JP2022129920A - Exhaust heat recovery mechanism - Google Patents

Exhaust heat recovery mechanism Download PDF

Info

Publication number
JP2022129920A
JP2022129920A JP2021028802A JP2021028802A JP2022129920A JP 2022129920 A JP2022129920 A JP 2022129920A JP 2021028802 A JP2021028802 A JP 2021028802A JP 2021028802 A JP2021028802 A JP 2021028802A JP 2022129920 A JP2022129920 A JP 2022129920A
Authority
JP
Japan
Prior art keywords
exhaust
temperature
passage
exhaust gas
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021028802A
Other languages
Japanese (ja)
Other versions
JP7251564B2 (en
Inventor
友章 廣澤
Tomoaki Hirosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2021028802A priority Critical patent/JP7251564B2/en
Publication of JP2022129920A publication Critical patent/JP2022129920A/en
Application granted granted Critical
Publication of JP7251564B2 publication Critical patent/JP7251564B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

To provide an exhaust heat recovery mechanism using condensation water generated when heat exchange is performed between exhaust gas and a refrigerant.SOLUTION: An exhaust heat recovery mechanism 10 has an exhaust heat recovery passage 11, an exhaust gas passage changeover device 12 and a first heat exchanger 13. The exhaust heat recovery mechanism also includes a chemical thermal storage device 14 disposed on the downstream side of the first heat exchanger 13 in regard to a flow of exhaust gas in the exhaust heat recovery passage 11 and releasing heat stored through a hydration reaction with water or storing heat through a dehydration reaction by absorbing heat. The chemical thermal storage device 14 raises a temperature of exhaust gas performing the hydration reaction with the condensation water generated by the heat exchange in the first heat exchanger 13 and passing through the chemical thermal storage device 14, and raises a temperature of a temperature rise target disposed on the downstream side of the chemical thermal storage device 14.SELECTED DRAWING: Figure 1

Description

本発明は、排気熱回収機構に関し、より詳細には、内燃機関の排気と冷媒との間で熱交換可能な排気熱回収機構に関する。 TECHNICAL FIELD The present invention relates to an exhaust heat recovery mechanism, and more particularly to an exhaust heat recovery mechanism capable of exchanging heat between exhaust gas of an internal combustion engine and refrigerant.

排気と冷却水との間で熱交換可能な排気熱回収装置が提案されている(例えば、特許文献1参照)。この特許文献1に記載の排気熱回収装置は排気の熱量を回収して冷却水を昇温することで、内燃機関の暖機を促進している。 An exhaust heat recovery device capable of exchanging heat between exhaust gas and cooling water has been proposed (see Patent Document 1, for example). The exhaust heat recovery device described in Patent Literature 1 recovers the amount of heat from the exhaust gas to raise the temperature of the cooling water, thereby promoting the warm-up of the internal combustion engine.

特開2017-218966号公報JP 2017-218966 A

本願の発明者は、特許文献1に記載の排気熱回収装置において排気と冷却水の間で熱交換が行われた際に凝縮水が生じることに着目した。 The inventors of the present application focused on the fact that condensed water is generated when heat is exchanged between the exhaust gas and the cooling water in the exhaust heat recovery device described in Patent Document 1.

本開示の目的は、排気と冷媒の間で熱交換が行われる際に生じた凝縮水を利用する排気熱回収機構を提供することである。 An object of the present disclosure is to provide an exhaust heat recovery mechanism that utilizes condensed water generated when heat is exchanged between exhaust gas and refrigerant.

上記の目的を達成する本発明の一態様の排気熱回収機構は、内燃機関の気筒から排出された排気が通過する排気通路から分岐した後にその排気通路に合流する排気熱回収通路と、排気の流れを前記排気通路および前記排気熱回収通路のどちらか一方の通路に切り替える排気用通路切替装置と、前記排気熱回収通路に配置されて、前記内燃機関の冷却水または潤滑油のどちらか一方から成る冷媒および排気の間で熱交換する第一熱交換器と、を備えた排気熱回収機構において、排気の流れに関して前記第一熱交換器の下流の側の前記排気熱回収通路に配置されて、水と水和反応して蓄熱した熱を放熱するまたは熱の吸熱により脱水反応して蓄熱する化学蓄熱装置を備え、この化学蓄熱装置が前記第一熱交換器における熱交換で生じた凝縮水と水和反応して前記化学蓄熱装置を通過する排気を昇温し、排気の流れに関して前記化学蓄熱装置の下流の側に配置された昇温対象物を昇温する構成にしたことを特徴とする。 An exhaust heat recovery mechanism of one aspect of the present invention that achieves the above objects includes an exhaust heat recovery passage that branches from an exhaust passage through which exhaust gas discharged from a cylinder of an internal combustion engine passes and then merges with the exhaust passage; an exhaust passage switching device for switching a flow to either one of the exhaust passage and the exhaust heat recovery passage; a first heat exchanger for exchanging heat between a refrigerant and exhaust gas, the exhaust heat recovery mechanism being positioned in the exhaust heat recovery passage downstream of the first heat exchanger with respect to exhaust flow , a chemical heat storage device that radiates heat stored by hydration reaction with water or stores heat by dehydration reaction by endothermic heat absorption, and the chemical heat storage device is condensed water generated by heat exchange in the first heat exchanger and the temperature of the exhaust gas passing through the chemical heat storage device is raised by hydration reaction with do.

本発明の一態様によれば、第一熱交換器で排気の熱を回収した際に生じた凝縮水を利用して、化学蓄熱装置で水和反応を生じさせて化学蓄熱装置を通過する排気を昇温することができる。これにより、化学蓄熱装置よりも下流に配置された昇温対象物を昇温することができる。 According to one aspect of the present invention, the exhaust gas passing through the chemical heat storage device is caused to undergo a hydration reaction in the chemical heat storage device using the condensed water generated when the heat of the exhaust gas is recovered by the first heat exchanger. can be heated. This makes it possible to raise the temperature of the object to be heated that is arranged downstream of the chemical heat storage device.

第一実施形態の排気熱回収機構を例示する構成図である。It is a block diagram which illustrates the exhaust heat recovery mechanism of 1st embodiment. 第一実施形態の排気熱回収機構の制御方法を例示するフロー図である。FIG. 4 is a flow diagram illustrating a method of controlling the exhaust heat recovery mechanism of the first embodiment; 図2の制御フローでフラグが立ったときに行われる制御フローを例示するフロー図である。FIG. 3 is a flow diagram illustrating a control flow that is performed when a flag is set in the control flow of FIG. 2; 図2のIから続く制御フローを例示するフロー図である。3 is a flow diagram illustrating the control flow continuing from I in FIG. 2; FIG. 図1の迂回通路を流れる冷却水および排気熱回収通路を流れる排気の温度を例示する相関図である。FIG. 2 is a correlation diagram illustrating the temperature of cooling water flowing through the detour passage of FIG. 1 and the temperature of exhaust gas flowing through the exhaust heat recovery passage; 第二実施形態の排気熱回収機構を例示する構成図である。FIG. 5 is a configuration diagram illustrating an exhaust heat recovery mechanism of a second embodiment;

以下に、本開示における排気熱回収機構の実施形態について説明する。図1および図6において、一点鎖線は信号線を示し、白抜き矢印は排気の流れを示し、塗り潰し矢印は冷媒である冷却水の流れを示す。図1および図6では、構成が分かり易いように冷却水や排気の流路の構造を変化させており、必ずしも実際に製造するものとは一致させていない。図1および図6の煩雑さを回避するために図示する気筒2は一つのみとする。 Embodiments of the exhaust heat recovery mechanism according to the present disclosure will be described below. In FIGS. 1 and 6, dashed-dotted lines indicate signal lines, white arrows indicate the flow of exhaust gas, and solid arrows indicate the flow of cooling water, which is a refrigerant. In FIGS. 1 and 6, the structures of cooling water and exhaust flow paths are changed for the sake of clarity, and do not necessarily correspond to those actually manufactured. Only one cylinder 2 is shown in order to avoid complication of FIGS.

図1に例示するように、第一実施形態の排気熱回収機構10は、冷媒として内燃機関1を冷却する冷却水を用いて、その冷却水と内燃機関1の気筒2から排出される排気との間で熱交換を行う機構であり、昇温対象が後述する第二熱交換器15である。 As exemplified in FIG. 1, the exhaust heat recovery mechanism 10 of the first embodiment uses cooling water for cooling the internal combustion engine 1 as a coolant. and a second heat exchanger 15 to be described later.

内燃機関1は軽油を燃料とするディーゼルエンジンであり、気筒2の内部のピストン3の往復直線運動により動力を得る機関である。内燃機関1は一気筒のみではなく図示しない他の気筒を有する多気筒エンジンである。内燃機関1の燃料は軽油に限定されるものではなく、ガソリンや液化ガスでもよい。内燃機関1の気筒数および気筒配置は特に限定されるものではない。内燃機関1は排気熱回収機構10、冷却機構20、および、排気浄化機構30を備えて構成される。 The internal combustion engine 1 is a diesel engine that uses light oil as fuel, and is an engine that obtains power by reciprocating linear motion of a piston 3 inside a cylinder 2 . The internal combustion engine 1 is a multi-cylinder engine having not only one cylinder but also other cylinders (not shown). The fuel of the internal combustion engine 1 is not limited to light oil, and may be gasoline or liquefied gas. The number and arrangement of cylinders of the internal combustion engine 1 are not particularly limited. The internal combustion engine 1 includes an exhaust heat recovery mechanism 10 , a cooling mechanism 20 and an exhaust purification mechanism 30 .

冷却機構20は、共有通路21、冷却通路22、迂回通路23、および、冷却水用通路切替装置24を備える循環回路であり、共有通路21に冷却水用ポンプ25およびウォータジャケット26が配置され、冷却通路22にラジエータ27が配置される。冷却機構20は、冷却水が共有通路21を通過後に冷却水用通路切替装置24により冷却通路22および迂回通路23の少なくとも一方の通路に流れて、再び共有通路21へ循環するように構成される。 The cooling mechanism 20 is a circulation circuit including a shared passage 21, a cooling passage 22, a bypass passage 23, and a cooling water passage switching device 24. A cooling water pump 25 and a water jacket 26 are arranged in the shared passage 21, A radiator 27 is arranged in the cooling passage 22 . The cooling mechanism 20 is configured such that after the cooling water passes through the shared passage 21, it flows through at least one of the cooling passage 22 and the bypass passage 23 by the cooling water passage switching device 24, and circulates again to the shared passage 21. .

冷却水用ポンプ25は冷却水を吐出して冷却水を循環させるポンプである。冷却水用ポンプ25は電動式ウォータポンプや動力伝達機構によりクランク軸4に連結された機械式ウォータポンプが例示される。ウォータジャケット26は気筒2の周囲に設けられた冷却水の通路であり、その通路が複数の気筒2を取り巻くように形成されている。 The cooling water pump 25 is a pump that discharges cooling water and circulates the cooling water. The cooling water pump 25 is exemplified by an electric water pump or a mechanical water pump connected to the crankshaft 4 by a power transmission mechanism. The water jacket 26 is a cooling water passage provided around the cylinders 2 , and the passages are formed so as to surround the plurality of cylinders 2 .

冷却水用通路切替装置24は冷却通路22および迂回通路23の分岐点に配置される。冷却水用通路切替装置24は、冷却水の温度上昇に伴って膨張し、冷却水の温度低下に伴って収縮する性質を有する熱膨張体により伸縮動作するリフタ(図示しない)を有するサーモスタットで構成される。冷却水用通路切替装置24は、冷却水の温度に応じて冷却通路22および迂回通路23に流れる冷却水の流量を調節可能な構成であればよく、開度を制御可能な三方弁で構成されてもよい。 The cooling water passage switching device 24 is arranged at a branch point of the cooling passage 22 and the bypass passage 23 . The cooling water passage switching device 24 is composed of a thermostat having a lifter (not shown) that expands and contracts as the temperature of the cooling water rises and contracts as the temperature of the cooling water drops. be done. The cooling water passage switching device 24 may be configured to adjust the flow rate of the cooling water flowing through the cooling passage 22 and the bypass passage 23 according to the temperature of the cooling water, and is composed of a three-way valve capable of controlling the degree of opening. may

ラジエータ27は内燃機関10が搭載された車両の前方側(図1の左側)に配置されて、その後方の側には冷却ファン28が配置される。ラジエータ27は車速風と後続の冷却ファン28による冷却風とを利用して内部を通過する冷却水を冷却する熱交換器である。冷却通路22はその中途位置にラジエータ27が設けられて冷却水がラジエータ27により冷却される流路である。迂回通路23は冷却通路22を迂回して冷却水がラジエータ27により冷却されない流路である。 The radiator 27 is arranged on the front side (left side in FIG. 1) of the vehicle on which the internal combustion engine 10 is mounted, and the cooling fan 28 is arranged on the rear side. The radiator 27 is a heat exchanger that uses the vehicle speed wind and the cooling wind from the subsequent cooling fan 28 to cool the cooling water that passes through it. The cooling passage 22 is a flow path in which a radiator 27 is provided in the middle thereof and cooling water is cooled by the radiator 27 . The detour passage 23 is a passage that bypasses the cooling passage 22 so that the cooling water is not cooled by the radiator 27 .

排気浄化機構30は、排気通路5に配置された酸化触媒装置31、フィルタ装置32、還元剤噴射装置33、および、選択的還元触媒装置34を有して構成される。酸化触媒装置31は排気の流れに関してフィルタ装置32の上流側に配置されて、排気に含有する炭化水素、一酸化炭素、及び一酸化窒素を酸化する触媒を有する。フィルタ装置32は排気に含有する粒子状物質を濾過捕集する。還元剤噴射装置33は排気の流れに関して選択的還元触媒装置34の上流側に配置されて、尿素水を噴射して選択的還元触媒装置34に還元剤であるアンモニアを供給する。選択的還元触媒装置34はアンモニアを還元剤として排気に含有する窒素酸化物を還元浄化する触媒を有する。なお、排気浄化機構30としては、酸化触媒装置31の上流側に配置されて、排気に未然の燃料を噴射する排気管燃料噴射装置や、選択的還元触媒装置34の下流側に配置されて、選択的還元触媒装置34を通過後の排気に含まれる還元剤を吸着除去する還元剤吸着触媒装置を有してもよい。 The exhaust purification mechanism 30 includes an oxidation catalyst device 31 , a filter device 32 , a reducing agent injection device 33 and a selective reduction catalyst device 34 arranged in the exhaust passage 5 . The oxidation catalyst device 31 is arranged upstream of the filter device 32 with respect to the flow of exhaust gas and has a catalyst for oxidizing hydrocarbons, carbon monoxide and nitrogen monoxide contained in the exhaust gas. The filter device 32 filters and collects particulate matter contained in the exhaust. The reducing agent injection device 33 is arranged upstream of the selective reduction catalyst device 34 with respect to the flow of exhaust gas, and injects urea water to supply the selective reduction catalyst device 34 with ammonia as a reducing agent. The selective reduction catalyst device 34 has a catalyst that reduces and purifies nitrogen oxides contained in the exhaust gas using ammonia as a reducing agent. The exhaust purification mechanism 30 is arranged on the upstream side of the oxidation catalyst device 31 and is arranged on the downstream side of the exhaust pipe fuel injection device that injects the fuel in advance into the exhaust, or the selective reduction catalyst device 34, A reducing agent adsorption catalyst device that adsorbs and removes the reducing agent contained in the exhaust after passing through the selective reduction catalyst device 34 may be provided.

本開示において還元触媒装置は排気に含有される窒素酸化物を還元浄化する触媒装置を示し、本実施形態における選択的還元触媒装置34に相当する。還元触媒装置は希薄混合気(リーン)条件で窒素酸化物を吸蔵し、過濃混合気(リッチ)条件で窒素酸化物を還元する吸蔵型還元触媒装置で構成されてもよい。 In the present disclosure, a reduction catalyst device indicates a catalyst device that reduces and purifies nitrogen oxides contained in exhaust gas, and corresponds to the selective reduction catalyst device 34 in this embodiment. The reduction catalyst device may be an occlusion-type reduction catalyst device that stores nitrogen oxides under lean air-fuel mixture (lean) conditions and reduces nitrogen oxides under rich air-fuel mixture (rich) conditions.

排気熱回収機構10は排気熱回収通路11、排気用通路切替装置12、第一熱交換器13、化学蓄熱装置14、および、第二熱交換器15を備えて構成される。また、排気熱回収機構10は、温度変数取得装置として水温センサ16、反応変数取得装置として温度差センサ17および排気流量センサ18、ならびに、制御装置40を備えて構成される。 The exhaust heat recovery mechanism 10 includes an exhaust heat recovery passage 11 , an exhaust passage switching device 12 , a first heat exchanger 13 , a chemical heat storage device 14 and a second heat exchanger 15 . The exhaust heat recovery mechanism 10 also includes a water temperature sensor 16 as a temperature variable acquisition device, a temperature difference sensor 17 and an exhaust flow rate sensor 18 as reaction variable acquisition devices, and a control device 40 .

排気熱回収通路11は気筒2から排出された排気が通過する排気通路5から分岐した後に排気通路5に合流する通路である。排気熱回収通路11は、排気が排気熱回収通路11を流れる場合にも排気浄化機構30の各々の装置を通過するように構成されることが望ましい。また、排気熱回収通路11は、排気の流れに関して選択的還元触媒装置34よりも上流の側で排気通路5に合流することが望ましい。排気熱回収通路11は排気の流れに関してフィルタ装置32よりも下流の側の排気通路5から分岐し、選択的還元触媒装置34よりも上流の側の排気通路5に合流する構成である。 The exhaust heat recovery passage 11 is a passage that joins the exhaust passage 5 after branching from the exhaust passage 5 through which the exhaust gas discharged from the cylinder 2 passes. The exhaust heat recovery passage 11 is desirably configured to pass through each device of the exhaust purification mechanism 30 even when the exhaust flows through the exhaust heat recovery passage 11 . Moreover, it is desirable that the exhaust heat recovery passage 11 joins the exhaust passage 5 upstream of the selective catalytic reduction device 34 with respect to the flow of the exhaust. The exhaust heat recovery passage 11 is configured to branch from the exhaust passage 5 on the downstream side of the filter device 32 with respect to the flow of exhaust gas and join the exhaust passage 5 on the upstream side of the selective catalytic reduction device 34 .

排気用通路切替装置12は排気熱回収通路11および排気通路5の分岐点に配置される、または、排気熱回収通路11および排気通路5の分岐点ならびに合流点の間の中途位置に排気通路5に配置される。排気用通路切替装置12は、排気の流れを排気熱回収通路11または排気通路5のいずれか一方の通路にすることが可能であればよく、分岐点に配置される場合に三方弁で構成され、中途位置に配置される場合に排気通路5を開放または遮蔽するグローブ弁、ゲート弁、バタフライ弁などで構成される。 The exhaust passage switching device 12 is disposed at a branch point of the exhaust heat recovery passage 11 and the exhaust passage 5, or at a midway position between the branch points and confluence points of the exhaust heat recovery passage 11 and the exhaust passage 5. placed in The exhaust passage switching device 12 may be any one of the exhaust heat recovery passage 11 and the exhaust passage 5 as long as it can direct the flow of the exhaust gas. , a globe valve, a gate valve, a butterfly valve, or the like, which opens or blocks the exhaust passage 5 when placed in the middle position.

第一熱交換器13は排気熱回収通路11および迂回通路23のそれぞれの中途位置に配置される。第一熱交換器13は排気熱回収通路11を流れる排気と迂回通路23を流れる冷却水との間で熱交換を行う。第一熱交換器13の構成は排気と冷却水との間で熱交換可能であれば特に限定されるものではない。 The first heat exchanger 13 is arranged midway between the exhaust heat recovery passage 11 and the bypass passage 23 . The first heat exchanger 13 exchanges heat between the exhaust gas flowing through the exhaust heat recovery passage 11 and the cooling water flowing through the bypass passage 23 . The configuration of the first heat exchanger 13 is not particularly limited as long as heat can be exchanged between the exhaust gas and the cooling water.

化学蓄熱装置14は排気の流れに関して第一熱交換器13よりも下流の側の排気熱回収通路11に配置される。化学蓄熱装置14は、化学蓄熱材と水とが水和反応して蓄熱した熱を放熱する、または、熱の吸熱により化学蓄熱材が脱水反応して蓄熱する構成である。化学蓄熱装置14は通過する排気との接触表面積を確保するために多孔質体で構成されることが望ましい。化学蓄熱装置14としては、ハニカム形状のセラミックスを基材として、水酸化マグネシムや塩化カルシウムなどの化学蓄熱材を担持した開放型の装置が例示される。 The chemical heat storage device 14 is arranged in the exhaust heat recovery passage 11 on the downstream side of the first heat exchanger 13 with respect to the exhaust flow. The chemical heat storage device 14 has a configuration in which the chemical heat storage material undergoes a hydration reaction with water to radiate the stored heat, or heat is absorbed and the chemical heat storage material undergoes a dehydration reaction to store heat. The chemical heat storage device 14 is desirably composed of a porous material in order to secure a contact surface area with passing exhaust gas. An example of the chemical heat storage device 14 is an open type device in which a honeycomb-shaped ceramic is used as a base material and a chemical heat storage material such as magnesium hydroxide or calcium chloride is supported.

第二熱交換器15は排気の流れに関して化学蓄熱装置14よりも下流の側の排気熱回収通路11および冷却水の流れに関して第一熱交換器13よりも下流の側の迂回通路23に配置される。第一熱交換器13は化学蓄熱装置14を通過した排気と第一熱交換器13を通過した冷却水との間で熱交換を行う。第二熱交換器15の構成は排気と冷却水との間で熱交換可能であれば特に限定されるものではない。 The second heat exchanger 15 is arranged in the exhaust heat recovery passage 11 on the downstream side of the chemical heat storage device 14 with respect to the flow of exhaust gas and in the bypass passage 23 on the downstream side of the first heat exchanger 13 with respect to the flow of cooling water. be. The first heat exchanger 13 exchanges heat between the exhaust gas that has passed through the chemical heat storage device 14 and the cooling water that has passed through the first heat exchanger 13 . The configuration of the second heat exchanger 15 is not particularly limited as long as heat can be exchanged between the exhaust gas and the cooling water.

水温センサ16はウォータジャケット26および冷却水用通路切替装置24の間の共有通路21に配置され、温度変数としてウォータジャケット26を通過後で、かつ、冷却水用通路切替装置24を通過前の冷却水の温度Twを取得する。水温センサ16は温度変数取得装置として機能するセンサである。 The water temperature sensor 16 is arranged in the common passage 21 between the water jacket 26 and the cooling water passage switching device 24, and serves as a temperature variable for cooling after passing through the water jacket 26 and before passing through the cooling water passage switching device 24. Obtain the water temperature Tw. The water temperature sensor 16 is a sensor that functions as a temperature variable acquisition device.

温度差センサ17は第一熱交換器13および化学蓄熱装置14の間の排気熱回収通路11に配置された第一温度センサ、ならびに、化学蓄熱装置14および第二熱交換器15の間の排気熱回収通路11に配置された第二温度センサから成る。温度差センサ17は化学蓄熱装置14の入口を通過する排気の入口温度から化学蓄熱装置14の出口を通過する排気の出口温度を減算した温度差ΔTを取得する。 The temperature difference sensor 17 is the first temperature sensor arranged in the exhaust heat recovery passage 11 between the first heat exchanger 13 and the chemical heat storage device 14, and the exhaust gas between the chemical heat storage device 14 and the second heat exchanger 15. It consists of a second temperature sensor located in the heat recovery passage 11 . The temperature difference sensor 17 obtains the temperature difference ΔT by subtracting the outlet temperature of the exhaust gas passing through the outlet of the chemical heat storage device 14 from the inlet temperature of the exhaust gas passing through the inlet of the chemical heat storage device 14 .

排気流量センサ18は化学蓄熱装置14を通過する排気の単位時間当たりの体積流量Qgを取得可能であればよく、排気の流れに関して化学蓄熱装置14よりも上流の側に配置されていればよい。 The exhaust flow rate sensor 18 only needs to be able to acquire the volumetric flow rate Qg per unit time of the exhaust gas passing through the chemical heat storage device 14, and is arranged upstream of the chemical heat storage device 14 with respect to the flow of the exhaust gas.

制御装置40は各種情報処理を行う中央演算装置(CPU)、その各種情報処理を行うために用いられるプログラムや情報処理結果を読み書き可能な内部記憶装置、及び各種インターフェースなどから構成されるハードウェアである。制御装置40は、排気用通路切替装置12、燃料噴射装置7、および、各取得装置に電気的に接続されている。 The control device 40 is hardware composed of a central processing unit (CPU) that performs various types of information processing, an internal storage device capable of reading and writing programs used for performing the various types of information processing and information processing results, and various interfaces. be. The control device 40 is electrically connected to the exhaust passage switching device 12, the fuel injection device 7, and each acquisition device.

制御装置40は、機能要素として判定部41、切替制御部42、および、昇温制御部43を有する。各機能要素は、プログラムとして内部記憶装置に記憶されていて、適時、中央演算装置により実行されている。各機能要素としては、プログラムの他にそれぞれが独立して機能するプログラマブルコントローラ(PLC)や電気回路で構成されてもよい。 The control device 40 has a determination section 41, a switching control section 42, and a temperature increase control section 43 as functional elements. Each functional element is stored as a program in the internal storage device and executed by the central processing unit at appropriate times. Each functional element may be composed of a programmable controller (PLC) or an electric circuit that functions independently of the program.

判定部41は各取得装置が取得した変数が入力されて、入力された変数に基づいた判定結果を各制御部に出力する機能要素である。判定部41は、内燃機関1の温度状態が冷間状態か否かの判定と化学蓄熱装置14で脱水反応が開始した状態か否かおよび脱水反応が完了した状態か否かの判定とを行う。また、判定部41は脱水反応が完了するまでに要する時間が長いか否かの判定を行う。 The determination unit 41 is a functional element that receives variables acquired by each acquisition device and outputs a determination result based on the input variables to each control unit. The determination unit 41 determines whether the temperature state of the internal combustion engine 1 is cold, determines whether the dehydration reaction has started in the chemical heat storage device 14, and determines whether the dehydration reaction has completed. . Further, the determination unit 41 determines whether or not the time required to complete the dehydration reaction is long.

判定部41は、内燃機関1の温度状態が冷間状態か否かの判定を水温センサ16が取得した冷却水の温度Twが予め設定された温度閾値Taよりも下回るか否かで判定する。温度閾値Taは冷却水の目標温度以下の温度であり、冷却水用通路切替装置24が冷却水を冷却通路22へ流し始める温度に設定されることが望ましい。温度閾値Taは予め実験、試験、あるいはシミュレーションにより求められる。温度閾値Taとしては冷却水の目標温度を用いてもよい。冷却水の目標温度としては85℃前後が例示される。 The determination unit 41 determines whether or not the temperature state of the internal combustion engine 1 is in the cold state by determining whether or not the coolant temperature Tw acquired by the water temperature sensor 16 is lower than a preset temperature threshold value Ta. The temperature threshold Ta is a temperature below the target temperature of the cooling water, and is preferably set to a temperature at which the cooling water passage switching device 24 starts to flow the cooling water to the cooling passage 22 . The temperature threshold Ta is obtained in advance by experiments, tests, or simulations. A target temperature of the cooling water may be used as the temperature threshold Ta. As a target temperature of the cooling water, around 85°C is exemplified.

内燃機関1の温度状態が冷間状態とは内燃機関1が冷間始動する状態である。冷間始動とは、内燃機関1の各部の温度が雰囲気温度と同等の温度、あるいは雰囲気温度よりも低い温度の状態を示す。同等の温度とは同一の温度を含み、同一の温度と見做せる範囲でその温度よりも高い温度でもよい。例えば、雰囲気温度に対して10度未満の温度差であれば同等の温度として見做す。 When the temperature state of the internal combustion engine 1 is cold, it means that the internal combustion engine 1 is cold-started. A cold start indicates a state in which the temperature of each part of the internal combustion engine 1 is equal to or lower than the ambient temperature. The equivalent temperature includes the same temperature, and may be a temperature higher than that temperature within a range that can be regarded as the same temperature. For example, if the temperature difference is less than 10 degrees with respect to the ambient temperature, it is regarded as the same temperature.

判定部41は、脱水反応が開始した状態か否かの判定を温度差センサ17が取得した温度差ΔTが負の値になったか否かで判定する。水和反応は発熱を伴う反応であり、水和反応が生じている場合に化学蓄熱装置14を通過した後の排気の温度は通過する前の排気の温度よりも高くなり、温度差ΔTが正の値になる。脱水反応は吸熱を伴う反応であり、脱水反応が生じている場合に化学蓄熱装置14を通過した後の排気の温度は通過する前の排気の温度よりも低くなり、温度差ΔTが負の値になる。 The determination unit 41 determines whether or not the dehydration reaction has started by determining whether or not the temperature difference ΔT acquired by the temperature difference sensor 17 has become a negative value. The hydration reaction is a heat-generating reaction. When the hydration reaction occurs, the temperature of the exhaust gas after passing through the chemical heat storage device 14 becomes higher than the temperature of the exhaust gas before passing through, and the temperature difference ΔT is positive. becomes the value of The dehydration reaction is a reaction involving endothermic heat. When the dehydration reaction occurs, the temperature of the exhaust gas after passing through the chemical heat storage device 14 becomes lower than the temperature of the exhaust gas before passing through the chemical heat storage device 14, and the temperature difference ΔT is a negative value. become.

判定部41は、脱水反応が完了した状態か否かの判定を脱水反応が開始されてから化学蓄熱装置14への単位時間当たりの入熱量Qhの積算値ΣQhが予め設定された入熱量閾値Qa以上か否かで判定する。入熱量Qhは温度差ΔTと排気流量センサが取得した排気の体積流量Qgとから求まり、積算値ΣQhは単位時間ごとの入熱量Qhを積算した値である。入熱量閾値Qaは化学蓄熱装置14の脱水反応が完了したことを判定可能な閾値であり、予め実験、試験、あるいは、シミュレーションにより求められる。化学蓄熱装置14の脱水反応の完了までに必要な熱量は、化学蓄熱装置14が有する化学蓄熱材の量に応じる。脱水反応の完了は化学蓄熱装置14の化学蓄熱材のうちの半分以上が脱水した状態でもよく、八割以上が脱水した状態であることが望ましい。 The determining unit 41 determines whether or not the dehydration reaction is completed based on the heat input threshold value Qa, which is the integrated value ΣQh of the heat input Qh per unit time to the chemical heat storage device 14 after the start of the dehydration reaction. It judges whether it is above or not. The heat input Qh is obtained from the temperature difference ΔT and the exhaust volumetric flow rate Qg obtained by the exhaust flow rate sensor, and the integrated value ΣQh is a value obtained by integrating the heat input Qh per unit time. The heat input amount threshold Qa is a threshold that can determine that the dehydration reaction of the chemical heat storage device 14 has been completed, and is obtained in advance by experiments, tests, or simulations. The amount of heat required to complete the dehydration reaction of the chemical heat storage device 14 depends on the amount of chemical heat storage material that the chemical heat storage device 14 has. The dehydration reaction may be completed when half or more of the chemical heat storage material of the chemical heat storage device 14 is dehydrated, and desirably when 80% or more is dehydrated.

判定部41は、脱水反応が完了するまでに要する時間が長いか否かの判定を、温度差ΔTが負になってから経過した時間txを計時し、計時したその時間txが予め設定された時間閾値ta以上経過したか否かで判定する。時間閾値taは適宜設定可能である。 The judging unit 41 judges whether or not the time required to complete the dehydration reaction is long by measuring the time tx that has elapsed since the temperature difference ΔT became negative. It is determined whether or not the time has passed more than the time threshold ta. The time threshold ta can be set as appropriate.

切替制御部42は判定部41の判定結果が入力されて、その判定結果に基づいて排気用通路切替装置12を制御して、排気用通路切替装置12により排気が流れる通路を排気熱回収通路11または排気通路5のどちらか一方の通路に切り替える制御を行う機能要素である。切替制御部42は、判定部41が内燃機関1の温度状態が冷間状態と判定した場合に、排気用通路切替装置12により排気を排気熱回収通路11へ流す制御を行う。切替制御部42は、判定部41が内燃機関1の温度状態が冷間状態でないと判定し、さらに、判定部41が脱水反応が完了した状態と判定した場合に、排気用通路切替装置12により排気を排気通路5へ流す制御を行う。 The switching control unit 42 receives the determination result of the determination unit 41, and controls the exhaust passage switching device 12 based on the determination result so that the exhaust passage switching device 12 changes the passage through which the exhaust flows to the exhaust heat recovery passage 11. Alternatively, it is a functional element that controls switching to either one of the exhaust passages 5 . The switching control unit 42 controls the exhaust passage switching device 12 to flow the exhaust gas to the exhaust heat recovery passage 11 when the determining unit 41 determines that the temperature state of the internal combustion engine 1 is cold. When the determination unit 41 determines that the temperature state of the internal combustion engine 1 is not cold, and the determination unit 41 determines that the dehydration reaction is completed, the switching control unit 42 switches the exhaust passage switching device 12 to Exhaust gas is controlled to flow to the exhaust passage 5 .

昇温制御部43は判定部41の判定結果が入力されて、その判定結果に基づいて化学蓄熱装置14を通過する排気の温度を昇温する機能要素である。昇温制御部43は、判定部41が脱水反応が完了するまでに要する時間が長いと判定した場合に、燃料噴射装置7を制御する。化学蓄熱装置14を通過する排気の温度を昇温する手段としては、燃料噴射装置7から噴射される燃料噴射量を増加して排出される排気を昇温する手段、あるいは、燃料噴射装置7から噴射される燃料の一部を排気通路5の酸化触媒装置31に供給して酸化触媒装置31を通過する排気を昇温する手段が例示される。 The temperature increase control unit 43 is a functional element that receives the determination result of the determination unit 41 and increases the temperature of the exhaust gas passing through the chemical heat storage device 14 based on the determination result. The temperature increase control unit 43 controls the fuel injection device 7 when the determination unit 41 determines that the time required for the dehydration reaction to complete is long. Means for raising the temperature of the exhaust gas passing through the chemical heat storage device 14 may be means for raising the temperature of the exhaust gas discharged from the fuel injection device 7 by increasing the amount of fuel injected from the fuel injection device 7, or A means for supplying part of the injected fuel to the oxidation catalyst device 31 in the exhaust passage 5 to raise the temperature of the exhaust gas passing through the oxidation catalyst device 31 is exemplified.

図2に例示する制御フローは内燃機関1の運転中に所定の周期ごとに繰り返し行われ、図3および図4に例示する制御フローは図2の制御フローでフラグが立った場合に行われ、フラグを降ろすまで行われる。所定の周期とは各取得装置が取得値を取得する周期とする。フロー図における一周期の経過は「リターン」で示す。フロー図におけるフラグは判定結果を保持する変数であり、フラグが立った状態を「1」で示し、フラグが降りた状態を「0」で示す。 The control flow illustrated in FIG. 2 is repeatedly performed at predetermined intervals during operation of the internal combustion engine 1, and the control flow illustrated in FIGS. 3 and 4 is performed when a flag is set in the control flow of FIG. This is done until the flag is dropped. The predetermined cycle is defined as a cycle in which each acquisition device acquires an acquired value. The passage of one cycle in the flow chart is indicated by "return". A flag in the flow chart is a variable that holds the result of determination, and "1" indicates the state in which the flag is set, and "0" indicates the state in which the flag is turned off.

図2に例示するように、水温センサ16が冷却水の温度Twを取得すると(S110)、判定部41は取得した温度Twが温度閾値Taよりも下回るか否かを判定する(S120)。温度Twが温度閾値Taよりも下回ると判定すると(S120:YES)、判定部41はフラグを立てる(S130)。温度Twが温度閾値Ta以上と判定すると(S120:NO)、判定部41はフラグが降りているか否かを判定する(S140)。 As illustrated in FIG. 2, when the water temperature sensor 16 acquires the coolant temperature Tw (S110), the determination unit 41 determines whether the acquired temperature Tw is lower than the temperature threshold Ta (S120). When determining that the temperature Tw is lower than the temperature threshold Ta (S120: YES), the determination unit 41 raises a flag (S130). When it is determined that the temperature Tw is equal to or higher than the temperature threshold Ta (S120: NO), the determination unit 41 determines whether or not the flag is turned down (S140).

次いで、フラグが立った状態の場合に切替制御部42は排気用通路切替装置12により排気が流れる通路を排気熱回収通路11に切り替える(S150)。一方、フラグが降りた状態の場合に切替制御部42は排気用通路切替装置12により排気が流れる通路を排気通路5に切り替える(S160)。以上の制御フローが繰り返される。 Next, when the flag is set, the switching control unit 42 switches the passage through which the exhaust gas flows to the exhaust heat recovery passage 11 by the exhaust passage switching device 12 (S150). On the other hand, when the flag is lowered, the switching control unit 42 switches the passage through which the exhaust gas flows to the exhaust passage 5 by the exhaust passage switching device 12 (S160). The above control flow is repeated.

図3および図4に例示するように、図2の制御フローでフラグが立ち、温度差センサ17が温度差ΔTを取得すると(S210)、判定部41は取得した温度差ΔTが負になったか否かを判定する(S220)。 As illustrated in FIGS. 3 and 4, when the flag is set in the control flow of FIG. 2 and the temperature difference sensor 17 acquires the temperature difference ΔT (S210), the determination unit 41 determines whether the acquired temperature difference ΔT has become negative. It is determined whether or not (S220).

温度差ΔTが負にならないと判定すると(S220:NO)、制御フローはスタートへ戻る。温度差ΔTが負になったと判定し(S220:YES)、排気流量センサ18が排気の体積流量Qgを取得すると(S230)、判定部41は温度差ΔTと体積流量Qgとに基づいて単位時間当たりの入熱量Qhを推定する(S240)。次いで、判定部41は単位時間ごとの入熱量Qhを積算した積算値ΣQhを算出する(S250)。次いで、判定部41は積算値ΣQhが入熱量閾値Qa以上か否かを判定する(S260)。積算値ΣQhが入熱量閾値Qa以上と判定すると(S260:YES)、判定部41はフラグを降ろして(S270)、この制御フローが終了する。 If it is determined that the temperature difference ΔT is not negative (S220: NO), the control flow returns to START. When it is determined that the temperature difference ΔT has become negative (S220: YES), and the exhaust gas flow rate sensor 18 acquires the volumetric flow rate Qg of the exhaust gas (S230), the determination unit 41 determines the unit time based on the temperature difference ΔT and the volumetric flow rate Qg. A heat input Qh per unit is estimated (S240). Next, the determination unit 41 calculates an integrated value ΣQh obtained by integrating the heat input amount Qh for each unit time (S250). Next, the determination unit 41 determines whether or not the integrated value ΣQh is greater than or equal to the heat input amount threshold Qa (S260). When it is determined that the integrated value ΣQh is equal to or greater than the heat input amount threshold Qa (S260: YES), the determination unit 41 clears the flag (S270), and this control flow ends.

積算値ΣQhが入熱量閾値Qaを下回ると判定すると(S260:NO)、判定部41は温度差ΔTが負になってから経過した時間txが時間閾値ta以上経過したか否かを判定する(S280)。時間txが時間閾値ta以上経過したと判定すると(S280:YES)、昇温制御部43は燃料噴射装置7により排気を昇温して(S290)、制御フローがスタートへ戻る。時間txが時間閾値taを経過していないと判定すると(S280:NO)、制御フローがスタートへ戻る。 When it is determined that the integrated value ΣQh is less than the heat input amount threshold Qa (S260: NO), the determination unit 41 determines whether or not the time tx that has elapsed since the temperature difference ΔT became negative has passed the time threshold ta or more ( S280). When it is determined that the time tx has exceeded the time threshold ta (S280: YES), the temperature increase control unit 43 increases the temperature of the exhaust gas by the fuel injection device 7 (S290), and the control flow returns to the start. If it is determined that the time tx has not passed the time threshold ta (S280: NO), the control flow returns to START.

内燃機関1が冷間始動すると、冷却水用通路切替装置24は冷却水を迂回通路23へのみ流し、排気用通路切替装置12は排気を排気熱回収通路11へ流す。次いで、第一熱交換器13は冷却水と排気とを熱交換し、冷却水の温度を上昇させ、排気の温度を下降させる。この排気の温度の下降に伴って、排気に含まれる水蒸気が凝縮水となる。次いで、生じた凝縮水が排気により化学蓄熱装置14に運ばれて化学蓄熱装置14の化学蓄熱材に衝突すると、化学蓄熱装置14は化学蓄熱材が衝突した凝縮水と水和反応して、発熱する。化学蓄熱装置14はこの化学蓄熱材の発熱により化学蓄熱装置14を通過する排気の温度を上昇させる。次いで、第二熱交換器15は第一熱交換器13で昇温された冷却水と化学蓄熱装置14を通過して昇温した排気とを熱交換し、冷却水の温度をさらに上昇させ、排気の温度を下降させる。 When the internal combustion engine 1 is cold-started, the cooling water passage switching device 24 flows the cooling water only to the bypass passage 23 , and the exhaust passage switching device 12 flows the exhaust gas to the exhaust heat recovery passage 11 . Next, the first heat exchanger 13 heat-exchanges the cooling water and the exhaust, increases the temperature of the cooling water, and decreases the temperature of the exhaust. As the temperature of the exhaust gas drops, the water vapor contained in the exhaust gas becomes condensed water. Next, when the generated condensed water is carried by the exhaust gas to the chemical heat storage device 14 and collides with the chemical heat storage material of the chemical heat storage device 14, the chemical heat storage device 14 undergoes a hydration reaction with the collided condensed water, generating heat. do. The chemical heat storage device 14 raises the temperature of the exhaust gas passing through the chemical heat storage device 14 by heat generation of the chemical heat storage material. Next, the second heat exchanger 15 exchanges heat between the cooling water heated by the first heat exchanger 13 and the exhaust gas heated through the chemical heat storage device 14 to further increase the temperature of the cooling water, Lower the temperature of the exhaust.

図5に例示するように、排気熱回収機構10は化学蓄熱装置14の水和反応により第一熱交換器13で温度が下降した排気を昇温することで、第一熱交換器13と第二熱交換器15との二つの熱交換器により冷却水の温度を二段階で昇温する。 As illustrated in FIG. 5, the exhaust heat recovery mechanism 10 raises the temperature of the exhaust gas whose temperature has decreased in the first heat exchanger 13 due to the hydration reaction of the chemical heat storage device 14. The temperature of the cooling water is raised in two steps by the two heat exchangers with the second heat exchanger 15 .

冷却水の温度が上昇すると、冷却水用通路切替装置24は冷却水を冷却通路22および迂回通路23の両方の通路へ流し、迂回通路23を流れる冷却水の流量を減少させる。一方、水和反応が完了すると、化学蓄熱装置14は化学蓄熱材が脱水反応して、排気の熱を吸熱する。化学蓄熱装置14はこの化学蓄熱材の吸熱により化学蓄熱装置14を通過する排気の温度を下降させる。排気用通路切替装置12は脱水反応が完了するまで排気を排気熱回収通路11へ流し、脱水反応が完了すると排気を排気通路5へ流す。 When the temperature of the cooling water rises, the cooling water passage switching device 24 causes the cooling water to flow through both the cooling passage 22 and the bypass passage 23 to reduce the flow rate of the cooling water flowing through the bypass passage 23 . On the other hand, when the hydration reaction is completed, the chemical heat storage material in the chemical heat storage device 14 undergoes a dehydration reaction and absorbs the heat of the exhaust gas. The chemical heat storage device 14 lowers the temperature of the exhaust gas passing through the chemical heat storage device 14 by absorbing the heat of the chemical heat storage material. The exhaust passage switching device 12 allows the exhaust gas to flow to the exhaust heat recovery passage 11 until the dehydration reaction is completed, and allows the exhaust gas to flow to the exhaust passage 5 when the dehydration reaction is completed.

以上のように、排気熱回収機構10は、内燃機関1の温度状態が冷間状態の場合に排気用通路切替装置12により排気を排気熱回収通路11へ流す。これにより、第一熱交換器13で排気の熱を回収した際に生じた凝縮水を利用して、化学蓄熱装置14で水和反応を生じさせて排気を昇温させ、昇温対象である第二熱交換器15で再度、冷却水と昇温した排気とを熱交換することで、冷却水をより昇温させることができる。この結果、内燃機関1が冷間始動した場合に内燃機関1の暖機に要する時間を短縮することができる。 As described above, the exhaust heat recovery mechanism 10 causes the exhaust passage switching device 12 to flow the exhaust gas to the exhaust heat recovery passage 11 when the temperature state of the internal combustion engine 1 is cold. As a result, the condensed water generated when the heat of the exhaust gas is recovered by the first heat exchanger 13 is used to cause a hydration reaction in the chemical heat storage device 14 to raise the temperature of the exhaust gas. By exchanging heat between the cooling water and the heated exhaust gas again in the second heat exchanger 15, the temperature of the cooling water can be further increased. As a result, it is possible to shorten the time required for warming up the internal combustion engine 1 when the internal combustion engine 1 is cold-started.

排気熱回収機構10は排気を排気熱回収通路11へ流した場合に化学蓄熱装置14の脱水反応が完了するまで排気を排気熱回収通路11へ流し続けることが望ましい。これにより、次に内燃機関1の温度状態が冷間状態になるまで化学蓄熱装置14が蓄熱した状態を維持することができる。この結果、次に内燃機関1の温度状態が冷間状態になり、排気を排気熱回収通路11へ流したときに、水和反応が生じて化学蓄熱装置14を通過する排気を昇温することができる。 It is preferable that the exhaust heat recovery mechanism 10 continues to flow the exhaust gas to the exhaust heat recovery passage 11 until the dehydration reaction of the chemical heat storage device 14 is completed. As a result, the state in which the chemical heat storage device 14 stores heat can be maintained until the temperature state of the internal combustion engine 1 becomes cold next time. As a result, the temperature state of the internal combustion engine 1 next becomes cold, and when the exhaust gas flows into the exhaust heat recovery passage 11, a hydration reaction occurs and the temperature of the exhaust gas passing through the chemical heat storage device 14 rises. can be done.

排気熱回収機構10は化学蓄熱装置14の脱水反応の完了を化学蓄熱装置14の前後の温度差ΔTの変化のみで判定することも可能であるが、脱水反応の完了を化学蓄熱装置14への入熱量の積算値ΣQhで判定することが望ましい。時間の経過とともに迂回通路23を流れる冷却水の流量が減少することで、第一熱交換器13における熱交換による温度変化が乏しくなり、温度差ΔTのみで脱水反応の完了を判定することが難しくなる。そこで、化学蓄熱装置14への入熱量の積算値ΣQhで判定することで、脱水反応の完了を高精度に判定することが可能となる。 The exhaust heat recovery mechanism 10 can determine the completion of the dehydration reaction of the chemical heat storage device 14 based only on the change in the temperature difference ΔT before and after the chemical heat storage device 14. It is desirable to make a determination based on the integrated value ΣQh of the heat input. As the flow rate of the cooling water flowing through the detour passage 23 decreases over time, the temperature change due to heat exchange in the first heat exchanger 13 becomes poor, making it difficult to determine the completion of the dehydration reaction based only on the temperature difference ΔT. Become. Therefore, by making a judgment based on the integrated value ΣQh of the amount of heat input to the chemical heat storage device 14, it is possible to judge the completion of the dehydration reaction with high accuracy.

排気熱回収機構10は脱水反応が開始されてから経過した時間が長い場合に排気を昇温することで、脱水反応が完了するまでに要する時間を短縮することができる。これにより、排気熱回収機構10の下流の側に配置された装置への影響を回避するには有利になる。 The exhaust heat recovery mechanism 10 raises the temperature of the exhaust gas when a long time has elapsed since the start of the dehydration reaction, so that the time required for the completion of the dehydration reaction can be shortened. This is advantageous for avoiding the effects on devices arranged downstream of the exhaust heat recovery mechanism 10 .

排気熱回収機構10は内燃機関1の温度状態が冷間状態である間に化学蓄熱装置14の水和反応が完了しない構成であることが望ましい。具体的に、化学蓄熱装置14の化学蓄熱材の量が内燃機関1の温度状態が冷間状態から脱するまでの間で水和反応が完了しない量に設定されることが望ましい。この量は予め試験、実験、あるいはシミュレーションにより求めることが可能である。本開示において内燃機関1の温度状態が冷間状態である間とは冷却機構20の冷却水用通路切替装置24により冷却水が迂回通路23のみを流れる間である。 It is desirable that the exhaust heat recovery mechanism 10 has a configuration in which the hydration reaction of the chemical heat storage device 14 is not completed while the temperature state of the internal combustion engine 1 is cold. Specifically, it is desirable that the amount of chemical heat storage material in the chemical heat storage device 14 is set to an amount that does not complete the hydration reaction until the temperature state of the internal combustion engine 1 exits from the cold state. This amount can be determined in advance by tests, experiments, or simulations. In the present disclosure, "while the temperature state of the internal combustion engine 1 is in the cold state" means that the cooling water flows only through the bypass passage 23 by the cooling water passage switching device 24 of the cooling mechanism 20 .

図6に例示するように、第二実施形態の排気熱回収機構10は第一実施形態に対して昇温対象が異なる。第二実施形態の排気熱回収機構10は昇温対象が選択的還元触媒装置34であり、第二熱交換器15を備えず、化学蓄熱装置14の下流の側の排気熱回収通路11が選択的還元触媒装置34の手前で排気通路5に合流する構成である。また、排気熱回収機構10は温度変数取得装置として排気温度センサ19を備える。 As illustrated in FIG. 6, the exhaust heat recovery mechanism 10 of the second embodiment differs from the first embodiment in the object to be heated. In the exhaust heat recovery mechanism 10 of the second embodiment, the target for temperature rise is the selective catalytic reduction device 34, the second heat exchanger 15 is not provided, and the exhaust heat recovery passage 11 on the downstream side of the chemical heat storage device 14 is selected. It is configured to merge with the exhaust passage 5 before the target reduction catalyst device 34 . The exhaust heat recovery mechanism 10 also includes an exhaust temperature sensor 19 as a temperature variable acquisition device.

排気温度センサ19は選択的還元触媒装置34の上流側または下流側あるいはその両方に配置され、通過する排気の温度Tgを取得するセンサである。排気温度センサ19の代わりに燃料噴射量から排気の温度を間接的に取得する装置や選択的還元触媒装置34の温度を直接的に取得するセンサも例示される。 The exhaust temperature sensor 19 is a sensor that is arranged upstream and/or downstream of the selective catalytic reduction device 34 and acquires the temperature Tg of the passing exhaust gas. A device that indirectly acquires the exhaust temperature from the fuel injection amount instead of the exhaust temperature sensor 19 and a sensor that directly acquires the temperature of the selective catalytic reduction device 34 are also exemplified.

判定部41は、内燃機関1の温度状態が冷間状態か否かの判定を水温センサ16が取得した冷却水の温度Twが温度閾値Taよりも下回るか否かと排気温度センサ19が取得した排気の温度Tgが予め設定した温度閾値Tbよりも下回るか否かとの両方で判定する。温度閾値Tbは選択的還元触媒装置34の触媒が活性化する温度であり、予め実験、試験、あるいはシミュレーションにより求められる。触媒が活性化する温度とは、還元剤噴射装置33から尿素水を噴射する温度であり、噴射された尿素水がアンモニアに加水分解し、そのアンモニアが供給された選択的還元触媒装置34で窒素酸化物の浄化が開始される温度である。触媒が活性化する温度としては200度~300度の範囲の温度が例示される。つまり、触媒が活性化する温度に至っていない状態とは選択的還元触媒装置34の浄化率が低下する状態である。 A determination unit 41 determines whether the temperature state of the internal combustion engine 1 is in a cold state, determines whether the coolant temperature Tw obtained by the water temperature sensor 16 is lower than the temperature threshold value Ta, and determines whether the temperature of the cooling water Tw obtained by the exhaust temperature sensor 19 is lower than the temperature threshold Ta. is lower than a preset temperature threshold value Tb. The temperature threshold Tb is the temperature at which the catalyst of the selective catalytic reduction device 34 is activated, and is obtained in advance by experiments, tests, or simulations. The temperature at which the catalyst is activated is the temperature at which the urea water is injected from the reducing agent injection device 33. The injected urea water hydrolyzes into ammonia, and the selective reduction catalyst device 34 to which the ammonia is supplied produces nitrogen. This is the temperature at which oxide purification begins. Temperatures in the range of 200° C. to 300° C. are exemplified as the temperature at which the catalyst is activated. In other words, the state in which the catalyst activation temperature is not reached is the state in which the purification rate of the selective catalytic reduction device 34 decreases.

本実施形態における内燃機関1の温度状態が冷間状態とは内燃機関10が冷間始動する状態、または、選択的還元触媒装置34の触媒が活性化する温度に至っていない状態である。 In the present embodiment, the cold state of the internal combustion engine 1 is a state in which the internal combustion engine 10 is cold-started, or a state in which the catalyst of the selective catalytic reduction device 34 has not yet reached a temperature that activates.

化学蓄熱装置14の化学蓄熱材の量は、第一実施形態よりも多く、選択的還元触媒装置34の触媒が活性化する温度に至るまで水和反応が完了しない量であることが望ましい。 Desirably, the amount of chemical heat storage material in the chemical heat storage device 14 is larger than that in the first embodiment, and the amount is such that the hydration reaction does not complete until the catalyst of the selective catalytic reduction device 34 is activated.

以上のように、排気熱回収機構10は、第一熱交換器13で排気の熱を回収した際に生じた凝縮水を利用して、化学蓄熱装置14で水和反応を生じさせて排気を昇温させ、昇温対象である選択的還元触媒装置34を昇温させることができる。この結果、早期に触媒を活性化させるには有利になり、排気の浄化率を向上することができる。 As described above, the exhaust heat recovery mechanism 10 uses the condensed water generated when the heat of the exhaust gas is recovered by the first heat exchanger 13 to cause a hydration reaction in the chemical heat storage device 14 to recover the exhaust gas. It is possible to raise the temperature of the selective catalytic reduction device 34 to be heated. As a result, it is advantageous to activate the catalyst at an early stage, and the purification rate of exhaust gas can be improved.

既述した実施形態の排気熱回収機構10の冷媒は冷却機構20を循環する冷却水に限定されずに、内燃機関1の各部を潤滑あるいは冷却する潤滑油で構成されてもよい。 The coolant of the exhaust heat recovery mechanism 10 of the above-described embodiment is not limited to cooling water circulating in the cooling mechanism 20, and may be composed of lubricating oil for lubricating or cooling each part of the internal combustion engine 1.

排気熱回収機構10の温度変数取得装置は内燃機関1の温度状態が冷間状態か否かを判定可能な温度変数を取得する装置であればよい。温度変数取得装置としては内燃機関1の潤滑油の温度を取得する油温センサも例示される。また、温度変数取得装置としては冷却機構20の冷却水用通路切替装置24の開度を取得するセンサも例示される。 The temperature variable acquiring device of the exhaust heat recovery mechanism 10 may be any device that acquires a temperature variable that can determine whether the temperature state of the internal combustion engine 1 is cold. An oil temperature sensor that acquires the temperature of the lubricating oil of the internal combustion engine 1 is also exemplified as the temperature variable acquisition device. A sensor for acquiring the opening degree of the cooling water passage switching device 24 of the cooling mechanism 20 is also exemplified as the temperature variable acquiring device.

排気熱回収機構10の反応変数取得装置は化学蓄熱装置14における反応状態を判定可能な反応変数を取得する装置であればよい。反応変数取得装置は温度差センサ17のみで構成されてもよい。また、反応変数取得装置としては、排気流量センサ18の代わりに吸入吸気量センサを用いて、吸気通路6に配置された吸入吸気量センサが取得した吸気の体積流量および燃料噴射装置7から噴射される燃料噴射量から排気の体積流量Qgを推定する装置も例示される。 The reaction variable acquisition device of the exhaust heat recovery mechanism 10 may be any device that acquires a reaction variable that can determine the reaction state in the chemical heat storage device 14 . The reaction variable acquisition device may be composed only of the temperature difference sensor 17 . In addition, as a reaction variable acquisition device, an intake air amount sensor is used instead of the exhaust flow rate sensor 18, and the volumetric flow rate of the intake air acquired by the intake air amount sensor arranged in the intake passage 6, A device for estimating the exhaust volumetric flow rate Qg from the fuel injection amount is also exemplified.

排気熱回収機構10は第二熱交換器15と選択的還元触媒装置34との両方を昇温対象としてもよい。具体的に、排気熱回収機構10は、第一実施形態の構成に対して、化学蓄熱装置14および第二熱交換器15の間の排気熱回収通路11から分岐して、選択的還元触媒装置34の手前で排気通路5に合流する通路と、その通路と排気熱回収通路11の分岐に配置された通路切替装置とを備えて構成されてもよい。これにより、冷却水の昇温後に、選択的還元触媒装置34を昇温することが可能となる。 The exhaust heat recovery mechanism 10 may raise the temperature of both the second heat exchanger 15 and the selective catalytic reduction device 34 . Specifically, the exhaust heat recovery mechanism 10 branches from the exhaust heat recovery passage 11 between the chemical heat storage device 14 and the second heat exchanger 15 in contrast to the configuration of the first embodiment, and selects a selective reduction catalyst device. It may be configured to include a passage that merges with the exhaust passage 5 before 34 and a passage switching device arranged at a branch of the passage and the exhaust heat recovery passage 11 . This makes it possible to raise the temperature of the selective catalytic reduction device 34 after raising the temperature of the cooling water.

排気熱回収機構10の昇温装置としては化学蓄熱装置14を通過する排気を昇温可能な構成であればよく、燃料噴射装置7に限定されない。昇温装置としては排気浄化機構30が排気管燃料噴射装置を有する場合にその排気管燃料噴射装置も例示される。また、昇温装置としては化学蓄熱装置14よりも上流の側の排気熱回収通路11に設置された電熱ヒータも例示される。 The temperature raising device of the exhaust heat recovery mechanism 10 is not limited to the fuel injection device 7 as long as it can raise the temperature of the exhaust gas passing through the chemical heat storage device 14 . An example of the temperature raising device is an exhaust pipe fuel injection device when the exhaust purification mechanism 30 has an exhaust pipe fuel injection device. An electric heater installed in the exhaust heat recovery passage 11 on the upstream side of the chemical heat storage device 14 is also exemplified as the temperature raising device.

冷却水用通路切替装置24は冷却通路22および迂回通路23の分岐点または合流点のどちらか一方に配置されていればよい。冷却水用通路切替装置24が冷却通路22および迂回通路23の分岐点に配置された出口制御式の冷却機構20は、エア抜き性を向上でき、かつキャビテーションの発生を抑制できるので耐久性の向上に有利になり、特に、トラックなどの大型車両には好適である。冷却水用通路切替装置24が冷却通路22および迂回通路23の合流点に配置された入口制御式の冷却機構20は出口制御式の冷却機構20と比較して冷却水の温度調整の面で有利になる。 The cooling water passage switching device 24 may be arranged at either the branch point or the confluence point of the cooling passage 22 and the detour passage 23 . The outlet control type cooling mechanism 20 in which the cooling water passage switching device 24 is arranged at the branch point of the cooling passage 22 and the detour passage 23 can improve the air bleeding property and suppress the occurrence of cavitation, thereby improving the durability. It is particularly suitable for large vehicles such as trucks. The inlet control type cooling mechanism 20 in which the cooling water passage switching device 24 is arranged at the confluence point of the cooling passage 22 and the detour passage 23 is advantageous in adjusting the temperature of the cooling water compared to the outlet control type cooling mechanism 20. become.

1 内燃機関
2 気筒
5 排気通路
10 排気熱回収機構
11 排気熱回収通路
12 排気用通路切替装置
13 第一熱交換器
14 化学蓄熱装置
15 第二熱交換器
16 水温センサ
17 温度差センサ
18 排気流量センサ
19 排気温度センサ
40 制御装置
1 Internal combustion engine 2 Cylinder 5 Exhaust passage 10 Exhaust heat recovery mechanism 11 Exhaust heat recovery passage 12 Exhaust passage switching device 13 First heat exchanger 14 Chemical heat storage device 15 Second heat exchanger 16 Water temperature sensor 17 Temperature difference sensor 18 Exhaust flow rate Sensor 19 Exhaust temperature sensor 40 Control device

Claims (8)

内燃機関の気筒から排出された排気が通過する排気通路から分岐した後にその排気通路に合流する排気熱回収通路と、排気の流れを前記排気通路および前記排気熱回収通路のどちらか一方の通路に切り替える排気用通路切替装置と、前記排気熱回収通路に配置されて、前記内燃機関の冷却水または潤滑油のどちらか一方から成る冷媒および排気の間で熱交換する第一熱交換器と、を備えた排気熱回収機構において、
排気の流れに関して前記第一熱交換器の下流の側の前記排気熱回収通路に配置されて、水と水和反応して蓄熱した熱を放熱するまたは熱の吸熱により脱水反応して蓄熱する化学蓄熱装置を備え、この化学蓄熱装置が前記第一熱交換器における熱交換で生じた凝縮水と水和反応して前記化学蓄熱装置を通過する排気を昇温し、排気の流れに関して前記化学蓄熱装置の下流の側に配置された昇温対象物を昇温する構成にしたことを特徴とする排気熱回収機構。
an exhaust heat recovery passage branching from an exhaust passage through which exhaust gas discharged from a cylinder of an internal combustion engine passes and then joining the exhaust passage; an exhaust passage switching device for switching; and a first heat exchanger arranged in the exhaust heat recovery passage for exchanging heat between a refrigerant composed of either cooling water or lubricating oil of the internal combustion engine and exhaust gas. In the exhaust heat recovery mechanism equipped with
A chemical element disposed in the exhaust heat recovery passage on the downstream side of the first heat exchanger with respect to the flow of the exhaust gas and dissipating heat stored by hydration reaction with water or storing heat by dehydration reaction by heat absorption. A heat storage device is provided, and this chemical heat storage device undergoes a hydration reaction with condensed water generated by heat exchange in the first heat exchanger to raise the temperature of the exhaust gas passing through the chemical heat storage device, and the chemical heat storage device increases the temperature of the exhaust gas passing through the chemical heat storage device. An exhaust heat recovery mechanism characterized in that it is configured to raise the temperature of an object to be heated that is arranged downstream of the device.
排気の流れに関して前記化学蓄熱装置の下流の側の前記排気熱回収通路に配置されて、前記第一熱交換器を通過後の前記冷媒および前記化学蓄熱装置を通過後の排気の間で熱交換する第二熱交換器を備え、この第二熱交換器が前記昇温対象物である請求項1に記載の排気熱回収機構。 disposed in the exhaust heat recovery passage on the downstream side of the chemical heat storage device with respect to the flow of the exhaust gas to exchange heat between the refrigerant after passing through the first heat exchanger and the exhaust gas after passing through the chemical heat storage device 2. The exhaust heat recovery mechanism according to claim 1, further comprising a second heat exchanger that serves as the object to be heated. 前記内燃機関は前記排気通路に排気を還元浄化する還元触媒装置を備える構成であり、
前記排気熱回収通路は排気の流れに関して前記還元触媒装置の上流の側で前記排気通路に合流する構成であり、前記還元触媒装置が前記昇温対象物である請求項1に記載の排気熱回収機構。
The internal combustion engine is configured to include a reduction catalyst device for reducing and purifying exhaust gas in the exhaust passage,
2. The exhaust heat recovery system according to claim 1, wherein said exhaust heat recovery passage joins said exhaust passage on the upstream side of said reduction catalyst device with respect to the flow of exhaust gas, and said reduction catalyst device is said object to be heated. mechanism.
前記内燃機関の温度状態が冷間状態か否かを判定可能な温度変数を取得する温度変数取得装置と、前記排気用通路切替装置を制御する制御装置と、を備え、
前記制御装置は、前記温度変数取得装置が取得した前記温度変数に基づいて前記内燃機関の温度状態が冷間状態であると判定すると前記排気用通路切替装置により排気を前記排気熱回収通路へ流し、前記内燃機関の温度状態が冷間状態でないと判定すると前記排気用通路切替装置により排気を前記排気通路へ流す制御を行う構成である請求項1~3のいずれか1項に記載の排気熱回収機構。
a temperature variable acquisition device that acquires a temperature variable that can determine whether the temperature state of the internal combustion engine is cold, and a control device that controls the exhaust passage switching device,
When the control device determines that the temperature state of the internal combustion engine is cold based on the temperature variable obtained by the temperature variable obtaining device, the exhaust passage switching device causes the exhaust gas to flow to the exhaust heat recovery passage. 4. The exhaust heat according to any one of claims 1 to 3, wherein when it is determined that the temperature state of the internal combustion engine is not cold, the exhaust passage switching device controls the flow of the exhaust gas to the exhaust passage. recovery mechanism.
前記化学蓄熱装置における反応状態を判定可能な反応変数を取得する反応変数取得装置を備え、
前記制御装置は、前記排気用通路切替装置により排気を前記排気熱回収通路へ流した場合に前記反応変数取得装置が取得した前記反応変数に基づいて、前記化学蓄熱装置における脱水反応が完了したと判定するまで前記排気用通路切替装置により排気を前記排気熱回収通路へ流し、脱水反応が完了したと判定したときに前記排気用通路切替装置により排気を前記排気通路へ流す制御を行う構成である請求項4に記載の排気熱回収機構。
comprising a reaction variable acquisition device for acquiring a reaction variable capable of determining a reaction state in the chemical heat storage device;
The control device determines that the dehydration reaction in the chemical heat storage device is completed based on the reaction variable acquired by the reaction variable acquisition device when exhaust gas is caused to flow into the exhaust heat recovery passage by the exhaust passage switching device. The exhaust passage switching device causes the exhaust gas to flow to the exhaust heat recovery passage until the determination is made, and the exhaust passage switching device causes the exhaust gas to flow to the exhaust passage when it is determined that the dehydration reaction is completed. The exhaust heat recovery mechanism according to claim 4.
前記反応変数は前記化学蓄熱装置の入口を通過する排気の入口温度から前記化学蓄熱装置の出口を通過する排気の出口温度を減算した差分と前記化学蓄熱装置を通過する排気の流量とで構成され、
前記制御装置は前記差分と前記流量とに基づいて前記化学蓄熱装置への入熱量を推定し、推定したその入熱量が予め設定された入熱量閾値以上になったときに脱水反応が完了したと判定する構成である請求項5に記載の排気熱回収機構。
The reaction variable is composed of the difference obtained by subtracting the outlet temperature of the exhaust gas passing through the outlet of the chemical heat storage device from the inlet temperature of the exhaust gas passing through the inlet of the chemical heat storage device, and the flow rate of the exhaust gas passing through the chemical heat storage device. ,
The control device estimates the amount of heat input to the chemical heat storage device based on the difference and the flow rate, and determines that the dehydration reaction is completed when the estimated amount of heat input reaches or exceeds a preset heat input amount threshold. 6. The exhaust heat recovery mechanism according to claim 5, which is configured to determine.
排気の流れに関して前記化学蓄熱装置の上流の側に排気の温度を昇温する昇温装置を備え、
前記制御装置は、前記化学蓄熱装置の入口を通過する排気の入口温度から前記化学蓄熱装置の出口を通過する排気の出口温度を減算した差分が負になってから経過した時間を計時し、計時したその時間が予め設定された時間閾値以上に経過したときに前記昇温装置により前記化学蓄熱装置を通過する排気の温度を昇温する制御を行う構成である請求項4~6のいずれか1項に記載の排気熱回収機構。
A temperature raising device for raising the temperature of the exhaust gas is provided on the upstream side of the chemical heat storage device with respect to the flow of the exhaust gas,
The control device measures the time elapsed after a difference obtained by subtracting the outlet temperature of the exhaust gas passing through the outlet of the chemical heat storage device from the inlet temperature of the exhaust gas passing through the inlet of the chemical heat storage device becomes negative, and measures the time. 7. The configuration according to any one of claims 4 to 6, wherein control is performed to raise the temperature of the exhaust gas passing through the chemical heat storage device by the temperature raising device when the time has passed a preset time threshold or more. The exhaust heat recovery mechanism according to the paragraph.
前記冷媒は冷却水であり、その冷却水は冷却水用ポンプ、ウォータジャケット、冷却水用通路切替装置、ならびに、ラジエータが介設された冷却通路およびその冷却通路を迂回する迂回通路の少なくとも一方の通路を順に循環する構成であり、
前記第一熱交換器は前記迂回通路の中途位置に配置される請求項1~7のいずれか1項に記載の排気熱回収機構。
The coolant is cooling water, and the cooling water is at least one of a cooling water pump, a water jacket, a cooling water passage switching device, a cooling passage in which a radiator is interposed, and a bypass passage that bypasses the cooling passage. It is a configuration that circulates through the passages in order,
The exhaust heat recovery mechanism according to any one of claims 1 to 7, wherein the first heat exchanger is arranged in the middle of the bypass passage.
JP2021028802A 2021-02-25 2021-02-25 Exhaust heat recovery mechanism Active JP7251564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021028802A JP7251564B2 (en) 2021-02-25 2021-02-25 Exhaust heat recovery mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021028802A JP7251564B2 (en) 2021-02-25 2021-02-25 Exhaust heat recovery mechanism

Publications (2)

Publication Number Publication Date
JP2022129920A true JP2022129920A (en) 2022-09-06
JP7251564B2 JP7251564B2 (en) 2023-04-04

Family

ID=83151064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021028802A Active JP7251564B2 (en) 2021-02-25 2021-02-25 Exhaust heat recovery mechanism

Country Status (1)

Country Link
JP (1) JP7251564B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016114030A (en) * 2014-12-17 2016-06-23 トヨタ自動車株式会社 Internal combustion engine
JP2016160898A (en) * 2015-03-04 2016-09-05 アイシン精機株式会社 Chemical heat storage system for vehicle
JP2017218966A (en) * 2016-06-07 2017-12-14 トヨタ自動車株式会社 Exhaust heat recovery device
JP2020101103A (en) * 2018-12-20 2020-07-02 いすゞ自動車株式会社 Exhaust heat recovery device of internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016114030A (en) * 2014-12-17 2016-06-23 トヨタ自動車株式会社 Internal combustion engine
JP2016160898A (en) * 2015-03-04 2016-09-05 アイシン精機株式会社 Chemical heat storage system for vehicle
JP2017218966A (en) * 2016-06-07 2017-12-14 トヨタ自動車株式会社 Exhaust heat recovery device
JP2020101103A (en) * 2018-12-20 2020-07-02 いすゞ自動車株式会社 Exhaust heat recovery device of internal combustion engine

Also Published As

Publication number Publication date
JP7251564B2 (en) 2023-04-04

Similar Documents

Publication Publication Date Title
JP5403171B2 (en) Engine cooling system
JP5223389B2 (en) Cooling device for internal combustion engine
RU2580981C2 (en) Supercharged internal combustion engine cooling system
RU2628682C2 (en) Engine system for vehicle
JP4998537B2 (en) Vehicle cooling device
WO2021238705A1 (en) Cooling liquid preheating and waste heat recovery device, and vehicle
RU2017127192A (en) METHOD AND SYSTEM FOR THE CATALYTIC NEUTRALIZER OF EXHAUST GASES
RU2696717C1 (en) Exhaust gas recirculation system cooler
JP2014009617A (en) Cooling device of internal combustion engine
JP7251564B2 (en) Exhaust heat recovery mechanism
CN106150825A (en) A kind of cold start of vehicle engine heating system
JP6607527B2 (en) Vehicle control device
JP2012127323A (en) Thermal control system for vehicle
JP2005273582A (en) Exhaust heat recovery system
JP5789972B2 (en) Engine warm-up device
JP2004270487A (en) Device for using exhaust heat of engine
JP2016223319A (en) Control device for internal combustion engine
JP2012145008A (en) Internal combustion engine control device
JP2022117654A (en) internal combustion engine
JP3906745B2 (en) Cooling device for internal combustion engine
JP2022153037A (en) Co2 separation device of internal combustion engine
JP7273572B2 (en) warming device
JP2022152387A (en) Co2 separation device of internal combustion engine
JP4882914B2 (en) Operation control device for internal combustion engine
JP2003083057A (en) Heat recovery device for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230306

R150 Certificate of patent or registration of utility model

Ref document number: 7251564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150