concentration is equal to or less than a predetermined rate (step S53). Steps S51) to S53 of the ozone treatment method according to the present embodiment are the same as steps S11 to S13 of the ozone treatment method of the ozone generation control device 1A according to the first embodiment shown in FIG. Therefore, details are omitted.

ステップS53において、時間Toffでのオゾン濃度の減少速度が所定速度以下である場合(ステップS53:Yes)、制御部30Eは、オゾン供給部10を駆動させ、対象空間S内に存在する、所定の対象物以外の他の対象物の処理を行い、他の対象物を所定の基準値以下の濃度にまで除去する(ステップS54)。 In step S53, if the rate of decrease of the ozone concentration at the time T off is equal to or less than the predetermined rate (step S53: Yes), the control unit 30E drives the ozone supply unit 10 to cause the predetermined The other objects other than the object are processed, and the other objects are removed to a density equal to or lower than a predetermined reference value (step S54).

ステップS54では、制御部30Eは、オゾン処理工程(ステップS51)と同様の工程を1回以上繰り返してもよいし、所定時間継続してもよい。 In step S54, the control unit 30E may repeat the same process as the ozone treatment process (step S51) once or more, or may continue for a predetermined period of time.

また、制御部30Eは、ステップS54において、オゾン処理工程(ステップS51)と同様の工程を、対象空間S内のオゾン濃度Cと、オゾン供給部10によるオゾン発生時間Tとの積算値(CT値)が所定値になるまで繰り返してもよい。この場合の所定値は、他の対象物の殺菌又は不活化に必要なCT値であり、他の対象物の種類(例えば、菌、ウイルスの種類等)に応じて適宜設定される。 In addition, in step S54, the control unit 30E performs a process similar to the ozone treatment process (step S51), an integrated value (CT value ) may be repeated until it reaches a predetermined value. The predetermined value in this case is a CT value required for sterilization or inactivation of another target, and is appropriately set according to the type of other target (for example, the type of bacteria, virus, etc.).

制御部30Eは、対処空間S内の他の対象物を所定の基準値以下の濃度にまで除去したと判断したら、処理を終了する。 When the control unit 30E determines that other objects in the space S have been removed to a density equal to or lower than the predetermined reference value, the control unit 30E ends the process.

本実施形態に係るオゾン処理方法によれば、オゾン濃度が停止用閾値以上であった場合でも、ステップS24において、オゾン供給部10を駆動して、対象空間S内にオゾンを供給している。これにより、対象空間S内の特定の対象物は、その濃度がより低くなるか、全て分解して除去される。対象空間S内に存在する、対象物以外の他の対象物は、オゾン供給部10から供給されるオゾンによりオゾン消費が殆どない状態まで分解して除去されることで、その濃度を許容される所定値以下にまで低減できる。 According to the ozone processing method according to this embodiment, even when the ozone concentration is equal to or higher than the stop threshold, the ozone supply unit 10 is driven to supply ozone into the target space S in step S24. As a result, specific objects in the object space S are reduced in density or completely decomposed and removed. Objects other than the objects existing in the object space S are decomposed and removed by the ozone supplied from the ozone supply unit 10 to a state where ozone consumption is almost zero, and the concentration thereof is allowed. It can be reduced to a predetermined value or less.

また、本実施形態に係るオゾン処理方法によれば、第1の実施形態に係るオゾン処理方法と同様、処理空間S内におけるオゾンの発生を最適なタイミングで行うことができる。そのため、本実施形態に係るオゾン処理方法を用いれば、対象空間S内のオゾン濃度を安全濃度(例えば、0.08ppm~0.1ppm)に維持しながら、対象空間S内の特定の対象物と、それ以外の他の対象物を分解しつつ、オゾン供給部10で余分なオゾンを発生させることを抑えることができる。 Moreover, according to the ozone processing method according to the present embodiment, ozone can be generated in the processing space S at the optimum timing, as in the ozone processing method according to the first embodiment. Therefore, by using the ozone treatment method according to the present embodiment, while maintaining the ozone concentration in the target space S at a safe concentration (for example, 0.08 ppm to 0.1 ppm), a specific object in the target space S and , while decomposing other objects, the generation of excess ozone in the ozone supply unit 10 can be suppressed.

オゾン発生制御装置1Eは、制御部30Eで、対象物の処理が完了したと判断した後に、オゾン供給部10を駆動させる。これにより、オゾン発生制御装置1Eは、オゾン供給部10よりオゾンを発生させることで、対象空間S内の特定の対象物をより確実に除去しつつ、対象空間S内に存在する、特定の対象物以外の、他の異なる種類の対象物をオゾン消費が殆どない状態まで分解して、対象物の濃度を許容される所定値以下にまで低減することができる。よって、オゾン発生制御装置1Eは、対処空間S内に複数の異なる種類の対象物が存在している場合でも、対処空間S内の複数の対象物の濃度を所定値以下にまで下げて、対処空間S内の複数の対象物の処理が完了したことを高精度に判断することができる。 The ozone generation control device 1E drives the ozone supply unit 10 after the control unit 30E determines that the processing of the object has been completed. As a result, the ozone generation control device 1E generates ozone from the ozone supply unit 10, thereby more reliably removing specific objects in the target space S, and removing specific objects existing in the target space S. In addition to objects, other different types of objects can be decomposed with little ozone consumption to reduce the concentration of the object below a predetermined acceptable value. Therefore, even if a plurality of objects of different types exist in the treatment space S, the ozone generation control device 1E can reduce the concentrations of the plurality of objects in the treatment space S to a predetermined value or less, and It can be determined with high accuracy that the processing of a plurality of objects in the space S has been completed.

これにより、オゾン発生制御装置1Eは、例えば、特定の対象物として臭気ガス等を対象とし、他の対象物としてウィルス等を対象とし、これらをまとめて処理することが必要な場合でも、これらの異なる種類の対象物の処理の完了を同時に判断することができる。 As a result, the ozone generation control device 1E can target, for example, odorous gases as specific targets and viruses as other targets, even if it is necessary to treat them collectively. Completion of processing of different types of objects can be determined simultaneously.

以上のように、上記の各実施形態に係るオゾン発生制御装置1A~1Eは、上記特性を有することにより、対象空間S内の対象物を最適な時間でオゾンを必要以上に発生させることなく簡易な構成で除去が完了したことを高精度に判断できる。そのため、オゾン発生制御装置1A~1Eは、家、ビル、ホテル、病院、福祉施設等の建物の室内、車、電車等の車内、飛行機の機内等に設置して、それらの空間内に存在する対象物を除去して空気を清浄する装置として好適に用いることができる。特に、オゾン発生制御装置1A~1Eは、オゾンによる対象物の処理に要する時間及び無駄なオゾンの発生量を減らすことができる。そのため、建物、車両等のエネルギー消費の低減を図りつつ、これらの各部屋、車室内の対象物の除去を確実に行うことができる。よって、オゾン発生制御装置1A~1Eは、建物内の部屋、車両の車室内等の脱臭、有機物除去、有害物質除去、殺菌等に好適に用いることができる。 As described above, the ozone generation control devices 1A to 1E according to the above-described embodiments have the above-described characteristics, so that the objects in the target space S can be easily controlled without generating ozone more than necessary at the optimum time. It can be determined with high accuracy that the removal has been completed with such a configuration. Therefore, the ozone generation control devices 1A to 1E are installed inside buildings such as houses, buildings, hotels, hospitals, welfare facilities, etc., inside cars, trains, etc., inside airplanes, etc., and exist in these spaces. It can be suitably used as a device for removing objects and cleaning the air. In particular, the ozone generation control devices 1A to 1E can reduce the time required for treating the object with ozone and the amount of wasteful generation of ozone. Therefore, while reducing the energy consumption of buildings, vehicles, etc., it is possible to reliably remove objects in these rooms and vehicle interiors. Therefore, the ozone generation control devices 1A to 1E can be suitably used for deodorization, removal of organic substances, removal of harmful substances, sterilization, and the like, in rooms in buildings, vehicle interiors, and the like.

以上の通り、実施形態を説明したが、上記実施形態は、例として提示したものであり、上記実施形態により本発明が限定されるものではない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の組み合わせ、省略、置き換え、変更等を行うことが可能である。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 As described above, the embodiment has been described, but the above embodiment is presented as an example, and the present invention is not limited by the above embodiment. The above embodiments can be implemented in various other forms, and various combinations, omissions, replacements, changes, etc. can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.

1A、1B、1C、1D、1E オゾン発生制御装置
10 オゾン供給部
20 オゾン検出部(オゾン濃度センサ)
30A、30B、30C、30D、30E 制御部
S 対象空間
1A, 1B, 1C, 1D, 1E ozone generation control device 10 ozone supply unit 20 ozone detection unit (ozone concentration sensor)
30A, 30B, 30C, 30D, 30E control unit S target space

Claims (7)

対象空間内にオゾンを供給するオゾン供給部と、
前記対象空間内のオゾンを検出してオゾン濃度値を出力するオゾン検出部と、
前記オゾン濃度値に基づいて前記オゾン供給部を駆動制御する制御部と、
を備えたオゾン発生制御装置であって、
前記制御部は、前記オゾン供給部の駆動を停止した後の前記オゾン濃度値の減少速度が大きい時に前記対象空間内の対象物の処理が完了していないと判断し、減少速度が小さい時に前記対象空間内の前記対象物の処理が完了したと判断するオゾン発生制御装置。
an ozone supply unit that supplies ozone into the target space;
an ozone detector that detects ozone in the target space and outputs an ozone concentration value;
a control unit that drives and controls the ozone supply unit based on the ozone concentration value;
An ozone generation control device comprising
The control unit determines that the processing of the object in the target space is not completed when the rate of decrease of the ozone concentration value after stopping the driving of the ozone supply unit is high, and determines that the processing of the object in the target space is not completed when the rate of decrease is low. An ozone generation control device that determines that processing of the object in the object space is completed.
前記制御部は、前記オゾン濃度値が開始用閾値以下になった時に前記オゾン供給部の駆動を開始し、前記オゾン濃度値が前記開始用閾値よりも大きい停止用閾値以上になった時に前記オゾン供給部の駆動を停止する請求項1記載のオゾン発生制御装置。 The control unit starts driving the ozone supply unit when the ozone concentration value becomes equal to or less than the start threshold value, and the ozone supply unit when the ozone concentration value becomes equal to or more than the stop threshold value which is larger than the start threshold value. 2. The ozone generation control device according to claim 1, wherein the driving of the supply unit is stopped. 前記制御部は、前記オゾン供給部の駆動を停止してから再開するまでのオフ時間が短い時に前記対象物の処理が完了していないと判断し、前記オフ時間が長い時に前記対象物の処理が完了したと判断する請求項2記載のオゾン発生制御装置。 The control unit determines that the processing of the object is not completed when the off time from when the ozone supply unit is stopped until it is restarted is short, and when the off time is long, the processing of the object is performed. 3. The ozone generation control device according to claim 2, wherein the ozone generation control device determines that the step has been completed. 前記制御部は、前記オゾン供給部の駆動を再開してから停止するまでのオン時間と前記オフ時間からなる周期が短い時に前記対象空間内の前記対象物の処理が完了していないと判断し、前記周期が長い時に前記対象空間内の前記対象物の処理が完了したと判断する請求項3記載のオゾン発生制御装置。 The control unit determines that the processing of the object in the object space has not been completed when the cycle of the ON time and the OFF time from when the ozone supply unit is restarted to when it is stopped is short. 4. The ozone generation control device according to claim 3, wherein it is determined that the processing of the object in the object space is completed when the cycle is long. 前記制御部は、前記オン時間に対する前記オフ時間の比が小さい時に前記対象空間内の前記対象物の処理が完了していないと判断し、前記オン時間に対する前記オフ時間の比が大きい時に前記対象空間内の前記対象物の処理が完了したと判断する請求項4に記載のオゾン発生制御装置。 The control unit determines that processing of the object in the object space is not completed when the ratio of the off time to the on time is small, and determines that the object is not completely processed when the ratio of the off time to the on time is large. 5. The ozone generation control device according to claim 4, wherein it is determined that the processing of the object in the space is completed. 前記制御部は、前記対象物の処理が完了したと判断した後に、前記オゾン供給部を駆動して、他の対象物を処理を行う請求項1~5の何れか一項に記載のオゾン発生制御装置。 The ozone generator according to any one of claims 1 to 5, wherein after determining that the processing of the object is completed, the control unit drives the ozone supply unit to process another object. Control device. 対象空間内にオゾンを供給するオゾン供給部と、
前記対象空間内のオゾンを検出してオゾン濃度値を出力するオゾン検出部と、
前記オゾン濃度値に基づいて前記オゾン供給部を駆動制御する制御部と、
を備えたオゾン発生制御装置であって、
前記制御部は、前記オゾン供給部の駆動を停止した後の前記オゾン濃度値の減少速度が大きい時に前記対象空間内の対象物の処理が所定のレベルまで進んでいないと判断し、前記減少速度が小さい時に前記対象空間内の前記対象物の処理が所定のレベルまで進んだと判断するオゾン発生制御装置。
an ozone supply unit that supplies ozone into the target space;
an ozone detector that detects ozone in the target space and outputs an ozone concentration value;
a control unit that drives and controls the ozone supply unit based on the ozone concentration value;
An ozone generation control device comprising
The controller determines that the processing of the object in the target space has not progressed to a predetermined level when the rate of decrease of the ozone concentration value after stopping the driving of the ozone supply unit is large, and determines that the rate of decrease is an ozone generation control device that determines that the processing of the object in the object space has progressed to a predetermined level when the is small.
JP2021038703A 2021-03-10 2021-03-10 Ozone generation controller Pending JP2022138684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021038703A JP2022138684A (en) 2021-03-10 2021-03-10 Ozone generation controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021038703A JP2022138684A (en) 2021-03-10 2021-03-10 Ozone generation controller

Publications (1)

Publication Number Publication Date
JP2022138684A true JP2022138684A (en) 2022-09-26

Family

ID=83399288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021038703A Pending JP2022138684A (en) 2021-03-10 2021-03-10 Ozone generation controller

Country Status (1)

Country Link
JP (1) JP2022138684A (en)

Similar Documents

Publication Publication Date Title
JP7066755B2 (en) Air purifier and air purifying method
EP1500404B1 (en) Sterilisation with ozone, humidity and unsaturated compound
EP2405948B1 (en) Sterilization and decontamination of an eclosed environment
JP2005523775A (en) Air purification, deodorization and sterilization equipment using ozone
KR20120004989A (en) Sterilisation and/or decontamination of an enclosed environment
JP6453572B2 (en) UV irradiation equipment
JP2007159820A (en) Ozone sterilization method and its apparatus
WO1997042981A1 (en) Deodorizing and sterilizing device having catalyst deterioration sensing function
KR100753056B1 (en) Ambulance disinfector
GB2468520A (en) Sterilisation of a environment with ozone and increased humidity
JP2008036168A (en) Deodorizing apparatus
WO2010103287A1 (en) Sterilisation and / or decontamination of an enclosed environment
JP2022138684A (en) Ozone generation controller
US20230233726A1 (en) A portable air treatment system and a method of using said air treatment system
WO2022044457A1 (en) Ozone treatment apparatus and notification apparatus
KR101537029B1 (en) Chlorine dioxide processing structure, chlorine dioxide processing apparatus, sterilization apparatus and environment purification apparatus
JP2007111251A (en) Air purifier
JP7183417B2 (en) Air cleaning device and air cleaning method
US20220111101A1 (en) Method and system for decontaminating an environment by means of ozone
JP2008046068A (en) Contamination degree detector and air treatment device using it
WO2022238993A1 (en) An indoor ozone based air purification system and method
JP4249002B2 (en) Wastewater treatment apparatus and method
KR102218288B1 (en) Apparatus for removing offensive odor
JP2022029130A (en) Disinfection system
KR20160025387A (en) Apparatus and method for sterilizing water tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231212